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Abstract—In wireless networks, we need to allocate spectrum effi-
ciently. One challenge is that the spectrum usage requests often come
in an online fashion. The second challenge is that the secondary users
in a cognitive radio network are often selfish and prefer to maximize
their own benefits. In this paper, we address these two challenges by
proposing TOFU, semi-truthful online frequency allocation method for
wireless networks when primary users can sublease the spectrums
to secondary users. In our protocol, secondary users are required to
submit the spectrum bid α time-slots before its usage. Upon receiving
an online spectrum request, our protocol will decide whether to grant
its exclusive usage or not, within at least γ timeslots of requests’
arrival. We assume that existing spectrum usage can be preempted
with some compensation. For various possible known information, we
analytically prove that the competitive ratios of our methods are within
small constant factors of the optimum online method. Furthermore, in
our mechanisms, no selfish users will gain benefits by bidding lower
than its willing payment. Our extensive simulation results show that they
perform almost optimum: our methods get a total profit that is more than
95% of the offline optimum when γ is about the duration of spectrum
usage ∆.

Index Terms—Wireless networks, spectrum, online allocation, preemp-
tion, penalty, competitive ratio.

1 INTRODUCTION

The current fixed spectrum allocation scheme leads to signif-
icant spectrum white spaces. Several new spectrum manage-
ment models [19] have been proposed to improve the spectrum
usage. One promising technology is the opportunistic spectrum
usage. Subleasing is widely regarded as another potential way
to share spectrum, if we ensure that primary users’ spectrum
usage is not interfered with. In this work, we assume that there
is a set of n secondary nodes V that will share a spectrum
channel. Each secondary user vi may wish to pay (by leasing)
for the usage of the available spectrum.
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Previous studies on spectrum assignment (e.g., [16], [28],
[29]) often assume that the information of all spectrum re-
quests is known before allocation is made. However, the
spectrum usage requests often arrive online and the central
authority (typically a primary user) needs to quickly decide
whether the requests are granted or not. Here we assume that
upon receiving an online spectrum request, our protocol need
decide whether to grant its exclusive usage or not, within at
least γ timeslots. The rejection typically could not be revoked.
Two different approaches of granting the request could be
used: preemptive and non-preemptive. In this work, we con-
sider preemptive requests where the central authority could
potentially terminate the current running request(s) to satisfy
this new request to potentially make more profits. Assume that
requests terminated cannot be restarted or resumed later (so it
is also called “abortion”). Terminating a running request ei,
the central authority has to pay a penalty that is β > 0 times
of the amount paid for the remaining unserved timeslots.

Without any known constraint on requests, we show that
the competitive ratio of any online spectrum allocation method
can be arbitrarily bad when preemption is not allowed. This
is because any online method has to accept the first coming
request (it is possible that no other requests come), therefore
miss the following conflicting requests with an arbitrarily large
value. In this work, we focus on the case when we know that
the maximum time requirement is ∆ time slots. We always
assume that every request arrives at the beginning of a time slot
and the number of time slots requested is an integer t ∈ [1, ∆].
To the best of our knowledge, we are the first to study online
spectrum allocation with cancelation and preemption penalty.

The main contributions of this paper are as follows. We find
that the best competitive ratio achievable depends on β and
there are three regimes here. We design several efficient on-
line spectrum allocation methods, called TOFU, that perform
almost optimum in all cases. When 0 ≤ β < 1, our protocol
has a constant competitive ratio depending on β. When β > 1,
we show that the competitive ratio of any online method is at
most O(γ+1

∆ ). We then show that our protocol TOFU achieves
the bound Ω(γ+1

∆ ). When β = 1, we show that the competitive
ratio of any online algorithm is at most O((γ+1

∆ )1/2). We then
show that our online method TOFU has competitive ratios
that match the bounds asymptotically, i.e., Θ((γ+1

∆ )1/2). Our
extensive simulations show that our methods have competitive
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ratios almost 95% in most cases, even compared with the
optimum offline spectrum allocation method that knows all
future inputs. We also extend our protocol to a more general
case in which the secondary users are distritbuted arbitrarily
and the required service region are heterogeneous disks. We
show that the same asymptotic lower bounds and upper bounds
apply to this general model.

We also design efficient auction mechanism for spectrum
allocation when secondary users are selfish. In such a mech-
anism, each user will be charged an amount, say pi, if its
request ei is granted. We show that in our online mechanism,
to maximize its profit, no secondary user will bid lower than
its actual valuation. However, a user may have a chance to
improve its profit by bidding higher than its actual valuation.
We call this property as semi-truthful. Recall that a protocol is
called truthful in the literature if no user can lie about its bid
to improve its profit. Our methods still achieve similar results
when the requested region of each user is a sectoral cell.

The rest of the paper is organized as follows. In Section
2, we define in detail the problems to be studied. In Section
3, we present upper bounds on the competitive ratios of any
online allocation methods. Then we present our solutions in
Section 4 and analytically prove the performance bounds of
our methods. We extend our methods to networks with general
conflict graphs in Section 5. We present our mechanisms to
deal with selfish users in Section 6. Our simulation studies are
reported in Section 7. We review the related work in Section
8 and conclude the paper in Section 9.

2 SYSTEM MODEL, PROBLEM FORMULATION

2.1 Network and System Models
We consider a wireless network consisting of some primary
users who hold the right of some spectrum channels for sub-
leasing. There is a central authority who decides the spectrum
assignment on behalf of these primary users. In other words,
we assume that each primary user will trust the central author-
ity and is satisfied with what s/he will get from the auction
based on the mechanism designed. If each primary user has an
asking price for its spectrums, we need to design mechanisms
(such as double auction in which buyers enter competitive
bidders and sellers enter competitive offers simultaneously)
that also take into account the selfish behavior of primary
users. We leave this as a future work, and note that Wang
et al. [20] proposed some truthful double-auction mechanisms
with known distributions on bids. The wireless network also
consists of some secondary users V = {v1, v2, · · · , vn}. Those
secondary users may lease the spectrum usage in some region
for a time period at any time. In this paper, we assume a simple
scenario where there is only one channel available. We leave
it as a future work to design allocation and auction schemes
when multiple channels are available and a secondary user
may request for a number of channels at same time.

Secondary users may reside at different geometry loca-
tions. Here we assume that each request is associated with
a disk region. Whether a secondary user’s request of channels
conflict with the request of another secondary user depends
on their locations, in addition to the required time period.

This location-dependent conflict will be modeled by a conflict
graph H = (V, E), where two nodes vi and vj form an
edge (vi, vj) in H if and only if they cannot use same
channel simultaneously. We will first study the networks with a
complete conflict graph, and then extend our methods to cases
when requested disks are of arbitrary sizes. We will show
that our methods have asymptotically optimum performance
guarantees in both cases.

2.2 Problem Formulation

Assume that secondary users V = {v1, v2, · · · , vn} will ask
for spectrum usage on the fly. A user could ask for spectrum
usage at different time-slots. Let e1, e2, · · · , ei, · · · , be the
sequence of all requests. Each request ei = (v, bi, ai, si, ti) is
claimed by a secondary user v at time ai, who bids bi for the
usage of the channel from time si to time si+ti. Here we also
omit the region requirement since we first address networks
with complete conflict graph. For most of our discussions we
will omit the user v when it is clear from the context. In other
words, ei = (bi, ai, si, ti) denotes the ith request. Obviously,
ai ≤ si for all requests, which means only spectrum usage
in future can be requested. Assume time is slotted, and time
requirement ti must be an integer. We also assume that every
user will ask for the spectrum usage for at most ∆ timeslots
(ti ≤ ∆ for all i). We call ∆ the time bound.

