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Abstract

In this paper we study the set cover games when the elements are
selfish agents, each of which has a privately known valuation of receiving
the service from the sets, i.e., being covered by some set. Each set is
assumed to have a fixed cost. We develop several approximately efficient
strategyproof mechanisms that decide, after soliciting the declared bids
by all elements, which elements will be covered, which sets will provide
the coverage to these selected elements, and how much each element will
be charged. For single-cover set cover games, we present a mechanism
that is at least 1

dmax
-efficient, i.e., the total valuation of all selected el-

ements is at least 1
dmax

fraction of the total valuation produced by any
mechanism. Here dmax is the maximum size of the sets. For multi-cover
set cover games, we present a budget-balanced strategyproof mechanism
that is 1

dmaxHdmax
-efficient under reasonable assumptions. Here Hn is the

harmonic function. For set cover games when both sets and elements are
selfish agents, we show that a cross-monotonic payment-sharing scheme
does not necessarily induce a strategyproof mechanism.
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1 Introduction

1.1 Motivations and Background

In the past, an indispensable and implicit assumption on algorithm design for
interconnected computers was that all participating computers (called agents)
are cooperative: they will behave exactly as instructed. This assumption is
being shattered by the emergence of the Internet, as it provides a platform for
distributed computing with agents belonging to independent and self-interested
organizations, who may diverge from the prescribed algorithm to maximize their
own benefits. This gives rise to a new challenge that demands the study of algo-
rithmic mechanism design, the sub-field of algorithm design under the assump-
tion that all agents are selfish (i.e., they only care about their own benefits
without consideration for the global performances or fairness issues) and yet
rational (i.e., they will always choose their actions to maximize their benefits).

A standard economic model for the design and analysis of scenarios in which
the participants act according to their own self-interests is as follows. Assume
that there are n agents {1, 2, · · · , i, · · · , n}, and each agent i has some private
information ti, called its type. For example, an agent could be a bidder in an
auction, and its type is its valuation of an auctioned item. For direct-revelation
mechanisms, the strategy of each agent i is to declare its type, and it may
choose to report a carefully designed lie to influence the outcome of the game to
its liking. For any vector t = (t1, t2, · · · , tn) of reported types, the mechanism
computes an output o as well as a payment pi for each agent i. For each possible
output o, agent i’s preference is defined by a valuation function vi(ti, o). The
utility of agent i for the outcome of the game is defined to be ui(o) = vi(o)+pi(o).

An agent is called rational, if it always picks its best strategy to maximize
its own utility. If the strategy picked by an agent is the best strategy regardless
of what other agents do, the strategy picket by the agent is called the dominant
strategy. A vector of strategies (where each agent picks a strategy) is called a
Nash equilibrium if no agent can deviate from its chosen strategy to improve
its utility when all other agents keep their strategies unchanged. Obviously, a
strategy vector where each agent chooses a dominant strategy is always a Nash
equilibrium. A mechanism is incentive compatible (IC) if reporting its type
truthfully is a dominant strategy for every agent. Another commonly desired
property for mechanism design is individual rationality : the agent’s utility of
participating in the output of the mechanism is at least the utility of the agent
if it did not participate at all. A mechanism is called truthful or strategyproof
if it satisfies both IC and IR properties.

A classical result in mechanism design is the Vickrey-Clarke-Groves (VCG)
mechanism by Vickrey [20], Clarke [5], and Groves [9]. The VCG mechanism
applies to maximization problems where the objective function g(o, t) is simply
the sum of all agents’ valuations. A VCG mechanism is always truthful [9],
and is the only truthful implementation, under mild assumptions, to maximize
the total valuation [8]. Although the family of VCG mechanisms is powerful,
it has its limitations. To use a VCG mechanism, we have to compute the
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exact solution that maximizes the total valuation of all agents. This makes the
mechanism computationally intractable for many optimization problems.

This work focuses on developing new mechanisms for strategic games that
can be formulated as different variants of the set cover problem, with three main
objectives. First of all, each mechanism has to be strategyproof by providing
incentives (such as payments made by service-receiving agents, or service re-
ceivers, to service-providing agents, or service providers). In addition, we aim
to achieve the following objectives, which are sometimes at odds with each other
and thus require proper tradeoffs.
Value Efficiency: To make mechanisms tractable, we have to adopt approx-

imation algorithms that compute only approximately optimal outcomes.
We say that a mechanism is α-value-efficient (or α-efficient for short) if its
output achieves a total valuation at least α times the optimal total valu-
ation for all outcomes that permit strategyproof mechanisms. For VCG
mechanisms, replacing the exact algorithm with an approximation algo-
rithm usually destroys incentive compatibility [16]. In this case, we shall
design new mechanisms that preserve incentive compatibility.
Observe that the value of the game defined here is different from the
traditionally used social welfare in the literature. The social welfare of
a solution A is defined as the total valuation of the elements served by
A, minus the total cost of service providers in A. Although our mecha-
nisms will not directly maximize the social welfare of the selected service
providers and the served elements, in our mechanisms, a set is selected to
provide service only if its cost is at most the total valuation of the elements
to be served by this set.

Budget Balance(BB): Frequently, a game involves a set of agents (service
receivers) who are willing to pay for receiving services, and the mechanism
needs to decide, based on the valuations of the services reported by all
agents, the subset S of agents who shall receive services and how much
they are charged. Let C(S) be the total cost incurred by providing services
to all agents in S and ξi(S) be the cost charged to each agent i ∈ S, then
cost-sharing method is

1. Cost Recovery if
∑

i∈S ξi(S) ≥ C(S), i.e., the cost of providing the
service is recovered from the agents.

2. Competitiveness if
∑

i∈S ξi(S) 6≥ C(S), i.e., no surplus is created
from the payments of agents. Competitiveness exists very often in
practice due to the reason that if there does exist surplus, a competi-
tor of the service provider can further reduce the price to attract the
agents.

If a cost-sharing method satisfies both cost recovery and competitiveness,
it is budget-balanced, i.e.,

∑
i∈S ξi(S) = C(S). It has been proved to be

impossible to achieve both budget balance and efficiency [15] simultane-
ously. Thus, we may seek a β-budget-balanced cost-sharing method such
that

∑
i∈S ξi(S) ≥ β · C(S), for some 0 < β < 1. Here, β is known as the

budget balance factor.
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Fair Cost-Sharing: Budget balance is only a measure of how good the cost-
sharing method is from a global point of view. We also need to address
how individual agent would view the cost-sharing method; we need to
make the method fair, encouraging agents to participate. In this paper we
will consider the following fairness measures [17]: cross-monotonicity (i.e.,
the cost share of an agent should not go up if more players require the
service), and fairness under core (i.e., the cost shares paid by any subset
of agents should not exceed the minimum cost of providing the service to
them alone, hence they have no incentives to secede). We also will design
mechanisms that avoid free-riders. Here a served element is free rider if its
payment is less than certain shared value computed using some method.

