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ABSTRACT

In this paper, we review some new distributed algorithms that construct sparse
subgraphs with bounded degree of the unit disk graph efficiently for wireless ad hoc
networks. They maintain a linear number of links while still preserving power-efficient
routes for any pair of nodes. It was open whether the Yao plus reverse Yao graph and
the symmetric Yao graph are spanners. We show that the Yao plus reverse Yao graph
has a bounded power stretch factor 2 in civilized unit disk graph. In addition, we review
a recent example by M. Griinewald et al. [6] to show that the symmetric Yao graph does
not have a constant bounded stretch factor. Finally, we conduct simulations to study
the practical performances of these structures. All structures have small power stretch
factors for randomly generated unit disk graphs in our experiments.

Keywords: Wireless Ad Hoc Networks, Spanner, Topology Control, Power Consump-
tion, Optimization.

1. Introduction

Wireless ad hoc networks have various applications in many areas and have
drawn considerable attentions both from network engineers and theoretical re-
searchers. One of the major concerns in designing wireless ad hoc networks is
to save the power consumption as the wireless nodes are often powered by batteries



only. In addition, the scalability is crucial for network operations as every node
has limited resources such as memory. One effective approach to cope with these
constraints is to maintain only a linear number of links using a localized construc-
tion method. Here a distributed algorithm constructing a graph G is a localized
algorithm if every node u can exactly decide all edges incident on u based only on
the information of all nodes within a constant hops of u. At the same time, the
sparseness property should not compromise too much on the power consumptions
on communications. In this paper, we study how to construct a sparse spanner
efficiently for a set of static or quasi-static wireless nodes such that, for any given
pair of nodes, there is a power-efficient unicast route in the constructed network
topology.

We consider a wireless ad hoc network consisting of a set V' of n wireless nodes
distributed in a two-dimensional plane. For the sake of simplicity, we assume that
the nodes are static or static in a reasonable time period. In the most common
power-attenuation model, the power needed to support a link uv is ||uv||®, where
|[uv|| is the Euclidean distance between u and v, and § is a real constant between
2 and 4 dependent on the wireless transmission environment. By a proper scaling,
we assume that all nodes have the maximum transmission ranges equal to one unit.
These wireless nodes define a unit disk graph UDG(V) in which there is an edge
between two nodes if and only if their Euclidean distance is at most one. The size
of the unit disk graph could be as large as O(n?).

A trade-off can be made between the sparseness of the topology and the power
efficiency. The power efficiency of any spanner is measured by its power stretch
factor, which is defined as the maximum ratio of the minimum power needed to
support the connection of two nodes in this spanner to the least necessary in the unit
disk graph. Recently, Wattenhofer, et al. [19] proposed a two-phased power efficient
network construction method using a variation of the Yao structure followed by a
variation of the Gabriel graph. Li et al. [14] studied the power efficiency property of
several well-known proximity graphs including the relative neighborhood graph, the
Gabriel graph, and the Yao graph. These graphs are sparse and can be constructed
locally and efficiently. They showed that the power stretch factor of the Gabriel
graph is always one, and the power stretch factor of the Yao graph is bounded from
above by a real constant while the power stretch factor of the relative neighborhood
graph could be as large as n — 1. Notice that all of these graphs do not have
constant bounded node degrees, which can cause large overhead at some nodes in
wireless networks. They further suggested to use another sparse topology, called
Yao and Sink ﬁZ(V), which has both a constant bounded node degree and a
constant bounded power stretch factor. We will review the algorithm to construct
this topology in Section 3.

Li et al. [15] also defined another structure named Yao plus reverse Yao, denoted
by Wk(V) hereafter, which has a bounded node degree too. Their experiments
showed that it has a small stretch factor in practice. However, they did not give a
proof of its spanner property. In this paper, we review the algorithm constructing
Wk(V) and show that it is power-efficient in civilized graph.