Since the objective for spectrum auction/lease is to im-
prove spectrum utilization and improve the revenue from the
spectrum auction/lease, the central authority (i.e., spectrum
auctioneer) can post a requirement that all requests must be
submitted in advance of a certain time slots. In this paper,
we assume that for every request ei, si − ai ≥ α for a value
α given by the auctioneer. Hereafter, we call α the advance
factor. Each request is claimed at least α time slots before
its required usage. Intuitively, a larger advance factor α will
give more advantage to the central authority. We later will
show that the asymptotic performances of our methods do not
depend on α as long as α ≥ γ, the delay factor.

The advance factor puts some constraints on the secondary
users on when they should submit their bids. To be fair, our
system will also put some condition on the central authority
about when the central authority should make a decision on
each request. In this work, we always require that the central
authority should make a decision on a request within γ time
slots of its arrival time. We call γ delay factor in the spectrum
allocation problem. Obviously, we need γ ≤ α to make the
system meaningful. When γ = 0, central authority has to make
decision immediately on request ei at time ai. When γ =
α, central authority could make decision as late as possible.
If a request has been rejected, it will never be reconsidered
and accepted later. Figure 1 illustrates our model of advance
and delay factor. For each request, its arrival time ai must be
before time t1 in the figure, and central authority must make
a decision before time t2 in the figure.

Since central authority are not able to estimate accurate
price for spectrum usage, our model lets the central authority
accept a reservation in advance, and lets the secondary user
get a reasonable guarantee. Crucially, to improve the spectrum
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ei = (bi, ai, si, ti)γ

t1 si
ti

α

t2

Fig. 1. Advance factor α, and delay factor γ.

usage and revenue, we also let the central authority terminate
a reserved/running request at a later time for new request with
higher priority at any time. Cancelation and preemption is
necessary to take advantage of a spike in demand and rising
prices for spectrum channels and not be forced to sell the
spectrum below the market because of an a priori contract.
When current spectrum usage is terminated, penalty should
be paid to compensate the preemption. Here we assume that
the penalty µ(b, `, t) is a linear function of the unfinished time
` ≤ t of that request e(v, b, a, s, t), i.e., µ(b, `, t) = β `

t b for
a constant β ≥ 0. Notice that the cancelation is modeled as
` = t since the spectrum usage was not started at all. Here the
constant β ≥ 0 is the penalty factor. We also summarize the
symbols used in this paper in Table 1.

TABLE 1
Symbols used in this paper.

Symb. Meaning Symb. Meaning
ei request bi bid value
ai arrival time si start time
ti required service time `i unfinished service time
∆ time bound α advance factor
γ delay factor β penalty factor

As we stated before, all requests arrive on the fly, thus any
information about the future, e.g., the distribution of future
bids, the arrival times, the start times and the required time
durations are all unknown. The objective of the spectrum
allocation is to find an allocation which maximizes the total net
profit, i.e., the total payment collected minus the total penalties
caused by preemption and cancelation.

To evaluate the performance of an online algorithm, we
usually compare it with an optimal offline algorithm. The
following lemma indicates the hardness of the offline version
of our problem.

Lemma 1: Even knowing all requests, it is NP-hard to find
an optimal spectrum allocation that maximizes the total bids
of admitted requests.

Proof: Observe that the maximum weighted independent
set (MWIS) problem in geometry graph is a special case of
the spectrum allocation problem: we assume that all spectrum
requests are for the same time duration, and the graph for
MWIS problem is the conflict graph H , and the weight of a
node is the bid value of the spectrum request by this node.
Recall that MWIS in geometry graph itself is an NP-complete
problem [15] . Thus, the lemma follows.

For all online spectrum allocation problems studied here,
we will design online algorithms with constant competitive
ratios if advance factor is chosen carefully.

The performance of an online algorithm A for spectrum
allocation is measured by its competitive ratio %(A) =
minI

A(I)
OPT(I) , where I is any possible sequence of requests

arrival, A(I) is the profit produced by online algorithm A
on input I, OPT(I) is the profit produced by optimum
offline algorithm OPT on input I when the sequence I is
known in advance by OPT. In this work, when we study the
competitive ratio, we assume all users are truthful. Given a
sequence of spectrum requests, at any time instant t, an online
spectrum allocation method only knows all spectrum requests
that arrived from time t−γ to timeslot t. On the other hand, for
the same sequence of spectrum requests, although the optimum
offline method also has to make decision for a request within
γ timeslots of its arrival, it does know all future requests it
will get, thus makes a smarter decision.

As we will see later that the performances of our methods
and the lower bounds on the performance of any online
algorithm vary when the penalty factor β, the advance factor
α and the delay factor γ are different. For certain parameters
β, α and γ, we call it (β, α, γ) problem in this paper.

3 UPPER BOUNDS ON ALL ONLINE METHODS
In this section, we present upper bounds on the competitive
ratios of online allocation methods in cases depending on
whether β is less than 1, equal to 1, or larger than 1. These
bounds will be proved to be almost tight later.

3.1 Upper Bound for (β < 1, γ, α) Problem
We first show upper bounds on the competitive ratios when
β < 1. Note that in this case we assume that every preempted
job must be executed for at least one timeslot.

The main approach of our proofs in this section is adversary
argument: an adversary carefully constructs sequences of
requests to make the performance of online algorithms as
bad as possible. The trick is that the adversary can choose
the future requests based on the current decision of online
algorithms. Then no matter what decision is made, certain
performance can not be achieved.

Theorem 2: Let θ = 1
cβ . No online algorithm has a

competitive ratio > θ for (β < 1, γ, α) problem when
γ ≤ β

(c+1)(2+β)∆ for c > 1/β.

3.2 Upper Bound for (β = 1, γ, α) Problem
When the penalty factor β = 1, there are two different cases:
γ = o(∆) or γ = Ω(∆).

1) When γ = o(∆), i.e., lim γ
∆ = 0, we first show that no

online algorithm can achieve competitive ratio more than
3
√

2(γ + 1)∆− 1
3 for (1, α, γ) problem. Then we improve

this bound to
√

2(γ + 1)∆− 1
2 .

2) When γ = Ω(∆), we show that (1, α, γ) problem cannot
have a competitive ratio 1− ε for an arbitrary ε > 0.

Theorem 3: [23] No online algorithm has a competitive
ratio > 3

√
2(γ + 1)∆− 1

3 for (β = 1, γ, α) problem when γ =
o(∆).

Theorem 4: [23] No online algorithm has competitive ratio
> 1

c for (β = 1, γ, α) problem, where
√

2(γ + 1)∆− 1
2 < 1

c ≤
3
√

2(γ + 1)∆− 1
3 for (β = 1, γ, α) problem when γ = o(∆).
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Theorem 5: [23] No online algorithm has a competitive
ratio ≥ 1 − ε for an arbitrary small ε > 0, for (β = 1, γ, α)
problem when γ = Ω(∆).

3.3 Upper Bound for (β > 1, γ, α) Problem
For (β > 1, γ, α) problem, we show that upper bound of
competitive ratios is O(γ+1

∆ ) when γ = o(∆).
Theorem 6: [23] No online algorithm has competitive ratio

more than 2β
(β−1)2

γ+1
∆ for (β > 1, γ, α) problem, when γ =

o(∆).
A surprising result from the analysis in this section is that,

the performance upper bounds do not depend on the advance
factor α. In other words, no matter how many time slots the
secondary users claim their requests in advance, the theoretical
upper bounds will not be improved asymptotically if the delay
factor γ does not change.