No Positive Transfers (NPT): The cost share by every element is non-negative.
Voluntary Participation (VP): The utility of each agent is guaranteed to

be non-negative if an element reports its bid truthfully.
Consumer Sovereignty (CS): When an agent’s bid is large enough, and oth-

ers’ bids are fixed, the agent will get the service.
In this paper, we focus on designing strategyproof mechanisms that satisfy

at least the following properties: NPT, VP, and CS. Among mechanisms sat-
isfying these properties, we want to design mechanisms that will find a set of
service providers (and a corresponding charge to each of the served elements)
to (approximately) maximize the valuation of served elements. Certain fairness
among served elements will also be considered.

1.2 Set Cover Games

A set cover game can be generally defined as the following. Let S = {S1, S2, · · · , Sm}
be a collection of multisets (or sets for short) of a universal set U = {e1, e2, · · · , en}.
Element ei is specified with an element coverage requirement ri (i.e., it desires to
be covered ri times). The multiplicity of an element ei in a set Sj is denoted by
kj,i. Let dmax be the maximum size of the sets in S, i.e., dmax = maxj

∑
i kj,i.

Here nj =
∑n

i=1 kj,i is the cardinality of set Sj . Each Sj is associated with a
cost cj . For any X ⊆ S, let c(X ) denote the total cost

∑
Sj∈X cj of the sets in

X .
Many practical problems can be reasonably formulated as a set cover game

defined above. For example, consider the following scenario: a business can
choose from a set of service providers S = {S1, S2, · · · , Sm} to provide services
to a set of service receivers U = {e1, e2, · · · , en}.

• With a fixed cost cj , each service provider Sj can provide services to a
fixed subset of service receivers.

• There may be a limit kj,i on the number of units of service that a service
provider Sj can provide to a service receiver ei. For example, each service
provider may be a cargo company that is transporting goods to various
cities (the service receivers), and the amount of goods that can be trans-
ported to a particular city daily is limited by the number of trains/trucks
that are going to that city everyday.
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• Each service receiver ei may have a limit ri on the number of units of
service that it desires to receive (and is willing to pay for).

The outcome of the game is a cover A, which is a subset of S. The mechanism
of the game is to determine an optimal (or approximately optimal) outcome
of the game, according to a pre-defined objective function. For example, for
set cover games where the sets are considered to be selfish agents whose total
cost is to be minimized [14], the mechanism needs to compute a cover Aopt

with the (approximately) minimum cost c(Aopt), among all covers A such that∑
Sj∈A kj,i ≥ ri.
There may be different variants of games according to various conditions

(with different objective functions):
1. Each service receiver ei has to receive at least ri units of service, and

the costs incurred by the service providers will be shared by the service
receivers.

2. Each service receiver ei declares a bid bi,r for the r-th unit of service it
shall receive, and is willing to pay for it only if the assigned cost is at most
bi,r.

3. Each service provider Sj declares a cost cj , and is willing to provide the
service only if the payment received from elements is at least cj .

1.3 Related Work

Devanur et al. [6] studied the strategyproof cost-sharing mechanisms for set
cover games, with elements considered to be selfish agents. In a game of this
type, each element will declare its bid indicating its valuation of being covered,
and the mechanism uses the greedy algorithm [4] (referred as greedy mechanism
hereafter) to compute a cover with an approximately minimum total cost. When
every element needs to be covered at most once, i.e., ri = 1 for each ei, Devanur
et al. proved that the greedy mechanism is BB and strategyproof, and satisfies
VP, NPT, and CS. In the meanwhile, Devanur et al. also showed that the
greedy mechanism is neither cross-monotonic nor group strategyproof. Here a
mechanism is group strategyproofness if for any group of agents who collude in
revealing their valuations, if no member is made worse off, then no member is
made better off. For general set cover game where each agent may request cover
for multiple times, the greedy mechanism is not strategyproof anymore.

The cross-monotonic property plays an vital role in set-cover game since,
given any cross-monotonic sharing method, one can explicitly designs a budget
balanced and group strategyproof mechanism that satisfies NPT, VP, and CS
by using the Moulin-Shenker mechanisms [15]. However, the cross-monotonic
property does have its limitations [10]. Immorlica et al. [10] provided bounds on
budget balance factor for cross-monotonic cost sharing schemes. More specifi-
cally, Immorlica et al. [10] showed that there is no cross monotonic cost sharing
scheme for the set cover game that achieves budget balance factor greater than
O( 1

dmax
), where dmax is the maximum number of elements can be covered by

any set.

5



Li et al. [14] extended the work of Devanur et al. [6] by providing a strat-
egyproof cost-sharing mechanism for multi-cover games. They also designed
several cost-sharing schemes to fairly distribute the costs of the selected sets
to the elements covered, for the case that both sets and elements are unselfish
(i.e., the will declare their costs/bids truthfully). The case of set cover games
where sets are considered as selfish agents was also considered.

Besides the budget balance issue, the efficiency or value efficiency issue is also
critical in the set cover game. Although generally, the efficiency is defined as the
cost incurred by the sets and the valuations of the elements should be traded
off in an optimal way, there are different definitions that may lead to different
outcomes. One common definition of efficiency is to require a mechanism to
choose a subset of the elements to maximize the social welfare, where the social
welfare is defined as the total valuation of the elements minus the total cost
of the sets selected. Several literatures [1, 2] have ruled out the existence of
mechanisms that satisfy strategyproofness and budget balance, and maximize
social welfare simultaneously. Moreover, Feigenbaum et al. [7] showed that no
strategyproof mechanism can recover α fraction of the maximum social welfare
and β fraction of the incurred cost simultaneously for any pair of constants α
and β for the fixed-tree multicast. Recently, Roughgarden et al. [18] proposed
to define the efficiency as minimizing the social cost, where social cost is the sum
of incurred cost of the sets plus the valuation of the elements that do not receive
the service. Under their definition, they showed that there exists a mechanism
that achieves strategyproofness, budget balance, and approximately minimizes
social cost for several games including the Steiner tree problem.

1.4 Our Results and Organization of Paper

In this paper, we approach the question of multiset multi-cover set cover problem
from a different perspective. We design greedy set cover methods that are aware
of the fact that the service receivers or the service providers are selfish and
rational. It still remains a challenge to study the case when both the service
receivers and the service providers are selfish and rational. When the elements
to be covered are selfish agents with privately known valuations, we first show
that the strategyproof mechanism designed by a straightforward application of
cross-monotonic cost-sharing scheme is not α-efficient for any α > 0. We then
present a strategyproof charging mechanism such that the total valuation of
the elements covered is at least 1

dmax
times that of an optimal solution. This

mechanism, however, may have free-riders: some elements do not have to pay
at all and is still covered. We continue to present a strategyproof mechanism
without free-riders and it is at least 1

dmax ln dmax
-efficient. When the sets are also

selfish agents with privately known costs, we show that the cross-monotonic
payment-sharing scheme does not induce a strategyproof mechanism: a set could
lie its cost downward to improve its utility. This is a sharp contrast to the
theorem proved in [15] that a cross-monotonic cost-sharing scheme implies a
strategyproof mechanism for selfish elements. The positive side is that the
mechanism is still strategyproof for elements, i.e., no element can lie about its
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bids to improve its utility.
The rest of the paper is organized as follows. In Section 2, we give some

general properties of the set cover games when the elements (also called service
receivers) are selfish. In Section 3, we present a strategyproof mechanism for
selfish receivers and we prove that the mechanism is approximately efficient.
We then extend our results for the case that the elements may have multiple
coverage requirement in Section 4. In Section 5, we study the scenario when
both the service providers (i.e., sets) and the service receivers (i.e., elements) are
selfish agents. We show that a cross-monotonic payment-sharing scheme does
not induce a strategyproof mechanism. In Section 6, we present our simulation
results that demonstrate the efficiencies of the mechanisms presented in this
paper. We conclude our paper in Section 7 with the discussion of some future
works.

