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Abstract

We develop for set cover games several general cost-sharing methods that are
approximately budget-balanced, in the core, and/or group-strategyproof. We first
study the cost sharing for a single set cover game, which does not have a budget-
balanced mechanism in the core. We show that there is no cost allocation method
that can always recover more than 1

ln n
of the total cost and in the core. Here n

is the number of all players to be served. We give a cost allocation method that
always recovers 1

ln dmax
of the total cost, where dmax is the maximum size of

all sets. We then study the cost allocation scheme for all induced subgames. It is
known that no cost sharing scheme can always recover more than 1

n
of the total cost

for every subset of players. We give an efficient cost sharing scheme that always
recovers at least 1

2n
of the total cost for every subset of players and furthermore,

our scheme is cross-monotone. When the elements to be covered are selfish agents
with privately known valuations, we present a strategyproof charging mechanism,
under the assumption that all sets are simple sets; further, the total cost of the set
cover is no more than ln dmax times that of an optimal solution. When the sets
are selfish agents with privately known costs, we present a strategyproof payment
mechanism to them. We also show how to fairly share the payments to all sets
among the elements.
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1 Introduction
In designing efficient, centralized or distributed algorithms and network protocols, the
computational agents are typically assumed to be either correct/obedient or faulty (also
called adversarial). Here agents are said to be correct/obedient if they follow the proto-
col correctly, i.e., act as instructed. In contrast, economists design market mechanisms
in which it is assumed that agents are rational, i.e., they respond to well-defined in-
centives and will deviate from the protocol only if it improves their gain. Designing
efficient algorithms with provable performances for a set of autonomous agents gained
considerable research attentions recently. In this paper, we study the cost sharing and
designing of strategyproof mechanisms for set cover games.

1.1 Generalized Set Cover Problem
Let U = {e1, e2, · · · , en} be a finite set, and let S = {S1, S2, · · · , Sm} be a collection
of multisets (or sets for short) of U . For each ei ∈ U and each Sj ∈ S , we denote the
multiplicity of ei in Sj by kj,i. Each Sj is associated with a cost cj . For any X ⊆ S , let
C(X ) denote the total costs of the sets in X , i.e., C(X ) =

∑
Sj∈X cj . For a given k >

0 and a set of element coverage requirements {r1, r2, · · · , rn}, a k-partial-cover C is
defined to be a subset {Sj1 , Sj2 , · · · , Sjl

} of S such that
∑n

i=1 min{ri,
∑l

t=1 kjt,i} ≥
k. The generalized set cover problem is to compute an optimum k-partial-cover Copt

with the minimum cost C(Copt).
This problem becomes the traditional multicover problem [4, 7] when we set k =∑n

i=1 ri and kj,i = 1 for all Sj and ei, as each element ei should be fully covered
and each set Sj is a simple set. When we set ri = 1, it becomes the traditional partial
cover problem [29]. This problem is therefore a natural extension of the classic set
cover problem by allowing partial cover, multiset, and element coverage requirement
greater than 1. Accordingly, the greedy algorithm for this problem is a combination of
the algorithms designed for partial cover and multicover [4, 7, 29].

1.2 Set Cover Game
Consider the following scenario: a company can choose from a set of service providers
S = {S1, S2, · · · , Sm} to provide services to a set of service receivers U = {e1,
e2, · · · , en}.

• With a fixed cost cj , each service provider Sj can provide services to a fixed
subset of service receivers.

• There may be a limit kj,i on the number of units of service that a service provider
Sj can provide to a service receiver ei. For example, each service provider may
be a cargo company that is transporting goods to various cities (the service re-
ceivers), and the amount of goods that can be transported to a particular city daily
is limited by the number of trains/trucks that are going to that city everyday.

• Each service receiver ei may have a limit ri on the number of units of service
that it desires to receive (and is willing to pay for).

• There may be a limit k on the total number of units of service that the service
providers shall provide to the service receivers. For example, a manufacturer
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company hires various cargo companies to distribute the products to various
cities daily, and the total number of units of service required is determined by
the daily production of the manufacturer company.

The problem can be modeled by the generalized set cover problem defined in Sub-
section 1.1. There may be different types of games according to various conditions:

1. Each service receiver ei has to receive at least ri units of service, and the costs
incurred by the service providers will be shared by the service receivers.

2. Each service receiver ei declares a bid bi,r for the r-th unit of service it shall
receive, and is willing to pay for it only if the assigned cost is at most bi,r.

3. Each service provider Sj declares a cost cj , and is willing to provide the service
only if the payment received is at least cj .

There are different algorithmic issues for these games. For example, for Game 1,
we shall define a cost allocation method so that every subset of service receivers feel
that the total cost they need to pay is “fair” according to certain criteria. For Games
1 and 2, the cost allocation method, by charging service receivers, needs to recover
(either entirely or a constant fraction of) the total cost of the chosen service providers.
For Games 2 and 3, we need a mechanism (for determining costs charged to service
receivers and payments paid to service providers) that can guarantee that the players
are truthful with their declaration of bids/costs.

