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Abstract—In opportunistic channel access, the user needs to
make real time decisions on when and which channel to access with
uncertainty. Assuming perfect channel statistics, several studies
have applied optimal stopping theory to derive control strat-
egy for sequential sensing/probing based opportunistically access-
ing (s-SPA), exploiting temporary opportunities among multiple
channels. Meanwhile, numerous multi-arm bandit (MAB)-based
approaches have been proposed for online learning of channel
selection in periodical sensing/accessing system, however, these
schemes fail to exploit the opportunistic diversity in short term.
In this paper, we investigate online learning of optimal control
in s-SPA systems, where both statistics learning and temporary
opportunity utilization are jointly considered. An effective and ef-
ficient online policy, so called IE-OSP, is proposed, which theoret-
ically guarantees system converges to the optimal s-SPA strategy
with bounded probability. Experimental results further show that,
the regret of IE-OSP is almost in optimal logarithmic increasing
rate over time, and is sub-linear with the increasing number of
channels. Compared with existing solutions, our proposed algo-
rithm achieves 25 ∼ 30% throughput gain in typical scenarios.

Index Terms—Opportunistic spectrum access, sequential sens-
ing and accessing, online learning, diversity exploitation.

I. INTRODUCTION

O PPORTUNISTIC channel access (OSA), due to its flexi-
bility and efficiency in spectrum utilization, has become a

well established concept in designing wireless systems [1], [2].
With the success of OSA-based standards such as IEEE 802.11h
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[3], 802.22 [4], and 802.11af [5], more and more organizations
are considering to adopt OSA in future communication stan-
dards. In achieving perfect opportunistic channel utilization,
the key challenge comes from the unpredictable channel status.
Specifically, to acquire the exact channel state, user needs to de-
tect whether the channel is available with spectrum sensing [6],
and evaluate the link quality with probing [7]. Online accessing
control, i.e., making real time decisions on when and which
channel to access, plays a critical role in improving system per-
formance as well as avoiding interference to primary users.

Based on sequential channel sensing and probing, user could
opportunistically access a good channel for communication, so
as to exploit diversity of temporary channel status among chan-
nels. The sequential accessing control problem is firstly studied
in multiple i.i.d Rayleigh channels scenario [8], where a mul-
tichannel opportunistic auto rate protocol is proposed. Further,
more generalized scenarios allowing users to recall pre-probed
channels [9], [10] or considering the activities of primary users
[11], [12] are further studied. The major concern in these
studies is to balance exploration and exploitation on temporary
channel status. Corresponding control strategies are constructed
on the ideal assumption that the user has perfect knowledge of
channel statistics. Since channel statistics are usually unavail-
able in advance, obtaining complete channel statistics before
a communication session will be costly, and would also result
in unacceptable delay and overhead.

Our work aims to achieve more throughput gain under the
rule of MAB. The reason is, the short-term statistical results
could be leveraged for such improvement. We find that, even
when no recall action is allowed, the optimal stopping rule
could still be applied, where users could opportunistically select
the temporary ‘good’ channel to access, if the user could sense
more channels. This motivation relies on two basic facts. First,
most of the channels are slow fading, especially for indoor WiFi
transmissions. Second, with the advances of wireless commu-
nication technology, the channel probing efficiency could be
improved in relatively smaller time. Motivated by the afore-
mentioned two conditions, we believe that, the statistical chan-
nel knowledge accumulated in the probing process could be
leveraged for performance improvements.

To this end, this paper attempts to combine the following two
models that have each been quite extensively studied in recent
literature: (1) using online learning methods to make sequential
channel access decisions when the average channel qualities are
unknown a priori (which involves exploration and exploitation);
and (2) optimal stopping time methods to determine whether to
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continue sensing the qualities of a given sequence of channels
or stop and use the channel for data transmission.

We first analyze the property of optimal sequential sensing,
probing and accessing strategy with perfect channel statistics,
and then propose an intuitive solution, i.e., myopic learning pol-
icy, to help understanding the online accessing control problem.
After analyzing the convergence of the myopic learning policy,
we find that properly exploring the inaccurately estimated
channels is critical for guaranteeing the convergence property.
Inspired by this observation, we develop an online policy
referred to as IE-OSP, which achieves nearly optimal balance
between exploration and exploitation. The main contribution of
this paper is two-folds:

First, the brand new double exploration vs. exploitation
problem is well studied under the myopic learning policy. We
show that, such learning policy with greedy exploitation is
non-zero-regret, which indicates that, optimizing opportunity
exploitation during a slot is incompatible with that of statistics
exploration. Thus, a tradeoff between them is needed for max-
imizing overall system throughput. Moreover, both the sensing
order and accessing rule play critical roles in designing effective
and efficient online learning policy.

Secondly, we present a statistical learning based online po-
licy referred to as IE-OSP, which integrates confidence inter-
val estimation into the optimal stopping analytical framework.
We’ve proved that, using the IE-OSP policy, system is guaran-
teed to converge to the optimal s-SPA strategy with bounded
probability. Extensive simulation results show that, the ex-
pected regret of the IE-OSP policy achieves near optimal log-
arithmic increasing rate over time, and is sub-linear increasing
with the number of channels. Comparing with existing solu-
tions, our proposed scheme achieves 25∼30% throughput gain
in most scenarios.

The rest of the paper is organized as follows. The related
work is introduced in Section II and in Section III, we briefly
present the system model and problem formulation. Further,
we analyze the online sequential channel accessing control
problem with an intuitive learning policy in Section IV. In
Section V, the proposed IE-OSP algorithm and corresponding
analysis are presented. Our evaluation results are presented in
Section VI. Finally, we conclude our paper in Section VII.

II. RELATED WORK

Opportunistic spectrum accessing control have received
much attention recently. Online decisions are made under chan-
nel uncertainty, maximizing the system throughput by flexibly
exploiting communication opportunities. The most relevant
studies to our work can be classified to the following two broad
categories:

A. Optimal Control for Sequential Sensing, Probing,
and Accessing

To efficiently explore and exploit diversity on temporary
channel status among multiple channels, optimal control algo-
rithms for sequential channel sensing, probing and accessing
scheme have been widely studied. The real time decisions,

i.e., whether to access channel or continue to observe another
channel immediately, are made on the observed temporary
channel status.

Considering i.i.d. Rayleigh fading channels, Sabharwal et al.
[8] firstly analyze the gains from opportunistic band selection.
To obtain such gain, sequential probing based opportunistic
channel accessing scheme is proposed, and optimal skipping
rule is derived by finite-horizon optimal stopping formulation.
More generalized scenarios, e.g., with arbitrary number of
channels, statistically non-identical channels, and possibly dif-
ferent probing costs, are studied in seminar work [9], [10], [13].
Moreover, recalling a pre-probed channel as well as accessing
an unobserved channel are allowed in their considered com-
munication model.1 The corresponding optimal strategies are
derived by comprehensive theoretic proofs. In [11], Shu and
Krunz consider an OSA network with primary users, and thus
channel quality as well as availability are considered when
making accessing decisions. States of different channels are
considered to be i.i.d. to each other, and an infinite-horizon opti-
mal stopping model is leveraged to formulate the online control
problem during the s-SPA process. For scenarios with non-
identical channels, sensing order plays a critical role in achiev-
ing maximum throughput. Jiang et al. firstly considered the
problem of acquiring the optimal sensing/probing order for a
single user case in [12]. A computational efficient algorithm is
constructed by appealing to dynamic program. Later, Fan et al.
[14] extends sensing order selection to a two-user case, where
a coordinator in the network to determine the sensing orders
for each of the two users is required. Recently, Zhao et al.
[15] propose a novel sensing metric that integrate the channel
availability, link quality and access collisions, to guide the
sensing order selection. A dynamic programming algorithm is
presented, which allows each node to efficiently determine its
sensing order in coordination with neighboring nodes. More
recently, Pei et al. [16] extend the sequential channel sensing
and accessing control to a new area, where energy-efficiency
is mainly concerned. In their work, sensing order, accessing
strategy and transmit power are jointly optimized with dynamic
programming. Unlike assuming time-independent channels,
i.e., channel states are considered to be independent across
slots, Li et al. [17] consider Markovian channels and investigate
the sequential probing based opportunistic channel accessing
and releasing scheme, where a two-dimension optimal stopping
framework is proposed for achieving optimal action point under
Rayleigh fading. Wang et al. [18] exploit constructive interfer-
ence for scalable flooding. Reference [19]–[21] propose sched-
ule schemes to optimize throughput. Other works [22]–[24] are
proposed to exploit the frequency diversity.

The major difference between our work and the above-
mentioned studies can be explained as follows. In all the
above-mentioned studies, the optimal control strategies are
constructed on the assumption of perfect channel statistics.
In contrast, we consider more practical scenarios that channel

1“Recalling a channel” means revisit the previous probed channel. Such that,
the reward could be increased if the user found the previously probed channel
is better. Comparing with scheme without recalling, such scheme could achieve
lower regret value.
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statistics are unknown in the beginning, and focus on inves-
tigating online learning method to achieve optimal control of
sequential sensing, probing and accessing.

B. Online Learning of Dynamic Channel Selection

Online learning framework for opportunistic spectrum ac-
cess when channel statistics is unknown a priori, especially
formulated as multi-armed bandit (MAB) problems [25], has
been fully investigated for periodical sensing/accessing system.
The main concern in these studies is to explore and exploit
diversity on channel statistics among multiple channels effi-
ciently. Specifically, the dynamic selection process is expected
to converge to choosing the statistically optimal channel, i.e.,
the channel with maximum expected reward, thus to achieve
diversity gain over channel statistics.

Lai et al. [26] firstly apply multi-arm bandit formulations
to user-channel selection problems in OSA networks. Espe-
cially for the single user case, the UCB1 [27] algorithm is
proposed, which is order-optimal with respect to regret. And
for decentralized multiple users, a randomized access policy
is presented for learning the unknown parameters efficiently.
Liu and Zhao [28] formulate the secondary user channel se-
lection to a decentralized multi-armed bandit problem, where
contentions among multiple users are considered. A policy
achieving asymptotically logarithmic regret is proposed in their
work. Anandkumar in [29] and [30] proposed two policies for
distributed learning and accessing rule, lead to order-optimal
throughput. In addition to learning the channel availability, the
secondary users also learn others’ strategies, even the total
number of users, through channel level feedback. Tekin and Liu
[31] modeled each channel as a restless Markov chain rather
than time-independent channels as studied before, and multiple
channel states rather than binary states are considered. They
present a sample-mean based index policy, showing that, under
mild conditions, it could achieve logarithmic regret uniformly
over time. For the multiuser-multichannel matching problem,
Gai et al. [32] develop a combinatorial multi-armed bandits
(MAB) formulation to address the channel allocation problem
under centralized setting. An online learning algorithm that
achieves O(log T) regret uniformly over time is derived. Later,
Kalathil et al. [33] consider a decentralized setting where there
is no dedicated communication channel for coordination among
the users. An online index-based distributed learning policy
called the dUCB4 algorithm is developed, which achieves
the expected regret growing at most as near − O(log2 T).
Huang et al. [34] study the scaling problem of general cog-
nitive radio networks, Dong et al. [35] propose a auction
scheme.

The main difference between our work and existing online
learning frameworks can be explained as follows. All existing
studies are focused on periodical sensing/accessing system,
where the user only needs to select one channel at a slot. While
we consider online learning of optimal control in sequential
sensing, probing and accessing systems, where a series of
decisions are needed to be made in each slot.