4 EFFICIENT ONLINE ALLOCATION METHODS

In this section, we present several methods for efficient online
spectrum allocation. We then analytically study the perfor-
mances of our methods, and prove that they have asymptoti-
cally best competitive ratios. All results in this section assume
that the conflict graph of the network is a complete graph.

4.1 Method K for (β < 1, γ, α) Problem
When β < 1, whenever we admit a request ei at time t, even
we preempt it at next timeslot t + 1, we still receive a profit
(1 − β)bi. Thus, we will adopt the following strategy K: at
any time t, let ei be the request from the set of all currently
available requests, denoted as Ra(t), with the largest bid bi

among all requests whose starting time is t−γ +α. We admit
request ei at time t. It is easy to prove the following Lemma.

Lemma 7: Strategy K is at least (1− β)-competitive.

4.2 Method G for (β = 1, γ, α) Problem
We then consider the case β = 1, i.e., the preemption penalty
is exactly the remaining portion of the bid. Since we don’t
know anything about the future, to maximize the total profits,
we shall accept request with large bid or large bid per time
slot (called density) intuitively. The main difficulty is the
tradeoff between requests with large bid and requests with
large density. Our results on upper bounds of competitive ratio
in Section 3 illustrate some intuitions. In this and following
subsection, we design online algorithms whose competitive
ratios match corresponding upper bounds.

Consider current time t, let Ra(t) be all spectrum requests
submitted before time t, which are not processed. Based on
the delay requirement, we know that all requests in Ra(t)
must be submitted during the time-slots [t − γ, t), and their
starting times must be in the time-interval [t− γ + α, t + α].
Among all spectrum requests in Ra(t), let R(t) ⊆ Ra(t) be
all spectrum requests whose starting times are in the time-
interval [t, t + γ]. Recall that we always have γ ≤ α. Our
online algorithms will only make decisions at time t using
the information about requests R(t), although it knows a
superset of requests Ra(t). See Figure 2 for illustration, where

t t + γ

γ

γ

γ

e2

e1

e3

e5

t− γ

α

γ

e4

R(t)

Ra(t)

Fig. 2. All requests Ra(t) and a subset of requests R(t)
with starting time in [t, t + γ] (denoted by green color) .

Ra(t) = {e1, e2, e3, e4, e5} and R(t) = {e1, e2, e3}. We will
show that our method can achieve a competitive ratio that is
already asymptotically optimum. In other words, knowing the
information α will not enable us to get a method with a better
competitive ratio asymptotically.

4.2.1 Candidate Requests Set
For requests R(t), we will find some subsets, called candidate
requests set, using dynamic programming to optimize some
objective functions. Our method will then make decisions
on whether to admit these subsets of requests under some
conditions involving the currently running spectrum usages.

t

e4

b2 = 12

b1 = 10

b3 = 13

e5

C1(t)

t + α− γ t + α + ∆

Fig. 3. Strong Candidate Set C1(t) at time t (color green).

Definition 1: Candidate Requests Set:
1) A strong candidate requests set at time t, denoted as
C1(t), is a subset of requests from R(t) that has the
largest total bids if C1(t) were allowed to run from time
t − γ + α to time at most t + α + ∆. See Figure 3 for
illustration where C1(t) = {e1, e3} ⊆ R(t) since the
total profit during time interval [t− γ + α, t + α + ∆] is
maximized. We abuse the notation little bit here by also
letting C1(t) denote the profit made by C1(t).
Also let P(C1(t), t′) denote the profit made from C1(t)
if C1(t) are admitted and then possibly being preempted
at a time-slot t′ ∈ [t− γ + α, t + α + ∆].

2) A weak candidate requests set at time t, denoted as C2(t),
is a subset of requests from R(t) that has the largest total
bids if C2(t) were allowed to run during time interval
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[t − γ + α, t + α] (assume they are preempted at time
t + α + 1). We abuse the notation little bit here by also
letting C2(t) denote the profit made by C2(t).

Briefly speaking, C1(t) maximizes the total bids at time
t, and C2(t) maximizes the total bid per time slot in the
predictable future (since the requests are claimed in advance).
Observe that the starting times of candidate sets are in the
interval [t, t + α]. Since γ ≤ α, at time t, we should know all
requests whose starting times are from t to t+γ. So we could
find the candidate requests set C1(t) and C2(t) by dynamic
programming as following.

Consider requests e1, e2, · · · , en in the increasing order of
their starting times, i.e., t − γ + α ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤
t + α. When we compute the strong candidate set C1(t), we
will not consider any requests that are currently running or
have been rejected before. Additionally, for the scheduling of
requests in C1(t), we may use one request to preempt another
request in C1(t). Let Q(j, si) denote the maximum possible
profit made during time interval [t, t+γ+∆] from R(t) when
ej is the last accepted request before or at time si. If the
starting time sj of ej satisfies sj > si, Q(i, sj) = 0 since it
is not a feasible solution. Then

C1(t) = max
k∈[1,n]

Q(k, sn).

For each i and j such that i ≥ j, we have

Q(j, si) = max
k∈[1,n]

{Q(k, sj) + bj − µ(ek, sj)}.

Here µ(ek, sj) is the paid penalty when request ek is pre-
empted at time sj .

Algorithm 1 Find C1(t) by Dynamic Programming
Input:e1, e2, · · · , en(t) such that s1 ≤ s2 ≤ · · · ≤ sn(t).
Output: strong candidate set C1(t).

1: for i = 1 to n(t) do
2: for j = 1 to i do
3: Q(j, si) = maxk∈[1,n]{Q(k, sj) + bj − µ(ek, sj)}
4: C1(t) = maxk∈[1,n]{Q(k, sn(t))}

Algorithm 1 summarizes our method finding C1(t). For each
i and j, the algorithm takes O(n(t)) time to compute Q(j, si).
Therefore, it takes O(n(t)3) time to find C1(t) where n(t) is
the total number of spectrum requests in R(t). Our method
can be easily extended to find C2(t) with same running time.

4.2.2 Our Greedy Algorithm G
We then propose an online algorithm G. At each time t, the
input of our algorithm G is Ra(t). Algorithm G should decide
whether a request that arrived at time slot t−γ will be accepted
or rejected. The basic idea of our method is as follows.

Assume that time 0 is the reference point for time. First,
before time γ, we do not need to make decisions on any arrived
requests. At time γ, we need to decide whether to accept/reject
requests that arrive at time 0. If channel is not occupied, we
will simply accept the request from C1(γ) with the earliest
starting time being α, if there is any. We call C1(γ) as virtual
meta job requests currently being accepted.

For any time t > γ, our method will choose either a request
from the strong candidate request C1(t), or a request from
weak candidate request C2(t), or continue to run the request
(which could be empty) chosen previously. Our method deal
with three complementary cases about the channel status at
time t− γ + α, separately.

Case 1: Non-occupied Channel: If the channel will be
empty at time t − γ + α, we find C1(t) with the maximum
overall profit in R(t). We accept the request in C1(t) with
starting time t−γ+α, and we say that the channel is being used
by candidate requests set C1(t). In other words, here we treat
C1(t) as a large virtual meta spectrum request. Note that at cur-
rent time slot t we only admit the first spectrum request from
C1(t) while leave the admission decisions on other requests
in C1(t) pending. Whether these pending “admitted” requests
will be actually admitted depending on future coming requests.
If future coming requests are better, we will preempt this
virtual meta request C1(t)1. Thus, those preempted pending
admissions from C1(t) will not be processed at all.

Case 2: Occupied by Weak Candidate Requests: If
the channel will be used by a weak candidate requests set
C2(t) at time t− γ + α and this candidate requests set C2(t)
weakly preempted (exact definitions will be given later) some
other candidate requests set before, all requests from Ra(t)
submitted at time t− γ will not be admitted.