1.3 Terminologies
Cost Sharing: We first study how we share the total cost of the selected service
providers among the service receivers such that some fairness criteria are met. Let
κ(T ) be the cost of a set cover for a subset of service receivers T . Let ξ(i, T ) be
the shared cost of the service receiver ei by a cost sharing method ξ. A number of
properties could be desired for a cost sharing method. We list a few here.

1. Budget-Balanced: A cost sharing method is called budget-balanced if
∑

ei∈T ξ(i, T ) =
κ(T ). Obviously, there are many budget-balanced cost sharing methods.

2. Fair: A further criterion is that the sharing method should be fair. While the
definition of budget-balance is straightforward, defining fairness is more subtle:
many fairness concepts were proposed in the literature, such as max-min [21],
min-max [27], core and bargaining set [24]. In this paper, we study fair cost
sharing using the concept of core. A sharing mechanism ξ is in the core if, for
any subset T1 ⊆ T of players, the total shared cost

∑
ei∈T1

ξ(i, T ) is at most the
minimum cost of all subsets of service providers covering T1.

3. Cross-Monotone: The last criterion for a cost sharing method is cross-monotone:
ξ(i, T1) ≤ ξ(i, T2) for any two subsets T1 and T2 with T1 ⊇ T2.

It is easy to show that there is no cost sharing method that can simultaneously achieve
all these three criteria: budget-balance, core and cross-monotone. We thus relax the
budget-balance criterion to α-budget-balance: α · κ(T ) ≤ ∑

ei∈T ξ(i, T ) ≤ κ(T ).

Mechanism Design: In addition to fair cost sharing, another important task is to
design greedy set cover methods that are cognizant of the fact that the service providers
or the service receivers are selfish and rational. By “selfish,” we mean that they only
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care about their own benefits without consideration for the global performances or
fairness issues. By “rational,” we mean that when the methods of computing the output
for the set cover game are instituted, they will always choose their actions to maximize
their benefits. The study of selfish and rational agents participating in a cooperative or
non-cooperative game is central to game theory.

Two fundamental concepts in game theory are Nash Equilibrium and dominant
strategy. Assume that there are n players. Given a set of actions a = (a1, a2, · · · , an),
where player i chooses the action ai, let u(a) = (u1(a), u2(a), · · · , un(a)) be the
payoffs vector: ui(a) is the payoff (or called profit, benefit) to the player i. An action
vector a is called a Nash Equilibrium if no player can unilaterally switch its action to
improve its benefit when the actions of other players are fixed. An action ai is called
a dominant strategy for player i if it maximizes its payoff regardless of the actions
chosen by other players.

1.4 Our Results
We first present a cost sharing method that is 1

ln dmax
-budget-balanced and in the core,

where dmax is the maximum set size. The bound 1
ln dmax

is tight. We also present a cost
sharing method that is 1

2n -budget-balanced, in the core, and cross-monotone, which is
almost the optimum [16].

We then design greedy set cover methods that are cognizant of the fact that the ser-
vice providers or the service receivers are selfish and rational. When the elements to be
covered are selfish agents with privately known valuations, we present a strategyproof
charging mechanism, under the assumption that all sets are simple sets, such that each
element maximizes its profit when it reports its valuation truthfully; further, the total
cost of the set cover is no more than ln dmax times that of an optimal solution. When the
sets are selfish agents with privately known costs, we present a strategyproof payment
mechanism in which each set maximizes its profit when it reports its cost truthfully.
We also show how to fairly share the payments to all sets among the elements.

1.5 Organization of Paper
The remainder of the paper is organized as follows. In Section 2, we give the exact
definitions for fair cost sharing and mechanism design. In Section 3, we study how to
fairly share the cost of the service providers among the covered service receivers when
the receivers must receive the service. We then show in Section 4 how to charge the cost
of service providers to the selfish service receivers when each receiver has a valuation
on the r-th cover received. We then show in Section 5 how we compensate the service
providers, when they are selfish and each has a privately known cost, such that each
service provider maximizes its benefit when it declares its true cost. We conclude our
paper in Section 6.
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2 Preliminaries and Related Work

2.1 Preliminaries
Algorithm Mechanism Design: A standard economic model for the design and anal-
ysis of scenarios in which the participants act according to their own self-interests is
as follows. Assume that there are n agents. Each agent i, for i ∈ {1, · · · , n}, has
some private information ti, called its type. All agents’ types define a type vec-
tor t = (t1, t2, · · · , tn). A mechanism defines, for each agent i, a set of strate-
gies Ai. For each strategy vector a = (a1, · · · , an), i.e., agent i plays a strategy
ai ∈ Ai, the mechanism computes an output o = O(a1, · · · , an) and a payment vector
P(a) = (p1, · · · , pn), where pi = Pi(a1, · · · , an) is the amount of money given to
the participating agent i. For each possible output o, agent i’s preferences are given by
a valuation function vi that assigns a real monetary number vi(ti, o) to output o. Let
ui(ti, o(a), pi(a)) denote the utility of agent i at the outcome (o, p) of the game, given
its type ti and strategy profile a = (a1, · · · , an) selected by all agents. A common as-
sumption in mechanism design literature, and one which we will follow in this paper,
is that agents are rational and have quasi-linear utility functions. The utility function
is quasi-linear if ui(ti, o) = vi(ti, o) + pi(t). An agent is called rational if it always
adopts its best strategy (called dominant strategy) that maximizes its utility regardless
of what other agents do.