Li et al. [13] and Stojmenovic [18] also considered another new undirected
structure, called symmetric Yao graph Y S(V), which guarantees that the node
degree is at most k. Stojmenovic [18] proved that it is a connected graph if UDG(V)
is connected. Recently, Griinewald, et al. [6] showed that Y'Si(V) is not a spanner
for length. We include their counter-example in Section 3.

The rest of the paper is organized as follows. In Section 2, we first give some
definitions and review some results related to the distributed spanner for wireless
networks. In Section 3, we review the methods to construct topologies ﬁZ(V),
ﬁk(V), and V'S, (V) with bounded node degree. We give a simple proof that all
structures are connected in Section 4. Our main result that Wk(V) is a spanner
in civilized graph is also presented in Section 4. Their practical performances are
studied in Section 5. We conclude our paper in Section 6 by discussing some possible
future works.

2. Preliminaries

In this section, we review some geometry definitions and notations that will be
used later.

2.1. Spanner and Power Stretch Factor

Constructing a spanner of a graph has been well studied by computational ge-
ometry community [1, 2, 4, 8, 16, 20]. Let Il (u,v) be the shortest path connecting
u and v in a graph G. Then, a graph H is a spanner of G if there exists a constant
t such that the length of Iy (u,v) is no more than ¢ times the length of Mg (u,v)
for any two nodes u and v. The constant ¢ is called the length stretch factor. Some
researchers call it dilation ratio, or spanning ratio. However for wireless networks,
we pay more attention on the power consumptions, the following definition of power
stretch factor was introduced in [15].

Consider any unicast path II(u,v) in G (could be directed) from a node u € V'
to another node v € V:

II(u,v) = vovy - - - Vh_1Vp,

where u = vg, v = v, and h is the number of hops of the path II. The total
transmission power p(II) consumed by this path II is defined as

h
p(m) =Y [lvi-qvil?
i=1

Let pi(u,v) be the minimum power consumed by all paths connecting nodes v and
v in G. The path in G connecting u,v and consuming the power pg(u,v) is called
the minimum-power path in G for u and v.

Let H be a subgraph of G. Its power stretch factor with respect to G is then
defined as

_ pH(U, 1))
pH(G) B 1‘1}11’%)‘{/ pG(U, U)



If G is a unit disk graph, we use pg (V) instead of pg(G). For any n, let

pu(n) = sup pu(V).
[V|=n

When the graph H is clear from the context, it is dropped from notations. For
the remainder of this section, we review some basic properties of the power stretch
factor, which were studied and proved in [14, 15].
Lemma 1 For a constant §, pa(G) < § iff for any link v;v; in graph G but not in
H, pr(vi,v;) < djviv; |1°.
Lemma 2 For any H C G with a length stretch factor 8, its power stretch factor
is at most 67 for any graph G.

Lemma 1 implies that it is sufficient to analyze the power stretch factor of H for
each link in G but not in H. jFrom Lemma 2, we know that a geometry structure
H with a constant length stretch factor § has power stretch factor no more than 6°.
However, the reverse is not true. Finally, the power stretch factor has the following
monotonic property [14, 15].

Lemma 3 If Hi C Hy C G then the power stretch factors of Hy and H» satisfy

2.2. Well-known Structures

Various proximity subgraphs of the unit disk graph can be defined and be used in
the topology control or other applications for wireless networks [3, 9, 12, 14, 17, 19].

The relative neighborhood graph, denoted by RNG(V), consists of all edges uv
such that ||uv|| <1 and there is no point w € lune(u, v). Here lune(u, v) is the set
of points w such that ||uw|| < [|uv]|, and |Jwv|| < ||uv||. The Gabriel graph, denoted
by GG(V), consists of all edges uv such that ||uv|| < 1 and the open disk using
uv as diameter does not contain any node from V. The Yao graph with an integer
parameter k > 6, denoted by ﬁk(V), is defined as follows. At each node u, any
k equally-separated rays originated at u define k cones. In each cone, choose the
closest node v to u with distance at most one, if there is any, and add a directed link
@d. Ties are broken arbitrarily. Let Y Gy (V) be the undirected graph by ignoring
the direction of each link in ﬁk(V). See Figure 1 for an illustration.