Remark: To the best of our knowledge, it is the first work on
integrating OSP and MAB in one unified theoretic framework,

making a good balance between statistical exploration across
slots and opportunity exploitation during a slot.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Considering an OSA network with potential channel set � =
{1, 2, . . . , N}, each cognitive user could sense/probe/access
only one channel at a time, and is operated in constant access
time (CAT) mode [8], i.e., users could have a constant dura-
tion T for channel observation and data transmission, once
they would win a communication chance. The communication
chances of users come from wining competition with the con-
trol channel in distributed wireless system [8], or assigned by
a center node as in one hop access system [36]. We denote the
duration of each access time as a slot.

The channel state consists of two elements: channel avail-
ability and link quality. Denote ai(j) as the availability of
channel i in the jth slot, and availability state ai(j) ∈ {0, 1},
where ai(j) = 0 indicates that the primary user is transmitting
over channel i in the jth slot, and ai(j) = 1, otherwise. The
channel quality is characterized by the temporary received
signal noise ratio (SNR) q, which corresponds to a transmit rate
ln(1 + q)nats/s (1 nat is defined as log2e ≈ 1.443 bits). Denote
qi(j) as the quality of channel i in the jth slot. We consider slow-
varying Rayleigh fading channels, which is typical for multi-
path propagation environment [11], [17]. Thus the received
temporary SNR is distributed exponentially [12], [37], and the
p.d.f. is given by

p(q) = 1

γ
e− q

γ , q > 0

where γ is the average received SNR. Both the channel idle
probability vector � = {θ1, θ2, . . . , θN} and the SNR mean
vector ϒ = {γ1, γ2, . . . , γN} are unknown to user at the be-
ginning, but can be available through learning. Channel state
is considered to be stable during T , as slot duration in OSA
system is set to be much shorter than channel coherence time, as
well as the sojourn time of primary user activities. Moreover, as
the interval time between consecutive communication chances
is relatively long in multi-user networks (as discussed in [8]),
the channel states in different slots are commonly treated to be
independent of each other. This assumption is consistent with
previous studies [8]–[12], [26], [28]–[30], [32]. Also, there is
another concern that, since the channel states are assumed i.i.d
over time, there is no need to assume constant channel quality
during T , and allowing the recall process could improve the
results. The main reason is to protect primary users’ communi-
cation. Since there is contention among users, and the primary
users could use the licensed channel anytime, we need to set
the duration T short enough for this concern. Thus, there is no
chance to recall back the previous probed channels.

We depict the online accessing control process in Fig. 1. The
s-SPA proceeds slot by slot. For a given slot, says slot j, s-SPA
process can be described as follows. Firstly, user senses a
channel φ1(j) to acquire the channel availability aφ1(j)(j). If
aφ1(j)(j) = 1 (i.e., the sensed channel is idle), user further
probes the channel via physical layer measurement mechanism
(which also has been applied in [17]), acquiring temporary link
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Fig. 1. Online sequential sensing, probing and accessing (s-SPA) control.

quality qφ1(j)(j). With the observed result, user needs to make a
real time decision on whether to access the channel φ1(j), or go
on s-SPA process by switching to another channel, says φ2(j).
During the s-SPA process, if a channel is sensed to be busy, the
user is forbidden to send measurement packet for primary user
protection. However, the user still needs to wait for a constant
channel probing time before switching to next channel. Such
scheme is introduced for transceiver synchronization under the
case that the channel availability of transmitter and receiver
is different [11]. As a result, each sensing/probing step costs
a constant time τ . Correspondingly, the maximum number of
steps one could take in one slot is K = min

(
N,

⌊T
τ

⌋)
, where

�·� represents round-down function.
When user decides to access channel for data transmission

after the kth channel sensing/probing step, the immediate nor-
malized throughput is given by

r(j) = ck ln
(
1 + qφk(j)(j)

)
= (1 − kβ) ln

(
1 + qφk(j)(j)

)
(1)

where β = τ
T is a normalized observation cost, which is a

factor to show the fraction of time a probing duration occupies
the whole time slot. As we know, in evaluating the probing
time overhead, the normalized β factor is used to evaluate this
overhead. In our work, we use ck = 1 − kβ to evaluate the pure
data transmission time in each slot. The actual throughput can
be easily obtained by scaling our reward2 with a constant T

ln 2 .
We define the deterministic learning policy χ , mapping from

the observation history Fj−1 to a s-SPA strategy 〈�(j),�(j)〉
at each slot j, where �(j) = (φ1(j), φ2(j), . . . , φK(j)) is a per-
mutation of channels that determines the channel sensing/
probing order in a slot, and �(j) is the corresponding accessing
rule determining when to access which channel. For notation
convenience, we define 
 as the set of all possible sensing
orders, and denote the mth element in it as �m = (φm

1 , φm
2 , . . . ,

φm
K ). Correspondingly, the number of all possible sensing orders

2The reward is directly related with the throughput. The difference is, when
we use the reward for denotation, it mainly focuses on the regret analysis,
where the reward value is evaluated with expectation value in the long run.
On the other hand, when the term ‘throughput’ is used, it mainly focuses on the
achievable data transmission rate, which is an instant value for evaluation.

|
| = M = (N
K

)
K!. Then, deriving a s-SPA strategy 〈�,�〉 in a

slot includes:

1) selecting K channels from channel set �;
2) arranging the order of the selected K channels for sequen-

tial channel sensing/probing;
3) deriving an accessing rule for opportunistic channel

accessing.

Our main goal is to devise a learning policy guiding the
system converging to the throughput-optimal s-SPA strategy.
Meanwhile, the accumulated throughput loss during the learn-
ing process should be as small as possible. We use regret
value to characterize the accumulated throughput loss, which is
defined as the gap between the accumulated reward gained by
always using the perfect s-SPA strategy, and using the s-SPA
strategy proposed by learning policy in each slot. Mathemati-
cally, the regret of learning policy χ up to slot L is

ρχ(L) = LV∗{�,ϒ} −
L∑

j=1

χ V〈�(j),�(j)〉
{�,ϒ} (2)

Here, V∗{�,ϒ} is the maximum expected throughput one could
obtain in one slot under the environment {�,ϒ}, which is
achieved by user applying the ideal s-SPA strategy 〈�∗, �∗〉 de-
rived with perfect statistical knowledge. V〈�(j),�(j)〉

{�,ϒ} is the cor-
responding reward user obtains with the strategy 〈�(j),�(j)〉
derived by learning policy χ .

The main notations and definitions of this paper are summa-
rized in Table I.

IV. UNDERSTANDING SEQUENTIAL ACCESSING

CONTROL IN s-SPA

In this section, we are aiming to demonstrate the fundamental
tradeoff problem behind the sequential accessing control in
s-SPA. We first propose a preliminary on the throughput-
optimal sequential sensing, probing and accessing strategy with
perfect statistics. After that, an intuitive strategy referred to as
myopic learning policy is studied, and several observations are
derived from the convergence analysis of this learning policy.
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TABLE I
NOTATIONS AND DEFINITIONS

A. Optimal s-SPA Strategy Under Perfect Statistics

Given a channel sensing order �m and the channel statistics
{�,ϒ}, obtaining the optimal s-SPA strategy can be formulated
as an optimal stopping problem (OSP) [38]: during the sequen-
tial sensing/probing process, user makes a real time decision
on when to stop channel sensing by accessing an observed
channel. We formulate the problem as follows.

After sensing/probing channel φm
k , if the observed channel is

idle with channel quality qφm
k

, the achievable reward in step k is
given by:

rm
k =

{
ck ln

(
1 + qφm

k

)
, ck ln

(
1 + qφm

k

)
> �m

k+1

�m
k+1, else

(3)

where �m
k+1 = E[rm

k+1] is the expected reward when user de-
cides to skip the current channel under sensing order �m.

Since in the last step K, the optimal choice is always to access
the channel if it is available. Therefore,

�m
K = E

[
rm

K

] = cKE
[
θφm

K
ln

(
1 + qφm

K

)]

Then, the expected reward in each step �m
K−1,�

m
K−2, . . . , �

m
1

can be obtained using backward deduction according to Eqn. (3).

Specifically, with the channel statistics {�,ϒ}, the expected
reward �m

K is given by

�m
K = cKθφm

K

∫ ∞

0
log(1 + q)

1

γφm
K

e
− q

γ
φm

K dq

= cKθφm
N

e
1

γ
φm

K Ei

(
1,

1

γφm
K

)
(4)

where function Ei is the exponential integral function defined
as Ei(1, x) = ∫ ∞

x
e−t

t dt for x > 0.
For 1 ≤ k < K, the �m

k can be computed using the following
recursion [8], [12], [38].

�m
k =

(
1 − θφm

k

)
�m

k+1

+ θφm
k
�m

k+1

∫ ck log(1+q)≤�m
k+1

0

1

γφm
k

e
− q

γ
φm

k dq

+ ckθφm
k

∫ ∞

ck log(1+q)>�m
k+1

log(1 + q)
1

γφm
k

e
− q

γ
φm

k dq

=
(

1 − θφm
k

)
�m

k+1 + θφm
k
�m

k+1

∫ e
�m

k+1
ck

−1

0

1

γφm
N

e
− q

γ
φm

N dq

+ ckθφm
k

∫ ∞

e
�m

k+1
ck

−1
log(1 + q)

1

γφm
N

e
− q

γ
φm

N dq

= �m
k+1 + ckθφm

k
e

1
γ
φm

k Ei

⎛
⎝1,

e
�m

k+1
ck

γφm
k

⎞
⎠ (5)

According to Eqn. (3), the optimal stopping rule, i.e., optimal
accessing strategy, is completely specified by the reward se-
quence (�m

1 ,�m
2 , . . . , �m

K): access the channel φm
k after the

kth sensing/probing step, if the channel is idle with achievable
throughput ck ln(1+qφm

k
)≥�m

k . Otherwise, user could switch
to channel φm

k+1 for another sensing/probing step. Obviously,
the accessing rule can be further simply described as a sequence
of SNR thresholds, denoted as �m = (�m

1 , �m
2 , . . . , �m

K ).
Hence, the access threshold �m∗

k is given by

�m∗
k =

⎧⎨
⎩e

�m∗
k+1
ck − 1, 1 ≤ k < K

0, k = K
(6)

Finally, �m
1 is the maximum expected reward user could ob-

tain with sensing order �m. The sensing order �m∗ generating
the maximum �m∗

1 is then the optimal sensing order under the
given scenario with channel statistics {�,ϒ}.

B. Complexity Analysis

An intuitive solution when channel statistics is unavailable
is that, always deriving s-SPA strategy maximizing immediate
throughput in each slot. Meanwhile, refined statistics by updat-
ing the estimations of channels have been observed.

During the slot by slot decision-making process, the estima-
tions of channels are obtained by recording and updating the
following four variables on each channel: θ̂i(j), ns

i (j), γ̂i(j) and
np

i (j). Where θ̂i(j) is the estimated idle probability of channel i
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up to slot j, and ns
i (j) is the times channel i having been sensed

till slot j. They are initialized to be zero and updated as follows:

θ̂i(j) =
⎧⎨
⎩

θ̂i(j−1)ns
i (j−1)+aj

i
ns

i (j−1)+1 , if channel i is sensed

θ̂i(j − 1), else
(7)

ns
i (j) =

{
ns

i (j − 1) + 1, if channel i is sensed

ns
i (j − 1), else

(8)

Similarly, γ̂i(j) is the estimated SNR mean of channel i up to
slot j, and np

i (j) is the times channel i having been probed till
slot j. They are updated as follows:

γ̂i(j) =
⎧⎨
⎩

γ̂i(j−1)np
i (j−1)+qj

i
np

i (j−1)+1
, if channel i is probed

γ̂i(j − 1), else
(9)

np
i (j) =

{
np

i (j − 1) + 1, if channel i is probed

np
i (j − 1), else

(10)

Since the throughput in each slot is always maximized with
the currently estimated statistics, and the channel statistics is
refined slot by slot with myopic learning policy, it turns out to
be a good solution for our concern.