Case 3: Occupied by Strong Candidate Requests: The
last case is that the channel will be used by a strong candidate
requests set C1(t) at time t − γ + α. Assume the request to
be run at time t − γ + α is ej from some virtual candidate
requests set C1(t1). There are three possible steps in this case.

1) We first find the strong candidate requests set C1(t). The
first request ei ∈ C1(t) such that si = t− γ + α will be
accepted only if

C1(t) ≥ c1 · C1(t1), (1)

where c1 > 1 is a constant parameter. In other words,
we use a virtual meta request C1(t) to replace another
virtual request C1(t1) if the potential profit from new
virtual meta request is sufficiently larger. We call it a
Strong-Preemption.

2) If strong-preemption cannot be applied, we find C2(t).
The request ei ∈ C2(t) such that si = t− γ + α will be
accepted only if

C2(t) + P(C1(t1), t− γ + α) ≥ c2 · C(t1), (2)

where c2 > 0 is an adjustable control parameter. In other
words, we use a virtual candidate requests set C2(t) to
replace another virtual candidate requests set C1(t1) if
the profit from this new meta request and the profit from
the meta request C(t1) being preempted at future time
t − γ + α is at least a constant c2 fraction of the profit
by keeping running the meta request C(t1). We call it a
Weak-Preemption. In this subcase, all requests in C2(t)
will be accepted and the last request will be terminated
at time t + α + 1 automatically.

1. Preempting C1(t) at a time, say t′, will be implemented by preempting
the requests from C1(t) that are supposed to be running at and after time t′.
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3) If the weak-preemption cannot be applied also, we accept
the request in the previously used candidate requests set
C(t1), whose starting time is t − γ + α (if there is any)
or continue the request ej that will run through the time
slot t− γ + α.

Algorithm 2 summarizes our online spectrum allocation
method G.

Algorithm 2 Online Spectrum Allocation G
Input: A constant parameter c1 > 1, an adjustable control
parameter c2 > 0, γ, α, ∆, Ra(t), R(t), C1(t), and C2(t).
Current candidate requests set C from time t′ < t. Here C =
C1(t′) if C1(t′) strongly preempted others, or C = C2(t′) if
C2(t′) strongly preempted others.
Output: whether requests submitted at time t − γ will be
admitted and new current candidate requests set C.

1: if C = C2(t′) then
2: if t− t′ ≥ γ then
3: C = ∅;
4: else
5: Accept request ei ∈ C2(t) such that si = t− γ + α.
6: if C = C1(t′) or ∅ then
7: if C1(t) ≥ c1 · C1(t′) then
8: C = C1(t);
9: Accept request ei ∈ C1(t) such that si = t− γ + α.

10: else if C2(t) + P(C1(t′), t) ≥ c2 · C1(t) then
11: C = C2(t);
12: Accept request ei ∈ C2(t) such that si = t− γ + α.
13: else
14: Accept request ei ∈ C1(t′) such that si = t− γ + α.

4.2.3 Theoretical Performance Study
We then show that our algorithm G is asymptotically optimal if
we choose constant c1 and control parameter c2 carefully. We
use G(I) to denote the profit made on requests sequence I by
our algorithm G. Also use OPT(I) to denote the profit made
by the optimal offline algorithm. To analyze the performance
of our method, we first give a definition candidate sequence.

Definition 2: Candidate Sequence: A candidate sequence
is a sequence of candidate requests sets C1(ti), C1(ti+1), · · · ,
C1(tj−1), C2(tj) or C1(ti), C1(ti+1), · · · , C1(tj−1), C1(tj)
which satisfies all of following three conditions.

1) Strong candidate requests set C1(ti) does not preempt
another candidate requests set;

2) Strong candidate requests set C1(tk+1) strongly preempts
strong candidate requests set C1(tk), for k = i, · · · , j−2.

3) Weak candidate set C2(tj) weakly preempts strong can-
didate set C1(tj−1); or a strong candidate set C1(tj)
strongly preempts C1(tj−1) and C1(tj) is not preempted
by another requests set.

Here we use the parameters of the first and last candidate
requests set to denote a candidate sequence, e.g. S(ti, tj).
According to the definition, we can decompose the solution
of algorithm G, i.e., {e1, e2, · · · , em}, into multiple candidate
sequences. Notice that each spectrum request e will appear
in exactly one candidate sequence. We use G(S(ti, tj)) to

denote the profit made on candidate sequence S(ti, tj) by
algorithm G. And we use OPT[ti, tj ] to denote the profit made
by optimal offline algorithm on the requests whose starting
times are in interval [ti, tj ].

Lemma 8: For each candidate sequence S(si, sj) in the
solution given by algorithm G, we have

G(S(si, sj)) ≥ min(c1, c2) · C1(sj−1)

Proof: By definition of candidate sequences, there are two
different cases: (1) C1(sj) strongly preempted C1(sj−1) or (2)
C2(sj) weakly preempted C1(sj−1).

If request C1(sj) strongly preempted C1(sj−1), G makes
at least C1(sj) ≥ c1 · C1(sj−1). If request C2(sj) weakly pre-
empted C1(sj−1), G makes at least P(C1(si−1), sj)+C2(sj) ≥
c2 · C1(sj−1). So our lemma holds for either case.

Lemma 9: [23] For each candidate sequence S(si, sj) in
the solution given by algorithm G, for each i ≤ k < j, we
have

OPT[sk, sk+1] ≤ (c1 + c2 +
c2√

(γ + 1)/∆
)C1(sk)

Lemma 10: For each candidate sequence S(si, sj) in the
solution given by algorithm G, we have

OPT[si, sj ] ≤ (c1+1+
1

c1 − 1
)(c1+c2+

c2√
(γ + 1)/∆

)C1(sj−1)

Proof: Obviously OPT[si, sj ] =
∑j−1

k=i OPT[sk, sk+1].
From Lemma 9, we have OPT[sk, sk+1] ≤ (c1 +
c2 + c2√

(γ+1)/∆
)C1(sk). Thus, OPT[si, sj ] ≤ (c1 + c2 +

c2√
(γ+1)/∆

)
∑j−1

k=i C1(sk). Based on the condition of strong-

preemption, we have C1(sk) ≥ c1 ·C1(sk−1) for all i ≤ k ≤ j.
The lemma then follows.

Theorem 11: Algorithm G is Θ(
√

γ + 1∆− 1
2 )-competitive.

Proof: Given a request sequence I, we decompose the
solution by algorithm G into multiple candidate sequence
S(ti, tj). Then the total profit made by algorithm G is∑
∀S(ti,tj)

S(ti, tj). On the other hand, the total profit made by
the optimal offline algorithm is

∑
∀S(ti,tj)

OPT[ti, tj ]. From
Lemma 8 and Lemma 10, the competitive ratio of Algorithm
G is at least

∑
∀S(ti,tj) S(ti, tj)∑

∀S(ti,tj) OPT[ti, tj ]
≥ min (c1, c2)

(c1 + 1 + 1
c1−1

)(c1 + c2 + c2√
(γ+1)/∆

)

It is easy to show that the right hand side gets the maximum
value 1

4(1+
√

∆/(γ+1))
if c1 = 2 and c2 = 2

1+
√

∆/(γ+1)
. Thus

the competitive ratio is at least 1
8

√
γ+1
∆ when γ ≤ ∆− 1.