Figure 1: Neighbors of u in Yao graph.

These graphs extend the conventional definitions of corresponding ones for the
completed Euclidean graph; see [5, 10, 20]. It is well-known that RNG(V) is a



subgraph of GG(V) and Y G (V) [2, 14, 15]. In addition, the following lemma can
be proved [3, 2].
Lemma 4 If UDG(V) is connected, YG(V), GG(V) and RNG(V) contain Fu-
clidean minimum spanning tree EM ST (V) as a subgraph.

These graphs are sparse: |[RNG(V)| < 3n, |GG(V)| < 3n, and |ﬁk(V)| < kn.

Bose, et al. [2] showed that the length stretch factor of RNG(V) is ©(n) and
the length stretch factor of GG(V) is @(@). Several papers showed that the
Yao graph ﬁk(V) has length stretch factor at most m Recently, Li, et al.
[14] studied the power efficiency property of these well-known proximity graphs.
They showed that the power stretch factor of GG(V') is always 1, and the power
stretch factor of the Yao graph is at most W while the power stretch factor
of RNG(V) could be as large as n — 1. All these structures can be constructed
locally.

2.8. Bounded Degree?

The sparseness of these well-known proximity graphs implies that the average
node degree is bounded by a constant. However, Li et al. [14] showed that the
maximum node degree could be as large as n—1 as shown in Figure 2. The instance
consists of n — 1 points lying on the unit circle centered at a node u € V. Then each
edge uv; belongs to the RNG(V), GG(V) and ﬁk(V) Thus, node u has degree
n—1 (in-degree for YG(V)) in RNG(V), GG(V) and YGi(V), although YG1 (V)
has a bounded out-degree k for each node.

Figure 2: Node u has degree (or in-degree) n — 1.

Because wireless nodes have limited resources, we prefer the node degree be
bounded by a constant. Unbounded degree (or in-degree) at node v will often
cause large overhead at u. On the other hand, bounded degree will also give us
advantages when apply several routing algorithms. Therefore, it is often imperative
to construct a sparse network topology such that both the in-degree and the out-
degree are bounded by a constant while it is still power-efficient.

2.4. Civilized Graph

When we prove the spanner property of one of the new structures, Wk(V), we
consider it in the civilized unit disk graph instead of the general unit disk graph.
Here a UDG(V) is a civilized graph if the distance between any two nodes in this



graph is larger than a constant A. In [7], they called the civilized unit disk graph
as the A-precision unit disk graph. Notice the wireless devices in wireless network
can not be too close or overlapped, so it is reasonable to model the wireless ad hoc
network as a civilized unit disk graph.

3. Previous Results

We first review the definitions, the constructions and the properties of some
bounded degree structures proposed recently [6, 13, 14, 15, 18] All of them can be
constructed locally and have bounded node degrees.

3.1. Construction of Bounded Degree Structures

Assume that each node v; of V has a unique identification number ID(v;) = 4.
The identity of a directed link %0 is defined as

ID(wb) = (|luvll, ID(u), ID(v)).

Then we can order all directed links (at most n(n — 1) such links) in an increasing
order of their identities. Here the identities of two links are ordered based on the
following rules: ID(wd) > ID(pg) if

L. [Juv|| > [lpql| or
2. |luv|| = ||pql| and ID(u) > ID(p) or
3. |luv|| = [|pg|l, v = p and ID(v) > ID(q).

Correspondingly, the rank, denoted by rank(@d), of each directed link @ is its
order in the sorted directed links. Notice that, we only have to consider the links
with length no more than one.

The Yao graph Y_G"k(V) can be constructed as follows.

Algorithm: Constructing-YG

FEach node u divides the space by k equal-sized cones centered at u. We generally
assume that the cone is half open and half-close. Node u chooses a node v from
each cone so the directed link @0 has the smallest ID(#0) among all directed links
wd; with v; in that cone, if there is any. Let ﬁk (V) be the union of all chosen
directed links.