It is well-known that it suffices to design a direct-revelation mechanism in which
the only actions available to agents are to make direct claims about their preferences
vi to the mechanism. A mechanism is incentive compatible (IC) if reporting valua-
tion truthfully is a dominant strategy. Another very common requirement in the lit-
erature for mechanism design is the so called individual rationality or voluntary par-
ticipation: the agent’s utility of participating in the output of the mechanism is not
less than the utility of the agent if it did not participate at all. For convenience, let
t|ib = (t1, · · · , ti−1, b, ti+1, · · · , tn), i.e., each agent j 6= i reports its type tj except
that the agent i reports type b. Direct revelation implies that the actions by agents are to
report its type (although they may report falsely). Then, IC implies that, for each agent
i, vi(ti, o(t)) + pi(t) ≥ vi(ti, o(t|ib)) + pi(t|ib); and IR implies that, for each agent i,
vi(ti, o(t)) + pi(t) ≥ 0. A mechanism is called truthful or strategyproof if it satisfies
both IC and IR properties. To make the mechanism tractable, the output method O(),
and the payment method P() should be computable in polynomial time.

Arguably the most positive result in mechanism design is what is usually called the
generalized Vickrey-Clarke-Groves (VCG) mechanism [31, 5, 12]. The VCG mech-
anism applies to maximization problems where the objective function is simply the
sum of all agents’ valuations. A mechanism M = (O(t),P(t)) belongs to the VCG
family if (1) the output O(t) computed based on the type vector t maximizes the ob-
jective function g(o, t) =

∑
i vi(ti, o), and (2) the payment to agent i is Oi(t) =∑

j 6=i vj(tj , o(t)) + hi(t−i). Here hi() is an arbitrary function of t−i and t−i =
(t1, · · · , ti−1, ti+1, · · · , tn) denotes the vector of strategies of all other agents except
i. A VCG mechanism is always incentive compatible [12]. Under mild assumptions,
VCG mechanisms are the only incentive compatible implementations to maximize the
total valuations [11].
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Although the family of VCG mechanisms is powerful, but it has its limitations.
To use a VCG mechanism, we have to compute the exact solution that maximizes the
total valuation of all agents. This makes the mechanism computationally intractable in
many cases. Replacing the optimal algorithm with non-optimal approximation usually
leads to untruthful mechanisms if VCG payment method is used [23]. To make the
mechanism tractable, the output method O(), and the payment method P() should be
computable in polynomial time.

Definition 1 A mechanism M = (O,P) is said to be β-efficient if for any t,

n∑

i=1

vi(ti,O(t)) ≥ β ·
n∑

i=1

vi(ti, OPT (t)),

where OPT (t) is the output that maximizes the total valuations of all players when
their type vector is t.

Obviously for the set cover game, we cannot design an o(ln n)-efficient polynomial-
time computable strategyproof mechanism unless NP ⊂ DTIME(nlog log n) [7].

In summary, we want to design strategyproof set cover protocols with the following
properties. 1) Incentive Compatibility (IC): an agent will reveal its true cost to maxi-
mize its utility no matter what the other agents do; 2) Individual Rationality (IR): an
agent is guaranteed to have a non-negative utility if it reports its cost truthfully; and 3)
Polynomial Time Computability (PC): all computations (the computation of the output
and the payment) are done in polynomial time.

Cost Sharing: Consider a set U of n players. For a subset T ⊆ U of players, let
κ(T ) be the cost of providing service to T defined by the system. Here κ(T ) could
be computed using the minimum cost, denoted by OPT(T ), or the cost computed by
some algorithm A, denoted by A(T ), or some arbitrary cohesive function. We always
assume that the cost function κ(T ) is cohesive, i.e., for any two disjoint subsets T1 and
T2, κ(T1 ∪ T2) ≤ κ(T1) + κ(T2).

A cost sharing scheme is simply a function ξ(i, T ) with ξ(i, T ) = 0 for i 6∈ T , for
every set T ⊆ U of players. An obvious criterion is that the sharing method should
be fair. While the definition of budget-balance is straightforward, defining fairness
is more subtle: many fairness concepts were proposed in the literature, such as max-
min [21], min-max [27], core and bargaining set [24]. Typically, the following three
properties are required by a cost sharing scheme.

1. (α-budget-balance) For all players U , α · κ(U) ≤ ∑
i∈U ξ(i, U) ≤ κ(U),

for some given parameter α ≤ 1. Equivalently, if we divide the shares by α,
we would require that the total cost shares of all agents are at least the cost of
providing the service, but do not exceed 1

α of that. If α = 1, we call the cost
sharing scheme budget-balanced.

2. (fairness under core) For any subset T ⊆ U ,
∑

i∈T ξ(i, U) ≤ OPT(T ). In
other words, the cost shares paid by any subset of players should not exceed
the minimum cost of providing the service to them alone, hence they have no
incentives to secede.
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3. (Cross-monotonicity) For any two subsets T1 ⊆ T2 and i ∈ T1, ξ(i, T1) ≥
ξ(i, T2). In other words, the cost share of a player i should not go up if more
players require the service. This is also called population monotone.

