
SALSA: Strategyproof Online Spectrum
Admissions for Wireless Networks

Ping Xu, ShiGuang Wang, Student Member, IEEE, and Xiang-Yang Li, Senior Member, IEEE

Abstract—It is imperative to design efficient and effective online spectrum allocation methods since requests for spectrums often

come in an online fashion. In this paper, we propose SALSA, strategyproof online spectrum admission for wireless networks. We

assume that the requests arrival follows the Poisson distribution. Upon receiving an online spectrum request, our protocol will decide

immediately whether to grant its exclusive usage or not, and how much the request should pay. Preempting existing spectrum usage is

not allowed. We proposed two protocols that have guaranteed performances for two different scenarios: 1) random-arrival case: the

bid values and requested time durations follow some distributions that can be learned, or 2) semi-arbitrary-arrival case: the bid values

could be arbitrary, but the request arrival sequence is random. We analytically prove that our protocols are strategyproof, and are both

approximately social efficient and revenue efficient. Our extensive simulation results show that they perform almost optimum. Our

method for semi-arbitrary-arrival model achieves social efficiency and revenue efficiency almost 20-30 percent of the optimum, while it

has been proven that no mechanism can achieve social efficiency ratio better than 1=e ’ 37 percent. Our protocol for the random-

arrival case even achieves social efficiency and revenue efficiency two-six times the expected performances by the celebrated VCG

mechanism.

Index Terms—Wireless networks, spectrum, online allocation, competitive ratio, social efficiency, revenue efficiency.
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1 INTRODUCTION

THE current fixed spectrum allocation scheme leads to
significant spectrum white spaces, where many allocated

spectrum blocks are used only in certain geographical areas
and/or in brief periods of time. Studies show that the white
spaces were also surprisingly significant in large cities.
Recognizing that the traditional spectrum management
process can stifle innovation, and it is difficult to provide
a certain quality of service (QoS) for systems operated in
unlicensed spectrum, the FCC has proposed new spectrum
management models [27].

One promising technology is the opportunistic spectrum
usage with cognitive devices. Another approach is to let
secondary users sublease spectrum from primary users (who
own the right to use the spectrum exclusively). In this paper,
we assume that the primary user will auction the usage of a
certain spectrum for a time interval ½0; T � and there is a set of
secondary users who will share the spectrum usage. We
assume that each secondary user may lease the usage of the
available spectrum for a period of time at any time.

Previous studies on spectrum assignment (e.g., [24],
[39], [40]) typically assume that the information of all
requests is known before we allocate spectrum to second-
ary users. This is true in some cases, but not true generally.

In most applications, spectrum requests often arrive online
and the central authority (typically a primary user) needs
to quickly decide whether the requests are granted or not.
The rejection of a request typically could not be revoked. In
this paper, we assume that there is a single channel, and a
sequence of channel usage requests arrive in an online
fashion. A request ri arrives at time ai, requesting the
usage of the channel for a time interval duration ti (starting
ai and ending at time ai þ ti), with a bid value bi for a unit
time. The central authority needs an online method which,
upon receiving a request, decides immediately whether the
request will be granted, and how much the request should
be charged. Here, the payment computation could be done
after the channel usage. Let pi be the payment by ri in a
protocol. For example, if first price auction is used, we will
have pi ¼ biti. Notice that when secondary users are
selfish, they will not necessarily bid their true valuations
(true willing payments).

In this paper, we make following assumptions about
spectrum subleasing:

1. spectrum usage is nonpreemptive;
2. spectrum requests come one by one and the arrivals

of requests follow a Poisson distribution;
3. all decisions cannot be revoked (thus, a rejected

request cannot be reconsidered later);
4. the amount bi that a secondary user is willing to pay

per unit time is independent of the time duration ti
he requests;

5. the requested time durations are tight and the
deadlines are hard deadlines;

6. we may not know anything about the distribu-
tions of the bid values bi, and the required time
durations ti before the bid was submitted;

7. secondary users could be selfish: they will not
necessarily bid their true willing payments and

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. XX, XXXXXXX 2010 1

. P. Xu and S. Wang are with the Department of Computer Science, Illinois
Institute of Technology, 10 W 31st Street, Chicago, IL 60616.
E-mail: {pxu3, swang44}@iit.edu.

. X.-Y. Li is with the Department of Computer Science, Illinois Institute
of Technology, 10 W 31st Street, Chicago, IL 60616, and the Institute of
Computer Application Technology, Hangzhou Dianzi University,
Hangzhou, P.R. China. E-mail: xli@cs.iit.edu.

Manuscript received 19 Sept. 2009; revised 14 Jan. 2010; accepted 20 Jan.
2010; published online 13 Apr. 2010.
Recommended for acceptance by Z. Xu.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2009-09-0476.
Digital Object Identifier no. 10.1109/TC.2010.87.

0018-9340/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society



required time slots. Since the requests are non-
preemptive, the central authority could not termi-
nate the current running request(s) to satisfy a new
coming request.

Two different models about spectrum arrival will be
studied in this paper. We first study the “semi-arbitrary-
arrival model,” in which online spectrum requests arrival
follows a Poisson distribution with unknown arrival rate.
The time slots required by all requests follow an unknown
distribution. And we do not know any information about
the bid values by all secondary users. In other words, the
bid values by secondary users could be arbitrary, e.g.,
selected by an adversary in a way such that a specifically
designed protocol will not perform well. The appearance
sequence of these bid values is assumed to be random.
We then study the “random-arrival model” in which the
requests arrival, the requested time slots, and the proposed
bid values follow some known distributions, although we
do not know the exact parameters of these distributions.

For the spectrum allocation protocols, we typically are
interested in maximizing the social efficiency, i.e., total
valuations of the winners, and/or the revenue efficiency,
i.e., total payments collected. Assume that time is slotted
and only integer number of time slots could be requested by
any secondary user.

The main contributions of this paper are as follows: For
both requests arrival models, we design an admission and
charging protocol, called SALSA (for strategyproof online
spectrum admission), such that the expected social effi-
ciency and revenue are within small constant factors of that
of the optimum offline method in which all information is
known in advance. We also prove that our protocol is
strategyproof, which implies that any secondary user
cannot improve its profit by lying on his request (bid value
and time requirement). We, then, extend our results to a
more general model in which secondary users are dis-
tributed in a domain arbitrarily and the conflict graph
formed by secondary users is growth bounded, which will
be defined in Section 2. We show that our results still hold
for this general model. To the best of our knowledge, this is
the first result in the literature for online spectrum allocation
with theoretical performance guarantees on expected social
efficiency and revenue simultaneously.

Our extensive simulations show that our methods
perform almost optimum, even compared with the opti-
mum offline methods that know all bids in advance. For
example, for semi-arbitrary-arrival model, our protocol gets
a total profit that is almost 20-30 percent of the optimum,
while it has been proven in [6] that no mechanism can
achieve social efficiency ratio better than 1=e in the worst
case. The spectrum utilization is also around 20-40 percent
for this model. For the random-arrival model, our protocol
achieves social efficiency and revenue efficiency that is two-
six times of that by the celebrated VCG mechanism. The
spectrum efficiency is around 90 percent even for slightly
loaded systems.