Let n(t) be the cardinality of Ra(t). At time t, Algorithm
2 takes O(n(t)3) time to find C1(t) and C2(t), then takes
constant time to make decision. The time complexity of
Algorithm 2 is

∑
∀t n(t)3. Notice that each request could

appear in at most ∆+γ different Ra(t). Let n be the number
of all online requests. We have

∑
∀t n(t) ≤ (∆ + γ)n and

n(t) ≤ n for all t, which implies following theorem.
Theorem 12: Time complexity of Alg. 2 is O((∆ + γ)n3).
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4.3 Method H for (β > 1, γ, α) Problem

In this subsection, we propose a greedy algorithm H for
(β > 1, γ, α) Problem. At time t, our method H should decide
whether a request whose start time is t+α−γ will be accepted.

Algorithm 3 Online Spectrum Allocation H
Input: A constant parameter c > 1+β, γ, α, ∆, Ra(t), R(t),
C1(t). Previous current candidate requests set C = C1(t′)
where t′ < t. Here C1(t′) may be empty.
Output: whether requests submitted at time t − γ will be
admitted and new current candidate requests set C.

1: if C1(t) ≥ c · C1(t′) then
2: C = C1(t);
3: Accept request ei ∈ C1(t) such that ai = t− γ.
4: else
5: Accept request ei ∈ C1(t′) such that ai = t− γ.

Then we show that algorithm H is asymptotically optimal.
The notations are used in previous subsection.

Theorem 13: Algorithm H is (c−β−1)
c2

γ+1
∆+γ+1 competitive.

Proof: We divide the requests accepted by algorithm H
into multiple candidate requests sets. Let us consider the profit
made by H on each candidate requests set C1(t). For each
admitted C1(t), we redistribute (1 + β)C1(t′) of the money
from C1(t) to C1(t′) if C1(t) preempts C1(t′).

There are three complementary cases here.
Case 1: C1(t) does not preempt others and is not preempted.

H makes C1(t) profit on C1(t). Let ts = t + α − γ. For the
optimal offline algorithm OPT, if time ts + i(γ + 1) (for
some integer i > 0) is before the end time of C1(t), we have
OPT[ts + i(γ +1), ts +(i+1)(γ +1)] ≤ c ·C1(t)). Otherwise,
the requests whose starting times are during time interval [ts+
i(γ + 1), ts + (i + 1)(γ + 1)] should preempt C1(t). We know
that the total running time of C1(t) is no more than ∆+γ +1.
Thus no more than cd∆+γ+1

γ+1 eC1(t)) profit will be made by
OPT during the running time of C1(t)).

Case 2: C1(t) does not preempt others and is preempted in
H. H makes C1(t)) profit on C1(t) since the candidate requests
which preempted C1(t) will distribute (1 + β)C1(t) profit to
C1(t). And at most βC1(t) profit is paid as penalty. No more
than cd∆+γ+1

γ+1 eC1(t)) profit will be made by OPT during the
running time of C1(t)).

Case 3: C1(t) preempts another candidate requests set in
H. H makes at least c−β−1

c C1(t) profit from C1(t) (after
considering redistributing some to the candidate requests set
being preempted by C1(t)) since we distribute (1+β)C1(t′) ≤
1+β

c C1(t) to the candidate set preempted by C1(t). If C1(t)
is not preempted, we make at least c−β−1

c C1(t). If C1(t)
is preempted, we will receive (1 + β)C1(t) from the future
candidate requests set that preempts it. Thus, we always make
at least C1(t). For OPT it is easy to show that OPT will make
no more than cd∆+γ+1

γ+1 eC1(t) profit.
Thus, the competitive ratio for each candidate requests set

is at least (c−β−1)
c2 d γ+1

∆+γ+1e. The competitive ratio of H is at
least (c−β−1)

c2
γ+1

∆+γ+1 . We finish the proof.
When γ = a∆− 1, it is easy to show that

Theorem 14: Method H is at least a
4(1+a)(1+β) -competitive

(by choosing c = 2(1 + β)), when γ = a∆− 1.

5 MORE GENERAL NETWORKS

All studies in previous sections assumed that the conflict graph
of networks, which models the location-dependent conflict, is
a complete graph. In this section, we extend our algorithms for
the networks where each request ei asks for spectrum usage in
a disk-shaped region Di centered at (xi, yi) with a radius ri.
For the performance upper bounds, all Lemmas and Theorems
in Section 3 still hold since complete conflict graph is a special
case.

If we can find the strong (weak) candidate sets C1(t)
(C2(t)) in polynomial time as we did by using Algorithm
1 in subsection 4.2, then our method G (or H) still works
since all previous analysis still holds. However, the main
difficulty is that, in this case, the central authority may accept
multiple requests at same time, which makes it hard to get
the strong/weak candidate sets in polynomial time by using
dynamic programming. Therefore, we propose to approximate
strong/weak candidate sets at each time t in polynomial time
by using shifting strategy [15] as follows.

We divide the request disks into different levels according
to their radii. At same level, the radii of all request disks
are within a constant factor λ of each other. Let d be the
diameter of smallest request disk, level i includes all request
disks whose diameters are within [dλi−1, dλi].

First we show that a PTAS can be achieved in each level i.
In other word, here we approximate the strong/weak candidate
sets when only request disks in level i are considered. Let
k > 1 be an integer. At level i, a (p, q) partition is defined
as the region is partitioned by a set of horizontal lines
y = · · · ,−2λik + p,−λik + p, p, λik + p, 2λik + p, · · · , and
a set of vertical lines x = · · · ,−2λik + q,−λik + q, q, λik +
q, 2λik + q, · · · . In each partition, the region is partitioned
into a number of λik × λik squares. We ignore the requests
whose disks are hit by any lines of the partition, and find
the strong/weak candidate sets in each λik × λik square.
Together with strong/weak candidate sets in all squares, we
get strong/weak candidate sets for a partition.

Lemma 15: Strong/weak candidate sets for each partition
can be computed in polynomial time.

Proof: According to area argument, the number of in-
dependent requests that can be accepted at same time is no
more than C = 4λ2k2/π which is a constant. Then we can
find the strong/weak candidate sets in each λik × λik square
in polynomial time by using dynamic programming as we
did in Algorithm 1. Assume na,b(t) requests located in a
λik×λik square whose top left corner is (aλik+p, bλik+q)
in a (p, q) partition at time t. The main difference is that we
need to define Q(e1, e2, · · · , eC , s) as the maximum possible
profit from R(t) when e1, e2, · · · , eC are the last independent
requests accepted by central authority before or at time s. Then

C1(t) = maxQ(e1, e2, · · · , eC , max s)

where max s the latest start time among R(t). Since there
are at most

(
na,b(t)
C+1

)
= O(na,b(t)C+1) different Q, and each
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Q can be computed within
(
na,b(t)

C

)
= O(na,b(t)C) time, the

time complexity to compute strong/weak candidate sets in a
k × k square whose left top corner is (ak + i, bk + j) at
time t is O(na,b(t)2C+1). Let n(t) denote the total number of
requests in R(t). The time complexity to compute strong/weak
candidate sets in all λik× λik squares of a partition (p, q) at
time t is no more than O(n(t)2C+1).

In each partition, some requests may be ignored. To achieve
a better approximation, we shift the horizontal and vertical
lines, and compute strong/weak candidate sets for k2 partitions
where p ∈ [1, k] and q ∈ [1, k]. We set the best strong/weak
candidate sets among all partitions as the strong/weak can-
didate sets of time t. It takes O(k2n(t)2C+1) time to find
strong/weak candidate sets at each time. Then the total running
time is at most O(k2n2C+2) where n is the number of total
requests since we have to compute this at most n times.

On the other hand, the strong/weak candidate sets we find
is at least a 1− 2

k approximation as following lemma.
Lemma 16: At least one partition achieves at least 1 − 2

k
approximation.