3.1.1. Yao and Sink

Arya, et al. [1] presented an innovative technique to generate a bounded degree
graph with a constant length stretch factor. In [14, 15], the authors applied the
same technique to construct a sparse network topology, Yao and sink graph, with
a bounded degree and a bounded power stretch factor. The technique is to replace
the directed star consisting of all links toward a node u by a directed tree T'(u) with
u as the sink. Tree T'(u) is constructed recursively. The algorithm is as follows, (see
[15] for more detail).

Algorithm: Constructing-YG*



1. First, construct the graph ﬁk(V). Each node u will have a set of in-coming
nodes I(u) = {v | 78 € YGx(V)}.

2. For each node u, use the following Tree(u,I(u)) to build tree T'(u).
Algorithm: Constructing-T'(u) Tree(u,I(u))

1. To partition the unit disk centered at u, we choose k equal-sized cones centered
at u: Cq(u), Ca(u), -+ - Cr(u).

2. Node u finds the node y; € I(u) in C;(u) with the smallest ID(i;@), for
1 <i < k, if there is any. Link #;@ is added to T'(u) and y; is removed from
I(u). For each cone Cj(u), if I(u)NC;(u) is not empty, call Tree(y;, I (u)NC;(u))
and add the created edges to T'(u).

Notice that, node u constructs the tree T'(u) and then broadcasts the structure
of T'(u) to all nodes in T'(u). Figure 3 (a) illustrates a directed star centered at u
and Figure 3 (b) shows the directed tree T'(u) constructed to replace the star with
k = 8. The union of all trees T'(u) is called the sink structure ﬁ;(V)

Figure 3: (a) Star formed by links toward to u. (b) Directed tree T'(u) sinked at w.

3.1.2. Yao plus reverse Yao

In [15], the authors defined another structure named Yao plus reverse Yao,
denoted by ﬁk(V). The construction algorithm is as follows.

Algorithm: Constructing-YY
1. First, construct the graph ﬁk(V)

2. Node u chooses a node v from each cone, if there is any, so the directed link
7% has the smallest 1D (7#%) among all directed links computed in the first step
in that cone.

The union of all chosen directed links in the second step is the final network
topology, denoted by Y‘Y)k(V). If the link directions are ignored, the graph is
denoted as Y'Y (V). Compared with ﬁ: (), Y_Ykk(V) replaces the directed tree
T'(u) by a directed star (See Figure 4) consisting of at most k links toward a node
u.



Figure 4: Node u chooses the shortest directed link toward u in each cone instead
of constructing tree T'(u).

3.1.3. Symmetric Yao

In [13, 18], they considered another undirected structure, called symmetric Yao
graph Y Sy, (V'), which guarantees that the node degree is at most k. Symmetric Yao
graph can be constructed as follows.

Algorithm: Constructing-YS

1. First, construct the graph ﬁk(V)

2. An edge uv is selected to graph Y Sy (V) if and only if both directed edges ud
and 7% are in VG (V).

3.2. Known Properties of Structures

The algorithm which constructs Yao and sink structure uses a directed tree
T'(u) to replace the directed star for each node u. Therefore, it does not change the
connectivity of the structure. We already know that ﬁk is strongly connected if
UDG(V) is connected, so does ﬁ;

In [14], they proved the node degree of ﬁz is bounded by (k +1)2 — 1 (its in-
degree is bounded by k(k + 1) while the maximum out-degree is k.) and its power
stretch factor is at most (W)?

We comment it here that the sink structure and the Yao graph structure do not
need to have the same number of cones, and the cones centered at different nodes
do not need to be aligned. For setting up a power-efficient wireless networking,
each node u finds all its neighbors in YG((V), which can be done in linear time
proportional to the number of nodes within its transmission range.

However, the construction of ﬁ:(V) is actually more complicated and the
performance gain compared with YY1 (V) is not so obvious in practice as shown by
our experimental results in Section 5.