The rest of the paper is organized as follows: In Section 2,
we define the network models and the spectrum allocation
problems to be studied. In Section 3, we present our SALSA
protocol with semi-arbitrary-arrival, and in Section 4 we

present our SALSA protocol for the case with random
arrival. In Section 5, we extend our SALSA protocols to
networks with growth-bounded conflict graphs. Our simu-
lation studies are reported in Section 6. We review the related
work in Section 7 and conclude the paper in Section 8.

2 NETWORK AND SYSTEM MODELS

2.1 Network Model

We consider a wireless network system consisting of
primary users who hold the exclusive usage right of a
spectrum channel. Assume that there is only one channel,
and primary users are willing to sublease the usage of the
channel to secondary users for a time interval ½0; T �. There is
a central authority who decides the assignment of the
spectrum channel on behalf of these primary users. In other
words, we assume that each primary user trusts the central
authority and is satisfied with what she will get from the
auction based on the mechanism designed. If each primary
user has an asking price for its spectrums, then we need to
design mechanisms (such as double auction in which
buyers enter competitive bidders and sellers enter compe-
titive offers simultaneously) that also take into account the
selfish behavior of primary users. In [30], Wang et al.
presented some initial studies for this case. The wireless
network also consists of some secondary users V ¼
fv1; v2; . . . ; vng who want to lease the right to use a channel
in some region for some time period. Assume the locations
of each secondary user is fixed.

For wireless networks with dynamic spectrum allocation
and access, the secondary users may reside at different
geometry locations. Whether a request conflicts with another
depends on locations of secondary users who proposed
these requests, in addition to the requested time periods.
This location-dependent conflict will be modeled by a
conflict graph H ¼ ðV; EÞ, where two nodes vi and vj form
an edge ðvi; vjÞ iff they cannot use the same channel
simultaneously. We first study a simple case where the
conflict graph is a complete graph, and then extend our
methods in a general case. We show that our methods still
have same asymptotical optimum performance guarantees
as long as the conflict graph is growth bounded by a
polynomial function f . Here, a graph H is growth bounded by
a function f , if for any node v 2 H and any integer k > 0, the
number of independent nodes within k-hops of v is at most
fðkÞ. For example, many results in the literature assumed
that the conflict graph H is modeled by a unit disk graph
(UDG), i.e., there is a radius R such that an edge ðvi; vjÞ 2 H
if and only if the euclidean distance kvi � vjk � R. UDG
graph is growth bounded by a function fðkÞ ¼ 5k2.

2.2 Problem Formulation

Assume a user vi from V ¼ fv1; v2; . . . ; vng could ask for
spectrum usage at different times. Requests proposed by
same secondary user do not conflict with each other, i.e.,
the requested time intervals don’t overlap. Let r1; r2; . . . ;
ri; . . . , be the sequence of all requests over the time
period ½0; T �. Each request ri ¼ ðvi; bi; ai; si; ti; diÞ is claimed
by a secondary user vi at time ai, who bids bi for the usage
of the channel per unit time for continuous ti time slots
during time intervals ½si; di�. Thus, the user is willing to
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pay bi � ti for the usage of spectrum for ti time slots. For
most of our discussions, we will omit the user vi when it is
clear from the context, or not needed in the notation. Here,
we focus on a simpler model where ai ¼ si and di ¼ ai þ ti.
Thus, we use ri ¼ ðbi; ai; tiÞ to denote the ith request.
Notice that the deadline of each request is tight, i.e., our
protocols should make decision on each coming request
immediately. Our SALSA protocols achieve social effi-
ciency and revenue that are �ð1Þ of the optimum for the
model with tight deadlines. We leave it as a future work to
design protocols with better constant approximation ratios
on social efficiency and revenue for general requests.

Assume that the true bid values bi and time requirement ti
are always independent variables. This assumption is reason-
able in practice since bi is the amount a user is willing to pay
for a unit of time. We also assume that arrival time ai is
memoryless, i.e., the distribution of arrival time is Poissonian.
The arrival rate � is not necessarily known in advance.

In this paper, we will study two different cases: random-
arrival case and semi-arbitrary-arrival case. The simplest
case is random-arrival case, in which the true bid values bi
and required time slots ti are sampled i.i.d. from some
stationary distributions that are not necessarily known to the
central authority in advance. For example, true bid values bi
of all requests could be randomly and independently drawn
from a normal distribution with mean � and variance �, and
the values of � and � could be known or unknown to the
central authority in advance. Or the central authority may
also know that the arrival of requests follow the Poisson
process with a rate �, although the value of � may be
unknown to the central authority in advance.

Although motivated by this i.i.d. model, we find it more
robust to work in semi-arbitrary-arrival model. This model
also implies some fundamental limits to this online
spectrum allocation problem. Assume that bid values bi,
and required time durations ti are generated by an
adversary who wants to beat our protocols. Let n be the
number of requests that will be posted. The adversary
generates a (potentially random) set A ¼ fa1; a2; . . . ; ang of
arrival times that are produced from Poisson distribution
with unknown rate, and a set T ¼ ft1; t2; . . . ; tng of required
time durations that are produced from an unknown
distribution. And the adversary could generate an arbitrary
set B ¼ fb1; b2; . . . ; bng which is not necessarily sampled
from any stationary distributions. After these three sets are
generated, the bid values, arrival times, and required time
durations are matched together using a random permuta-
tion, which is not controlled by the adversary. We call this
the random ordering hypothesis. The hypothesis is reasonable
since we concern the expected performance of our mechan-
isms. When this matching is also controlled by the
adversary, we can present examples of requests such that,
for any online spectrum allocation and auction method, the
expected social efficiency or revenue could be arbitrarily
bad comparing with that of offline methods.

Our protocols need to compute how much each request
needs to pay. When a request is accepted, the secondary
user who issued the request will be granted the usage of
channel, and will need to pay some monetary value for this.
We will design mechanisms to compute the payment by

secondary users. Let vi be the true valuation of the
spectrum usage requested by ri, pi be the payment that
request ri should pay. Then, the final profit (or the utility) of
request ri is UðiÞ ¼ xi � vi � pi. When ri is admitted, xi ¼ 1;
otherwise, xi ¼ 0. Notice that biti ¼ vi when secondary user
issued request ri truthfully.

In the online auction, the secondary users seek to place
requests to maximize their individual utility in equilibrium.
As a standard approach, in this paper, we will only focus on
direct revelation mechanisms in which secondary users
directly submit their bid values and time requirement
(although not necessarily truthfully). We assume that each
secondary user cannot announce an earlier arrival time than
its true arrival. At every time t, given the set of submitted
requests � that are not processed yet, the central authority
decides an allocation xið�; tÞ 2 f0; 1g and a payment pið�; tÞ
for request ri. We place the following natural conditions on
the allocation and payments: Allocations cannot be revoked,
so xið�; tÞ is a nondecreasing function of t. The allocation
and payments must be online computable, in that they can
only depend on information available at time t. We are
interested in mechanisms with dominant-strategy equili-
brium, such that every secondary user has a single optimal
strategy regardless of the strategies of others. This is a
particularly robust solution concept. Notice that a second-
ary user may lie lower or lie higher its bid value bi
(compared with its true bid value b0i) and can only lie on its
time requirement ti to a larger value.