A learning policy of non-zero-regret is equivalent to the
statement that, using the learning policy, system may converge
to a non-optimal solution as time goes on.

C. Challenges

However, it is really challenging to achieve optimal control
because that, the reward of utilizing and learning in s-SPA pro-
cess are hard to quantify. Moreover, these two rewards are both
related to the sensing order and accessing rule. Specifically,

1) The closed expression of expected throughput is unavail-
able, which has been shown in Section IV-A. More-
over, for throughput optimal channel access scheme, the
channel sensing order relies on the long-term quality,
which would not show a direct relationship to the channel
probing results. Temporary channel quality is not stable
and would possibly contradict to the results in optimal
throughput strategy.

2) Considering the exploration process, channels being learnt
during a slot are unpredictable. Although intuitively one
could improve channel statistics exploration by increasing
the accessing thresholds, the exact relationship is compli-
cated, and can only be described in a probabilistic way.

As a result, to achieve optimal s-SPA strategy as well as
reduce the throughput loss during the learning process, one
needs to consider exploring the inaccurately estimated channels
while pursuing immediate reward maximization, by jointly
optimizing the sensing order selection process across slots and
the opportunistic accessing control process in each slot.

V. IE-OSP ALGORITHM

In this section, we propose the IE-OSP (i.e., Interval Esti-
mation in OSP analytical framework) online policy, in which
the statistics learning and diversity utilization processes are

seamlessly integrated together for efficient spectrum access. We
further analyze the convergence of the proposed policy, and
prove that the IE-OSP is guaranteed to converge to the optimal
s-SPA strategy with a controlled probability.

A. Algorithm Description

In our algorithm, the basic idea for guiding our system being
converged to the optimal s-SPA strategy is to minimize the un-
reachable probability of inaccurate channels during the s-SPA
process. Meanwhile, the optimal stopping analytical framework
is used during the s-SPA process for obtaining diversity gain
during the learning process.

For each channel, the following four variables are recorded
and updated during s-SPA process for decision-making, i.e.,
the estimated channel idle probability θ̂ , the times channel
having been sensed ns, the estimated channel SNR mean γ̂

and the times channel having been probed np. They are updated
according to (7)–(10), respectively.

We leverage the confidence interval bound to characterize
the inaccuracy of statistical estimation. Define parameter 0 <

δ < 1, where 1 − δ is the confidence coefficient of the estima-
tions. Then, the 1 − δ upper confidence bound of the channel
idle probability and the channel SNR mean are respectively
given by

θ̂u
i (j) = min

{
1, θ̂i(j) +

√
− log δ

2ns
i (j)

}
(11)

γ̂ u
i (j) = min

{
qmax, γ̂i(j) + qmax

√
− log δ

2np
i (j)

}
(12)

where qmax denotes the maximum value of temporary received
SNR. It is reasonable to restrict q with an upper bound qmax,
since the probability that temporary SNR is larger than qmax

approximates to zero if the value of qmax is large enough.
Then, the IE-OSP can be described as follows. Firstly, se-

quentially sense/probe channels until all channels are probed
at least once (from line 2 to line 13). Note that, the pseudo
code from line 5 to line 8 operates for the case where channel
is available, and the channle is probed with property channel
quality updating operations. If the channel is busy, we should
move forward for next channel. Line 8 and line 10 in the pseduo
are using the same operations to visit next available channels.
After that, always choose the s-SPA strategy 〈�m∗(j),�u

m∗(j)〉
that achieves maxm �

m,u
1 (j) in slot j, where �

m,u
1 (j) is a virtual

throughput value defined as the maximum achievable through-
put one could achieve if the real statistics is {�̂u(j), ϒ̂u(j)}
(from line 14 to line 21). Obviously, 〈�m∗(j),�u

m∗(j)〉 can be
derived easily with {�̂u(j), ϒ̂u(j)}, using the optimal stopping
analytical framework we introduced in Section IV-A.

The pseudo-code of the IE-OSP algorithm is shown as
in Fig. 2.

B. Convergence Analysis

In this subsection, we analyze the convergence of IE-OSP
algorithm, because the optimal convergence point is critical
to online learning policy in the long run. The main result
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Fig. 2. Algorithm description on IE-OSP.

can be described by the following theorem, which provides a
theoretical convergence guarantee for our proposed policy.

Theorem 1: Using IE-OSP, system converges to the
throughput-optimal s-SPA strategy with probability at least
(1 − δ)2(N−1). Particularly, when ∀i : θi < 1, it converges to
optimal s-SPA strategy with probability at least (1 − δ)2(N−K),
where 1 − δ is used to provide bounds to the statistical channel
features in channel idle probability and SNR mean, which have
been formally defined in Eqn. (11), and Eqn. (12).

Before proving this theorem, it is worth noting that, the
performance analysis, e.g., the regret analysis, is typically iden-
tical to previous studies [25], [33]. The difference is, since the
strategy is mixed with partially known knowledge, and channel
dynamics are fully used, there is no fixed optimal policy. The
only concern in this work, is to know the probability that
the algorithm could converge to the optimal point. To this end,
the probability analysis is also challenging in our concern.
Thus, an analytical bound is presented to instead of accurate
p.d.f. based analysis.

Proof: To prove Theorem 1, we introduce the Chernoff-
Hoeffding bound inequalities first.

Lemma 1: (Chernoff-Hoeffding bound) [39] Let X1, . . . , Xn

be random variables with range [0, 1], such that E[Xt|X1,

. . . , Xt−1] = μ. Moreover, let Sn = X1 + . . . + Xn. Then, for
any a > 0,

Pr[Sn ≥ nμ + a] ≤ e− 2a2
n

and

Pr[Sn ≤ nμ − a] ≤ e− 2a2
n

According to Lemma 1, we can derive the following corol-
lary directly.

Corollary 1: Let D be a distribution with support in [0,
1], and EX∼D[X] = θ . Let X1, . . . , Xn be drawn independently
from D, and θ̂ = 1

n

∑
t Xt. Then

Pr

[
θ ≤ θ̂ +

√− log δ

2n

]
≥ 1 − δ

and

Pr

[
θ ≥ θ̂ −

√− log δ

2n

]
≥ 1 − δ

Moreover, let D denote a distribution with support in [0, qmax],
and EX∼D[X] = γ . Let X1, . . . , Xn be drawn independently
from D, and γ̂ = 1

n

∑
t Xt. Then

Pr

[
γ ≤ γ̂ + qmax

√− log δ

2n

]
≥ 1 − δ

and

Pr

[
γ ≥ γ̂ − qmax

√− log δ

2n

]
≥ 1 − δ

Proof: Corollary 1 is directly derived from Lemma 1. �
Let θ ′

i and γ ′
i be the supposed channel statistics of idle prob-

ability and the averaged SNR value on channel i respectively,
and let θi and γi be the real corresponding channel statistics.
Denote 〈�′, �′〉 (a pair of sensing order and accessing rule) as
the throughput-optimal strategy for sequential channel sensing,
probing and accessing (s-SPA) in the case that the channel
statistics is {�′, ϒ ′}, i.e., {θ ′

1, . . . , θ
′
N; γ ′

1, . . . , γ
′
N}. We have

Lemma 2: Under any given strategy 〈�′, �′〉, if there ex-
ists an overestimated channel, it could be observed with high
probability.3

Proof: We prove this lemma by contradiction.
Denote Vsolution

statistic as the expected throughput obtained by
user using solution for sequential channel sensing and
accessing, while the actual channel statistics is statistic. Thus:

• V〈�′,�′〉
{�′,ϒ ′} is the maximum throughput one could obtain in

the supposed scenario {�′, ϒ ′};
• V〈�,�〉

{�,ϒ} is the maximum actually achievable throughput
in the scenario {�,ϒ};

• V〈�′,�′〉
{�,ϒ} is the expected throughput one could obtain

when using 〈�′, �′〉 in the scenario {�,ϒ}.

3“With high probability” means that, you can change the conditions slightly
to make the probability of failure very small. The usefulness of this concept is
from the power of the statement. The statement is parameterized to allow the
probability to vary as necessary to prove other statements.
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Suppose that for all i except i∗: θ ′
i = θ1, γ ′

i = γi, while i∗ is
the overestimated channel, i.e., it falls into one of the following
three conditions: 1) θ ′

i∗ > θi∗ , γ ′
i∗ = γi∗ ; 2) θ ′

i∗ = θi∗ , γ ′
i∗ > γi∗ ;

and 3) or θ ′
i∗ > θi∗ , γ ′

i∗ > γi∗ . Then, we have

V〈�′,�′〉
{�′,ϒ ′} > V〈�,�〉

{�,ϒ} > V〈�′,�′〉
{�,ϒ} (13)

The statement that channel i∗ would never be observed under
the strategy 〈�′, �′〉 is equivalent to that, the s-SPA process
would stop before arriving channel i∗. If so, we have

V〈�′,�′〉
{�,ϒ} = V〈�′,�′〉

{�′,ϒ ′} > V〈�,�〉
{�,ϒ}

which contradicts the inequality (13). Hence, we can conclude
that the statement is false. In other words, the overestimated
channel would be observed with probability 1 as time goes on.�

We now prove Theorem 1 using Corollary 1 and Lemma 2.
Since sub-optimal convergence only happens when there

exists at least one inaccurately estimated channel, where the
statistics of this channel would never be updated again. Suppose
that user converges to a state, i.e., a s-SPA solution, where the
maximum number of achievable steps in each slot is k. Then,
according to Lemma 2, the state is sub-optimal if and only if
there exists some underestimated channel in remaining N − k
channels.

For the sake of convenient description, we denote the set
of remaining channels as Sr = {k + 1, k + 2, . . . , N}. For each
i ∈ Sr, pi = Pr[θ ′

i ≤ θi or γ ′
i ≤ γi. As in IE-OSP, we treat θ ′

i =
θu

i = θ̂i +
√

− log δ

2ns
i

and γ ′
i =γ u

i = γ̂i + qmax

√
− log δ

2np
i

), according

to Corollary 1, we have that Pr [θ ′
i ≤θi]≤δ, Pr [γ ′

i ≤γi]≤δ.
Thus, for all i, pi ≤ p = 1 − (1 − δ)2. Then, the probability
Psub−opt that system converges to a sub-optimal solution is
bounded by

Psub−opt ≤ C1
N−kp (1 − p)N−k−1 + C2

N−kp2 (1 − p)N−k−2

+ · · · + CN−k−1
N−k pN−k−1 (1 − p) + pN−k

= [
p + (1 − p)

]N−k − (1 − p)N−k

= 1 − (1 − δ)2(N−k) (14)

Consequently, the probability that system could converges to
optimal solution is bounded by

Popt ≥ (1 − δ)2(N−k) (15)

As user needs to sense and probe at least one channel in each
slot, thus k ≥ 1, then we can derive the following probability of
optimal convergence.

Popt ≥ (1 − δ)2(N−1) (16)

Particularly, when all the channel idle probabilities are less
than 1, which means that when system converges to a state, all
the K channels in the sensing order will be observed as time
goes on (since the probability of all channel are busy is bigger
than zero). In such case, we have the following statement.

Popt ≥ t(1 − δ)2(N−K) (17)

This completes the proof of Theorem 1. �

Fig. 3. Comparison on expected throughput with respect to time.

VI. PERFORMANCE EVALUATIONS

In this section, we evaluate and analyze the performance of
the proposed online sequential accessing algorithm via sim-
ulations. We run our simulation code with Matlab, and an
IBM X210 laptop. Our experiment settings are as follows. The
idle probabilities and SNR means of independent channels are
randomly generated respectively in range [0, 1] and [0, 15] dB
for each round. Then, the states of channels (i.e. availability
and link quality) in each slot are generated independently
according to the idle probability vector as well as SNR mean
vector. The channel bandwidth is set to be 6 MHz, and three
channels are considered here. The normalized channel sensing/
probing cost β = 0.1. The results are averaged from 1000
rounds of independent experiments, where each run lasts at
least 1500 time slots.