For the Yao plus reverse Yao graph, it is obvious that both the out-degree and
in-degree of a node in Wk(V) are bounded by k. This implies that YY (V) is
a sparse graph. ;From the construction algorithm, we also know YY (V) is a
subgraph of ﬁ;(V), because all the links selected by node u in the second step
are in the directed tree T'(u) built by node v in ﬁ;(V)



In [15], by using induction they proved that Wk(V) is strongly connected if
UDG(V) is connected. Moreover, their experiments showed that YY (V) has a
small stretch factor in practice. However, they did not give a proof of its spanner
property. In next section, we will show that it is power-efficient in civilized graph.

For the symmetric Yao graph Y Si(V), it is obvious that its node degree is
bounded by k. Recently Griinewald et al. [6] and Stojmenovic [18] both proved
that Y Si (V) is strongly connected if UDG(V) is connected. But the proofs were
long and complex. We will give a simpler proof in next section.

Griinewald et al. [6] showed that V'S, (V) is not a spanner for length or power
by giving a counter example, whose basic idea is similar to the counter example for
RNG proposed by Bose et al. [2]. For the completeness of the presentation, we still
review the counter example here.

Let nodes v; and vg have distance half unit from each other. Assume the ith
cone of v; contains vg, and the ¢'th cone of vy contains v;. Then draw two lines
Iy = vyvz and Iy = vov, such that both the angles Zvzv1vp and Zvyvpv; are § — a,
where « is a very small positive number. We first consider even n, say n = 2m.
Figure 5 illustrates the construction of the point set V. The node vy; is placed
on Iz in the ith cone of vp;_1 and it is very close to the upper boundary of the
ith cone of vaj_1. The node vy;y1 is placed on I in the i'th cone of va; close to
the upper boundary of that cone. Using this method, we place all nodes from v,
t0 V2, in order. Then it is easy to show that the Y .S, (V) does not contain any
edge vo;vsjq1 and voj41v2j42 for 0 < j < m — 1. The nearest neighbor of v; is
vaj41, but for va; 1, the nearest neighbor is va; 2. So although in Y'Si(V') there is
a path from v to va, its length is ||v1vam—1]|| + ||[v2m—1V2m|| + ||v2mv2||.- So when a
is appropriately small, the length stretch factor of Y Sy (V) cannot be bounded by
a constant. Similarly, its power stretch factor cannot be bounded also. When n is
odd, the construction is similar.

Nevertheless, our experiments show that Y Sk(V) has a small power stretch
factor in practice.

4. Our New Results

4.1. A simple proof for connectivity

Griinewald et al. [6] and Stojmenovic [18] already proved the connectivity of
Y Sk(V) by induction. When given any node u, there are two nodes that are equal
distance to u, we give a simpler proof here.
Theorem 1 The graph Y Si(V') is connected if UDG(V) is connected and k > 6.

ProoF. First we prove that RNG(V) C Y'Si(V). From the definition of RNG(V),
there is an edge wv in RNG(V) if and only if the shaded region shown in Figure 6
(b) is empty. If the shaded region shown in Figure 6 (b) is empty then the shaded
region shown in Figure 6 (a) must be empty when § < %, i.e. k> 6. So any edge
wv in RNG(V) must be in Y'Si (V) also.

Remember that RNG(V) is connected if UDG(V) is connected from Lemma



Figure 5: An example that Y S (V) has a large stretch factor.

4. So the symmetric Yao graph, which is a supergraph of RNG(V), is strongly
connected when RNG(V) is connected.

By definitions, it is easy to show that, given a set of nodes in general position,
YSp(V) CYYR(V) CYGL(V), and YYi (V) CYGr(V). (1)
Then all such graphs are connected, if UDG(V) is connected.

4.2. YY (V) is a spanner in civilized graph

We now prove that Wk(V) is a spanner in civilized graph. Remember that in
a civilized graph the distance between any two nodes is at least .

Figure 6: (a) if wv is an edge of Y'Si(V), then the shaded region must be empty.
(b) if uv is an edge of RNG(V'), then the shaded region must be empty.

10



Theorem 2 The power stretch factor of the directed topology Wk(V) is bounded
by a constant p in civilized graph.