Definition 1. A mechanism is value strategyproof and time
strategyproof if a secondary user’s dominant strategy is to report
its true bid value (called value-SP) and true time requirement
(called time-SP).

Competitive ratio is always used to evaluate the perfor-
mance of an online algorithm. Most of the previous work
focused on the worst case competitive ratio of the online
algorithm; however, the probability that the worst case will
happen is very small in practice. Thus, we study the expected
competitive ratio instead, which could better reflect the
practical performance of an online algorithm. The average
competitive ratio of an online algorithm is defined as the ratio
between its average performance and the average perfor-
mance of the optimal offline algorithm for all possible inputs.
We focus on the average competitive ratio since it is easy to
prove that without any known constraint, the worst case
competitive ratio of any online method can be arbitrarily bad.

To evaluate the performance of an online mechanism, we
usually compare it with offline Vickery mechanism which
will maximize the total social efficiency (but not necessarily
strategyproof in the online model). Notice that offline
mechanism knows all future inputs before it makes
decisions, which surely improves the performance signifi-
cantly. The performance of an online mechanism M is
measured by its social efficiency EffsðMÞ and revenue
efficiency EffrðMÞ. The social efficiency of mechanism M
is defined as the total true valuations of all winners, i.e.,
EffsðMÞ ¼

P
i xivi. For a mechanism M, let pi be the

payment collected from secondary request ri. And the
revenue efficiency of mechanism M is simply EffrðMÞ ¼P

i pi. The benchmark mechanisms that we adopt for the
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purpose of competitive analysis are the offline Vickery
mechanisms, denoted as V ick. Notice that for offline
Vickery mechanism, it will always select a set of winners
that maximize the social efficiency.

Definition 2. The social efficiency competitiveness of an
admission mechanism M is defined as the ratio of the total
valuations of winners under mechanism M over the total
valuations of winners under offline Vickery mechanism. In
other words, EffsðM; V ickÞ ¼ EffsðMÞ=EffsðV ickÞ. Si-
milarly, the revenue efficiency competitiveness of mechan-
ism M is defined as the ratio of the total payments of
winners under mechanism M over the total payments of
winners under offline Vickery mechanism. In other words,
EffrðM; V ickÞ ¼ EffrðMÞ=EffrðV ickÞ. We say that
mechanism M is 1

EffsðM;V ickÞ -competitive for social efficiency
and 1

EffrðM;V ickÞ -competitive for revenue efficiency.

Our objective is to design online strategyproof spectrum
admission mechanisms in different cases which maximize the
expected social efficiency and revenue efficiency. The expecta-
tions are computed over all possible permutations of bid
values bi and all possible permutations of time requirements.

3 SEMI-ARBITRARY-ARRIVAL CASE

In this section, we consider the semi-arbitrary-arrival case.
We first show the lower bounds of competitive ratios under
the random ordering hypothesis. The lower bound of social
efficiency ratio comes from the well-known secretary
problem [6] which is a special case in our model. The lower
bound of revenue efficiency ratio comes from the result in
[15]. Consider the model used in [15, Section 5], in which a
single item is being sold and an adversary specifies a set of
bids that are randomly matched with arrival and departure
intervals. That model is actually a special case of our model
when T ¼ 1. So, its lower bound on the efficiency is also a
lower bound in our model. We have following theorems:

Theorem 1. For our online spectrum admission problem, no
online mechanism is e-competitive for social efficiency.

Theorem 2. For our online spectrum admission problem, for any
constant � > 0, these is no strategyproof online mechanism
which is ð3=2� �Þ-competitive for revenue efficiency.

We are now ready to describe our online mechanism for
spectrum allocation. Our online mechanism M1 runs as
following: It will divide the overall time times T into two
phases. In the first phase (composed of the first �T time slots),
it studies some properties of the distribution of the requested
time durations. Then in the second phase, our mechanism
will start to allocate the channel to the coming requests.

In the first phase, our mechanism M1 collects the
information of coming requests and computes the in-
formation Prðt1 � ti � 2t1Þ for t1 2 ½1; T=2�. Here, we use
Prðt1 � ti � t2Þ to denote the estimated probability that the
required time duration of a coming request is at least t1
and at most t2. We then learn a parameter � which will be
introduced later by using our Learning Algorithm 1 M1ðLÞ.
Here, ½�; 2� � will be a time interval such that at least a
constant proportion of the requests whose requested
duration of time slots will be in this interval. During the

first �T time slots, we reject all coming requests. Later, we

will show that it does not affect the performance

significantly.
Notice that the adversary can pick up a common

distribution (such as uniform distribution, normal distribu-

tion, and exponential distribution) as the distribution of

required time durations. Our learning method (Algorithm 1)

can find a feasible parameter � without knowing the exact

distribution. Notice that here the constant 1=2 in Algorithm 1

could be replaced by any positive constant 2 ð0; 1Þ. For

example, if the required time durations are uniformly

distributed in ½t1; t2�, then � ¼ t1þt2
2 is a feasible solution. If

the required time durations are normally distributed with

mean �, then � ¼ � is a feasible solution. In the rest of paper,

we make the following assumption:

Algorithm 1. Learning Algorithm M1ðLÞ for Mechanism

M1

Input: Requests arriving during ½0; �T �.
Output: A parameter � > 0.

1: for � ¼ 1 to bT2c do

2: if Prð� � ti � 2�Þ � 1
2 then

3: Return parameter �

Assumption 3. Given a distribution on the required time slots,

we assume that a feasible value � can always be found by

Algorithm 1.

Since we only sampled the requests arrived in time ½0; �T �,
we first would like to bound the estimation error of these

probabilities. Let Err be the maximum error

Err ¼ max
t1�T=2

kPr t1 � ti � 2t1ð Þ �Pr t1 � ti � 2t1ð Þk;

where Prðt1 � ti � t2Þ is the actual probability that the

required time slots of a coming request is in ½t1; t2�.
Lemma 4. The estimation error Err is neglectable.

Proof. According to the theory of VC-dimension [29], the

bound on the test error of a classification model is

Pr Err �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðlogð2N=hÞ þ 1Þ � logð	=4Þ

N

r !
� 1� 	;

where h < N is the VC-dimension of the classification

model, N is the size of the training set. The formula is

valid when h < N . In our case, the VC-dimension is at

most h ¼ log T
2 since we only consider the inputs with

requested time duration at most T=2. Assume the arrival

rate is �, then the size of training set isN ¼ ��T with high

probability. The bound on the test error is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log T

2 ðlogð��T= log T
2Þ þ 1Þ

��T

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð2��� log log T

2 þ 1Þ
2��

log T
2

T

s
:

Since � and � are constants, the error is neglectable when

T is large enough. tu
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After the first �T time slots, based on the results from
learning algorithm, the decision algorithm M1ðDÞ of
mechanism M1 decides which requests will be admitted
and how much each admitted request should be charged. The
following concept is needed for presenting mechanismM1.