A. Throughput Analysis

In this subsection, four policies are running under the same
environment for performance comparison, briefly described as
follows.

• p-SPA with UCB1: existing online learning solution for
opportunistic channel access, in which user selects one
channel to sense/access in each slot according to UCB1
[27] algorithm. Such learning policy is proved to be
order-optimal in p-SPA system [26];

• s-SPA without learning: an intuitive method in s-SPA
system without learning. User sequentially senses/probes
with a random sensing order and access the first idle
channel for transmission;

• s-SPA with IE-OSP: our proposed method, where user
sequentially senses, probes and accesses according to
online algorithm IE-OSP;

• s-SPA with perfect stat.: an ideal s-SPA strategy derived
with perfect channel statistics, which leads to maximum
achievable throughput.

We first study the system throughput as a function of time in
Fig. 3. As depicted in Fig. 3,

1) both learning algorithms are effective in improving system
throughput. This is clearly shown in the figure, where the
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Fig. 4. Comparison on accumulated reward in the first L slots.

expected throughput of both p-SPA with UCB1 and s-SPA
with IE-OSP are increasing with time.

2) there is still a considerable gap compared with the maxi-
mum achievable throughput (i.e., the achievable through-
put obtained by s-SPA with perfect stat.) by using existing
solutions. On one hand, compare the throughput of exist-
ing learning method p-SPA with UCB1 with that of s-SPA
with perfect stat. It shows about 3 Mbps throughput loss
even at the time t = 1500, where the learning algorithm
converges almost to the optima status. Such a gap mainly
arises from the fact that existing learning method is incom-
patible with temporary opportunity exploitation. On the
other hand, the intuitive algorithm for exploiting diversity,
i.e., s-SPA without learning, shows a constant gap of about
2 Mbps, comparing with the ideal strategy.

3) our proposed algorithm IE-OSP bridges the through-
put gap effectively. As shown in figure, the obtained
throughput of IE-OSP algorithm approaches to the ideal
goal in about 500 slot.

We further investigate the accumulated reward of the three
algorithms. Accumulated award in the first L slots is defied as
the total transmitted bits from the beginning time, i.e., j = 1,
to the instant j = L. Actually, the accumulated reward is the
most concerned metric from the perspective of the user. The
results are shown in Fig. 4. Here, we leverage the average
throughput in the first L slots to characterize the real value
of accumulated reward, which is mathematically defined as
1
L

∑L
j=1 r(j). In the figure, the average throughputs of the three

practical schemes with different Ls are given. It clearly shows
that, our proposed method outperforms the other two schemes
in almost any time, with respect to the accumulated reward.
The advantage of our proposed algorithm in time from 200 to
1400 are apparently shown in the figure. More precisely, our
learning method outperforms s-SPA without learning as soon as
j = 50, and outperforms p-SPA with UCB1 in arbitrary time. In
other words, applying our proposed scheme earn profits, even
in where the communication session duration is relatively short.
Moreover, as the gap between the average throughputs of the
three schemes are tending towards stability, it is no doubt that
user would gain more by applying our proposed scheme as the
session duration increases.

Fig. 5. Comparison on accumulated reward with respect to number of
channels.

All the above results are derived from the scenario with
a constant number of channels (N = 3). As the number of
channels is almost the most important attribute of a wireless
network and relates much to the system performance, we eval-
uate the three schemes in scenarios with different channels in
the following part of this subsection, so as to investigate the
impact of channel number. We adopt the accumulated reward
in the first 1500 slots as the main metric to show the impact of
channel number. Similarly, we leverage ‘average throughput’
to characterize the real value of accumulated reward. With
the number of channels ranging from 1 to 7, we depict the
results as shown in Fig. 5. All the three curves are increasing
with the number of channels; however, with different rising
characteristics:

1) s-SPA without learning scheme, it shows to be a rapid
growth within N ≤ 3 (higher increasing rate compared
with p-SPA with UCB1 scheme). Such growth in through-
put comes from the fact that, as the number of channels
increases, it is more likely to find an available channel
to use by sequentially observing channels in a slot. In
other words, the increasing channels enrich diversity in
temporary channel status, and thus benefit the scheme
with opportunity exploitation. However, due to lack of ad-
vanced accessing control strategy, the s-SPA without learn-
ing scheme would fail to exploit temporary opportunity
efficiently. This is why the increasing trend flattens soon
when N > 4.

2) for the p-SPA with UCB1 scheme, the growth comes from
the increasing diversity of channels’ statistics. Specifi-
cally, as the expected reward of the single statistic-optimal
channel is increasing with the total number of the chan-
nels, user gains more as the number of channels increases,
since it could learn to converge to the optimal channel by
using p-SPA with UCB1. Moreover, the average through-
put of p-SPA with UCB1 increases more slowly than that of
s-SPA without learning within few channels, e.g., 14 with
sustained growth.

3) our proposed s-SPA with IE-OSP scheme increases with
the number of channels more rapidly and lasting. By
using s-SPA with IE-OSP, user sequentially senses/probes
and accesses with near-optimal strategy soon by learning.



IE
EE

Pr
oo

f

10 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

Fig. 6. Throughput gain of s-SPA with IE-OSP over the other two schemes.

The temporary opportunity among channels are fully and
efficiently exploited. As a result, the throughput gap be-
tween our proposed policy and the existing policies is
increasing with number of channels, e.g., about 5 Mbps
throughput improvement is attained at N = 7.

To further investigate the throughput improvement of our
proposed scheme over the other two schemes, we depict the
throughput gain as a function of the number of channels. The
throughput gain is defined as the ratio between average through-
put in the first 1500 slots of s-SPA with IE-OSP scheme over
that of p-SPA with UCB1 or s-SPA without learning, respec-
tively. As depicted in Fig. 6, with the increasing number of
channels, the candidate channels are more than ever, thus the
potential channel quality improvement is expected, since the
probability of probing a high quality channel could be larger
than ever. Specifically, we learn from this figure that:

1) the throughput gain of our opposed scheme over the other
two schemes are increasing with the number of channels,
which means that the proposed policy would benefit more
in the scenarios with more channels.

2) at least 9.5% improvement in average throughput is
achieved with our proposed scheme. This value is attained
at N = 2 comparing with s-SPA without learning. When
compared with p-SPA with UCB1, it exceeds 15%.

3) 25∼30% throughput improvement can be obtained in
most scenarios, as almost all existing OSA networks are
equipped with more than 5 channels.

B. Convergence Analysis

In this subsection, we evaluate the convergence property of
our proposed learning algorithm by analyzing regret. Regret is
an important metric for online policies, where the definition4

of regret is presented in Eqn. (2). An online learning algorithm
with higher regret means more throughput loss during learning
process. Moreover, it has been proven by Lai and Robbins [40]
that no policy can do better than logarithmic increasing regret

4As in our simulation, regret is the accumulated throughput loss of applying
s-SPA with IE-OSP, comparing with always using s-SPA with perfect stat.

Fig. 7. Regret with respect to time.

Fig. 8. Regret vs. increased number of channels.

in time. In other words, an online policy with logarithmic regret
in time is order-optimal.

In Fig. 7, we depict the regret of IE-OSP policy as a function
of slot index, so as to study the increasing rate of regret over
time. To show more widely, we present all the curves with N
ranging from 2 to 5. Intuitively, we find from the upper part
of this figure that, all the curves of regret show a logarithmic
increasing trend over time. To further verify this logarithmic
increasing property, we re-plot the regret curves in the lower
part of this figure, where X-axis ranges from 100 to 1500 and
is in a logarithmic form. The transformed curves show almost
linear increasing trend. This verifies that, the regret is in at
least asymptotically logarithmic rate, even if it is not in optimal
logarithmic rate

Further, we study the increasing trend of regret with respect
to the number of channels. As the regret increases infinitely
with the number of slots, we take three typical value of L to de-
termine the regret for comparison. Specifically, for each N, we
depict the value of L = 500, L = 1000, and L = 1500. The
results are presented in Fig. 8. It is intuitive that the regret
values increases when adds the number of channels. This is
reasonable, since the increasing number of channels extends
the learning space, and thus results in higher throughput loss
for learning. In spite of this, it is encouraging that the regret is
sub-linearly increasing with the number of channels. As shown
in the regret envelope curves, where the blue dots and red
dashed line sketches the increasing trace of ρ(500) and ρ(1500)
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Fig. 9. Comparison between simulation and theoretical results. (a) δ = 0.1 and N = 5; (b) δ = 0.5 and N = 5; (c) δ = 0.9 and N = 5.

respectively. Such desirable property makes the learning algo-
rithm scalable.

C. Discussion

1) Impact of Secondary User and Reliability: The chan-
nel probing failure and primary user occupancy will lead to
different results. In previous studies [41], [42], we discussed
the probability of channel probing failure and effects for the
statistical behavior of the primary users. Moreover, it is worth
noting that, in our scheme, when the channel probing failure
and primary user occupancy is stable, say, providing a proba-
bility or distribution for it, our IE-OSP policy could be adaptive
to such cases. Because the threshold value could be adjustable
according to this probabilistic distribution, which could be
further evaluated by the rewards.

2) Validating the Theoretical Analysis: To show the match-
ing effects of the proposed algorithm and theorem 1, we make
an extended experimental study on the comparisons between
the results we got from simulation study and theoretical analy-
sis. In our simulation study, we evaluate the matching rate of the
proposed algorithm and theoretical results. For each run, if the
result in simulation study equals to that of theoretical analysis,
the matching times could be increased by 1. And the overall
matching rate is the accumulated matching times to the total
number of running times.

As depicted in Fig. 9, the Y-axis denotes the matching rate
with probabilistic form. We set the parameter N, K, and δ with
different values, and evaluate the matching rate. To show the
trends, especially when the number of probing times increases,
we make observations for different values of K. This feature
also validates our basic idea, i.e., providing more opportunities
of probing could improve the throughput gain in temporarily
high SNR channels. Large-scale evaluation needs computa-
tional intensive operations, and the theoretical results could
guide us with the converging trends for the regret value. Fur-
thermore, Fig. 10 depicts the convergenc feature of our pro-
posed protocol, when the theoretical regret value is concerned.
In that, we observe the convergence property when the param-
eter δ is concerned. When the confidence interval is involved,
the convergence probability increases with the δ, which means,
the convergence probability could be higher than the case with
lower confidence interval. On the other hand, a theoretical
bound value with higher confidence interval could be more
difficult to achieve.

Fig. 10. Convergence property of the simulation results.

VII. CONCLUSION

In this work, channel learning and opportunity utilization
are jointly considered for maximizing system overall through-
put in an unknown environment. The sensing/probing order
and accessing rule are dynamically adapted slot by slot, so
as to achieve better tradeoff between maximizing diversity
exploitation in current slot and exploring more channels for re-
fining statistics. A near optimal online learning policy, so called
IE-OSP, is proposed, which balances the statistics exploration
and diversity exploitation by integrating confidence interval
estimation into the optimal stopping analytical framework. We
prove that, by using the proposed algorithm, system is guaran-
teed to converge to the optimal s-SPA strategy with a control-
lable probability. Simulation results further show that the regret
of IE-OSP is asymptotically logarithmic in time and sub-linear
in the number of channels, which respectively shows the op-
timality and scalability of our proposed learning policy. Com-
pared with existing solutions, our proposed algorithm achieves
more than 25% throughput gain in most scenarios.