2 Selfish Service Receivers

Typically, the objective function of a game is defined to be the total valuation
of the agents selected by the outcome of the game. In set cover games, when
sets are considered to be agents (e.g., [14]), maximizing the total valuation of
all selected agents is equivalent to minimizing the total cost of all selected sets.
However, if the elements are considered to be agents, the objective becomes to
maximize the total valuation of all elements (i.e., the sum of all bids covered).
Correspondingly, we need to solve the following optimization problem:

Problem 1 Each element ei is associated with a coverage requirement ri as
well as a set of bids Bi = {bi,1, bi,2, · · · , bi,ri} such that bi,1 ≥ bi,2 ≥ · · · ≥ bi,ri .
An assignment A is defined as the following:

(i) A ⊆ S;
(ii) a bid bi,r can be assigned to at most one set Sπ(i,r) ∈ A;
(iii) For any Sj ∈ A, the assigned value νj(A) =

∑
π(i,r)=j bi,r is at least cj.

If this is the case, then Sj is called “affordable”;
(iv) κj,i ≤ kj,i, where κj,i is the number of bids of ei assigned to Sj;
(v) if the number γi of assigned bids of ei is less than ri, then the assigned

bids must be the first γi bids (with the greatest bid values) of ei.
The total value V (A) =

∑
Sj∈A νj(A) of an assignment A is the sum of all

assigned bids in A. The problem is to find an assignment with the maximum
total value.

This problem is NP-hard. In fact, the weighted set packing problem, which
is NP-complete, can be viewed as a special case of this problem, with ri = 1
and bi,1 = 1 for each ei and cost cj = |Sj | (the cardinality of set Sj) for each
Sj . Therefore, the VCG mechanism cannot be used here if polynomial-time
computability is required. In the rest of the paper, we concentrate on designing
approximately efficient and polynomial-time computable strategyproof mecha-
nisms that satisfy some properties such as NPT, VP, and CS. Note a mechanism
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needs to compute a family of sets as assignment, the number of times that each
of the elements will be served, and the charge to each of the served elements.

All our methods follow a round-based greedy approach. Let Agrd be the
current family of sets chosen by our greedy approach. Initially, Agrd = ∅. In
each round t = 1, 2, · · · , we select some set Sjt

to cover some elements. We
will describe how we select the set Sjt for each round in detail later. After the
s-th round, we define the remaining required coverage r′i of an element ei to be
ri −

∑s
t′=1 κjt′ ,i. For any Sj 6∈ Agrd, the effective coverage k′j,i of ei by Sj is

defined to be min{kj,i, r
′
i}. The effective value (or value for short) vj of Sj is

therefore
∑n

i=1

∑k′j,i

r=1 bi,ri−r′i+r and it is affordable after s-th round if vj ≥ cj .
One scheme to solve the preceding proposed problem is to select a set Sj as

long as it is still affordable, and assign all appropriate bids to Sj . However, in
this case an element may find it profitable to lie about its bid, as we will show
in Section 3. An alternative scheme is to pick a set only if it is individually
affordable, as defined as the following:

Definition 1 A set Sj is individually affordable by d bids of elements contained
in Sj if it contains at least d elements each with a bid value at least cj

d , for some
d > 0.

Consequently, only the d largest bids are assigned to Sj , for the maximum
d such that Sj is individually affordable by d bids. Notice that here an implicit
assumption is that each set Sj can selectively provide coverage to a subset of
elements contained by Sj . This is to prevent anybody from taking “free rides.”

Definition 2 The modified value ṽj of Sj is defined to be the total value of the
d elements contained in Sj with the d largest bids for Sj, where d is the largest
integer that the set Sj is individually affordable by d bids.

In essence, this scheme is contradictory to our objective of maximizing total
valuation. We throw away bids that can otherwise be assigned (without incur-
ring any extra cost) to a set. Further, we may discard an affordable set with a
value much greater than its cost (see Theorem 1). However, to achieve strate-
gyproofness while avoiding free riders, it is somewhat another form of “price of
anarchy”, i.e., the amount of suffering to a society due to lack of coordination
in a game1.

The following lemma gives upper bounds on the total value lost by enforcing
individually affordable sets:

Theorem 1 For any set Sj ∈ S,
1.1) if Sj is individually affordable, the modified value ṽj is at least 1

ln dmax
fraction of its value vj;

1.2) if Sj is not individually affordable, its value is no more than ln dmax times
the cost cj of Sj.

1Price of anarchy [12] is defined as the ratio of the optimal social utility over the worst
Nash equilibrium.
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Proof. Let b1, b2, · · · , bx be the bids currently contained in Sj . Without
loss of generality, we assume that b1 ≤ b2 ≤ · · · ≤ bx. If Sj is individually
affordable by d bids but not by d + 1 bids, we have the following inequalities:
1) br <

cj

x+1−r ,∀r ≤ x− d; 2) br ≥ cj

d , ∀r > x− d.
Obviously, cj ≤ d · bx−d+1 ≤

∑x
r=x−d+1 br = ṽj . Therefore, we have

vj =
x−d∑
r=1

br +
x∑

r=x−d+1

br <

x−d∑
r=1

cj

x + 1− r
+ ṽj

≤ (ln x− 1) · cj + ṽj ≤ ln x · ṽj ≤ ln dmax · ṽj .

This proves Theorem 1.1.
Theorem 1.2 can be proved similarly.

The bound is tight, as we can have a set with a cost of 1 + ε, and with dmax

bids 1
dmax

, 1
dmax−1 , · · · , 1

2 , 1.

3 Single Cover Games

In this section we first study the case where each element only needs to be
covered once, i.e., ri = 1 for each ei ∈ U . This corresponds to the traditional
set cover problem.

An obvious solution to designing a strategyproof mechanism for single-cover
set cover games is to use a cross-monotone cost-sharing scheme based on a
theorem proved in [15]: a cross-monotone cost-sharing scheme implies a group-
strategyproof mechanism when the cost function is submodular, non-negative,
and non-decreasing. A cost function C is submodular if C(T1)+C(T2) ≥ C(T1∪
T2)+C(T1 ∩T2) for any T1, T2, and is non-decreasing if C(T1) ≤ C(T2) for any
T1 ⊆ T2.