Definition 3. Let p
ðsÞ
�� denote the sth highest bid value (for the

usage of per unit time slot) among all requests received during
time interval ½0; � �.
The main idea of algorithm M1ðDÞ is to divide the time

interval ½�T ; T � into multiple nonoverlap decision phases.
Fig. 1 illustrates our protocol. In each decision phase, the
decision algorithm waits for some time slots, then tries to
admit a request with the highest bid value in this decision
phase. The reason why we do so is that the adversary could
generate any kind of bid values set. In some cases, to
guarantee the performance, we have to admit the highest bid
value, e.g., all bid values are 0 except the highest one
maxibi ¼ 1. By waiting a certain number of time slots, we can
ensure that we will see the highest bid with a constant
probability. Later, we will prove that our decision algorithm
M1ðDÞ could admit the request with highest bid value in
each decision phase with constant probability. Current
decision phase will end if 1) either a request is admitted
and finished, 2) or no request is admitted after 2ð1þ 
Þ� time
slots for a given constant 
. Another new decision phase will
start when a previous decision phase ends. For simplicity of
presentation, we assume that the clock of each new decision
phase is reset as 0. This means that, in Algorithm 2, when we
say a request arrived in time ti, it actually arrived ti time slots
after this new decision phase started. Algorithm 2 sum-
marizes our allocation method.

Algorithm 2. Decision Algorithm M1ðDÞ for Mechanism

M1

Input: Parameter � returned from Algorithm 1, constant
parameter � � 1 and 
, requests arrived during ½�T ; T �.
Output: Allocation and charging for each coming request.

1: Start a new decision phase at beginning.

2: A request ri ¼ ðbi; ai; tiÞ will be admitted during a

decision phase iff the following conditions are met:

1) No conflict request is admitted and running,

2) � � ti � 2� ,

3) Request ri arrives during a time interval
½si; si þ 
ti� for a si such that �ti � si � ti where

� � 1 is a constant, and

4) The bid value bi by the user satisfies that bi � pð1Þ�si .
3: Decide if current decision phase will end or not. The

clock of each new decision phase is reset as 0.

4: For each request ri admitted, it will be charged p
ð1Þ
�si per

unit time. The total charge will be pi ¼ p
ð1Þ
�si � ti. For each

request ri which is not admitted, it will be charged 0.

Theorem 5. Mechanism M1 is strategyproof.

Proof. We should prove that no request could make more

profit by bidding other than its true valuation or/and

announcing larger time requirement. In other words, we

need to prove value-SP, time-SP, and value and time-SP.

We will prove these properties separately.

value-SP: According to the pricing scheme of M1, we

know that each request ri will be charged p
ð1Þ
�si ti and make

vi � pð1Þ�si ti profit if it is admitted. Request ri will be charged

0 and make 0 profit if it is not admitted. Since p
ð1Þ
�si does not

depend on bi, for a request ri admitted by mechanismM1,

it cannot improve its profit by lying on its bid value bi.
On the other hand, for a request ri which is not

admitted by mechanism M1, there are two possible
reasons causing its rejection. The first reason is that ri
does not appear in a time interval ½si; si þ 
ti� that
satisfies the conditions in mechanism M1. For this
reason, no matter how request ri lies on its bid bi, it will
never be admitted. The second reason is that ri bids
bi < p

ð1Þ
�si while it bids truthfully, i.e., vi ¼ biti < p

ð1Þ
�si ti.

For this reason, if request ri bids lower than its true
valuation, i.e., biti < vi, it still cannot be admitted and
its profit is still 0; If request ri bided higher than its true
valuation, i.e., biti > vi, there are two cases. Case 1:
bi < p

ð1Þ
�si , request ri is still not admitted and no more

profit is made. Case 2: bi � pð1Þ�si , request ri is admitted
and make vi � biti < 0 profit, which implies request ri
loses profit.

As stated above, no matter how request lies on its bid
value, it cannot make more profit.

time-SP: Similarly, we know each request ri will make
vi � pð1Þ�si ti profit when it is admitted; otherwise, ri will
make 0 profit when it is no admitted.

For request ri which is admitted by mechanismM1, if

it announces a larger required time duration t0i > ti, ri
can be still admitted or not admitted. If ri is not

admitted due to lying on ti, it loses profit due to lying. If

ri is still admitted, it needs to pay p
ð1Þ
�s0i

per unit time

where s0i � si is the parameter described in mechanism

M1. According to the definition of p
ð1Þ
�s0i

, we know that

p
ð1Þ
�s0i
� pð1Þ�si when s0i � si. Therefore, request ri makes no

more profit by lying since vi � pð1Þ�s0
i
t0i < vi � pð1Þ�si ti when

p
ð1Þ
�s0i
� pð1Þ�si and t0i > ti.

For request ri which is not admitted by mechanismM1,

there are two possible reasons causing its rejection. The

first reason is that ri does not appear in a time interval

½si; si þ 
ti� that satisfies the conditions in mechanismM1.

For this reason, no matter how request ri announces a

larger ti, it will never be admitted. The second reason is

that ri bids bi < p
ð1Þ
�si while it bids truthfully, i.e., vi ¼

biti < p
ð1Þ
�si ti. For this reason, if request ri announces a

larger t0i > ti, ri may be admitted when bi � pð1Þ�s0i where s0i is

the new parameter when t0i is announced. Since t0i > ti, we

have s0i � si according to our mechanism. Therefore, even

if ri is admitted due to lying higher on its required time
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Fig. 1. In mechanism M1ðDÞ, time is divided into several decision
phases. A decision phase may not accept any request. For each
decision phase with one accepted request ri, the requested number of
time slots should be ti 2 ½�; 2� �.



slots, it makesvi � bit0i < vi � pð1Þ�s0i t
0
i � vi � pð1Þ�si ti � 0 since

p
ð1Þ
�s0i
� pð1Þ�si when s0i � si.

value and time-SP: When request lies on its bid value
and time requirement, we can consider it as a lie on bid
value and another lie on time requirement. As we proved
above, neither of these could make more profit, we finish
this part. tu

Lemma 6. At any decision phase, mechanism M1 could admit
the request with highest bid value and charge that request at
second highest bid value during that phase with a probability
at least �


2ð
þ2Þ2 .

Proof. To admit a request ri in a decision phase, the
required time duration ti should be within ½�; 2� �. We
know that Prð� � ti � 2�Þ �¼ 1

2 according to the learn-
ing algorithmM1ðLÞ. To admit a request ri with highest
bid value with a charge equal to the second highest bid
during a decision phase, the request with second highest
bid value should arrive during time interval ½0; si� and
the request with highest bid value should arrive during
time interval ½si; si þ 
ti�.