When a cost sharing scheme satisfies α-BB and is in the core, we call it to be in
the α-core. When each player i has a valuation vi on getting the service, a mecha-
nism should first decide the output of the game (who will get the service), and then
decide what is the share of each selected player (what is the payment method). It is
well-known that a cross-monotone cost sharing scheme implies a group-strategyproof
mechanism [22]. Notice that the cross-monotone property is not the necessary condi-
tion for group-strategyproof. Naturally, several additional properties are required for a
cost sharing scheme when every player has a valuation on getting the service.

1. (Strategyproofness) Assume that the valuation by player i on getting the service
is vi. Let b = (b1, b2, · · · , bn) be the bidding vector of n players. Let O(b) =
(o1, o2, · · · , on) denote whether a player is selected to get the service or not and
P(b) be the charge to player i, i.e., the mechanism is M = (O(b),P(b)). It is
strategyproof if every player maximizes its profit vi · oi − pi when it reports its
true valuation, i.e., bi = vi. This is also called incentive compatibility.

2. (No Positive Transfer) For every player i, pi ≥ 0. We will not pay players to
participate in the game.

3. (Voluntary Participation) For every player i, its profit is non-negative, i.e., vi ·
oi − pi ≥ 0. This is also called individual rationality.

4. (Consumer Sovereignty) If the bids of all other players are fixed, for every
player i, there exists a threshold τi such that player i is guaranteed to get the
service when its bid is at least τi.

2.2 Prior Arts on Cost Sharing and Algorithm Mechanism Design
Routing has been an important part of the algorithmic mechanism-design from the very
beginning. Strategyproof unicast and the efficient computing of the payment were ad-
dressed in [23, 9, 13, 32]. Several results were proposed in the literature to deal with
multicast in selfish networks. Feigenbaum et al. [10], by assuming a fixed multicast
structure, designed a strategyproof mechanism that selects a subset of receivers (each
with a privately known willing payment) and then shares the cost of the multicast tree
providing the service among the selected receivers so budget-balance is achieved. Max-
imizing profit in strategyproof multicast was studied in [17, 3]. Sharing the cost of the
multicast structure among receivers was studied in [20, 10, 22, 28, 8, 2, 14] so some
fairness is accomplished.

Although the traditional set cover problem (without multisets and partial-cover re-
quirement) can be viewed as a special case of multicast, several results were proposed
specifically for set cover in selfish environment. Devanur et al. [6] studied, for the set
cover game and facility location game, how the cost of shared resource is to be dis-
tributed among its users in such a way that revealing the true valuation is a dominant
strategy for each user. Their cost sharing method is not in the core of the game. One
of the open questions left in [6] is to design a strategyproof cost sharing method for
multicover game in which the bidders might want to get covered multiple times. Pál
and Tardos [25] gave a cost sharing method that can recover 1

3 of the total cost for
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facility location game, and recently, Immorlica et al. [16] showed that this is the best
achievable upper bound for any cross-monotonic cost sharing method. Hoefer [15]
studied non-cooperative games coming from combinatorial covering and facility loca-
tion problems. Penna [26] showed that mechanisms satisfying all requirements (vol-
untary participation, no positive transfer, consumer sovereignty, budget-balance and
group-strategyproof) must obey certain algorithmic properties (which basically specify
how the serviced users are selected). Albers [1] studied network design games where
n self-interested agents have to form a network by purchasing links from a given set of
edges. She considered Shapley cost sharing mechanisms that split the cost of an edge
in a fair manner among the agents using the edge. It shows that using coordination, the
price of anarchy drops from linear to logarithmic bounds. Sun et al. [30] studied the
mechanism design and payment (or cost) sharing problems for set cover games when
each element to be covered is an individual autonomous agent.

3 Cost Sharing Among Unselfish Service Receivers
In this section, we study how to share the cost of the service providers among a given
set of service receivers. For this scenario, it is difficult to find realistic examples where
a partial cover is desired. Therefore, in the remainder of this section, we only consider
the multiset multicover problem, i.e., k =

∑n
i=1 ri. However, the results presented in

this section can easily be generalized to the partial cover case, should such a scenario
arise.

3.1 α-Core
Given a subset of elements X , let OPT(X) denote the cost of an optimum cover
Copt(X) of X . This cost function clearly is cohesive: for every partition T1, T2, · · · , Tt

of U , OPT(U) ≤ ∑t
i=1 OPT(Ti). A cost allocation for U is a n-dimensional vector

x = (x1, x2, · · · , xn) that specifies for each element ei ∈ U the share xi ≥ 0 of the
total cost of serving U that ei shall pay.