PROOF. We actually prove the following claims by induction on the rank of the
directed links:

1. There is a constant § > 1, such that for any directed link 7;0} in the graph
ﬁk(V), the minimum power consumption in Wk(V) from v; to v; is no
more than &||v;v;||°. Specifically, we show that

ey 2. |18
py‘y?k(v)(vzaUJ) < 5”“1“]” .

2. There is a constant p > 4, such that for any directed link 7;0} not in the
graph ﬁk (V), the minimum power consumption in Y_Y>k (V) from v; to v; is
no more than p||v;v;||°. In other words, we show that

T 1B
pﬁk(v) (vi,vj) < pllvivs||”.

The directed link with the rank one is obviously in Y‘Y>k(V), thus, the first
claim holds. Assume that the claims are true for all links with rank at most r.
Then consider the directed link u} with rank r + 1.

Case 1: link u} does not belong to Y_(,ﬁk(V) Then there is a directed path
Hﬁ (u,t) = q1¢2--- qp from u to ¢t in graph ﬁk(V), where ¢; = v and ¢, = t.

Let vkbe node ¢>. Then we have

rank(@d) = (||@|, ID(u), ID(v)) < rank(ut) = (|[utll, ID(u),ID(t))  (2)
because of the selection method of the first step. Similarly,

rank(ot) = (||vt||, ID(v),ID(#)) < rank(ut) = (|[at|, ID(u),ID(t))  (3)

because ||B|| < ||1ﬁ|| Then we can apply the induction on @ and v_% Notice that
here vt may not belong to Y G (V). Consequently, we have

PEp, 0y :0) < Sluolpprp | (0,8) < plot]” @
Therefore,

B B
Pyy, W) (u,t) W W) (u,v +pY—Yk W) (v,t) < §l|luv||” + p|vt||”. (5)

There are two subcases here. Either Zuvt is acute or not.
Subcase 1.1: the angle Zuvt is not acute. Then we have

lluol|? + (vt < [Jut]|”.
It implies that

3lluv]l® + pllvtll® < pllluv]l® + [[vt]l) < pllut]l®. (6)

11



Consequently, we have
p. B B 8
Y—ykk(v)(u,t) < d)|lwv||® + pl|vt|]” < pllut]]”. (7)

In other words, the claims hold for this subcase as long as § < p.
Subcase 1.2: the angle /uvt is acute. Then we have

9
llot]| < 2sin 2 ||ut|| = 2 sin — |Jut||.
2 k
Consequently, §||uv||® + p||vt||® is at most
8 8 8 in Tt in ™)’ 8
Ollut)® + pllvtll” < Sllutll® + p (2sin Lllutl])” = (5+p (2sin )" ) llutll”. (8)

Therefore, if
B
5+p(2sin%) <p

then we have
B
o 5 in = 6 i
pY_Y)k(V)(u’t) < Sl|uv|]” + pllvt]|” < ((5+p (2 sin k) ) lut||® < pllut]]®.  (9)

In other words, the claims hold for this subcase.
Case 2: a link @0 with rank r + 1 does belong to ﬁk(V) Then we know that
there is a directed path HW (u,v) = vivy - - v from u to v in Wk(V), where
k

v1 =u and vy, =v. Let w =vp_1. If w is u then we have
B B
P,y (050) < lluvl? < dluo])” (10

So the claims hold. Otherwise, because the directed links @0 and @Wo are at a same
cone centered at v,

rank(w?d) < rank(uv)

due to the selection method in the second phase. Notice that Zuvw < 27”, we have
lluw]] < Juv]]. So,
rank(uw) < rank(wd) = r + 1.