Since the arrival of requests is memoryless, the

number of arrival during a time interval only depends

on the length of that interval. The probability that the

request with second highest bid arrives during ½0; si� is

at least si
siþ
tiþti �

�
2þ
 . The probability that the request

with highest bid value arrives during ½si; si þ 
ti� is at

least 
ti
siþ
tiþti �



2þ
 .

Thus, at each decision phase, our mechanism could

admit the request with highest bid value and charge it

at the second highest bid value with constant prob-

ability 1
2

�
2þ




2þ
 ¼

�


2ð2þ
Þ2 . tu
Lemma 7. At each decision phase, mechanism M1 is 2ð2þ
Þ3

�
 -

competitive during that phase with respect to offline Vickery

auction for both social and revenue efficiency.

Proof. According to Lemma 6, we know that M1 has a

constant probability �


2ð2þ
Þ2 to admit the request with

highest bid and charge it with second highest bid. We

know that decision phase lasts at most si þ 
ti þ ti �
ð2þ 
Þti time when ri is admitted. The maximum total

valuation is at most ð2þ 
Þbiti. The total valuation of

winner of M1 is at least biti with probability �


2ð2þ
Þ2 .

Therefore, the social efficiency ratio is at least �


2ð2þ
Þ3 which

implies that M1 is at least 2ð2þ
Þ3
�
 -competitive for social

efficiency.

Similarly, it is easy to show that M1 is also at least
2ð2þ
Þ3
�
 -competitive for revenue efficiency. We finish the

proof. tu
This lemma shows that, in single decision phase, our

protocol does manage to get a social efficiency and revenue
within a constant factor of optimum. This does not directly
imply that our protocol is overall a constant approximation
for social and revenue efficiency because many decision
phases exist in ½0; T �.
Definition 4. We call a decision phase good decision phase if a

request is admitted during this phase. Otherwise, we call it
bad decision phase.

We proved that for good decision phase, M1 is 2ð2þ
Þ3
�
 -

competitive for both social and revenue efficiency.
According to our mechanism, the length of a bad decision
phase is always 2ð1þ 
Þ� . In following lemma, we prove
that the expected length of a good decision phase is at
least ð1þ �Þ� .

Lemma 8. The expected length of a good decision phase is at

least ð1þ �Þ� .

Proof. When a request ri is admitted in a decision phase, the
length of that decision phase is at least si þ ti � ð1þ �Þti.
So, the expected length of such decision phase is at least
ð1þ �Þti � ð1þ �Þ� since the decision algorithm guar-
antees that ti � � for all admitted request ri. tu

Theorem 9. MechanismM1 is �ð1Þ-competitive with respect to

offline Vickery auction for both social and revenue efficiency.

Proof. According to Lemma 6, we know that during time

interval ½�T ; T �, for each decision phase, with probability

P ¼ �


2ð2þ
Þ2 , we have a good decision phase with expected

length at least ð1þ �Þ� ; and with probability 1� P we

have a bad decision phase with length at most 2ð1þ 
Þ� .

Thus, after each decision phase, the expected total length

of all good decision phases increases P ð1þ �Þ� and the

expected total length of all bad decision phases increases

2ð1� P Þð1þ 
Þ� . So, the expected total length of all good

decision phases is

P ð1þ �Þ
P ð1þ �Þ þ 2ð1� P Þð1þ 
Þ ð1� �ÞT ¼ �ð1ÞT:

We know thatM1 is 2ð2þ
Þ3
�
 -competitive for both social

and revenue efficiency during each of the good decision

phases. Then, M1 is at least 2ð2þ
Þ3
�


P ð1þ�Þþ2ð1�P Þð1þ
Þ
P ð1þ�Þ

1
1�� -

competitive for both social and revenue efficiency. tu

4 RANDOM-ARRIVAL CASE

In this section, we consider the random-arrival case where
the bid values and required time durations follow some
known/unknown distributions. We will propose an online
mechanismM2 with performance analysis. Note that in this
section the time is also assumed to be slotted.

If the distributions or arrival rate are unknown, similar to
previous protocol M1, in the first �T (� < 1) time, we learn
the distributions and arrival rate based on the information
of arriving requests [20]. We already proved that the sample
size is large enough to achieve relatively small estimate
error even when � is very small. So, in this section, we
mainly focus on the case where the central authority knows
the distributions and the arrival rate in advance.

Since we know all distributions, at each time t, we can
compute the expected social efficiency of the offline Vickery
auction from the current time slot t to T of the spectrum
channel by Dynamic Programming (DP). Let V ðtÞ denote this
expected social efficiency from time slot t to T of offline
Vickery auction, and let event Xk denote that k requests
arrive at same time, event Yt denote that requested time
duration of a request is t, and the event Zb denote that bid
value of a request is b. It is not difficult to derive that
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V ðtÞ ¼
Xþ1
k¼0

PrðXkÞ
XT�t
ti¼1

Pr Ytið ÞðbmðkÞ � ti þ V ðtþ tiÞÞ
 !

:

Here, bmðkÞ is the expected highest bid value among
k requests’ bid values. It is easy to show that

Z bmðkÞ

�1
PrðZxÞdx ¼

1

kþ 1
:

And we have following lemma:

Lemma 10. Function V ðtÞ is monotonic nonincreasing as t

grows from 0 to T .

Proof. First, it is trivial to show that 8t 2 ½0; T �, V ðtÞ � 0. Let
V kðtÞ denote the expected social efficiency where
k requests arrive at time t. For any k, we have

V kðtþ 1Þ ¼
XT�t�1

ti¼1

Pr Ytið ÞðbmðkÞti þ V ðtþ 1þ tiÞÞ;

V kðtÞ ¼
XT�t
tj¼1

Pr Ytj
� �

ðbmðkÞtj þ V ðtþ tjÞÞ:

8>>>><
>>>>:

Then, V kðtþ 1Þ � V kðtÞ ¼ �PrðYðT�tÞÞðbmðkÞðT � tÞ þ
V ðT ÞÞ � 0. From above, we prove that for any k, V kðtÞ
is monotonic nonincreasing as t grows from 0 to T ,
which implies that V ðtÞ is monotonic nonincreasing. tu
Notice that if all secondary users announce requests

truthfully, V ð0Þ is actually the expected social efficiency and
revenue for Vickery auction. Next we are going to give a
scheme that guarantees the truthfulness of both bid values
and requested time durations.

The admission method of our protocol is as following:
We assume a virtual request r0 with bid value b0 ¼ 0 and
required time duration t0 ¼ 1 arrives at each time. If our
protocol admits r0 at some time, then it means that no
request will be admitted at that time. For example, if
k requests arrive, together with the virtual request, we
have totally kþ 1 requests. Let V 0ðtÞ denote the expected
social efficiency from time t to T after a decision is made at
time t. We always admit a request ri which maximizes the
expected total social efficiency

V 0ðtÞ ¼ biti þ V ðtþ tiÞ

and reject others.
Assume that rj is the request which made the second

highest expected social efficiency. If request ri (i 6¼ 0) is
admitted, then the secondary user who proposed ri will
be charged:

pi ¼ bjtj þ V ðtþ tjÞ � V ðtþ tiÞ;

i.e., it will be charged as the second highest expected social
efficiency excluding the expected social efficiency after he
finishes. Algorithm 3 summarizes our method.