Ideally, when the set of elements to be covered is fixed to be U , we want the cost
allocation x to be budget-balanced and fair, i.e., being in core. However, the following
simple example shows that there is no budget-balanced core for the set-cover game. Let
U be {1, 2, 3} and the sets be S1 = {1, 2}, S2 = {1, 3}, and S3 = {2, 3} with costs 2,
2 and 2 respectively. For any allocation x = {x1, x2, x3} we have x1 + x2 + x3 = 4
(from the budget-balance condition), x1 + x2 ≤ 2, x1 + x3 ≤ 2, and x2 + x3 ≤ 2
(from the core requirement). This is clearly impossible. We then relax the notion of
budget-balance to the notion of α-budget-balance for some α ≤ 1, which means that
α ·OPT(U) ≤ ∑n

i=1 xi ≤ OPT(U). We have the following result on the achievable
α-core.

Theorem 1 For the generalized set cover game, there is no cost allocation method that
is α-core for α > 1

ln n for every set-cover game.

PROOF. It suffices to prove this for the traditional set cover game, where k = n and
ri = 1 for all ei. We will build a connection between the cost allocation for a set
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cover game and the solution to the dual of the LP for set cover problem. Let the non-
negative integer yj ∈ {0, 1} denote whether the set Sj is selected in Copt(U). Then
we can represent the set cover problem as the following integer programming (IP):
ZIP = min

∑m
j=1 yjcj subject to (1)

∑m
j=1 yj · kj,i ≥ 1 for every element ei ∈ U ,

and (2) yj ∈ {0, 1}.
To maximize the α for an α-core allocation is equivalent to maximize

∑n
i=1 xi

subject to
∑

ei∈T xi ≤ OPT(T ) for every subset T ⊆ U . Clearly the maximum
value achieved above is at most the maximum value achieved by the following linear
programming (LP): Z∗LP = max

∑n
i=1 xi subject to

∑
ei∈S xi ≤ OPT(S) for every

S ∈ S . This LP is obviously a dual of the relaxed IP for set cover problem. It is
well-known that the integrality gap of set cover problem is ZIP

Z∗LP
= ln n [7]. Thus,

there is a set cover game such that the total recovered cost of an α-core is at most
Z∗LP ≤ ZIP

ln n = OPT(U)
ln n . The theorem then follows.

Notice that this theorem does not exclude some better α-core cost sharing method
(with α > 1 ln n) for some special set-cover games. We then give a cost allocation
method that can recover 1

ln dmax
of the total cost OPT(U) for a multiset multicover

game, where dmax = max1≤j≤m |Sj |. Without loss of generality, we assume that
dmax ≤

∑n
i=1 ri.

The basic approach of our cost allocation method is as follows. We first run a
greedy algorithm (see Algorithm 1) to find a set cover Cgrd with an approximation
ratio of ln dmax for the multiset multicover game. Starting with Cgrd = ∅, the greedy
algorithm adds to Cgrd a set Sjt′ at each round t′. After the s-th round, we define
the remaining required coverage r′i of an element ei to be ri −

∑s
t′=1 kjt′ ,i. For any

Sj 6∈ Cgrd, the effective coverage k′j,i of ei by Sj is defined to be min{kj,i, r
′
i}, the

value vj of Sj is defined to be
∑n

i=1 k′j,i, and the effective average cost of Sj is defined
to be cj

vj
.

Algorithm 1 Greedy algorithm for multiset multicover problem.
1: Cgrd←∅.
2: r′i←ri for each ei.
3: while U 6= ∅ do
4: pick the set St′ in S \ Cgrd with the minimum effective average cost.
5: Cgrd←Cgrd ∪ {St′}.
6: for all ei ∈ U do
7: r′i←max{0, r′i − kt′,i}.
8: if r′i = 0 then
9: U←U \ {ei}

The greedy algorithm will select a set Sj with the least effective average cost. For
any ei and r such that ri − r′i + 1 ≤ r ≤ ri − r′i + k′j,i, we let price(i, r) = cj

vj
. Let

x′i =
∑ri

r=1 price(i, r) and xi = x′i
ln dmax

. We will show that x is indeed a 1
ln dmax

-core.

Theorem 2 The above-defined cost allocation x is a 1
ln dmax

-core.
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PROOF. We first show that
∑

ei∈X xi ≤ OPT(X) for every subset X ⊆ U . We prove
this as follows. For our convenience, we assume that Copt(X) = {S1, S2, · · · , Sl} is
an optimum cover of X . Let Cgrd = {Si1 , Si2 , · · · , Sit

} be the cover of U computed
by the greedy algorithm. We order the sets in Cgrd according to the order they are
added into Cgrd.

For each element ei ∈ X , we give the ri copies of ei covered by Cgrd distinct labels
ei,1, ei,2, · · · , ei,ri , respectively, according to the order they are covered by Cgrd. Each
element copy ei,r ∈ Sjt′ is assigned with a cost price(i,r)

ln dmax
, where price(i, r) is equal to

the effective average cost
cj

t′
vj

t′
of Sjt′ at the time Sjt′ is added into Cgrd. Therefore, to

prove that
∑

ei∈X xi ≤ OPT(X), we need to show that
∑

ei∈X

∑ri

r=1 price(i, r) ≤
OPT(X) · ln dmax.