Then by induction, the minimum power consumption path in Wk(V) connecting
v and w is bounded by p|luw||?. Therefore there is a path in ﬁk(V) from u to v
with the minimum power consumption at most p||uw||? + ||wv||®. Notice we want
to show

B
PEp, g (1:0) < Blluo]”

Again, we have two cases here: whether the angle /uwwv is acute or not.
Subcase 2.1: the angle Zuwv is not acute. Then we have

luwll® + lwo]l® < [luv].
It implies that

plluw|l + [lwoll® < p(lluv]|® — [Jwoll?) + [lwoll® = plluvl]® — (p = Dllwoll®. (1)

12



JFrom the property of civilized graph, we know |lwv||® > A\2. Then
B _(p— B
P, (1) < pllwll = (5= )N

Therefore, if
p—38<(p—1)N\

we have pwk(v)(u, v) is at most
plluv]? = (p = )N < plluv]|® — (p = 8) < plluv||® — (p — O)luvl|” < dl|uv]l”. (12)
In other words, the claims hold for this subcase.
Subcases 2.2: the angle /uwwv is acute. Then we have
.0 T
[[uw|| < 2sin < ||Juv|| = 2sin —||uwv||.
2 k
Consequently, plluw||® + [|wv||? is at most
plluwl® + |[uvll® < p (2sin Tl ) + lluvl]l® = (p (2sin )" +1) flull?. (13)
Therefore, if
T\ B
p(2sinE) +1<6

then we have
B
% < o f< in T B < 3
by k(v)(u,t) < plluw||” + [|Jwol]” < (p (ZSm k) + 1> [luv||® < 8w (14)

In other words, the claims hold for this subcase.
As a summary, if
(5+p(2sin%)ﬁ < p,
p(2sin%)ﬁ +1 <4,
p—(p—1N <4,
then the claims hold for all the cases.
So now we consider whether there exist the constants p, d, k and A\ which make
these conditions hold. First assume o = (2 sin %)B, we need

d+ pa < p,
pa+1<4,
p=(p=1I <3,
to hold. If 1 —a > 0 and 1 — A® > 0, we can transfer these conditions to

b L =N
1—q =" 1)

So for a given small A, if we select k such that a = (2 sin%)ﬁ < M then the
existence of § and p is guaranteed. For example, we can choose a = A\/2, then

13



6 = 22_’2’\; and p = % = 2. Then we can get the bounded stretch factor. This

finishes the proof of the theorem.

Here we only prove the spanner property of Y‘Ykk(V) in civilized graph. Our
experimental results show that this sparse topology has a small power stretch fac-
tor in practice (see Section 5). We conjecture that Wk(V) also has a constant
bounded power stretch factor theoretically in any unit disk graph. The proof of
this conjecture or the construction of a counter-example remain a future work.

5. Experiments

In this section we measure the performances of the new sparse and power efficient
topologies by conducting some experiments. In a wireless network, each node is
expected to potentially send and receive messages from many nodes. In Section
3, we already know that YG(V), YY; (V) and Y Si(V) are strongly connected if
UDG(V) is connected. So in our experiments, we randomly generate a set V' of
n wireless nodes and its UDG(V), and test the connectivity of UDG (V). If it is
strongly connected, we construct different topologies from V. Then we measure the
sparseness and the power efficiency of these topologies by the following criteria: the
average and the maximum node degree, and the average and the maximum length
and power stretch factor. In the experimental results presented here, we generate
100 randomly and uniformly distributed wireless nodes in a 10 x 10 square; the
number of cones is set to 8 when we construct YGr(V), YG,*(V), YY;(V) and
Y Si(V); the power attenuation constant 3 = 2; the transmission range is set as v/10.
We generate 500 node sets V' (each with 100 nodes) and then generate the graphs
for each of these 500 node sets. The average and the maximum are computed over
all these 500 node sets. Figure 7 gives all six different topologies for the UDG(V')
illustrated by the first figure of Figure 7.

5.1. Node Degree

The node degree of the wireless networks should not be too large. Otherwise
a node with a large degree has to communicate with many nodes directly. This
increases the interference and the overhead at this node. The node degree should
also not be too small either: a small node degree usually implies that the net-
work has a lower fault tolerance and it also tends to increase the overall network
power consumption as longer paths may have to be taken. Kleinrock and Silvester
[11] showed that the average node degree should be around 6 to gain maximum
throughput. Thus, the node degree is an important performance metric for the
wireless network topology.