For set cover games, it is not difficult to show by example that the following
cost functions are not submodular: the cost c(Aopt) defined by the optimal cover
Aopt of a set of elements, and the cost defined by the traditional greedy method
(i.e., in every round we select the set Sj with the minimum ratio of cost cj over
the number of elements covered by Sj and not covered by sets selected before)2.
Even if a cost function is submodular, sometimes it may be NP-hard to compute
this cost, and thus we cannot use this cost function to design a strategyproof
mechanism.

It was shown in [14] that there is a cost function that is indeed submodular:
for each element ei ∈ T , we select the set Sj with the least cost that covers ei

(Least Cost Set, or LCS). Let Alcs(T ) be all sets selected as above to cover a set
of elements T . Then c(Alcs) is submodular, non-decreasing, and non-negative.
Notice that, if it is a multi-cover set cover game, each set Sj is only eligible to
cover an element ei kj,i times.

2Notice that the greedy method we will present later is different from this traditional greedy
set cover method.
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Given the cost function c(Alcs), it was shown in [14] that the cost-sharing
method ξi(T ), defined as ξi(T ) =

∑
Sj∈Alcs(T )

κj,i·cj∑
a κj,a

, is budget-balanced, cross-
monotone and in a 1

2n -core. Here κj,i is the number of bids of ei assigned to
Sj . For a single-cover set cover game, based on the method described in [15],
given the single bid bi by each element ei, we can define a mechanism M(ξ) as
in Algorithm 1. T outcome is computed as the limit, denoted by Ũ(ξ, b), of the
following inclusion monotonic sequence:

S0 = U ; St+1 = {ei | bi ≥ ξi(St)}

and the charge by M(ξ) to an element ei is ξi(Ũ(ξ, b)).

Algorithm 1 Mechanism for single cover games via cost-sharing.
1: S0 = U ; t = 0;
2: repeat
3: St+1 = {ei | bi ≥ ξi(St)}; t = t + 1;
4: until St−1 = St

5: The output of mechanism M(ξ) is Ũ(ξ, b) = St,
6: The charge by M(ξ) to an element ei is ξi(Ũ(ξ, b)).

The following theorem is directly implied by the result in [15].

Theorem 2 The mechanism M(ξ) is group-strategyproof, budget-balanced, and
meets NPT, CS, and VP.

However, this mechanism is not efficient at all: we will show by example
that it is possible that the total valuation achieved by this mechanism is 0 while
the maximum total valuation achieved is a positive number. In other words,
this mechanism cannot be α-efficient for any α > 0. Figure 1 illustrates such
an example. It is easy to show that no element will be selected by mechanism

b  =2.5

c  =51 c  =42 c  =33

1b  =3.5 2 2

c  =51 c  =42 c  =33

1b  =3.5 2b  =2.5ξ  =4 ξ  =31

(a) original game (b) LCS output

Figure 1: An example that the mechanism M(ξ) is not efficient. In all figures, sets
are represented by ovals while elements are represented by rectangles. A dashed link
(with arrow) between an oval and a rectangle denotes that the set contains one copy
of the element. A solid link (with arrow) between an oval and a rectangle denotes that
the set is selected to cover the element.

M(ξ). On the other hand, if we choose S2 to cover elements {e1, e2} and charge
each elements 1

2 · c2 = 2, each element has a positive utility and the game has
its maximum total valuation 3.5 + 2.5 = 6. Observe that, for this special game
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instance, the solution that uses set S2 to provide services to elements e1 and e2

(and charge them each 2) clearly has properties of NPT, CS and VP.
Note that the social welfare achieved by the mechanism M(ξ) is 0, while

the social welfare achieved by the preceding simple solution is 6− 4 = 2. Then
the above example shows that the mechanism M(ξ) is not social efficient also,
i.e., for any number α, M(ξ) cannot guarantee that the social welfare achieved
by M(ξ) is at least α fraction of the optimum mechanism for all possible game
instances.

Next, in Algorithm 2, we describe a new greedy algorithm that computes
for a single cover game an approximately optimal assignment Agrd. Starting
with Agrd = ∅, in each round t′ the algorithm adds to Agrd a set Sjt′ with the
maximum effective value.

Algorithm 2 Greedy algorithm for single cover games.
1: Agrd←∅.
2: for all Sj ∈ S do
3: compute effective value vj .
4: end for
5: while S 6= ∅ do
6: pick set St in S with the maximum effective value vt.
7: Agrd←Agrd ∪ {St}, S←S \ {St}.
8: for all ei ∈ St do
9: π(i, 1)←t.

10: remove ei from all Sj ∈ S.
11: end for
12: for all Sj ∈ S do
13: update effective value vj .
14: if vj < cj then
15: S←S \ {Sj}.
16: end if
17: end for
18: end while

The following theorem establishes an approximation bound for the algo-
rithm.

Theorem 3 Algorithm 2 computes an assignment Agrd with a total value V (Agrd) ≥
1

dmax
· V (Aopt).

Proof. Let Sk be a set selected by Aopt (with some assigned bids). Before
Algorithm 2 adds any set to Agrd, Sk is affordable. When the algorithm finishes,
no more set in S \Agrd is affordable, and therefore at least one bid assigned to
Sk in Aopt must have been assigned to a set in Agrd (which could be Sk itself).

Let Sak
be the first set in Agrd that takes bid(s) assigned to Sk in Aopt.

Consider the current value vak
of Sak

and the current value vk of Sk right
before Sak

is added into Agrd. Since till now no set in Agrd has taken a bid
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assigned to Sk in Aopt, vk should be at least the assigned value νk(Aopt) of Sk

in Aopt. However, by the greedy nature of our algorithm, vk ≤ vak
. Therefore,

we have νk(Aopt) ≤ vk ≤ vak
= νak

(Agrd), as we assign all existing bids in Sak

to it when we add Sak
into Agrd (see Line 8 of Algorithm 2).

This way, we can “charge” the assigned value νk(Aopt) of each set Sk ∈ Aopt

to a set Sak
∈ Agrd with at least the same assigned value. Since each set in

Agrd can only take bids assigned to at most dmax sets in Aopt (and hence be
charged at most dmax times), the total value V (Aopt) of Aopt is at most dmax

times the total value V (Agrd) of Agrd.

It is easy to show that the above bound is tight by constructing an example.
Next we show how to compute the payment charged to each element in a

strategyproof mechanism. In many problems, the total payment is often less
than the total cost incurred by the service providers in order to guarantee strat-
egyproofness and therefore the mechanisms are not budget-balanced. However,
it is important to note that even in this scenario we still want to guarantee that
the total valuation of the service receivers covered by any particular service
provider is at least the cost of this service provider; otherwise it is not worth-
while to select this service provider in terms of the social efficiency. When the
mechanism runs into deficit, it is traditionally assumed that there is an outsider
banker (e.g., the government) who will subsidize the costs of the sets.