For any set Sj ∈ Copt(X) and any element ei ∈ U , we give the kj,i copies of ei

in Sj distinct labels e
(j)
i,1 , e

(j)
i,2 , · · · , e

(j)
i,kj,i

respectively. For any element copy e
(j)
i,r , we

define its lexicographic order O(e(j)
i,r ) = t′ if the (max{0, ri − kj,i} + r)-th copy of

ei is covered by Cgrd at the t′-th round, or set Sj is added into Cgrd at the t′-th round,
whichever is earlier. The lexicographic order of e

(j)
i,r defines the number of round after

which e
(j)
i,r becomes “obsolete” (i.e., no longer useful). For example, if ri = 3 and

kj,i = 2, the first copy of ei in Sj becomes obsolete after Cgrd has covered ei twice,
because now only one element copy of ei is needed to satisfy the coverage requirement
of ei.

For each 1 ≤ j ≤ l, we place all the element copies of Sj into an array Lj according
to the above-defined lexicographic order. If O(e(j)

i,r ) = O(e(j)
i′,r′), e

(j)
i,r is placed in front

of e
(j)
i′,r′ if and only if either i < i′ or i = i′ and r < r′. We denote the element copy at

the q-th position of Li by Lj [q], for q = 0, 1, · · · , |Sj |−1. Each element copy Lj [q] in
the array is associated with a cost cj/(|Sj |−q). The total associated cost of all element
copies in Sj is therefore (1 + 1

2 + 1
3 + · · ·+ 1

|Sj | ) · cj , which is bounded by ln |Sj | · cj .
And the total associated cost of all array is therefore bounded by OPT(X) · ln dmax.

The proof technique is to uniquely “charge” each ei,r for ei ∈ X by an ele-
ment copy e

(j)
i,r′ in some array Lj such that the associated cost of e

(j)
i,r′ is no less than

price(i, r). To do that, we maintain a pointer for each array Lj to identify the next
element copy that will become “obsolete” (that is, it is no longer useful). Initially, the
pointer is pointing to the first element copy in Lj . After the t′-th round, the pointer will
move to the first element copy in Lj whose lexicographic order is greater than t′.

At the t′-th round, we examine all useful element copies of X in Sjt′ (in the increas-
ing order of the element indices) as if they are added into Cgrd one by one. Suppose
ei,r is the element copy currently being examined. Note that here r ≤ rj as we have
already excluded the useless element copies from Cgrd.

Right before ei,r is added into Cgrd, the pointer of each array containing at least
one copy of ei must be pointing to a copy of ei. Once ei,r is added into Cgrd, we have
the following two different cases regarding the movements of these pointers:

Case 1: no pointer is moved. This happens if and only if r′i ≥ max1≤j≤l kj,i. We
will charge ei,r to a element copy in some Lj in a later round (see Case 2).

Case 2: p pointers are moved. Let ei,r′ , ei,r′+1, · · · , ei,r be the previously un-
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charged element copies of ei. We assign each of ei,r′ , ei,r′+1, · · · , ei,min{r,r′+p} to
a pointer move in this round (and leave the remaining uncharged element copies, if
r′ + p < r, to the future rounds). For any ei,s, r′ ≤ s ≤ min{r, r′ + p}, let Lj [q]
be the corresponding pointer move (i.e., Lj [q] is the element copy to which the pointer
was pointing to before moving). Assume that ei,s was covered when Sit′′ was added
into Cgrd. Since set Sj has not been selected into Cgrd before this round, according to
the selection criterion of the greedy algorithm we know that the effective average cost
of Sj is no less than that of Sit′′ when Sit′′ was added into Cgrd. The effective average
cost of Sj is no less than cj/(|Sj | − q), as at the start of the t′-th round there are at
least |Sj | − q useful element copies in Sj . The effective average cost of Sit′′ is exactly
price(i, r). Therefore, we have cj/(|Sj | − q) ≥ price(i, s).

When the ri-th copy of ei is covered by Cgrd, all element copies of ei in arrays
L1, L2, · · · , Ll have become obsolete. Since

∑l
j=1 ej,i ≥ ri, all useful element copies

of ei should have been charged. Therefore, the total associated cost of all useful el-
ement copies of X in Cgrd should be no more than the total associated cost of all
element copies in the arrays L1, L2, · · · , Ll, implying that

∑
ei∈X

∑ri

r=1 price(i, r) ≤
C(Copt(X)) · ln dmax.

It remains to show that x is 1
ln dmax

-budget-balanced. Let GRD(U) be the total

cost of Cgrd computed by the greedy algorithm. Obviously, OPT(U)
ln dmax

≤ GRD(U)
ln dmax

=
∑n

i=1 x′i
ln dmax

=
∑n

i=1 xi. Further, by letting X = U , we have
∑n

i=1 xi ≤ OPT(U). This
finishes the proof.

Recall that the core we defined in this paper requires that, given a set of play-
ers U , the total cost sharing

∑
ei∈T ξ(i, U) of a subset of elements T is at most the

optimum cost of providing service to elements in T . For a set cover game, clearly
it is NP-hard to find the optimum cost of covering T . Naturally, one may define
the α-core as follows: a cost sharing method ξ(i, ·) is called a relaxed α-core if (1)
α · Cgrd(U) ≤ ∑

i∈U ξ(i, U) ≤ Cgrd(U); and (2)
∑

i∈T ξ(i, U) ≤ Cgrd(T ) for every
subset of elements T ⊆ U . Even we relax the definition of the core to this, we can still
prove the following theorem.