The node degrees of each topology are shown in Table 1. Here dgyg/dmaz is the
average/maximum node degree; Ioyg/Imas is the average/maximum node in-degree;
Oavg /Omas is the average/maximum node out-degree. Notice that for a directed
graph, its I,,, equals to its Ogyg. It shows that Y'Y (V) and Y Si(V) have much
less number of edges than Y G(V) and YG,*(V). In other words, these graphs
are sparser, which is also verified by Figure 7. Notice that theoretically, Y'Yy (V),
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Figure 7: Different topologies from UDG(V).

YG*(V) and Y Sk (V) have bounded node in-degree and out-degree, which can be
shown by the maximum node degrees in Table 1.

5.2. Stretch Factor

Besides strong connectivity, the most important design metric of wireless net-
works is perhaps the power efficiency, as it directly affects both the node and the
network lifetime. Table 5.2 summarizes our experimental results of the length
and power stretch factors of all these topologies. Here, tqyg/tmas is the aver-
age/maximum length stretch factor; Pavg /Pmaz 1S the average/maximum power
stretch factor. Remember that we only proved that if & = (2sin %)ﬁ < M e,
2sin < A, YY%:(V) has a bounded stretch factor. Thus, usually k is very large
if A is small. However, in our experiments we choose k = 8 and Y'Yy (V) still has
small stretch factors. It is not surprise that the average and the maximum node de-
gree of the new topology Y'Y, (V) are smaller than those of YGy (V) and YG.* (V).
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davg dmaz Iavg Imaw Oavg Omaw
UDG 23.57 48 - - - -

RNG 238 ) - - - -
GG 3.57 8 - -
YG 9.05 20 6.67 18 6.67
YG* 5.29 10 479 10 4.79
YY 5.02 9 4.65 8 4.65
YS 4.28 8 - - - -

G0 Co GCo 1

Table 1: Node degrees of different topologies.

However, it is surprise that the average and the maximum power stretch factors of
Y'Y (V) are at the same level of those of the YG (V) and YG,* (V). In addition,
though Y S, (V) is not a spanner for length and power, it has small stretch factors
in practice.

tavg tmaz Pavg Pmaz

UDG 1.000 1.000 1.000 1.000
RNG 1319 4.549 1.056 3.509
GG 1.124 1991 1.000 1.000
YG 1.041 1.723 1.002 1.461
YG* 1.070 1.895 1.003 1.461
YY 1.074 1.895 1.004 1.461
YS 1.090 2.174 1.004 1.473

Table 2: Length (Power) stretch factors.

6. Conclusion

In this paper, we presented several efficient localized algorithms to construct
network topologies with bounded node degrees for wireless ad hoc networks. We
showed that Y ,:(V), Wk(V) have bounded power stretch factors, while Y'Sy (V)
does not have. We summarize the properties of these topologies in Table 6, and the
relations among all these subgraphs of UDG(V) as follows.

RNG(V) CYS(V) CYY(V) CYGL(V) CUDG(V), YYi (V) CYG(V). (15)

Notice Y G (V) may not be a subgraph of YG (V).

Until now, we always assumed that the wireless devices are static or quasi-static
in a reasonable time period. It is not difficult to update these graphs when the
wireless nodes are moving because whether an edge uv is in a subgraph discussed
here can be decided locally using only the one-hop neighbors of a node.

Notice that, even the graph Y_Y)k (V) has a good power stretch factor in practice
for randomly and uniformly distributed nodes and a bounded power stretch factor
in civilized graph. It is still an open problem whether it is a spanner theoretically
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Power Stretch Factor Length Stretch Factor Max Node Degree

UDG 1 1 n—1
lele] 1 O(y/n) n—1

1
YGe W X T—2sin & n—1
Ye  (rody) (=t) (k+1)* -1
YY 2° ? 2k
YS O(n) O(n) k

Table 3: The power stretch factor and the maximum node degree of these graphs.
Here, the number with © is only true in civilized graph.

in general unit disk graph. We conjecture that it is a spanner and leave the proof
or the construction of a counter-example as a future work.
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