The payment pi,1 of each bid bi,1 can be decided according to Algorithm 3
using a round-based approach. Algorithm 3 examines all possible cases that an
element ei can lie about its bid bi,1 while still ensuring that bi,1 is assigned to a
set in Agrd, and charge ei the minimum bid value in all these cases.

Intuitively, Algorithm 3 runs Algorithm 2 without the participation of ei

(i.e., not including bi,1 when evaluating the value vj of each Sj 3 ei). As ei

is “watching” the set selection process, every time a set St is picked, it would
record for each set Sj 3 ei, how much it needs to raise its bid bi,1 so that Sj can
beat St in this round (so that Sj is selected and consequently bi,1 is assigned),
as shown in Line 16 of Algorithm 3.

Just like in Algorithm 2, we maintain a priority queue containing all sets
using their weights as keys, so that in each round we can extract the set with the
maximum value. However, when a set Sj 3 ei becomes unaffordable (because
of losing bids to sets already picked), we need to handle it differently. In this
case, ei has to raise its bid bi,1 at least to cj − vj ; otherwise Sj will still not be
qualified to be selected. To beat a set St being picked, ei might have to raise
its bid even further, a situation already handled in Line 16. On the other hand,
with a value equal to cj , it may already be sufficient for Sj to get picked; in this
case, ei does not need to report a bid more than cj− (vj− bi,1). This is handled
in Line 12.

We have the following theorem on the above cost-sharing mechanism:

Theorem 4 The cost-sharing mechanism defined in Algorithm 3 is strategyproof.

Proof. It is easy to show that Algorithm 3 actually computes the minimum
bid that an agent can report such that it is still selected in the outcome if it is
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originally selected. Since the set-cover game is a binary demand game [11, 13, 3],
in which each element is either selected or not, and Algorithm 2 satisfies the
monotonicity property (if an element is selected with a bid b, then it will be
selected with a higher bid) defined in [11], the result proved in [11] implies that
Algorithm 3 is strategyproof.

Notice that Algorithm 2 and Algorithm 3 together may produce an output
such that the payment by a certain element is 0. For example, see the set cover
game illustrated by Figure 2 (a). It is easy to show that, according to Algorithm
3, the payments by both elements e1 and e2 are 0 since each element can lie its
bid to as low as 0 and still get covered.

3

b  =4b  =4 21

c  =51 c  =42 c  =3

2b  =4b  =4 21

c  =51 c  =42 c  =33

2 p  =43p  =5

ξ  =5 ξ  =41 2b  =4b  =4 21

c  =51 c  =42 c  =33
p  =43

ξ  =4 2b  =4b  =4 21

c  =51 c  =22 c  =33

2p  =5

ξ  =3.5 ξ  =1.51

(a) sets-elements (b) LCS output (c) selected elements (d) output if S2 lies

Figure 2: An example that a set can lie its cost to improve its utility when LCS is
used as output.

To avoid this zero payment problem, we use a slightly different algorithm to
determine the outcome of the game. Our modified greedy method (described in
Algorithm 4) instead only selects individually affordable sets. When a set Sj is
added into Agrd, the algorithm only assigns to Sj the largest d bids, such that
Sj is individually affordable with d bids, for the maximum such d.

Obviously, Algorithm 4 satisfies the monotone property defined in [11]: when
an element ei was selected with a bid bi,1, then it will always be selected with
a bid bi,1 > bi,1. This monotone property implies that there is always a strat-
egyproof mechanism using Algorithm 4 to compute its output. It is easy to
show that Algorithm 4 is a round-based greedy method that satisfies the cross-
independence property defined in [11]. Thus, the payment to each element can
always be computed in polynomial time. The algorithm that computes the
payment in polynomial time is omitted here due to space limit.

We have the following theorems on the approximate value-efficiency of the
modified greedy algorithm:

Theorem 5 Consider all mechanisms M′ in which only individually affordable
sets are allowed to be picked. Then the assignment Agrd computed by Algorithm
4 has a total value at least 1

dmax
· V (Aopt). Here A′opt is the optimal assignment

in M′ with the largest total valuation.

The proof of Theorem 5 is similar to that of Theorem 3 and thus is omitted.

Theorem 6 Assume that all sets in S are individually affordable initially.
Then the assignment Agrd computed by Algorithm 4 has a total value at least

1
2dmax

· V (Aopt). Here Aopt is the optimal assignment of all mechanisms that
may allow sets that are not individually affordable.
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Proof. Let Sk be a set selected byAopt, and let b1, b2, · · · , bx be all bids initially
contained in Sk (not necessarily assigned to Sk in Aopt). Since Sk is individually
affordable at the beginning, there exists a d such that: 1) br < ck

x+1−r , ∀r ≤ x−d;
2) br ≥ ck

d ,∀r > x − d. Therefore, the value of Sk is vk =
∑x

r=1 br, and the
modified value of Sk is ṽk =

∑x
r=x−d+1 br.

Again, after the greedy algorithm finishes, Sk must have at least one of the
bids bx−d+1, bx−d+2, · · · , bx assigned to a set added into Agrd. Let Sak

be the
first set chosen by Agrd that takes a bid by, where x− d + 1 ≤ y ≤ x. Then, at
the moment Sak

is selected, we have ṽk ≤ ṽak
= νak

(Agrd) due to the nature of
the greedy algorithm. Further, since by ≥ ck

d , we have

x−d∑
r=1

br < ck · (
x−d∑
r=1

1
x + 1− r

) ≤ by · d · (
x−d∑
r=1

1
x + 1− r

)

= by · d · (Hx −Hd) < by · d · (1 + lnx− ln d)
≤ by · x ≤ by · dmax.

Here Hx is the harmonic function, i.e., Hx = 1+ 1
2 + 1

3 + · · ·+ 1
x . Therefore,

to bound the value vk of each Sk ∈ Aopt, we split it into two different parts
and bound them separately: the part ṽk is no more than νak

(Agrd), and the
remaining part vk − ṽk (which is exactly the sum of the bids b1, · · · , bx−d) is no
more than dmax · by.

Now consider each set Sq ∈ Agrd. It is assigned with no more than dmax

bids that are assigned to different sets in Aopt, and therefore may be charged
at most dmax times for its assigned value νak

(Agrd). Further, for each of its
assigned bids bz, Sq may be charged for dmax times bz, if bz is assigned to a set
in Aopt. Therefore, in total each Sq ∈ Agrd is charged for at most 2dmax times
its assigned value, implying that

2dmax · V (Agrd) = 2dmax ·
∑

Sq∈Agrd

ṽq ≥
∑

Sk∈Aopt

vk

≥
∑

Sk∈Aopt

νk(Aopt) = V (Aopt).

This finishes the proof.

Unfortunately, the preceding algorithm still cannot guarantee a bound on
the value-efficiency for all possible games. Consider a set-cover instance with
one set that costs 1 + ε and k bids 1/k, 1/k − 1, · · · , 1/2, 1. Clearly, Aopt has
efficiency approximately Hk ' ln k. The preceding algorithm gives 0 since the
set is not ’individiually affordable’ for any d. It remains an interesting future
work to design mechanisms that guarantee a certain bound on value-efficiency
for all set-cover games.