Theorem 3 With the cost function computed by the greedy algorithm, there is no cost
sharing method that is a relaxed α-core for α = Ω( 1

ln n ).

PROOF. We prove this by presenting an example as shown in Figure 1. The key
idea behind this example is that Cgrd(U) = Hn · Copt(U) and for a particular subset
T ⊂ U , Cgrd(T ) = Copt(T ). There are n elements U = {e1, e2, · · · , en} and n + 1
sets: Si = {ei} with cost ci = 1

i+1 for 1 ≤ i ≤ n − 2, Sn−1 = {en−1} with cost
cn−1 = 1

n−1 , Sn = {e1, e2, · · · , en−1} with cost cn = 1− ε, and Sn+1 = {en−1, en}
with cost cn+1 = 2−3ε

n−1 . Here 0 < ε < 1
n−1 . The coverage requirement ri is 1 for each

ei. It is not difficult to show that Cgrd(U) = {Sn+1, Sn−2, Sn−3, · · · , S1} with total
cost 2−3ε

n−1 +
∑n−2

i=1
1

i+1 = 2−3ε
n−1 +Hn−1−1. Consider a subset T = {e1, e2, · · · , en−1}

of elements. Clearly, the greedy cover will be Cgrd(T ) = {Sn} with total cost 1 − ε.
Assume that x = (x1, x2, · · · , xn) be a cost allocation method that is a relaxed α-core.
Then this requires that

∑
ei∈T xi ≤ C(Cgrd(T )) = 1 − ε. For a single element en,
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c3 = 1
4

r3 = 1

c2 = 1
3

rn−2 = 1 rn−1 = 1

c1 = 1
2 cn−3 = 1

n−2

rn−3 = 1

cn+1 = 2−3ε
n−1

cn = 1− ε

r2 = 1r1 = 1

cn−2 = 1
n−1 cn−1 = 1

n−1

rn = 1

Figure 1: Worst case example for greedy algorithm. Sets are represented by ovals
while elements are represented by rectangles. A link (with arrow) between an oval and
a rectangle denotes that the set contains one copy of the element.

we have xn ≤ C(Cgrd({en})) = 2−3ε
n−1 . Then for all elements in U ,

∑
ei∈U xi ≤

1− ε + 2−3ε
n−1 . Thus, α ≤ 1−ε+ 2−3ε

n−1
2−3ε
n−1 +Hn−1−1

' 1
Hn−1

.

3.2 Cross-monotone α-Core
Recall that the definition of α-budget-balance only requires that α·κ(U) ≤ ∑

ei∈U xi ≤
κ(U). A cost sharing scheme ξ is called cross-monotone α-core if (1) α · κ(T ) ≤∑

ei∈T ξ(i, T ) ≤ κ(T ) for every T ⊆ U , (2)
∑

ei∈T1
ξ(i, T2) ≤ OPT(T1) for any

subsets T1 and T2 with T1 ⊆ T2, and (3) ξ(i, T2) ≤ ξ(i, T1) for any two subsets T1

and T2 with i ∈ T1 ⊆ T2. Clearly, if a cost sharing scheme is cross-monotone α-core
then every cost allocation method ξ(·, T ) induced on a subset T of players is always
α-core, but the reverse is not true. Directly from Theorem 1, we know that there is no
cost sharing scheme for the set cover game that is cross-monotone α-core for α = 1

ln n .
Recently, Immorlica et al. [16] claimed the following result.

Theorem 4 [16] For set cover game, there is no cost sharing scheme that is cross-
monotone α-core for α = 1

n + ε.

In the remainder of this section, we show that this bound is almost tight for gener-
alized set cover games: there exists a cross-monotone cost sharing scheme ξ(i, T ) that
can recover 1

2n of the total cost. Further, the bound is tight for set cover games without
multisets (but still allowing multicover requirements): there exists a cross-monotone
cost sharing scheme ξ(i, T ) that can recover 1

n of the total cost.
Our cost sharing scheme, for each element ei, finds the set with the minimum

cost ratio to cover ei, then updates the covering requirement and then repeats the above
process till the covering requirement is satisfied. We assume that each set Sj is selected
to cover the element ei Y (i, j) times. The cost cj is proportionally shared by the
elements covered by Sj : an element ei will share a Y (i,j)∑

1≤i≤n Y (i,j) fraction. We then
describe our cost sharing scheme in Algorithm 2.

Theorem 5 The cost sharing scheme ξ(·, ·) defined by Algorithm 2 is a cross-monotone
1
2n -core.
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Algorithm 2 Cross-monotone cost sharing for multiset multicover game.
1: Assume that the set of elements to be covered is T ⊆ U .
2: Initialize Y (i, j) = 0 for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Here Y (i, j) will store

how many cover requirements of element ei are provided by set Sj . ζ(i, j) = 0
for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Here ζ(i, j) will store the fraction cost of set Sj

shared by the element ei.
3: Set CA ← ∅.
4: for all element ei ∈ T do
5: Set r′i ← ri;
6: while r′i > 0 do
7: Find the set St with the minimum ratio minSj∈S−CA

cj

min(kj,i,r′i)
;

8: Set Y (i, t) ← min(kj,i, r
′
i) and r′i ← r′i − Y (i, t).