Proof: We prove the lemma by using strong candidate
set. The weak candidate set case follows same proof. Let
Ci,j
1 (t) denote the total profit made by all requests such that:

(1) appear in C1(t); (2) not ignored in partition (i, j). Then
∑

∀i,j

Ci,j
1 (t) ≥ (k2 − 2k)C1(t)

since each request is ignored in at most 2 partitions.
On the other hand, Ci,j

1 (t) is smaller than the profit of the
strong candidate set for partition (i, j), which is no larger
than the profit of our approximated strong candidate set, called
C′1(t). In other words,

k2C′1(t) ≥
∑

∀i,j

Ci,j
1 (t) ≥ (k2 − 2k)C1(t)

which implies C′1(t) ≥ (1− 2
k )C1(t) and finishes the proof.

According to Lemmas 15 and 16, shifting strategy gives
a PTAS for each level i. The result can be extended when
request disks in all levels are considered. The main technology
is dynamic programming which is discussed in Section 3.2 of
[15]. We omit the details here.

Since the strong/weak candidate sets can be approximated
well, we have the following theorem.

Theorem 17: Our methods (K, G, H) will achieve asymp-
totically optimum competitive ratios in polynomial time for
general networks modeled by disk graphs. The competitive
ratios will have an additional factor 1 − ε for any constant
ε > 0 comparing with previous analysis, when we set ε = 2

k .

6 TOFU: DEALING WITH SELFISH USERS

In this section, we show how to design a mechanism based the
allocation algorithm described in Section 4 when secondary
users could be selfish. For the spectrum allocation and auction
problem, when each secondary user declares his request, he
may lie on the bid, and time requirement. We need to design
rules such that each secondary user has incentives to declare
his request truthfully. Each secondary user i has its own private

information ti, including bi, ai, and ti. Let ai = (b′i, a
′
i, t

′
i)

be the value user i will report. For each vector of actions
a = (a1, a2, · · · , an), a mechanism M = (A, P ), (including
allocation algorithm A and pricing scheme P ), computes a
spectrum allocation A(a) = (A1(a),A2(a), · · · ,An(a)) and
a payment vector p(a) = (p1(a), p2(a), · · · , pn(a)). Each user
i will be allocated Ai(a) and be charged pi(a).

A mechanism is said to be truthful if it satisfies both incen-
tive compatible (IC) and individual rational (IR) properties.
A mechanism is incentive compatible if every user i will
maximize its utility by reporting its private type ti truthfully.
A mechanism is individual rational if the utility of an agent
winning the auction is not less than its utility of losing the
auction. We assume that no user will delay his/her request and
a user will not lie about ti and si. Unfortunately, in this work,
we cannot design an online spectrum allocation mechanism
that is always truthful. Instead, we will show that under our
mechanism TOFU, regardless of the actions of other users,
no user i can improve its profit by reporting a bid b′i that is
smaller than its true bid value bi. We call this property as
semi-truthful.

For the spectrum auction problem, the final profit (or the
utility) of a user i is 0 if its request is rejected. If its request
is admitted, the final profit is

utility(i) = bi − pi + µ(b′i, `
′
i, ti).

where bi is the actual valuation, pi is the real payment, and
µ(b′i, `i, ti) is the potential preemption penalty, where b′i is the
actual bid of user i.

It is a forklore result that the allocation method in a
mechanism that can prevent lying must have the monotone
property. Here a spectrum allocation method A is monotone
if a user i is granted the spectrum usage under A with a
bid ei = (bi, ai, ti), then the user i will still be granted the
spectrum usage under A if the user increases bid bi, and/or
decreases the required time duration ti. First, our methods
(Algorithm 2, Algorithm 3) presented in previous section do
have the monotone property. In our algorithm, we need to
find strong candidate requests set, and weak candidate requests
set. Both sets will be found by dynamic programming. It is
easy to show that these dynamic programming methods are
monotone. Thus, it is possible to design a mechanism using
our algorithms (G and H) as spectrum allocation methods.

Consider a user i, assume the bids of all other users remain
the same. We first propose the following definition based on
the monotone property of our methods.

Definition 3: Let bi be the minimum bid that i has to bid
to get admitted when its spectrum request is to be processed
at γ timeslots later. Let bi be the minimum bid that i has to
bid to get admitted and not get preempted later.

Clearly, bi ≤ bi. For a secondary user whose request is not
granted, the value bi = 0. The values bi and bi clearly can
be computed in polynomial time since the bid values of all
other users are known. Here bi can be computed at the time
ai + γ. To compute the value bi, we need to know whether
request i will be preempted later. Since the latest job that can
preempt ei must have starting time no later than si + ∆, we
must process the potential jobs that can preempt ei no later
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than si + ∆ − α + γ. In other words, the value bi can be
computed within time ∆ + γ after job i arrived. Then our
protocol TOFU works as follows.

Algorithm 4 TOFU Semi-Truthful Online Spectrum Auction
1: Based on the setting, we use either Algorithm 2 or Algo-

rithm 3 to decide whether a request ei will be admitted
or not.

2: Our mechanism will charge a user i a payment

pi = bi

Theorem 18: Our mechanism TOFU is semi-truthful, i.e.,
to maximize its profit, every secondary user will not bid a
price lower than its actual value.

Proof: Consider a user i arrived at time t. Let bi be its
private willing bid and b′i be its actual bid. When i bids some
value b′i ∈ (bi, bi), i will get preempted with some unserved
time `′i and receive a compensation µ(b′i, `

′
i, ti) = β

`′i
ti

b′i.
Case 1: bi ≥ bi. There are 3 strategies again for i.

1) If b′i ≥ bi, then user i will be admitted and will not be
preempted. It will be charged a payment pi < bi and thus
will get a profit bi − pi > 0.

2) If b′i < bi, it will not get admitted and thus get 0 utility.
3) If b′i ∈ (bi, bi), then i will be admitted and then be

preempted with unserved time `′i. It will get a com-
pensation µ(b′i, `

′
i, ti) = β

`′i
ti

b′i. Its utility then is f ·
bi − pi + µ(b′i, `

′
i, ti) = (1 − β

`′i
ti

)bi − pi + β
`′i
ti

b′i =

bi−pi−β
`′i
ti

(bi−b′i), which is less than the profit bi−pi

that it will get when reported bi since b′i < bi ≤ bi.
Thus, in all subcases, reporting untruthfully will not gain any
benefit for i.

Case 2: bi ∈ (bi, bi). There are 5 strategies for i.
1) If b′i = bi, it will be admitted and then preempted. Let

`i be the unserved timeslots when bidding bi. Then its
utility is (1− β `i

ti
)bi − pi + β `i

ti
bi = bi − pi > 0.

2) If b′i ≥ bi, then user i will be admitted and will not be
preempted. It will be charged a payment pi < bi and thus
will get a profit bi − pi > 0.

3) If b′i < bi, it will not get admitted and thus get 0 utility.
4) If bi < b′i < bi, then i will be admitted and then be

preempted with a shorter unserved time `′i ≤ `i, due
to the monotone property of our method. It will get
a compensation µ(b′i, `

′
i, ti) = β

`′i
ti

b′i. Its utility then is

f · bi − pi + µ(b′i, `
′
i, ti) = (1 − β

`′i
ti

)bi − pi + β
`′i
ti

b′i =

bi − pi − β
`′i
ti

(bi − b′i), which is larger than the profit
bi − pi that it will get when reported bi since b′i > bi.

5) If bi < b′i < bi, then i will be admitted and then be
preempted with a longer unserved time `′i ≥ `i. Its utility
then is f ·bi−pi+µ(b′i, `

′
i, ti) = (1−β

`′i
ti

)bi−pi+β
`′i
ti

b′i =

bi − pi − β
`′i
ti

(bi − b′i), which is smaller than the profit
bi − pi that it will get when reported bi since b′i < bi.