To compute the payment of each element ei for its assigned bid, we use an
algorithm similar to Algorithm 3. The only differences are:

• in Line 3 we compute the modified values for the sets;
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• in Line 5 we replace vj − bi,1 by the modified value of Sj after bid bi,1 is
removed (or, equivalently, bi,1 is considered to be 0);

• in Line 12, ei has to raise its bid bi,1 not only to make sure that St is
individually affordable, but also to let bi,1 become one of the largest d
bids in St, for some d > 0 such that St is individually affordable by d bids;

• in Line 16, ei has to raise its bid bi,1 to make sure that the modified value
of a certain set Sj 3 ei is larger than the modified value of the set St

currently being selected.
Furthermore when an element ei is covered by a set that is individually afford-
able by d elements, then the bid of ei cannot be less than cj/d for some Sj ,
which is not necessarily the set covering ei. Thus, we know the payment by
element ei is at least cj/d, which prevents free-riders.

4 Multi-cover Games

Theorem 3 and Theorems 5, 6 can easily be extended to the case of multi-cover.
However, when it comes to computing payments, there is a problem: in the
multi-cover case, an element can lie in different ways, and it may not be of its
best interest if it achieves the maximum utility in the first bid (or the last bid).
In that case, how can we compute payments efficiently? In this section we study
the multi-cover games.

To overcome the computational complexity of computing payments, we need
to instead use a different greedy algorithm to compute the outcome of the game.
This algorithm is the same as Algorithm 3 of [14]. For the completeness of our
presentation, we include it (with minor notational changes) as Algorithm 5 here.

In [14] it is shown that this mechanism produces an outcome with a total
cost no more than ln dmax times the total cost of an optimal outcome. In the
following we show that the outcome is also approximately efficient with respect
to the total valuation of the assigned (covered) bids.

Theorem 7 Algorithm 5 (Algorithm 3 of [14]) defines a budget-balanced and
strategyproof mechanism. Further, it is 1

dmaxHdmax
-efficient, if all sets are indi-

vidually affordable initially.

Proof. The budget-balance part is obvious. The proof for strategyproofness is
the same as in [14]. In the following we prove that this mechanism is 1

dmaxHdmax

efficiency. Let Sk be a set in Aopt. When Algorithm 5 finishes, at least one bid
assigned to Sk in Aopt must have been assigned to a set in Agrd. Otherwise,
due to the monotonicity of the bids, for each element ei, the currently available
bids should be at least the ones assigned to Sk in Aopt. This implies that Sk is
still individually affordable, a contradiction.

Let Bk = {b1, b2, · · · , bx} be all x bids assigned to Sk in Aopt and without
loss of generality let B′

k = {b1, b2, · · · , by} be the subset of Bk containing all
bids already assigned to sets in Agrd right after Sk becomes individually un-
affordable. For our convenience, we assume that b1 ≤ b2 ≤ · · · ≤ by. Clearly,
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by+1, by+2, · · · , bx cannot make Sk individually affordable. On the other hand,
we claim that by belongs to a subset of Sk that makes Sk individually affordable;
otherwise, losing B′

k will not make Sk individually unaffordable. Hence, we have
1)

∑x
r=y+1 br <

∑x
r=y+1

ck

x−r+1 , 2) by ≥ ck

dmax
. Therefore,

νk(Aopt) =
y∑

r=1

br +
x∑

r=y+1

br ≤
y∑

r=1

by +
x∑

r=y+1

ck

x− r + 1

≤ by ·
y∑

r=1

dmax

x− r + 1
+ dmax · by ·

x∑
r=y+1

1
x− r + 1

≤ dmax · by ·
x∑

r=1

1
x− r + 1

≤ dmax ·Hdmax · by

Let Sak
be the set in Agrd that is assigned with bid by. Then we can “charge”

Sak
for dmax ·Hdmax times by. Therefore, the value V (Aopt) of Aopt is no more

than dmax ·Hdmax times the value V (Agrd) of Agrd.
This finishes the proof.

The above bound is tight. We may construct an example with d2
max elements,

e1,1, e1,2, · · · , edmax,dmax , and dmax + 1 sets, Sj = {ej,1, ej,2, · · · , ej,dmax} for
1 ≤ j ≤ dmax and Sdmax+1 = {e1,1, e2,1, · · · , edmax,1}. The bid for each element
eu,v is 1+ ε if v = 1 or dmax

dmax−v+1 if v > 1, and the cost of each set Sj is dmax + ε

if j ≤ dmax or dmax
2 if j = dmax + 1. Obviously all these sets are individually

affordable at the beginning. Algorithm 5 picks set Sdmax+1 first, because its
average shared cost, which is 1

2 , is the smallest among all sets. However, once
Sdmax+1 is added into Agrd, none of the remaining sets is individually affordable,
and thus the algorithm terminates with an assignment with a value dmax ·(1+ε).
The optimal assignment is to select sets S1, S2, · · · , Sdmax , with a total value of
d2
max · (Hdmax + ε).

5 Selfish Service Providers and Receivers

So far, we assume that the cost of each set is publicly known or each set will
truthfully declare its cost. In practice, it is possible that each set could also be
a selfish agent that will maximize its own benefit, i.e., it will provide the service
only if it receives a payment by some elements (not necessarily the elements
covered by itself) large enough to cover its cost. In [14], Li et al. designed
several truthful payment schemes to selfish sets such that each set maximizes
its utility when it truthfully declares its cost and the covered elements will pay
whatever a charge computed by the mechanism. They also designed a payment
sharing scheme that is budget-balanced and in the core.

To complete the study, in this section, we study the scenario when both the
sets and the elements are individual selfish agents: each set Sj has a privately
known cost cj , while each element ei has a privately known bid bi,r for the r-th
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unit of service it shall receive and is willing to pay for it only if the assigned
cost is at most bi,r. It is well-known that a cross-monotone cost sharing scheme
implies a strategyproof mechanism [15]. Unfortunately, since the sets are selfish
agents, it is impossible to design any cost-sharing scheme here, and the best
we can do is to design some payment sharing scheme. It was shown in [21]
that a cross-monotone payment sharing scheme does not necessarily induce a
strategyproof mechanism by using multicast as a running example: a relay node
could lie its cost upward or downward to improve its utility.

Given a subset of elements T ⊆ U and their coverage requirement ri for
ei ∈ T , a collection of multisets S, and each set Sj ∈ S with cost cj , let MS

be a strategyproof mechanism for selfish elements that will determine which
sets from S will be selected to provide the coverage to all elements T , and the
payment pj to each set Sj . We assume that the mechanism is normalized: the
payment to a unselected set Sj is always 0. Based on two monotonic output
methods, the traditional greedy set cover method (denoted as GRD) and the
least cost set method (denoted as LCS) for each element, Li et al. [14] designed
two strategyproof mechanisms for set cover games.