Algorithm 3. Decision Algorithm M2ðDÞ for Mechanism
M2

Input: Probability distribution of bid values, discrete

probability distribution of requested durations, arrival rate

�, and requests arriving at time t.

Output: Allocation and charging scheme

1: Compute V ðtÞ, 8t 2 ½0; T �.
2: if the channel is being used then

3: Reject all coming requests.

4: else

5: Admit request ri s.t. i ¼ arg maxV 0ðtÞ and reject others.

Here, V 0ðtÞ ¼ biti þ V ðtþ tiÞ if ri is admitted.

6: If a request ri is admitted, charge it bjtj þ V ðtþ tjÞ �
V ðtþ tiÞ where rj is the request that make the second

highest V 0ðtÞ; If a request ri is not admitted, charge it 0.

Theorem 11. Mechanism M2 is strategyproof.

Proof. We will prove value-SP, time-SP, and value and
time-SP.

value-SP: If a request ri is admitted when the bid value
is truthful, since the charging scheme does not rely on
the bid value of the request itself, so lying on bid value
will not bring more profit.

If a request ri is not admitted when the bid value is
truthful, there are two cases when it lies on the bid value.
If ri is still not admitted, it is trivial that the profit will not
increase (always be 0). If ri is admitted by bidding b0i, then
it will be charged bjtj þ V ðtþ tjÞ � V ðtþ tiÞ. Since ri is
not admitted if bidding is truthful, we know that biti þ
V ðtþ tiÞ < bjtj þ V ðtþ tjÞ which implies the profit biti �
pi by reporting untruthfully is no more than 0. Thus, no
matter how a secondary user lies on its bid value, it
cannot make more profit.

time-SP: Recall that we assume each request could
only claim a longer required time duration than its actual
requirement. If request ri is admitted when it claims its
true time requirement, it will still be admitted when
claiming a longer required time t0i > ti. Then, it will have
to pay: V ðtþ t0iÞ � V ðtþ tiÞ more than before. Since V ðtÞ
is monotonic nonincreasing by Lemma 10, it does not
make more profit by lying.

If a request ri is not admitted when claiming its time
requirement truthfully, there are two cases when it lies
on the time requirement. If ri is still not admitted, it is
trivial that the profit will not increase (always be 0). If ri
is admitted when it lies on its time requirement as t0i > ti,
it will be charged bjtj þ V ðtþ tjÞ � V ðtþ t0iÞ. Since ri is
not admitted if bidding is truthful, we know that
biti þ V ðtþ tiÞ < bjtj þ V ðtþ tjÞ. Together with V ðtþ
t0iÞ � V ðtþ tiÞ, we have

biti � bjtj þ V ðtþ tjÞ � V ðtþ t0iÞ;

which implies the profit is no more than 0.
In brief, no matter how request lies on its time

requirement, it cannot make more profit.
value and time-SP: When a request lies on its bid value

and time requirement, we consider it as a lie on bid value
and another lie on time requirement. As we proved
above, neither of these could make more profit, we finish
this part. tu

Lemma 12. At each time, mechanism M2 will admit a request
with constant probability if the channel is not being used.

Proof. When the channel is empty, the probability that
request ri can be admitted is Prðbi � ti þ V ðtiÞ � V ðtþ 1ÞÞ.
We can rewrite V ðtÞ as
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V ðtÞ ¼ b
XT�t
ti¼1

ðYti � tiÞ þ
XT�t
ti¼1

ðYtiV ðtþ tiÞÞ;

where b ¼
Pþ1

k¼0 PrðXkÞ � bmðkÞ is a constant. So, the
probability whether request ri can be admitted or not is
only related to the current time t and the required time
duration ti.

When k requests arrive at the same time, the
probability that the bid value of one request is greater
than the expected maximum bid value bmðkÞ is 1

kþ1 .
Given the distributions of bid values, required time
durations, and the arrival rate, when k requests arrive at
time t, we can find a cðtiÞ such that:

Prðbi � ti þ V ðtþ tiÞ � V ðtþ 1ÞÞ � cðtiÞ
kþ 1

:

Note that without the specific distributions, we cannot
give the exact form of cðtiÞ; however, after the distribu-
tions given, cðtiÞ can be calculated.

We use A1 to denote the event that a request could
be admitted (the expected social revenue exceeded the
reserved social revenue V ðtþ 1Þ), and A0 to denote
the event that no request could be admitted. When
k requests arrive at time t, the probability that no
requests could be admitted is:

PrðA0jXkÞ �
Yk
i¼1

1� cðiÞ
kþ 1

� �
� 1� cm

kþ 1

� �k
;

where cm ¼ minTt¼1cðtÞ is a constant. The probability that a
request could be admitted is PrðA1jXkÞ � 1� ð1� cm

kþ1Þ
k.

At time t, the expected probability that some request
could be admitted is:

PrðA1Þ ¼
Xþ1
k¼1

PrðXkÞ �Pr A1jXkð Þ

�
Xþ1
k¼1

PrðXkÞ � 1� 1� cm
kþ 1

� �k !

¼ 1� e�
cmþoð1Þ

2 �
Xþ1
k¼1

�k � e���
ðcmþoð1ÞÞðk�1Þ

2ðkþ1Þ

k!

 !

� 1� e�
cmþoð1Þ

2 ;

which is at least a constant. tu

Theorem 13. MechanismM2 is �ð1Þ-competitive with respect to
offline Vickery auction for both social and revenue efficiency.

Proof. According to Lemma 12, we know a request could be
admitted with probability greater than a constant P ;
thus, no request could be admitted with probability
smaller than 1� P at each time. Then, it is easy to show
that in expectation the channel is busy for Pt

Ptþ1�P T time
slots where t � 1 is the expected time requirement of
admitted request.

When the channel is busy, the social efficiency and
revenue efficiency of M2 is no less than that of
Vickery auction. Then, we know in expectation, M2 is
Ptþ1�P

Pt -competitive. tu

5 GENERAL CONFLICT GRAPH MODEL

In this section, we show that our protocols can be easily
extended for networks where the conflict graph is growth
bounded by a polynomial function f , which implies that the
one-hop independent number of conflict graph H is fð1Þ.

5.1 Semi-Arbitrary-Arrival Case

For the semi-arbitrary-arrival case, we don’t need to change
the learning algorithm of our protocol. Here is the new
decision algorithm for our extended protocol M0

1. We
define p

ðsÞ
�� ðRÞ as sth highest bid among all requests which is

received during time interval ½0; � � and proposed by
secondary users in set R.