Thus, in all subcases, reporting lower will not gain any benefit
for i.

Case 3: bi ≤ bi. There are several strategies again for i.

1) If b′i ≤ bi, it will not get admitted and thus has 0 profit.
2) If b′i ≥ bi, it will be admitted and not be preempted. In

this case, its profit is bi − pi < 0.
3) If bi < b′i < bi, it will be admitted and be preempted

with an unserved time `′i. In this case, its profit is bi −
pi − β

`′i
ti

(bi − b′i) < 0 since bi < pi and bi < b′i.
In all subcases, bidding untruthfully is not beneficial to user
i.

Observe that, in our scheme, the only scenario (case 2.4)
that a secondary user can gain benefit is when bi ∈ (bi, bi)
and it bids a value b′i ∈ (bi, bi). The user i must bid larger
than its true valuation bi, but not larger than bi. Observe that
value bi is computed at time ai + γ + ∆ using the requests
submitted during time interval [ai, ai + ∆], where user i does
not know when it arrives at time ai. Thus, we have

Theorem 19: If any user i does not know the requests
within ∆ time after its arrival, our mechanism TOFU is
truthful, i.e., to maximize its profit, every secondary user will
bid truthfully even it learned history.

It is not difficult to construct examples in which a user can
gain profit by bidding larger than its true valuation if it can
know the bids of other users. It will be an interesting future
work to study the total payment of a mechanism compared
with the best possible payments collected by a truthful mech-
anism. Notice that, when we know the distributions of all bids,
and there is only one spectrum, and no spatial and temporal
reuse, Myerson [17] presented a mechanism that guarantees
the payment is optimal. We note that it is very challenging to
design a mechanism with a total payment close to optimum
for the problem studied here.

7 SIMULATION STUDIES

We conducted extensive simulations to study the performance
of our algorithm G, specifically, the competitive ratio of our
algorithm in practice. We set c1 = 2 and c2 =

√
γ+1
∆

for algorithm G. Suppose the total service time is always
2000 time slots, which is large enough comparing with time
requirements. In our experiment, we first generate n secondary
nodes that are randomly placed. We randomly deployed 100
nodes in a 5× 5 square area. Assume that all secondary users
locate at these positions. The geometry location of a request
is exactly the location of secondary user who claimed that
request. We assume that any two requests within distance 1
will conflict with each other if they requested the same channel
for some timeslots. We then generate random requests with
random bid values, and time requirement. The bid of each
request is uniformly distributed in [0, 1], the time requirement
of each request is uniformly distributed in [1, ∆].

Observe that the average load of a node in our simulation
is J·D

T ·n , where J is total number of requests, D is the average
duration of a request (thus D = ∆/2 in our setting), T is total
duration of scheduling (thus T = 2000 timeslots here), and n
is number of secondary users (n = 100 here). Observe that
the expected number of users in a unit area is n/52 = 4 in our
setting. Thus, varying J and ∆, we tested both lightly loaded
system and also highly loaded system.
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7.1 Competitive Ratio of Algorithm G
A number of parameters may affect the performances of
algorithm G, e.g., the number of total requests, the time
bound ∆ and the delay factor γ. To study the affect of
these parameters, we first fix the time bound ∆ and study the
competitive ratios of G while the delta factor γ varies. Then
we fix the delta factor γ and study the competitive ratios of G
while the time bound ∆ changes. We set three different total
numbers of requests in these experiments to study how the
degree of competition affects G’s performance.

In Figure 4, we plot the competitive ratios of G in various
cases while the delay factor γ is fixed (see Figure 4 (a)-(c));
we also plot the competitive ratios of algorithm G in various
cases while time bound ∆ is fixed (see Figure 4 (d)-(f)). In
most cases, method G makes a total profit that is more than
95% of the optimum offline method when γ ' ∆. Observe that
although it is NP-hard to find the optimum offline solution, we
implemented a method (omitted here due to space limit) that
will find an almost optimum solution (within a factor 1−ε for
an arbitrarily small ε > 0) when the conflict graph is a disk-
intersection graph. Our experimental results are much better
than the theoretical bound we proved in previous sections.

The competitive ratios decrease when ∆ increases. This is
exactly what our theoretical analysis implies. When γ < ∆,
the competitive ratio of G increases significantly when dfactor
increases. This implies that increasing the delay factor is a
good way to achieve better performance if the delay factor
is relatively small. We also observe that G almost achieves
the optimum offline solution when delay factor γ is close
to or larger than ∆, which verifies our theoretical bound.
Furthermore, the competitive ratio will not improve much
when γ > ∆. Thus, we recommend to set γ ∈ [∆/2,∆].

The total number of requests also affect the performance
of G. We observe that the competitive ratios decrease when
the total number of requests increases. This is because G is
conservative: the weak preemption in G just tries to satisfy
the theoretical bound, which may lose some profit potentially.
Thus, when there are more requests, the optimal offline
algorithm will make more profit but the profit made by G
will not increase so much.

7.2 Efficiency Ratio of Algorithm G
Recall that to ensure that secondary users will not bid a price
lower than their actual values, we do not charge what they
bid. For secondary user whose request is accepted, we charge
the minimum bid such that the request will still be accepted.
Thus, the actual profit made is not the winners’ total bids but
the winners’ total payments. Clearly, the total payments are no
more than the total bids. Here we define the efficiency ratio
as the ratio between the profit made by our mechanism and
the winners’ total bids computed by our method G. We also
study the affect of some parameters such as the number of
total requests, the time bound ∆ and the delay factor γ.

In Figure 5, we plot the efficiency ratios of our mechanism
is various cases. In (a)-(c), we fix time bound ∆ and plot the
efficiency ratio while delay factor γ changes; In (d)-(f), we fix
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Fig. 6. The spectrum utilization ratios of method G in
various cases.

delay factor γ and plot the efficiency ratio while time bound
∆ changes.

We observe that the efficiency ratios increase when the ∆ or
the number of total requests increases. In this case, a request
has more chance to conflict with other requests. Thus, it is
easier to find a replacement which increases the minimum
value a winner has to bid. We also find that the efficiency
ratios first decrease then increase when the delay factor γ
increases. Comparing with Figure 4 ((d)-(f)), we know that
the efficiency ratios decrease because the competitive ratios
increase dramatically when γ is relatively small. The total
payments do not increase as fast as the total bids do. When the
delay factor γ is larger than ∆, the efficiency ratios increase
because the competitive ratios increase slowly.

7.3 Spectrum Utilization Ratio of Algorithm G
We also studied the spectrum utilization of our method. The
spectrum utilization in a time interval [1, T ] under a spectrum
allocation method A is defined as

∑T
t=1 `A(t)/

∑T
t=1 n(t),

where `A(t) is the number of users who are using the
channel (at different locations) at time t without conflict in
spectrum allocation produced by A, n(t) is the maximum
number of users who can use the channel concurrently without
conflict. Figure 6 reports our results. We find that varying γ
does not affect the spectrum utilization that much. Observe
that our measurement of spectrum utilization compared our
method with the offline method that can arbitrarily preempt
the spectrum usage. When the system is highly loaded, the
spectrum utilization of our method is about 80%, while the
spectrum utilization is about 50% for lightly loaded system.

7.4 Compare Algorithm G with Simple Heuristics
We then compare algorithm G with two simple greedy al-
gorithms. One greedy algorithm B always satisfies the virtual
spectrum candidate request with the largest C1(t) value. When
request with larger bid is coming, B will terminate current
assignments with smaller value if necessary. Another greedy
algorithm D always satisfies the virtual spectrum candidate
request with the largest C2(t) value. When request with larger
bid is coming, D will terminate current assignments with
smaller value if necessary. The competitive ratio of these two
simple greedy algorithms could be arbitrarily bad theoretically.
We conduct simulations to compare them with algorithm G
which is asymptotically optimal theoretically.
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Fig. 4. The competitive ratios of method G in various cases.