Let E(Sj , c, T, MS) be the set of elements covered by Sj in the output of MS .
In the remaining of the paper, we assume that the mechanism MS satisfies the
property that if a set Sj increases its cost then the set of elements covered by Sj

in the output of MS will not increase, i.e., E(Sj , c|jd, T, MS) ⊆ E(Sj , c, T, MS)
for d > cj . Here c|jd = (c1, · · · , cj−1, d, cj+1, · · · , cm), i.e., each agent k 6= j
reports its cost ck except that agent j reports cost d. This property is satisfied
by all methods currently known for set cover games.

Let ξi,j(T ) be the shared payment by element ei for its jth copy when the set
of elements to be covered is T , given a strategyproof payment scheme MS to all
sets. Following the method described in [15], given the set U of n elements and
their bids B1, · · · , Bn we can compute the outcome Ũ(ξ, B) as the limit of the
following inclusion monotonic sequence: S0 = U ; St+1 = {ei | bi,j ≥ ξi,j(St)}.
Notice that here we have to recompute the payments to all sets, and thus the
shared payments by all elements, when the set of elements to be covered changed
from St to St+1. In other words, we define a mechanism ME(ξ) associated with
the payment sharing method ξ as follows: the set of elements to be covered is
Ũ(ξ,B), the charge to the j-th copy of element ei is ξi,j(Ũ(ξ, B)) if ei ∈ Ũ(ξ,B);
otherwise its charge is 0. Based on the strategyproof mechanism using LCS as
output for set cover games, Li et al. [14] designed a payment sharing mechanism
that is budget-balanced, cross-monotone, and in the core.

In the remaining of the paper, we assume that for the payment-sharing
mechanism ξ, the payment pj to the set Sj is only shared among the elements,
i.e., E(Sj , c, T, MS), covered by Sj . This property is satisfied by the payment-
sharing methods studied in [14] for set cover games.

For the set cover games, we prove the following theorem:

Theorem 8 For set cover games with selfish sets and elements, a strategyproof
mechanism MS to sets and a cross-monotone payment sharing scheme ξ for
elements imply that in mechanism ME each set Sj cannot improve its utility by
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lying upward its cost.

Proof. At current moment, for the sake of simplicity, we assume that any
set does not change its declared cost. Thus, the payment to each set will not
change. Since the payment sharing scheme is cross-monotone, any group of ele-
ments cannot change their bids to increase the utility of some elements without
decreasing the utility of some other elements in this group.

We then show that each set indeed does not have incentives to lie about its
cost upward. Notice that since the payment scheme to each set is strategyproof
by assumption, any set cannot lie about its cost to increase its payment when it
is selected to cover some elements. In other words, its utility cannot be increased
as long as it is selected in the final outcome. Consequently, the only scenario
that a selfish set Sj may increase its utility is that (1) it is selected to cover
some elements initially when it declares its true cost cj and each element ei is
assumed to have an infinitely large bid bi,j ; 3 (2) it is not selected if it declares
its true cost cj because the corresponding charges to some elements are not
affordable, i.e., larger than the bids of elements; 4 and (3) it will be selected if
it declares a false cost cj , i.e., the corresponding charges will be no more than
the bids of elements. We will show that this is impossible if cj > cj .

Assume that the declared costs of all sets other than Sj are fixed and the
declared bids of all elements are fixed. Let pj be the payment to set Sj . Since the
payment scheme to sets are strategyproof, pj is independent of its declared cost.
If the set Sj lies its cost upward as cj > cj , then the set of elements that will be
covered by Sj is only a subset of the elements previously covered by Sj . Since the
payment pj to Sj is only shared among elements E(Sj , c|jcj , T,MS), the cross-
monotonicity of the payment-sharing method ξ implies that the shared payment
of each element ei in E(Sj , c|jcj , T, MS) is not smaller than its shared payment
if Sj did not lie its cost. Remember that the set Sj is not affordable when it
reports its cost cj , i.e., the total amount of bids of elements in E(Sj , c, T, MS)
for their copy covered by Sj is less than pj . Consequently, the set Sj is still not
affordable when it reports its cost as cj > cj . This finishes the proof.

Unfortunately, for set cover games, we show that a strategyproof mechanism
MS to sets and a cross-monotone payment sharing scheme ξ do not induce a
strategyproof mechanism ME for each element. Figure 2 illustrates such an
example when LCS is used as the output, a set sj can lie its cost downward to
improve its utility from 0 to pj−cj . A similar example can be constructed when
the traditional greedy method is used as the output. When set S2 is truthful,
although LCS will select it to cover element e1 with payment p2 = 5, but the
corresponding sharing by e1 is ξ1 = 5, which is larger than its bid b1,1 = 4.
Consequently, set S2 will not be selected and element e1 will not be covered
(see Figure 2 (c)). On the other hand, if S2 lies its cost downward to c2 = 2, its

3We need this condition because otherwise its payment will always be no more than its
cost from the strategyproof property. Notice that when it is not selected its utility is 0.

4This condition makes sure that it does have incentives to lie. Otherwise its payment will
be fixed when it is selected.
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payment is still p2 = 5, but now, since it covers elements e1 and e2, the shared
payments by e1 and e2 become ξ1 = 3.5 and ξ2 = 1.5. Thus, the set S2 becomes
affordable by elements e1 and e2.

We leave it as future work to study whether there exists a strategyproof
mechanism to select selfish sets to cover selfish elements using the combination
of a strategyproof mechanism for sets, and a good payment-sharing method for
elements. Notice that since this is still a binary-demand game [11], any truthful
mechanism must use an output method that is monotone for both the sets and
the elements: when a selected set decreases its cost, it will still be selected to
provide service; when a selected receiver increases its bid, it will still be selected
to receive service.

6 Simulation Studies

In this paper, we presented three different mechanisms for single-cover set-
cover-games. Mechanism 1 (called method 1 in Figures 3 and 4) is based on
a cross-monotone cost-sharing scheme and thus is budget-balanced and group-
strategyproof. However, in the worse case it cannot be α-efficient for any α > 0.
Mechanism 2 (called method 2 in our simulations) based on Algorithm 2 and
3 produces an output that has a total valuation at least 1

dmax
of the optimal.

However, this mechanism may charge an element 0 payment; thus, it cannot
be β-budget-balance for any β > 0. Mechanism 3 (called method 3 in our
simulations) based on Algorithm 4 avoids this zero payment problem, but it
is only 1

2dmax
-efficient under some assumptions. Further the general mechanism

based on Algorithm 5 produces a budget-balanced mechanism that is 1
dmax·Hdmax

-
efficient.
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Figure 3: The efficiency achieved by different methods compared with the total val-
uations. Here the number of sets is fixed to 50.