Algorithm 4. Decision Algorithm M0
1ðDÞ for Mechanism

M0
1

Input: Parameter � learned by learning algorithm and

requests that arrive during ½�T ; T �.
Output: Allocation and charging scheme.

1: All secondary users start a new decision phase initially.

2: A request ri will be admitted during a decision

phase iff:

1) ri does not conflict with any running requests in

geometry region and the secondary user proposed

ri is in its decision phase.

2) � � ti � 2� .
3) Request ri arrives during a time interval

½si; si þ 
ti� for a si such that �ti � si � ti where

� < 1 is a constant.

4) Bid value bi � pð1Þ�siðRÞ where R is the set of

secondary users in decision phase and whose

requests will conflict with ri in geometry region.

3: When request ri is admitted, decision phases of the

secondary user who proposed ri and those secondary
users in R will end. Start service phases for these

secondary users. These service phases end when ri is

finished.

4: New decision phase will start when either service phase

ends or no request is admitted after 2ð1þ 
Þ� time

slots. Time of each new decision phase is reset as 0.

5: For each request ri admitted, it will be charged p
ð1Þ
�siðRÞ

per time slot; Otherwise, it will be charged 0.

The theoretical analysis of performance is similar to that
of previous section. We omit the details due to space limit.
The main difference is that when H has a one-hop
independent number fð1Þ, with certain probability, our
protocol may accept a request ri with highest bid value
during certain time interval and miss at most fð1Þbi bid
values. Therefore, compared with what we did in Section 3,
there is an additional factor fð1Þ in both social and revenue
efficiency ratio.

5.2 Random-Arrival Case

For the random-arrival case, we have new decision
algorithm M0

2ðDÞ for our extended online mechanism M0
2

as following: We still use V ðtÞ to denote the expected
revenue of offline Vickery auction from time t to T . When
the conflict graph H is not a completed graph, more than
one requests could be running at same time. Assume R is a
set of requests, we use V 0RðtÞ to denote the expected
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revenue after a request is admitted at time t and all
requests in R are running before it is admitted. The
expected revenue can be achieved by dynamic program-
ming as described in Section 4. Details are omitted due to
space limit. In the process of dynamic programming, we
may need to find maximum weighted independent set.
Finding maximum weighted independent set problem is
NP-hard [11] and hard to approximate within n1�oð1Þ factor
[28]. However, using the growth-bounded property, we
could find a 1þ � approximation in polynomial time [23].
Algorithm 5 summarizes our method.

Algorithm 5. Decision Algorithm M0
2ðDÞ for Mechanism

M0
2

Input: Probability distribution of bid values, required time

durations and arrival rate �, a set of requests R at time t,

and a set of running requests C.
Output: Allocation and charging scheme

1: while R is not empty do

2: Admit request ri such that i ¼ arg maxV 0CðtÞ where

ri does not conflict with any request in C.
3: If ri is a dummy request, then R ¼ ;. Otherwise, (1)

let R ¼ R�Ri where Ri is a set of requests which

conflict with ri in geometry region (including ri
itself); and (2) C ¼ C [ frig.

4: For each request ri admitted, it will be charged
bjtj þ V ðtþ tjÞ � V ðtþ tiÞ where rj is the request that

makes the second highest V 0CðtÞ before ri is admitted;

Otherwise, it will be charged 0.

The theoretical analysis of performance is similar to that
of previous section. Again, compared with what we did in
Section 4, there is an additional factor fð1Þ in both social
and revenue efficiency ratios.

6 SIMULATION RESULTS

In this section, we conducted extensive simulations to
study the performance of our online mechanisms M1 and
M2. In our simulations, we set the total time T ¼ 1;000 time
slots. We generate random requests with random bid
values and time requirements. The arrival of these requests
follows Poissonian distribution with arrival rate �, which
varies in our simulations to simulate lightly loaded or
heavily loaded system. We omit the learning phase since
we want to study the performance of our online mechan-
isms and the influence of learning is proven neglectable
when the number of total time slots is large enough.

The bid value and time requirement of each request are
either uniformly distributed or normally distributed. Here,
we generate four different sets of requests. In set one, the
bid value of each request is uniformly distributed in ½0; 1�,
time requirement of each request is uniformly drawn from
all integers in ½1; 50�; In set two, the bid value of each
request is uniformly distributed in ½0; 1�, time requirement
of each request is uniformly drawn from all integers in
½1; 500�; In set three, the bid value of each request is
normally distributed with mean value �bid ¼ 0:5 and
standard deviation �bid ¼ 2, time requirement of each
request is normally distributed with mean value �time ¼
25 and standard deviation �time ¼ 3; In set four, the bid
value of each request is normally distributed with mean
value �bid ¼ 0:5 and standard deviation �bid ¼ 2, time
requirement of each request is normally distributed with
mean value �time ¼ 250 and standard deviation �time ¼ 3.
The bid values are randomly matched with the time
requirements.

6.1 Mechanism M1 for Semi-Arbitrary-Arrival Case

We set � ¼ 1 and 
 ¼ 1 in the experiments. In Figs. 2a
and 2b, we plot the competitive ratio for social and
revenue efficiency when the arrival rate � varies for
different requests sets. As we stated in Theorem 1 and 2,
the social efficiency ratio is no more than 37 percent and
the revenue efficiency ratio is no more than 66 percent.
Therefore, the performance of our mechanism M1 in the
simulations, both social efficiency ratio and revenue
efficiency ratio are almost 20-30 percent, is close to the
theoretical upper bound. We also observe that the
competitive ratios increase when the system load in-
creases since it is easier for M1 to admit a request when
the system load is high, i.e., the competition among
requests is high.

In Fig. 2c, we plot the spectrum utilization ratio of our
methodM1. The spectrum utilization ratio is defined as the
ratio between the busy time of the spectrum channel and
the total time T . In all cases, the utilization ratio is no more
than 50 percent. According to mechanism M1, a request
with time requirement ti is admitted while at least �ti time
slots are empty. Since we set � ¼ 1, the utilization ratio is no
more than 50 percent which is corroborated by our
simulation result.

6.2 Mechanism M2 for Random-Arrival Case

In Figs. 3a and 3b, we plot the competitive ratio for social
and revenue efficiency when the arrival rate � varies.
Unsurprisingly, the performance of mechanismM2 is much
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better than that of M1 since M2 has more known
information. We can see that our mechanism M2 even
outperforms the average performance of Vickery auction in
all cases. The reason is that our protocol will choose the
request maximize the social efficiency and compared with
the average performance of Vickery auction. In slightly
loaded systems, the social efficiency and the revenue
efficiency of our protocol are about two-six times of the
performance by the Vickery mechanism. The reason is that
in slightly loaded system, the average performance of
Vickery auction is poorer, so the ratios are higher. Observe
that the competitive ratios decrease when the arrival ratios
increase. When the arrival ratio is big, the system load is
high and the competition among requests is high. Then, it is
more difficult to admit a request which outperforms the
expected performance of Vickery auction.