In future work, we are to implement our policy to a cognitive
radio platform built on USRP [43], [44], and provide a working
system in real deployment [45] for validation.
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Abstract—In opportunistic channel access, the user needs to
make real time decisions on when and which channel to access with
uncertainty. Assuming perfect channel statistics, several studies
have applied optimal stopping theory to derive control strat-
egy for sequential sensing/probing based opportunistically access-
ing (s-SPA), exploiting temporary opportunities among multiple
channels. Meanwhile, numerous multi-arm bandit (MAB)-based
approaches have been proposed for online learning of channel
selection in periodical sensing/accessing system, however, these
schemes fail to exploit the opportunistic diversity in short term.
In this paper, we investigate online learning of optimal control
in s-SPA systems, where both statistics learning and temporary
opportunity utilization are jointly considered. An effective and ef-
ficient online policy, so called IE-OSP, is proposed, which theoret-
ically guarantees system converges to the optimal s-SPA strategy
with bounded probability. Experimental results further show that,
the regret of IE-OSP is almost in optimal logarithmic increasing
rate over time, and is sub-linear with the increasing number of
channels. Compared with existing solutions, our proposed algo-
rithm achieves 25 ∼ 30% throughput gain in typical scenarios.

Index Terms—Opportunistic spectrum access, sequential sens-
ing and accessing, online learning, diversity exploitation.

I. INTRODUCTION

O PPORTUNISTIC channel access (OSA), due to its flexi-
bility and efficiency in spectrum utilization, has become a

well established concept in designing wireless systems [1], [2].
With the success of OSA-based standards such as IEEE 802.11h
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[3], 802.22 [4], and 802.11af [5], more and more organizations
are considering to adopt OSA in future communication stan-
dards. In achieving perfect opportunistic channel utilization,
the key challenge comes from the unpredictable channel status.
Specifically, to acquire the exact channel state, user needs to de-
tect whether the channel is available with spectrum sensing [6],
and evaluate the link quality with probing [7]. Online accessing
control, i.e., making real time decisions on when and which
channel to access, plays a critical role in improving system per-
formance as well as avoiding interference to primary users.

Based on sequential channel sensing and probing, user could
opportunistically access a good channel for communication, so
as to exploit diversity of temporary channel status among chan-
nels. The sequential accessing control problem is firstly studied
in multiple i.i.d Rayleigh channels scenario [8], where a mul-
tichannel opportunistic auto rate protocol is proposed. Further,
more generalized scenarios allowing users to recall pre-probed
channels [9], [10] or considering the activities of primary users
[11], [12] are further studied. The major concern in these
studies is to balance exploration and exploitation on temporary
channel status. Corresponding control strategies are constructed
on the ideal assumption that the user has perfect knowledge of
channel statistics. Since channel statistics are usually unavail-
able in advance, obtaining complete channel statistics before
a communication session will be costly, and would also result
in unacceptable delay and overhead.

Our work aims to achieve more throughput gain under the
rule of MAB. The reason is, the short-term statistical results
could be leveraged for such improvement. We find that, even
when no recall action is allowed, the optimal stopping rule
could still be applied, where users could opportunistically select
the temporary ‘good’ channel to access, if the user could sense
more channels. This motivation relies on two basic facts. First,
most of the channels are slow fading, especially for indoor WiFi
transmissions. Second, with the advances of wireless commu-
nication technology, the channel probing efficiency could be
improved in relatively smaller time. Motivated by the afore-
mentioned two conditions, we believe that, the statistical chan-
nel knowledge accumulated in the probing process could be
leveraged for performance improvements.

To this end, this paper attempts to combine the following two
models that have each been quite extensively studied in recent
literature: (1) using online learning methods to make sequential
channel access decisions when the average channel qualities are
unknown a priori (which involves exploration and exploitation);
and (2) optimal stopping time methods to determine whether to

1536-1276 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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continue sensing the qualities of a given sequence of channels
or stop and use the channel for data transmission.

We first analyze the property of optimal sequential sensing,
probing and accessing strategy with perfect channel statistics,
and then propose an intuitive solution, i.e., myopic learning pol-
icy, to help understanding the online accessing control problem.
After analyzing the convergence of the myopic learning policy,
we find that properly exploring the inaccurately estimated
channels is critical for guaranteeing the convergence property.
Inspired by this observation, we develop an online policy
referred to as IE-OSP, which achieves nearly optimal balance
between exploration and exploitation. The main contribution of
this paper is two-folds:

First, the brand new double exploration vs. exploitation
problem is well studied under the myopic learning policy. We
show that, such learning policy with greedy exploitation is
non-zero-regret, which indicates that, optimizing opportunity
exploitation during a slot is incompatible with that of statistics
exploration. Thus, a tradeoff between them is needed for max-
imizing overall system throughput. Moreover, both the sensing
order and accessing rule play critical roles in designing effective
and efficient online learning policy.

Secondly, we present a statistical learning based online po-
licy referred to as IE-OSP, which integrates confidence inter-
val estimation into the optimal stopping analytical framework.
We’ve proved that, using the IE-OSP policy, system is guaran-
teed to converge to the optimal s-SPA strategy with bounded
probability. Extensive simulation results show that, the ex-
pected regret of the IE-OSP policy achieves near optimal log-
arithmic increasing rate over time, and is sub-linear increasing
with the number of channels. Comparing with existing solu-
tions, our proposed scheme achieves 25∼30% throughput gain
in most scenarios.

The rest of the paper is organized as follows. The related
work is introduced in Section II and in Section III, we briefly
present the system model and problem formulation. Further,
we analyze the online sequential channel accessing control
problem with an intuitive learning policy in Section IV. In
Section V, the proposed IE-OSP algorithm and corresponding
analysis are presented. Our evaluation results are presented in
Section VI. Finally, we conclude our paper in Section VII.

II. RELATED WORK

Opportunistic spectrum accessing control have received
much attention recently. Online decisions are made under chan-
nel uncertainty, maximizing the system throughput by flexibly
exploiting communication opportunities. The most relevant
studies to our work can be classified to the following two broad
categories:

A. Optimal Control for Sequential Sensing, Probing,
and Accessing

To efficiently explore and exploit diversity on temporary
channel status among multiple channels, optimal control algo-
rithms for sequential channel sensing, probing and accessing
scheme have been widely studied. The real time decisions,

i.e., whether to access channel or continue to observe another
channel immediately, are made on the observed temporary
channel status.

Considering i.i.d. Rayleigh fading channels, Sabharwal et al.
[8] firstly analyze the gains from opportunistic band selection.
To obtain such gain, sequential probing based opportunistic
channel accessing scheme is proposed, and optimal skipping
rule is derived by finite-horizon optimal stopping formulation.
More generalized scenarios, e.g., with arbitrary number of
channels, statistically non-identical channels, and possibly dif-
ferent probing costs, are studied in seminar work [9], [10], [13].
Moreover, recalling a pre-probed channel as well as accessing
an unobserved channel are allowed in their considered com-
munication model.1 The corresponding optimal strategies are
derived by comprehensive theoretic proofs. In [11], Shu and
Krunz consider an OSA network with primary users, and thus
channel quality as well as availability are considered when
making accessing decisions. States of different channels are
considered to be i.i.d. to each other, and an infinite-horizon opti-
mal stopping model is leveraged to formulate the online control
problem during the s-SPA process. For scenarios with non-
identical channels, sensing order plays a critical role in achiev-
ing maximum throughput. Jiang et al. firstly considered the
problem of acquiring the optimal sensing/probing order for a
single user case in [12]. A computational efficient algorithm is
constructed by appealing to dynamic program. Later, Fan et al.
[14] extends sensing order selection to a two-user case, where
a coordinator in the network to determine the sensing orders
for each of the two users is required. Recently, Zhao et al.
[15] propose a novel sensing metric that integrate the channel
availability, link quality and access collisions, to guide the
sensing order selection. A dynamic programming algorithm is
presented, which allows each node to efficiently determine its
sensing order in coordination with neighboring nodes. More
recently, Pei et al. [16] extend the sequential channel sensing
and accessing control to a new area, where energy-efficiency
is mainly concerned. In their work, sensing order, accessing
strategy and transmit power are jointly optimized with dynamic
programming. Unlike assuming time-independent channels,
i.e., channel states are considered to be independent across
slots, Li et al. [17] consider Markovian channels and investigate
the sequential probing based opportunistic channel accessing
and releasing scheme, where a two-dimension optimal stopping
framework is proposed for achieving optimal action point under
Rayleigh fading. Wang et al. [18] exploit constructive interfer-
ence for scalable flooding. Reference [19]–[21] propose sched-
ule schemes to optimize throughput. Other works [22]–[24] are
proposed to exploit the frequency diversity.

The major difference between our work and the above-
mentioned studies can be explained as follows. In all the
above-mentioned studies, the optimal control strategies are
constructed on the assumption of perfect channel statistics.
In contrast, we consider more practical scenarios that channel

1“Recalling a channel” means revisit the previous probed channel. Such that,
the reward could be increased if the user found the previously probed channel
is better. Comparing with scheme without recalling, such scheme could achieve
lower regret value.
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statistics are unknown in the beginning, and focus on inves-
tigating online learning method to achieve optimal control of
sequential sensing, probing and accessing.

B. Online Learning of Dynamic Channel Selection

Online learning framework for opportunistic spectrum ac-
cess when channel statistics is unknown a priori, especially
formulated as multi-armed bandit (MAB) problems [25], has
been fully investigated for periodical sensing/accessing system.
The main concern in these studies is to explore and exploit
diversity on channel statistics among multiple channels effi-
ciently. Specifically, the dynamic selection process is expected
to converge to choosing the statistically optimal channel, i.e.,
the channel with maximum expected reward, thus to achieve
diversity gain over channel statistics.

Lai et al. [26] firstly apply multi-arm bandit formulations
to user-channel selection problems in OSA networks. Espe-
cially for the single user case, the UCB1 [27] algorithm is
proposed, which is order-optimal with respect to regret. And
for decentralized multiple users, a randomized access policy
is presented for learning the unknown parameters efficiently.
Liu and Zhao [28] formulate the secondary user channel se-
lection to a decentralized multi-armed bandit problem, where
contentions among multiple users are considered. A policy
achieving asymptotically logarithmic regret is proposed in their
work. Anandkumar in [29] and [30] proposed two policies for
distributed learning and accessing rule, lead to order-optimal
throughput. In addition to learning the channel availability, the
secondary users also learn others’ strategies, even the total
number of users, through channel level feedback. Tekin and Liu
[31] modeled each channel as a restless Markov chain rather
than time-independent channels as studied before, and multiple
channel states rather than binary states are considered. They
present a sample-mean based index policy, showing that, under
mild conditions, it could achieve logarithmic regret uniformly
over time. For the multiuser-multichannel matching problem,
Gai et al. [32] develop a combinatorial multi-armed bandits
(MAB) formulation to address the channel allocation problem
under centralized setting. An online learning algorithm that
achieves O(log T) regret uniformly over time is derived. Later,
Kalathil et al. [33] consider a decentralized setting where there
is no dedicated communication channel for coordination among
the users. An online index-based distributed learning policy
called the dUCB4 algorithm is developed, which achieves
the expected regret growing at most as near − O(log2 T).
Huang et al. [34] study the scaling problem of general cog-
nitive radio networks, Dong et al. [35] propose a auction
scheme.

The main difference between our work and existing online
learning frameworks can be explained as follows. All existing
studies are focused on periodical sensing/accessing system,
where the user only needs to select one channel at a slot. While
we consider online learning of optimal control in sequential
sensing, probing and accessing systems, where a series of
decisions are needed to be made in each slot.