We conducted extensive simulations to study the actual total valuations of
all these three methods compared with the total valuations of all elements in
this game. Figures 3 and 4 illustrate our simulation results. In our simulations,
we run 1000 instances for each setting and then take the average performances
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Figure 4: The efficiency achieved by different methods compared with the total val-
uations. Here the number of elements is fixed to 200.

of these 1000 instances as a point plotted in the figures. We either fixed the
number n of elements or the number of sets. In Figure 3, we fixed the number
of sets to 50. In Figure 3 (a), we set the element cost as a real number between
0 and 1; the number of elements per set is randomly chosen between [ n

m , 5n
m ];

and the cost of each set Si is randomly chosen between [ |Si|
4 , 3|Si|

4 ]. In Figure 3
(b), we set the element cost as a real number between 1 and 2; the number of
elements per set is randomly chosen between [ n

m , 5n
m ]; and the cost of each set Si

is randomly chosen between [|Si|, 2|Si|]. In Figure 3 (c), we set the element cost
as a real number between 1 and 2; the number of elements per set is randomly
chosen between [ n

m , 11n
m ]; and the cost of each set Si is randomly chosen between

[|Si|, 2|Si|]. In Figure 4, we fixed the number of elements to 200. In Figure 4
(a), we set the element cost as a real number between 0 and 1; the number of
elements per set is randomly chosen between [ n

m , 5n
m ]; and the cost of each set Si

is randomly chosen between [ |Si|
4 , 3|Si|

4 ]. In Figure 4 (b), we set the element cost
as a real number between 1 and 2; the number of elements per set is randomly
chosen between [ n

m , 5n
m ]; and the cost of each set Si is randomly chosen between

[|Si|, 2|Si|]. In Figure 4 (c), we set the element cost as a real number between
1 and 2; the number of elements per set is randomly chosen between [ n

m , 11n
m ];

and the cost of each set Si is randomly chosen between [|Si|, 2|Si|]. In all our
simulations, we found that the first mechanism (based on cost-sharing) and
the second mechanism have similar efficiencies in practice. Remember that the
second mechanism has a theoretically proven efficiency bound while there is
no bound for the first mechanism. As expected, the third mechanism always
produces an output that has less total valuations than the other two methods
since it only picks sets that are individually affordable.

7 Conclusion

Strategyproof mechanism design has attracted a significant amount of attentions
recently in several research communities. In this paper, we focused the set cover
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games when the elements are selfish agents with privately known valuations of
being covered. We presented several (approximately budget-balanced) strate-
gyproof mechanisms that are approximately efficient, which are summarized in
Table 1. When the service providers (i.e. sets) are also selfish, we show that a
cross-monotonic payment-sharing scheme does not necessarily induce a strate-
gyproof mechanism. This is a sharp contrast to the well-known fact [15] that a
cross-monotonic cost-sharing scheme always implies a strategyproof mechanism.

Table 1: Summary of mechanisms presented in this paper.
Mechanism Efficiency Budget-Balance Truthful

Alg. 1 0 1 Group-Strategyproof
Alg. (2, 3) 1

dmax
0 Strategyproof

Alg. 4 1
2dmax

> 0 Strategyproof
Alg. 5 1

dmax·Hdmax
1 Strategyproof

This paper does not intend to solve all problems related to designing strate-
gyproof mechanisms for set cover games. There are several interesting and also
important problems left open for future works.

1. Whether the approximation bounds of efficiency given by several strate-
gyproof mechanisms are tight? Notice that we showed that these bounds
are tight for these mechanisms presented here. It is unknown whether
there exist some other mechanisms with asymptotically better approxi-
mation bounds on efficiency.

2. It is well-known that there is no mechanism that is both efficient and
budget-balanced. Then what is the best possible tradeoffs between the
efficiency and the budget-balance. Is there any bound on α · β for an
α-efficient and β-budget-balanced mechanisms for set cover games? We
know for sure that 1

dmax·Hdmax
≤ α · β < 1 when the original optimal

solution only admits individually affordable sets.
3. What are the necessary and/or sufficient conditions for a strategyproof

mechanism MS for selfish sets and a payment sharing scheme ξ such that
the induced mechanism ME discussed in Section 5 is strategyproof?

4. The last question is, when both the providers and the elements are selfish
agents, to design a strategyproof mechanism (not necessarily using the ap-
proach discussed in Section 5) that is approximately efficient. Remember
that the total efficiency of an output of this game now becomes the total
valuation of selected to-be-covered elements minus the total cost of the
selected sets that cover these elements.
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Algorithm 3 Computing payment pi,1 of ei in single cover games.
1: pi,1←+∞; S ′←∅; S ′′←∅; Agrd←∅.
2: for all Sj ∈ S do
3: compute value vj .
4: if ei ∈ Sj then
5: wj←max{vj − bi,1, cj}, S ′←S ′ ∪ {Sj}.
6: else
7: wj←vj , S ′′←S ′′ ∪ {Sj}.
8: end if
9: end for

10: while S ′ 6= ∅ do
11: pick set St in S ′ ∪ S ′′ with the maximum wt.
12: if St ∈ S ′ then
13: S ′←S ′ \ {St}.
14: pi,1←min{pi,1, wt − (vt − bi,1)}.
15: else
16: S ′′←S ′′ \ {St}; Agrd←Agrd ∪ {St}.
17: for all Sj ∈ S ′ do
18: pi,1←min{pi,1, vt − (vj − bi,1)}.
19: end for
20: for all ex ∈ St do
21: remove ex from all Sj ∈ S ′ ∪ S ′′.
22: end for
23: for all Sj ∈ S ′ ∪ S ′′ do
24: update vj and wj .
25: if Sj ∈ S ′′ and vj < cj then
26: S ′′←S ′′ \ {Sj}.
27: end if
28: if Sj ∈ S ′ and vj + pi,1 < cj then
29: S ′←S ′ \ {Sj}.
30: end if
31: end for
32: end if
33: end while
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Algorithm 4 Improved greedy algorithm for single cover games.
1: Agrd←∅.
2: for all Sj ∈ S do
3: compute the modified value ṽj .
4: end for
5: while S 6= ∅ do
6: pick set St in S with the maximum modified value ṽt.
7: Agrd←Agrd ∪ {St}, S←S \ {St}.
8: dt← the largest d such that the set St is individually affordable by d

largest unsatisfied bids.
9: for all ei ∈ St do

10: if bi,1 is one of the largest dt unsatisfied bids in St then
11: π(i, 1)←t
12: remove ei from all Sj ∈ S.
13: end if
14: end for
15: for all Sj ∈ S do
16: update the modified value ṽj .
17: if ṽj < cj then
18: S←S \ {Sj}.
19: end if
20: end for
21: end while

Algorithm 5 Strategyproof charging mechanism for multi-cover games.
1: Agrd←∅.
2: for all ei ∈ U do
3: r′i←ri.
4: end for
5: while S 6= ∅ do
6: pick an individually affordable set St ∈ S (by d bids) with the smallest

average cost ct

d .
7: Agrd←Agrd ∪ {St}, S←S \ {St}.
8: for all element ei ∈ St with bri−r′i+1 ≥ ct

d do
9: pi,ri−r′i+1← ct

d .
10: π(i, ri − r′i + 1)←t.
11: r′i←r′i − 1.
12: end for
13: for all Sj ∈ S do
14: update value ṽj .
15: if ṽj < cj then
16: S←S \ {Sj}.
17: end if
18: end for
19: end while
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