In Figure 7, we plot the competitive ratios of algorithm G,
simple greedy algorithm B and D to compare their perfor-
mances. In Figure 7(a)-(c), we fix time bound ∆ = 20, and
vary the number of total requests for different delay factors γ.
In Figure 7(d)-(f), we fix time bound ∆ = 100, and vary delay
factor γ for different number of total requests. We observe
that our algorithm G outperforms these two simple greedy
algorithms significantly in most cases.

The affect of number of total requests is also investigated
in Figure 7(a)-(c). We can see that the competitive ratio of
algorithm G is not affected much when the number of total
requests increases. On the other hand, the performance of
algorithm B decreases significantly when the number of total
requests increases and delay factor γ = 0. The competitive
ratio of algorithm D increases slightly when the number of
total requests increases. However, the competitive ratio of
algorithm D is always worse than that of our algorithm G.

The affect of delay factor γ is then investigated in Figure
7(a)-(c). We can see that the performances of all three algo-
rithms increase significantly when the delay factor γ increases.
When delay factor γ is increasing, our algorithm G is always
the best one whose performance is close to the optimum.

8 LITERATURE REVIEWS

The allocation of spectrums is essentially the combinatorial
allocation problem, which have been well studied in the
literature [1], [14]. Yuan et al. [26] introduced the concept
of a time-spectrum block to model spectrum reservation in
cognitive radio networks. Li et al. [16], [24] designed efficient
methods for various dynamic spectrum assignment problems.
They also showed how to design truthful mechanism based on
those methods. Zhou et al. [28] propose a truthful and efficient
dynamic spectrum auction system to serve many small players.

In [29], Zhou and Zheng designed truthful double spectrum
auctions where multiple parties can trade spectrum based on
their individual needs. All these results are based on offline
models.

In this work, we use the online model which is similar
to the online job scheduling problems [8]. Various online
scheduling problems focus on optimizing different objective
functions. The most common objective function is makespan,
which is the length of the schedule. Suppose that we are
given m identical machines, jobs arrive one by one and no
preemption is allowed. A number of results have been proved
to improve the upper bounds [6], [12], [25] and lower bounds
[11]. Closing the gap between the best lower bound (1.88 [11])
and the upper bound (1.9201 [6]) is an open problem. Many
authors [7], [18] also investigated the case where preemption is
allowed without penalty. Online scheduling problem in which
we pay penalty for rejecting jobs was first studied in [2] by
Bartal et al. and improved later in [10] by Hoogeveen et al..
They assume that the penalty is job-dependent only, and is not
affected by the preemption time.

When jobs have deadlines, however, it is usually impossible
to finish all jobs. Thus, another model aims to maximize the
profit or number of completed jobs. There are different vari-
ants: preemption-restart, preemption-resume, and preemption-
discard. Koren et al. [13] gave an algorithm matching the
lower bound in [3]. Woeginger [21] studied an online model
of maximizing the profit of finished jobs where there is some
relationship between the weight and length of job. He provided
a 4-competitive algorithm for tight deadline case, and gave
a matching lower bound. Hoogeveen et al. [9] gave a 1

2 -
competitive algorithm which maximizes the number of early
jobs. They assume that preemption is allowed while no penal-
ties will be charged. Chrobak et al. [4] gave a 2

3 -competitive
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Fig. 5. The efficiency ratios of our mechanism in various cases.

algorithm which maximizes the number of satisfied jobs that
have uniform length in the preemption-restart model. Zheng et
al. [27] studied the preemption-restart model where a penalty
is the weight of the preempted job.

The work that is most similar to our work is a recent result
by Constantin et al. [5]. They proposed and studied a simple
model for auctioning ad slot reservations in advance. A seller
will display a set of slots at some point T in the future. Until
T , bidders arrive sequentially and place a bid on the slots they
are interested in. The seller must decide immediately whether
or not to grant a reservation. Their model allows the seller
to cancel at any time any reservation made earlier with a
penalty proportional to the bid value. The major differences
between our model and their model are as follows. Their model
considers online requests and offline services. The services (ad
slots) start from a fixed time and last for one unit time. And
the preemptions happen before services start. In our model,
the services (spectrum usage) can start from any time, lasting
for an arbitrary duration (subject to time bound ∆), and the
preemptions happen after the spectrum usages are assigned.
We also considered the spatial reuse of spectrum resources.

9 CONCLUSIONS

In this paper, we studied online spectrum allocation for
wireless networks where a set of secondary users will bid
for leasing a spectrum channel for certain time duration in
different locations. For a number of variants, we designed
efficient online scheduling algorithms and analytically showed
that the competitive ratios of our methods are within small
constant factors of the optimum. Especially, when γ is around
the maximum requested time duration ∆, our algorithm results
in a profit that is almost optimum. Our extensive simulations
show that our methods perform extremely well in practice.

We showed that no user will bid lower than its willing
payment under our mechanism TOFU. It remains open to
design a truthful mechanism for online spectrum auction in
this setting. It is also interesting to extend our mechanism
to deal with different models, such as OFDM networks, and
when we know more information about requests, such as the
distributions of bids, timeslots requested, and arrival times.
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APPENDIX
.1 Proof of Theorem 2

Proof: Assume that there is an online method A with the
best possible competitive ratio % > θ. Assume that at time 0,
there is only one job e0 = (b0 = 1, 0, α, ∆) arrived and is
the only job known at time γ. Then A has to accept e0, in
case e0 is the only request. At time γ, after the decision is
made, another job e1 = (b1, γ, α, γ) arrives and no more jobs
arrived before time 2γ. Here b1 is carefully chosen such that
b1 + γ

∆b0 − β ∆−γ
∆ b0 = θb0 < % · b0. Thus, at time 2γ, A

cannot admit e1 by preempting e0 because of the choice of
b1. If A skips a request ei−1, at time i · γ, we will release a
new job ei = (bi, γ, α, γ) with

bi +
iγ

∆
b0 − β

∆− iγ

∆
b0 = θb0 < % · b0.

This is same as

bi = θb0 − iγ

∆
b0 + β

∆− iγ

∆
b0 = (θ + β)b0 − γ

∆
(1 + β)b0 · i

We repeat this until either A accepts some job ei, or i reaches
an integer value k ≤ d∆

γ e − 1. To ensure that bi ≥ 0, we also
need i ≤ k ≤ θ+β

1+β
∆
γ .

It is easy to show that algorithm A needs to decline all jobs
ei, for i ∈ [1, k]; otherwise, its competitive ratio is less than %.
On the other hand, a better solution may be to ignore e0 and
admit ei for i ∈ [1, k], with total profit

∑k
i=1 bi. Since A has

a competitive ratio %, we then need
∑k

i=1 bi ≤ b0/% ≤ b0/θ.
Consequently, we need

k∑

i=1

(
(θ + β)b0 − γ

∆
(1 + β)b0 · i

)
≤ b0/θ
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Then the maximum possible value for θ is θ ≤ 2
a+
√

a2+4k

where a = βk − (1 + β) γ
∆

k(k+1)
2 . We then choose k ∈

[1, d∆
γ e − 1] such that 2

a+
√

a2+4k
is minimized. For example,

we can choose k = b β
1+β

∆
γ c − 1. This implies that an upper

bound 2
a+
√

a2+4k
< 1/a ≤ 1

cβ on the competitive ratio.
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