Remark: To the best of our knowledge, it is the first work on
integrating OSP and MAB in one unified theoretic framework,

making a good balance between statistical exploration across
slots and opportunity exploitation during a slot.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Considering an OSA network with potential channel set � =
{1, 2, . . . , N}, each cognitive user could sense/probe/access
only one channel at a time, and is operated in constant access
time (CAT) mode [8], i.e., users could have a constant dura-
tion T for channel observation and data transmission, once
they would win a communication chance. The communication
chances of users come from wining competition with the con-
trol channel in distributed wireless system [8], or assigned by
a center node as in one hop access system [36]. We denote the
duration of each access time as a slot.

The channel state consists of two elements: channel avail-
ability and link quality. Denote ai(j) as the availability of
channel i in the jth slot, and availability state ai(j) ∈ {0, 1},
where ai(j) = 0 indicates that the primary user is transmitting
over channel i in the jth slot, and ai(j) = 1, otherwise. The
channel quality is characterized by the temporary received
signal noise ratio (SNR) q, which corresponds to a transmit rate
ln(1 + q)nats/s (1 nat is defined as log2e ≈ 1.443 bits). Denote
qi(j) as the quality of channel i in the jth slot. We consider slow-
varying Rayleigh fading channels, which is typical for multi-
path propagation environment [11], [17]. Thus the received
temporary SNR is distributed exponentially [12], [37], and the
p.d.f. is given by

p(q) = 1

γ
e− q

γ , q > 0

where γ is the average received SNR. Both the channel idle
probability vector � = {θ1, θ2, . . . , θN} and the SNR mean
vector ϒ = {γ1, γ2, . . . , γN} are unknown to user at the be-
ginning, but can be available through learning. Channel state
is considered to be stable during T , as slot duration in OSA
system is set to be much shorter than channel coherence time, as
well as the sojourn time of primary user activities. Moreover, as
the interval time between consecutive communication chances
is relatively long in multi-user networks (as discussed in [8]),
the channel states in different slots are commonly treated to be
independent of each other. This assumption is consistent with
previous studies [8]–[12], [26], [28]–[30], [32]. Also, there is
another concern that, since the channel states are assumed i.i.d
over time, there is no need to assume constant channel quality
during T , and allowing the recall process could improve the
results. The main reason is to protect primary users’ communi-
cation. Since there is contention among users, and the primary
users could use the licensed channel anytime, we need to set
the duration T short enough for this concern. Thus, there is no
chance to recall back the previous probed channels.

We depict the online accessing control process in Fig. 1. The
s-SPA proceeds slot by slot. For a given slot, says slot j, s-SPA
process can be described as follows. Firstly, user senses a
channel φ1(j) to acquire the channel availability aφ1(j)(j). If
aφ1(j)(j) = 1 (i.e., the sensed channel is idle), user further
probes the channel via physical layer measurement mechanism
(which also has been applied in [17]), acquiring temporary link
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Fig. 1. Online sequential sensing, probing and accessing (s-SPA) control.

quality qφ1(j)(j). With the observed result, user needs to make a
real time decision on whether to access the channel φ1(j), or go
on s-SPA process by switching to another channel, says φ2(j).
During the s-SPA process, if a channel is sensed to be busy, the
user is forbidden to send measurement packet for primary user
protection. However, the user still needs to wait for a constant
channel probing time before switching to next channel. Such
scheme is introduced for transceiver synchronization under the
case that the channel availability of transmitter and receiver
is different [11]. As a result, each sensing/probing step costs
a constant time τ . Correspondingly, the maximum number of
steps one could take in one slot is K = min

(
N,

⌊T
τ

⌋)
, where

�·� represents round-down function.
When user decides to access channel for data transmission

after the kth channel sensing/probing step, the immediate nor-
malized throughput is given by

r(j) = ck ln
(
1 + qφk(j)(j)

)
= (1 − kβ) ln

(
1 + qφk(j)(j)

)
(1)

where β = τ
T is a normalized observation cost, which is a

factor to show the fraction of time a probing duration occupies
the whole time slot. As we know, in evaluating the probing
time overhead, the normalized β factor is used to evaluate this
overhead. In our work, we use ck = 1 − kβ to evaluate the pure
data transmission time in each slot. The actual throughput can
be easily obtained by scaling our reward2 with a constant T

ln 2 .
We define the deterministic learning policy χ , mapping from

the observation history Fj−1 to a s-SPA strategy 〈�(j),�(j)〉
at each slot j, where �(j) = (φ1(j), φ2(j), . . . , φK(j)) is a per-
mutation of channels that determines the channel sensing/
probing order in a slot, and �(j) is the corresponding accessing
rule determining when to access which channel. For notation
convenience, we define 
 as the set of all possible sensing
orders, and denote the mth element in it as �m = (φm

1 , φm
2 , . . . ,

φm
K ). Correspondingly, the number of all possible sensing orders

2The reward is directly related with the throughput. The difference is, when
we use the reward for denotation, it mainly focuses on the regret analysis,
where the reward value is evaluated with expectation value in the long run.
On the other hand, when the term ‘throughput’ is used, it mainly focuses on the
achievable data transmission rate, which is an instant value for evaluation.

|
| = M = (N
K

)
K!. Then, deriving a s-SPA strategy 〈�,�〉 in a

slot includes:

1) selecting K channels from channel set �;
2) arranging the order of the selected K channels for sequen-

tial channel sensing/probing;
3) deriving an accessing rule for opportunistic channel

accessing.

Our main goal is to devise a learning policy guiding the
system converging to the throughput-optimal s-SPA strategy.
Meanwhile, the accumulated throughput loss during the learn-
ing process should be as small as possible. We use regret
value to characterize the accumulated throughput loss, which is
defined as the gap between the accumulated reward gained by
always using the perfect s-SPA strategy, and using the s-SPA
strategy proposed by learning policy in each slot. Mathemati-
cally, the regret of learning policy χ up to slot L is

ρχ(L) = LV∗{�,ϒ} −
L∑

j=1

χ V〈�(j),�(j)〉
{�,ϒ} (2)

Here, V∗{�,ϒ} is the maximum expected throughput one could
obtain in one slot under the environment {�,ϒ}, which is
achieved by user applying the ideal s-SPA strategy 〈�∗, �∗〉 de-
rived with perfect statistical knowledge. V〈�(j),�(j)〉

{�,ϒ} is the cor-
responding reward user obtains with the strategy 〈�(j),�(j)〉
derived by learning policy χ .

The main notations and definitions of this paper are summa-
rized in Table I.

IV. UNDERSTANDING SEQUENTIAL ACCESSING

CONTROL IN s-SPA

In this section, we are aiming to demonstrate the fundamental
tradeoff problem behind the sequential accessing control in
s-SPA. We first propose a preliminary on the throughput-
optimal sequential sensing, probing and accessing strategy with
perfect statistics. After that, an intuitive strategy referred to as
myopic learning policy is studied, and several observations are
derived from the convergence analysis of this learning policy.
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TABLE I
NOTATIONS AND DEFINITIONS

A. Optimal s-SPA Strategy Under Perfect Statistics

Given a channel sensing order �m and the channel statistics
{�,ϒ}, obtaining the optimal s-SPA strategy can be formulated
as an optimal stopping problem (OSP) [38]: during the sequen-
tial sensing/probing process, user makes a real time decision
on when to stop channel sensing by accessing an observed
channel. We formulate the problem as follows.

After sensing/probing channel φm
k , if the observed channel is

idle with channel quality qφm
k

, the achievable reward in step k is
given by:

rm
k =

{
ck ln

(
1 + qφm

k

)
, ck ln

(
1 + qφm

k

)
> �m

k+1

�m
k+1, else

(3)

where �m
k+1 = E[rm

k+1] is the expected reward when user de-
cides to skip the current channel under sensing order �m.

Since in the last step K, the optimal choice is always to access
the channel if it is available. Therefore,

�m
K = E

[
rm

K

] = cKE
[
θφm

K
ln

(
1 + qφm

K

)]

Then, the expected reward in each step �m
K−1,�

m
K−2, . . . , �

m
1

can be obtained using backward deduction according to Eqn. (3).

Specifically, with the channel statistics {�,ϒ}, the expected
reward �m

K is given by

�m
K = cKθφm

K

∫ ∞

0
log(1 + q)

1

γφm
K

e
− q

γ
φm

K dq

= cKθφm
N

e
1

γ
φm

K Ei

(
1,

1

γφm
K

)
(4)

where function Ei is the exponential integral function defined
as Ei(1, x) = ∫ ∞

x
e−t

t dt for x > 0.
For 1 ≤ k < K, the �m

k can be computed using the following
recursion [8], [12], [38].

�m
k =

(
1 − θφm

k

)
�m

k+1

+ θφm
k
�m

k+1

∫ ck log(1+q)≤�m
k+1

0

1

γφm
k

e
− q

γ
φm

k dq

+ ckθφm
k

∫ ∞

ck log(1+q)>�m
k+1

log(1 + q)
1

γφm
k

e
− q

γ
φm

k dq

=
(

1 − θφm
k

)
�m

k+1 + θφm
k
�m

k+1

∫ e
�m

k+1
ck

−1

0

1

γφm
N

e
− q

γ
φm

N dq

+ ckθφm
k

∫ ∞

e
�m

k+1
ck

−1
log(1 + q)

1

γφm
N

e
− q

γ
φm

N dq

= �m
k+1 + ckθφm

k
e

1
γ
φm

k Ei

⎛
⎝1,

e
�m

k+1
ck

γφm
k

⎞
⎠ (5)

According to Eqn. (3), the optimal stopping rule, i.e., optimal
accessing strategy, is completely specified by the reward se-
quence (�m

1 ,�m
2 , . . . , �m

K): access the channel φm
k after the

kth sensing/probing step, if the channel is idle with achievable
throughput ck ln(1+qφm

k
)≥�m

k . Otherwise, user could switch
to channel φm

k+1 for another sensing/probing step. Obviously,
the accessing rule can be further simply described as a sequence
of SNR thresholds, denoted as �m = (�m

1 , �m
2 , . . . , �m

K ).
Hence, the access threshold �m∗

k is given by

�m∗
k =

⎧⎨
⎩e

�m∗
k+1
ck − 1, 1 ≤ k < K

0, k = K
(6)

Finally, �m
1 is the maximum expected reward user could ob-

tain with sensing order �m. The sensing order �m∗ generating
the maximum �m∗

1 is then the optimal sensing order under the
given scenario with channel statistics {�,ϒ}.

B. Complexity Analysis

An intuitive solution when channel statistics is unavailable
is that, always deriving s-SPA strategy maximizing immediate
throughput in each slot. Meanwhile, refined statistics by updat-
ing the estimations of channels have been observed.

During the slot by slot decision-making process, the estima-
tions of channels are obtained by recording and updating the
following four variables on each channel: θ̂i(j), ns

i (j), γ̂i(j) and
np

i (j). Where θ̂i(j) is the estimated idle probability of channel i
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up to slot j, and ns
i (j) is the times channel i having been sensed

till slot j. They are initialized to be zero and updated as follows:

θ̂i(j) =
⎧⎨
⎩

θ̂i(j−1)ns
i (j−1)+aj

i
ns

i (j−1)+1 , if channel i is sensed

θ̂i(j − 1), else
(7)

ns
i (j) =

{
ns

i (j − 1) + 1, if channel i is sensed

ns
i (j − 1), else

(8)

Similarly, γ̂i(j) is the estimated SNR mean of channel i up to
slot j, and np

i (j) is the times channel i having been probed till
slot j. They are updated as follows:

γ̂i(j) =
⎧⎨
⎩

γ̂i(j−1)np
i (j−1)+qj

i
np

i (j−1)+1
, if channel i is probed

γ̂i(j − 1), else
(9)

np
i (j) =

{
np

i (j − 1) + 1, if channel i is probed

np
i (j − 1), else

(10)

Since the throughput in each slot is always maximized with
the currently estimated statistics, and the channel statistics is
refined slot by slot with myopic learning policy, it turns out to
be a good solution for our concern.