In Fig. 3c, we plot the spectrum utilization ratio of our
method M2. When the system is highly loaded, the
spectrum utilization ratio of M2 is more than 95 percent,
while the spectrum utilization ratio is more than 75 percent
for lightly loaded system. When the system load is low, the
competition among requests is low and, thus, it is harder to
admit feasible request than that in a heavily loaded system.
In all cases, mechanism M2 improve the efficiency ratios
without sacrificing the spectrum utilization.

7 LITERATURE REVIEWS

How to allocate spectrum channels is essentially combi-
natorial allocation problem, which have been well studied
[2], [22]. Yuan et al. [37] introduced the concept of a time-
spectrum block to model spectrum reservation in cogni-
tive radio networks, and presented both centralized and
distributed protocols for spectrum allocation and show
that these protocols are close to optimal in most
scenarios. Li et al. [24], [35] designed efficient methods
for various dynamic spectrum assignment problems. They
also showed how to design truthful mechanism based on
those methods. Xu et al. [34] first studied online spectrum
allocation when secondary users could bid arbitrarily.
They designed efficient mechanisms that could thwart the
selfish behavior of secondary users. In [33], Xu and Li
designed protocols for spectrum allocation when requests
are submitted in advance and the central authority only
needs to make decisions within a certain time period.
Zhou et al. [39] propose a truthful and efficient dynamic
spectrum auction system to serve many small players. In
[40], Zhou and Zheng designed truthful double spectrum
auctions where multiple parties can trade spectrum based

on their individual needs. In [30], Wang et al. designed
an online version of truthful double auctions for spectrum
allocation where the requests arrive in an online fashion.
Ben-Porat et al. [5] gave a scheme scheduling decision on
the Cumulative Distribution Function (CDF). In [32], Wu
and Tsang studied the distributed multichannel power
allocation problem for the spectrum sharing cognitive
ratio networks. All these results are based on offline
models.

In our paper, we use the online model which is similar to
online scheduling problems. Online scheduling is a classical
and well-studied problem [14] that still receives a lot of
research interest. Various online scheduling problems focus
on optimizing different objective functions. The most
common objective function is makespan, which is the length
of the schedule, or equivalently the time when the last job is
completed. The first proof of competitiveness of an online
scheduling algorithm was given by Graham in 1966 [14].
Suppose that we are given m identical machines, jobs arrive
one by one and no preemption is allowed. Graham [14]
proved that greedy algorithm, which assigns a new job to the
least loaded machine, is 2� 1

m competitive. A number of
results were proposed to improve the upper bounds [9], [19],
[36] and lower bounds [18]. In 1992, Bartal et al. [36] gave an
algorithm that is 1.986-competitive. Then, the bound was
improved to 1.945 [19], to 1.923 [1], and finally to 1.9201 [9]
which is the best upper bound known to date. And the best
lower bound up to now for any deterministic algorithm is
1.88-competitive which was proposed by Rudin and co-
workers [18]. Closing the gap between the best lower bound
(1.88 [18]) and the upper bound (1.9201 [9]) is an open
problem. All these results assume that preemption is not
allowed and they focus on minimizing makespan.

Many authors [13], [25] also investigated the case where
preemption is allowed without penalty. Phillips et al. [25]
gave an ð8þ �Þ-approximation algorithm for preemptive
single-machine scheduling problem. The approximation
ratio was improved to 2 [12] and to 1.47 [13]. However, all
these results didn’t consider the penalty of preemption.
Online scheduling problem in which we pay penalty for
rejecting jobs was first studied in [3] by Bartal et al.
(ð1þ �Þ-competitive algorithm) and improved to 1.58 later
in [17] by Hoogeveen et al. They assume that the penalty
is job dependent only, and is not affected by the
preemption time.

Above results focus on minimizing makespan. For the

model with deadline of job, however, it is usually

impossible to finish all jobs in time. Thus, another model
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Fig. 3. The performance of online mechanism M2. (a) Social efficiency ratio; (b) revenue efficiency ratio; (c) spectrum utilization ratio.



aims to maximize the profit or number of completed jobs.

There are different variants: preemption-restart, preemp-

tion-resume, and preemption-discard. In preemption-restart

model, it is allowed to preempt a running job, and the

preempted job has to be restarted again from the

beginning. In preemption-resume model, it is allowed to

preempt a running job, and the preempted job could

resume from where it was preempted. And other models

assume that a preempted job cannot be restarted or

resumed. In 1991, Baruah et al. [4] proved that no online

scheduling algorithm can make profit more than 1
ð1þ

ffiffiffi
D
p
Þ2

times the optimal. Koren and Shasha [21] gave an

algorithm matching the lower bound in [4]. Woeginger

[31] studied an online model of maximizing the profit of

finished jobs where there is some relationship between the

weight and length of job. He provided a 4-competitive

algorithm for tight deadline case, and gave a matching

lower bound. Hoogeveen et al. [16] gave a 2-competitive

algorithm which maximizes the number of early jobs. They

assume that preemption is allowed while no penalties will

be charged. Chrobak et al. [7] gave a 2
3 -competitive

algorithm which maximizes the number of satisfied jobs

that have uniform length in the preemption-restart model.

Fung et al. [10] addressed a general model of nonuniform

length and gave a �þ 2
ffiffiffiffi
�
p
þ 2-competitive algorithm.

Zheng et al. [38] studied the preemption-restart model where

a penalty is the weight of the preempted job. They gave a

3�þ oð�Þ-competitive for � > 9. Another variant of these

problems considers time/utility function scheduling where

the profit made on each request is a function of finished

time [26].
The work that is most similar to our work is a recent

result by Constantin et al. [8] in 2009. They proposed and
studied a simple model for auctioning ad slot reservations
in advance. A seller will display a set of slots at some point
T in the future. Until T , bidders arrive sequentially and
place a bid on the slots they are interested in. The seller
must decide immediately whether or not to grant a
reservation. Their model allows the seller to cancel at any
time any reservation made earlier with a penalty propor-
tional to the bid value. The major difference between our
model and their model is that, in their model, they only
auction a set of ad slots for a fixed time slot, while in our
model, the bidders could bid the spectrum usage starting
from any time slot, and lasting for an arbitrary duration.

8 CONCLUSIONS

Under a simple assumption that the requests by secondary
users arrive with the Poisson distribution and the willing
payment per unit time slot is independent from the number
of time slots required, we are able to prove that our protocols
simultaneously approximately maximize the expected social
efficiency and the expected revenue. We also analytically
proved that every secondary user will maximize its expected
profit if it proposed requests truthfully. To the best of our
knowledge, this is the first online spectrum allocation and
auction protocol with these properties.

There are a number of interesting questions left for
future research. First, we would like to study the perfor-
mance of our protocols when first price auction is used. In
this case, secondary users may have tendency to lower their
bids. Secondly, we assumed that the conflicts of spectrum
usage among secondary users can be characterized by
interference graphs. This assumption although is widely
adopted in the literature and gives us some leverage in
designing efficient protocols, it cannot perfectly reflect the
interference in practice. Thus, we would like to extend the
design of our protocols to network models with more
complicated interference models.
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