A learning policy of non-zero-regret is equivalent to the
statement that, using the learning policy, system may converge
to a non-optimal solution as time goes on.

C. Challenges

However, it is really challenging to achieve optimal control
because that, the reward of utilizing and learning in s-SPA pro-
cess are hard to quantify. Moreover, these two rewards are both
related to the sensing order and accessing rule. Specifically,

1) The closed expression of expected throughput is unavail-
able, which has been shown in Section IV-A. More-
over, for throughput optimal channel access scheme, the
channel sensing order relies on the long-term quality,
which would not show a direct relationship to the channel
probing results. Temporary channel quality is not stable
and would possibly contradict to the results in optimal
throughput strategy.

2) Considering the exploration process, channels being learnt
during a slot are unpredictable. Although intuitively one
could improve channel statistics exploration by increasing
the accessing thresholds, the exact relationship is compli-
cated, and can only be described in a probabilistic way.

As a result, to achieve optimal s-SPA strategy as well as
reduce the throughput loss during the learning process, one
needs to consider exploring the inaccurately estimated channels
while pursuing immediate reward maximization, by jointly
optimizing the sensing order selection process across slots and
the opportunistic accessing control process in each slot.

V. IE-OSP ALGORITHM

In this section, we propose the IE-OSP (i.e., Interval Esti-
mation in OSP analytical framework) online policy, in which
the statistics learning and diversity utilization processes are

seamlessly integrated together for efficient spectrum access. We
further analyze the convergence of the proposed policy, and
prove that the IE-OSP is guaranteed to converge to the optimal
s-SPA strategy with a controlled probability.

A. Algorithm Description

In our algorithm, the basic idea for guiding our system being
converged to the optimal s-SPA strategy is to minimize the un-
reachable probability of inaccurate channels during the s-SPA
process. Meanwhile, the optimal stopping analytical framework
is used during the s-SPA process for obtaining diversity gain
during the learning process.

For each channel, the following four variables are recorded
and updated during s-SPA process for decision-making, i.e.,
the estimated channel idle probability θ̂ , the times channel
having been sensed ns, the estimated channel SNR mean γ̂

and the times channel having been probed np. They are updated
according to (7)–(10), respectively.

We leverage the confidence interval bound to characterize
the inaccuracy of statistical estimation. Define parameter 0 <

δ < 1, where 1 − δ is the confidence coefficient of the estima-
tions. Then, the 1 − δ upper confidence bound of the channel
idle probability and the channel SNR mean are respectively
given by

θ̂u
i (j) = min

{
1, θ̂i(j) +

√
− log δ

2ns
i (j)

}
(11)

γ̂ u
i (j) = min

{
qmax, γ̂i(j) + qmax

√
− log δ

2np
i (j)

}
(12)

where qmax denotes the maximum value of temporary received
SNR. It is reasonable to restrict q with an upper bound qmax,
since the probability that temporary SNR is larger than qmax

approximates to zero if the value of qmax is large enough.
Then, the IE-OSP can be described as follows. Firstly, se-

quentially sense/probe channels until all channels are probed
at least once (from line 2 to line 13). Note that, the pseudo
code from line 5 to line 8 operates for the case where channel
is available, and the channle is probed with property channel
quality updating operations. If the channel is busy, we should
move forward for next channel. Line 8 and line 10 in the pseduo
are using the same operations to visit next available channels.
After that, always choose the s-SPA strategy 〈�m∗(j),�u

m∗(j)〉
that achieves maxm �

m,u
1 (j) in slot j, where �

m,u
1 (j) is a virtual

throughput value defined as the maximum achievable through-
put one could achieve if the real statistics is {�̂u(j), ϒ̂u(j)}
(from line 14 to line 21). Obviously, 〈�m∗(j),�u

m∗(j)〉 can be
derived easily with {�̂u(j), ϒ̂u(j)}, using the optimal stopping
analytical framework we introduced in Section IV-A.

The pseudo-code of the IE-OSP algorithm is shown as
in Fig. 2.

B. Convergence Analysis

In this subsection, we analyze the convergence of IE-OSP
algorithm, because the optimal convergence point is critical
to online learning policy in the long run. The main result
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Fig. 2. Algorithm description on IE-OSP.

can be described by the following theorem, which provides a
theoretical convergence guarantee for our proposed policy.

Theorem 1: Using IE-OSP, system converges to the
throughput-optimal s-SPA strategy with probability at least
(1 − δ)2(N−1). Particularly, when ∀i : θi < 1, it converges to
optimal s-SPA strategy with probability at least (1 − δ)2(N−K),
where 1 − δ is used to provide bounds to the statistical channel
features in channel idle probability and SNR mean, which have
been formally defined in Eqn. (11), and Eqn. (12).

Before proving this theorem, it is worth noting that, the
performance analysis, e.g., the regret analysis, is typically iden-
tical to previous studies [25], [33]. The difference is, since the
strategy is mixed with partially known knowledge, and channel
dynamics are fully used, there is no fixed optimal policy. The
only concern in this work, is to know the probability that
the algorithm could converge to the optimal point. To this end,
the probability analysis is also challenging in our concern.
Thus, an analytical bound is presented to instead of accurate
p.d.f. based analysis.

Proof: To prove Theorem 1, we introduce the Chernoff-
Hoeffding bound inequalities first.

Lemma 1: (Chernoff-Hoeffding bound) [39] Let X1, . . . , Xn

be random variables with range [0, 1], such that E[Xt|X1,

. . . , Xt−1] = μ. Moreover, let Sn = X1 + . . . + Xn. Then, for
any a > 0,

Pr[Sn ≥ nμ + a] ≤ e− 2a2
n

and

Pr[Sn ≤ nμ − a] ≤ e− 2a2
n

According to Lemma 1, we can derive the following corol-
lary directly.

Corollary 1: Let D be a distribution with support in [0,
1], and EX∼D[X] = θ . Let X1, . . . , Xn be drawn independently
from D, and θ̂ = 1

n

∑
t Xt. Then

Pr

[
θ ≤ θ̂ +

√− log δ

2n

]
≥ 1 − δ

and

Pr

[
θ ≥ θ̂ −

√− log δ

2n

]
≥ 1 − δ

Moreover, let D denote a distribution with support in [0, qmax],
and EX∼D[X] = γ . Let X1, . . . , Xn be drawn independently
from D, and γ̂ = 1

n

∑
t Xt. Then

Pr

[
γ ≤ γ̂ + qmax

√− log δ

2n

]
≥ 1 − δ

and

Pr

[
γ ≥ γ̂ − qmax

√− log δ

2n

]
≥ 1 − δ

Proof: Corollary 1 is directly derived from Lemma 1. �
Let θ ′

i and γ ′
i be the supposed channel statistics of idle prob-

ability and the averaged SNR value on channel i respectively,
and let θi and γi be the real corresponding channel statistics.
Denote 〈�′, �′〉 (a pair of sensing order and accessing rule) as
the throughput-optimal strategy for sequential channel sensing,
probing and accessing (s-SPA) in the case that the channel
statistics is {�′, ϒ ′}, i.e., {θ ′

1, . . . , θ
′
N; γ ′

1, . . . , γ
′
N}. We have

Lemma 2: Under any given strategy 〈�′, �′〉, if there ex-
ists an overestimated channel, it could be observed with high
probability.3

Proof: We prove this lemma by contradiction.
Denote Vsolution

statistic as the expected throughput obtained by
user using solution for sequential channel sensing and
accessing, while the actual channel statistics is statistic. Thus:

• V〈�′,�′〉
{�′,ϒ ′} is the maximum throughput one could obtain in

the supposed scenario {�′, ϒ ′};
• V〈�,�〉

{�,ϒ} is the maximum actually achievable throughput
in the scenario {�,ϒ};

• V〈�′,�′〉
{�,ϒ} is the expected throughput one could obtain

when using 〈�′, �′〉 in the scenario {�,ϒ}.

3“With high probability” means that, you can change the conditions slightly
to make the probability of failure very small. The usefulness of this concept is
from the power of the statement. The statement is parameterized to allow the
probability to vary as necessary to prove other statements.
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Suppose that for all i except i∗: θ ′
i = θ1, γ ′

i = γi, while i∗ is
the overestimated channel, i.e., it falls into one of the following
three conditions: 1) θ ′

i∗ > θi∗ , γ ′
i∗ = γi∗ ; 2) θ ′

i∗ = θi∗ , γ ′
i∗ > γi∗ ;

and 3) or θ ′
i∗ > θi∗ , γ ′

i∗ > γi∗ . Then, we have

V〈�′,�′〉
{�′,ϒ ′} > V〈�,�〉

{�,ϒ} > V〈�′,�′〉
{�,ϒ} (13)

The statement that channel i∗ would never be observed under
the strategy 〈�′, �′〉 is equivalent to that, the s-SPA process
would stop before arriving channel i∗. If so, we have

V〈�′,�′〉
{�,ϒ} = V〈�′,�′〉

{�′,ϒ ′} > V〈�,�〉
{�,ϒ}

which contradicts the inequality (13). Hence, we can conclude
that the statement is false. In other words, the overestimated
channel would be observed with probability 1 as time goes on.�

We now prove Theorem 1 using Corollary 1 and Lemma 2.
Since sub-optimal convergence only happens when there

exists at least one inaccurately estimated channel, where the
statistics of this channel would never be updated again. Suppose
that user converges to a state, i.e., a s-SPA solution, where the
maximum number of achievable steps in each slot is k. Then,
according to Lemma 2, the state is sub-optimal if and only if
there exists some underestimated channel in remaining N − k
channels.

For the sake of convenient description, we denote the set
of remaining channels as Sr = {k + 1, k + 2, . . . , N}. For each
i ∈ Sr, pi = Pr[θ ′

i ≤ θi or γ ′
i ≤ γi. As in IE-OSP, we treat θ ′

i =
θu

i = θ̂i +
√

− log δ

2ns
i

and γ ′
i =γ u

i = γ̂i + qmax

√
− log δ

2np
i

), according

to Corollary 1, we have that Pr [θ ′
i ≤θi]≤δ, Pr [γ ′

i ≤γi]≤δ.
Thus, for all i, pi ≤ p = 1 − (1 − δ)2. Then, the probability
Psub−opt that system converges to a sub-optimal solution is
bounded by

Psub−opt ≤ C1
N−kp (1 − p)N−k−1 + C2

N−kp2 (1 − p)N−k−2

+ · · · + CN−k−1
N−k pN−k−1 (1 − p) + pN−k

= [
p + (1 − p)

]N−k − (1 − p)N−k

= 1 − (1 − δ)2(N−k) (14)

Consequently, the probability that system could converges to
optimal solution is bounded by

Popt ≥ (1 − δ)2(N−k) (15)

As user needs to sense and probe at least one channel in each
slot, thus k ≥ 1, then we can derive the following probability of
optimal convergence.

Popt ≥ (1 − δ)2(N−1) (16)

Particularly, when all the channel idle probabilities are less
than 1, which means that when system converges to a state, all
the K channels in the sensing order will be observed as time
goes on (since the probability of all channel are busy is bigger
than zero). In such case, we have the following statement.

Popt ≥ t(1 − δ)2(N−K) (17)

This completes the proof of Theorem 1. �

Fig. 3. Comparison on expected throughput with respect to time.

VI. PERFORMANCE EVALUATIONS

In this section, we evaluate and analyze the performance of
the proposed online sequential accessing algorithm via sim-
ulations. We run our simulation code with Matlab, and an
IBM X210 laptop. Our experiment settings are as follows. The
idle probabilities and SNR means of independent channels are
randomly generated respectively in range [0, 1] and [0, 15] dB
for each round. Then, the states of channels (i.e. availability
and link quality) in each slot are generated independently
according to the idle probability vector as well as SNR mean
vector. The channel bandwidth is set to be 6 MHz, and three
channels are considered here. The normalized channel sensing/
probing cost β = 0.1. The results are averaged from 1000
rounds of independent experiments, where each run lasts at
least 1500 time slots.

A. Throughput Analysis

In this subsection, four policies are running under the same
environment for performance comparison, briefly described as
follows.

• p-SPA with UCB1: existing online learning solution for
opportunistic channel access, in which user selects one
channel to sense/access in each slot according to UCB1
[27] algorithm. Such learning policy is proved to be
order-optimal in p-SPA system [26];

• s-SPA without learning: an intuitive method in s-SPA
system without learning. User sequentially senses/probes
with a random sensing order and access the first idle
channel for transmission;

• s-SPA with IE-OSP: our proposed method, where user
sequentially senses, probes and accesses according to
online algorithm IE-OSP;

• s-SPA with perfect stat.: an ideal s-SPA strategy derived
with perfect channel statistics, which leads to maximum
achievable throughput.

We first study the system throughput as a function of time in
Fig. 3. As depicted in Fig. 3,

1) both learning algorithms are effective in improving system
throughput. This is clearly shown in the figure, where the
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Fig. 4. Comparison on accumulated reward in the first L slots.

expected throughput of both p-SPA with UCB1 and s-SPA
with IE-OSP are increasing with time.

2) there is still a considerable gap compared with the maxi-
mum achievable throughput (i.e., the achievable through-
put obtained by s-SPA with perfect stat.) by using existing
solutions. On one hand, compare the throughput of exist-
ing learning method p-SPA with UCB1 with that of s-SPA
with perfect stat. It shows about 3 Mbps throughput loss
even at the time t = 1500, where the learning algorithm
converges almost to the optima status. Such a gap mainly
arises from the fact that existing learning method is incom-
patible with temporary opportunity exploitation. On the
other hand, the intuitive algorithm for exploiting diversity,
i.e., s-SPA without learning, shows a constant gap of about
2 Mbps, comparing with the ideal strategy.

3) our proposed algorithm IE-OSP bridges the through-
put gap effectively. As shown in figure, the obtained
throughput of IE-OSP algorithm approaches to the ideal
goal in about 500 slot.

We further investigate the accumulated reward of the three
algorithms. Accumulated award in the first L slots is defied as
the total transmitted bits from the beginning time, i.e., j = 1,
to the instant j = L. Actually, the accumulated reward is the
most concerned metric from the perspective of the user. The
results are shown in Fig. 4. Here, we leverage the average
throughput in the first L slots to characterize the real value
of accumulated reward, which is mathematically defined as
1
L

∑L
j=1 r(j). In the figure, the average throughputs of the three

practical schemes with different Ls are given. It clearly shows
that, our proposed method outperforms the other two schemes
in almost any time, with respect to the accumulated reward.
The advantage of our proposed algorithm in time from 200 to
1400 are apparently shown in the figure. More precisely, our
learning method outperforms s-SPA without learning as soon as
j = 50, and outperforms p-SPA with UCB1 in arbitrary time. In
other words, applying our proposed scheme earn profits, even
in where the communication session duration is relatively short.
Moreover, as the gap between the average throughputs of the
three schemes are tending towards stability, it is no doubt that
user would gain more by applying our proposed scheme as the
session duration increases.

Fig. 5. Comparison on accumulated reward with respect to number of
channels.

All the above results are derived from the scenario with
a constant number of channels (N = 3). As the number of
channels is almost the most important attribute of a wireless
network and relates much to the system performance, we eval-
uate the three schemes in scenarios with different channels in
the following part of this subsection, so as to investigate the
impact of channel number. We adopt the accumulated reward
in the first 1500 slots as the main metric to show the impact of
channel number. Similarly, we leverage ‘average throughput’
to characterize the real value of accumulated reward. With
the number of channels ranging from 1 to 7, we depict the
results as shown in Fig. 5. All the three curves are increasing
with the number of channels; however, with different rising
characteristics:

1) s-SPA without learning scheme, it shows to be a rapid
growth within N ≤ 3 (higher increasing rate compared
with p-SPA with UCB1 scheme). Such growth in through-
put comes from the fact that, as the number of channels
increases, it is more likely to find an available channel
to use by sequentially observing channels in a slot. In
other words, the increasing channels enrich diversity in
temporary channel status, and thus benefit the scheme
with opportunity exploitation. However, due to lack of ad-
vanced accessing control strategy, the s-SPA without learn-
ing scheme would fail to exploit temporary opportunity
efficiently. This is why the increasing trend flattens soon
when N > 4.

2) for the p-SPA with UCB1 scheme, the growth comes from
the increasing diversity of channels’ statistics. Specifi-
cally, as the expected reward of the single statistic-optimal
channel is increasing with the total number of the chan-
nels, user gains more as the number of channels increases,
since it could learn to converge to the optimal channel by
using p-SPA with UCB1. Moreover, the average through-
put of p-SPA with UCB1 increases more slowly than that of
s-SPA without learning within few channels, e.g., 14 with
sustained growth.

3) our proposed s-SPA with IE-OSP scheme increases with
the number of channels more rapidly and lasting. By
using s-SPA with IE-OSP, user sequentially senses/probes
and accesses with near-optimal strategy soon by learning.
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Fig. 6. Throughput gain of s-SPA with IE-OSP over the other two schemes.

The temporary opportunity among channels are fully and
efficiently exploited. As a result, the throughput gap be-
tween our proposed policy and the existing policies is
increasing with number of channels, e.g., about 5 Mbps
throughput improvement is attained at N = 7.

To further investigate the throughput improvement of our
proposed scheme over the other two schemes, we depict the
throughput gain as a function of the number of channels. The
throughput gain is defined as the ratio between average through-
put in the first 1500 slots of s-SPA with IE-OSP scheme over
that of p-SPA with UCB1 or s-SPA without learning, respec-
tively. As depicted in Fig. 6, with the increasing number of
channels, the candidate channels are more than ever, thus the
potential channel quality improvement is expected, since the
probability of probing a high quality channel could be larger
than ever. Specifically, we learn from this figure that:

1) the throughput gain of our opposed scheme over the other
two schemes are increasing with the number of channels,
which means that the proposed policy would benefit more
in the scenarios with more channels.

2) at least 9.5% improvement in average throughput is
achieved with our proposed scheme. This value is attained
at N = 2 comparing with s-SPA without learning. When
compared with p-SPA with UCB1, it exceeds 15%.

3) 25∼30% throughput improvement can be obtained in
most scenarios, as almost all existing OSA networks are
equipped with more than 5 channels.

B. Convergence Analysis

In this subsection, we evaluate the convergence property of
our proposed learning algorithm by analyzing regret. Regret is
an important metric for online policies, where the definition4

of regret is presented in Eqn. (2). An online learning algorithm
with higher regret means more throughput loss during learning
process. Moreover, it has been proven by Lai and Robbins [40]
that no policy can do better than logarithmic increasing regret

4As in our simulation, regret is the accumulated throughput loss of applying
s-SPA with IE-OSP, comparing with always using s-SPA with perfect stat.

Fig. 7. Regret with respect to time.

Fig. 8. Regret vs. increased number of channels.

in time. In other words, an online policy with logarithmic regret
in time is order-optimal.

In Fig. 7, we depict the regret of IE-OSP policy as a function
of slot index, so as to study the increasing rate of regret over
time. To show more widely, we present all the curves with N
ranging from 2 to 5. Intuitively, we find from the upper part
of this figure that, all the curves of regret show a logarithmic
increasing trend over time. To further verify this logarithmic
increasing property, we re-plot the regret curves in the lower
part of this figure, where X-axis ranges from 100 to 1500 and
is in a logarithmic form. The transformed curves show almost
linear increasing trend. This verifies that, the regret is in at
least asymptotically logarithmic rate, even if it is not in optimal
logarithmic rate

Further, we study the increasing trend of regret with respect
to the number of channels. As the regret increases infinitely
with the number of slots, we take three typical value of L to de-
termine the regret for comparison. Specifically, for each N, we
depict the value of L = 500, L = 1000, and L = 1500. The
results are presented in Fig. 8. It is intuitive that the regret
values increases when adds the number of channels. This is
reasonable, since the increasing number of channels extends
the learning space, and thus results in higher throughput loss
for learning. In spite of this, it is encouraging that the regret is
sub-linearly increasing with the number of channels. As shown
in the regret envelope curves, where the blue dots and red
dashed line sketches the increasing trace of ρ(500) and ρ(1500)
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Fig. 9. Comparison between simulation and theoretical results. (a) δ = 0.1 and N = 5; (b) δ = 0.5 and N = 5; (c) δ = 0.9 and N = 5.

respectively. Such desirable property makes the learning algo-
rithm scalable.

C. Discussion

1) Impact of Secondary User and Reliability: The chan-
nel probing failure and primary user occupancy will lead to
different results. In previous studies [41], [42], we discussed
the probability of channel probing failure and effects for the
statistical behavior of the primary users. Moreover, it is worth
noting that, in our scheme, when the channel probing failure
and primary user occupancy is stable, say, providing a proba-
bility or distribution for it, our IE-OSP policy could be adaptive
to such cases. Because the threshold value could be adjustable
according to this probabilistic distribution, which could be
further evaluated by the rewards.

2) Validating the Theoretical Analysis: To show the match-
ing effects of the proposed algorithm and theorem 1, we make
an extended experimental study on the comparisons between
the results we got from simulation study and theoretical analy-
sis. In our simulation study, we evaluate the matching rate of the
proposed algorithm and theoretical results. For each run, if the
result in simulation study equals to that of theoretical analysis,
the matching times could be increased by 1. And the overall
matching rate is the accumulated matching times to the total
number of running times.

As depicted in Fig. 9, the Y-axis denotes the matching rate
with probabilistic form. We set the parameter N, K, and δ with
different values, and evaluate the matching rate. To show the
trends, especially when the number of probing times increases,
we make observations for different values of K. This feature
also validates our basic idea, i.e., providing more opportunities
of probing could improve the throughput gain in temporarily
high SNR channels. Large-scale evaluation needs computa-
tional intensive operations, and the theoretical results could
guide us with the converging trends for the regret value. Fur-
thermore, Fig. 10 depicts the convergenc feature of our pro-
posed protocol, when the theoretical regret value is concerned.
In that, we observe the convergence property when the param-
eter δ is concerned. When the confidence interval is involved,
the convergence probability increases with the δ, which means,
the convergence probability could be higher than the case with
lower confidence interval. On the other hand, a theoretical
bound value with higher confidence interval could be more
difficult to achieve.

Fig. 10. Convergence property of the simulation results.

VII. CONCLUSION

In this work, channel learning and opportunity utilization
are jointly considered for maximizing system overall through-
put in an unknown environment. The sensing/probing order
and accessing rule are dynamically adapted slot by slot, so
as to achieve better tradeoff between maximizing diversity
exploitation in current slot and exploring more channels for re-
fining statistics. A near optimal online learning policy, so called
IE-OSP, is proposed, which balances the statistics exploration
and diversity exploitation by integrating confidence interval
estimation into the optimal stopping analytical framework. We
prove that, by using the proposed algorithm, system is guaran-
teed to converge to the optimal s-SPA strategy with a control-
lable probability. Simulation results further show that the regret
of IE-OSP is asymptotically logarithmic in time and sub-linear
in the number of channels, which respectively shows the op-
timality and scalability of our proposed learning policy. Com-
pared with existing solutions, our proposed algorithm achieves
more than 25% throughput gain in most scenarios.

In future work, we are to implement our policy to a cognitive
radio platform built on USRP [43], [44], and provide a working
system in real deployment [45] for validation.
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