9: Set CA ← CA ∪ {St}.
10: for all set Sj do
11: If

∑
1≤i≤n Y (i, j) > 0 (set Sj is used to cover some elements in T ), then let

ρj = cj∑
1≤i≤n Y (i,j) ;

12: for all element ei ∈ T do
13: Set ζ(i, j) = Y (i, j) · ρj .
14: for all element ei ∈ T do
15: Set ξ′(i, T ) =

∑
1≤j≤m ζ(i, j) and ξ(i, T ) =

∑
1≤j≤m ζ(i,j)

2|T | .

PROOF. We have to prove that the cost-sharing scheme is 1
2n -budget-balance for every

T ⊆ U and monotone.
Cross-monotone Property: First of all, the cost sharing scheme ξ(·, ·) is cross-

monotone because adding new element covering requirements (from covering a set
elements T1 to covering a set of elements T2 ⊃ T1) will not affect Y (i, j) for element
ei ∈ T1. It will only change Y (i, j) (for element ei in T2−T1) from 0 to positive. Thus,
ρj of a set Sj cannot increase when T2 instead of T1 is to be covered. Consequently,
ξ′(i, T1) ≥ ξ′(i, T2) for any i ∈ T1 ⊂ T2. This implies that ξ is cross-monotone.

1
2n -budget-balance Property: It is easy to show that

∑
ei∈T ξ′(i, T ) is the total

cost of all sets CA that are selected to cover some element in T . Given a set T of
elements to be covered, let Copt(T ) be the optimum set cover with the minimum cost.
In the remainder of the proof, we will only consider an element ei ∈ T . Let Sa1 , Sa2 ,
· · · , Sax be the sets selected by Algorithm 2 to cover element ei in this order. In other
words, every set Saj (1 ≤ j < x) provides the maximum coverage Y (i, aj) = kaj ,i

to element ei; while the set Sax provides a coverage Y (i, ax) = ri −
∑x−1

j=1 kaj ,i to
element ei. Let Sb1 , Sb2 , · · · , Sby be the sets in the optimum solution Copt(T ) that
satisfies the cover requirement of the element ei. We will show that the total cost of
the sets in Xa = {Sa1 , Sa2 , · · · , Sax} is at most twice of the total cost of the sets in
Xb = {Sb1 , Sb2 , · · · , Sby}. In other words, we will first prove that

C(Xa) ≤ 2 · C(Xb) ≤ 2 · C(Copt(T )).
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Let X be the common sets (except the set Sax
if it is a common set) in Xa and

Xb, i.e., X = Xa ∩ Xb − {Sax}. Let r =
∑

Sj∈X kj,i, and r̃i = ri − r. For the
moment, we assume that the cover requirement of the element ei is r̃i and the set of
sets to be chosen from is S ′ = S−X . Clearly Xa−X is still the set of sets selected by
Algorithm 2 to satisfy the new cover requirement r̃i of element ei and Xb−X is a still
a valid1 solution (not necessarily optimum now) that satisfies the cover requirement.

There are two scenarios here: Sax ∈ Xb or Sax 6∈ Xb.
Case 1: We first analyze the case that Sax

∈ Xb. Notice that, Algorithm 2 selects
a set St with the ratio minSj∈S′

cj

min(kj,i,r′i)
. Then for every set St 6∈ Xb − X (and

St is not the last picked set Sax
) selected by Algorithm 2, we have kt,i = Y (i, t).

Furthermore, since the sets in Xb −X are not selected, we have

ct

kt,i
≤ min

Sj∈Xb−X

cj

kj,i
≤

∑
Sj∈Xb−X cj∑

Sj∈Xb−X kj,i
≤ C(Xb −X)

r̃i
.

The last inequality comes from
∑

Sj∈Xb−X kj,i ≥ r̃i. This implies that

C(Xa −X − {Sax}) ≤
C(Xb −X)

r̃i
·

∑

St∈Xa−X−{Sax}
kt,i ≤ C(Xb −X).

Then C(Xa −X) ≤ 2C(Xb −X) since Sax ∈ Xb.
Case 2: We then analyze the case that Sax 6∈ Xb. For the last picked set Sax ,

Y (i, ax) ≤ kax,i is the coverage to ei provided by set Sax . There are two subcases
here.

• Subcase 1: There exists a set St in Xb − X such that kt,i ≥ Y (i, ax). Then
St can also provide coverage Y (i, ax) to the element ei when we pick the set
Sax . The fact that we pick the set Sax implies that cax

Y (i,ax) ≤ ct

Y (i,ax) . Thus,
cax ≤ ct ≤ C(Xb −X).

• Subcase 2: For every set St in Xb − X , kt,i < Y (i, ax). Then every set St in
Xb −X can only provide a coverage kt,i to the element ei when we pick the set
Sax . Algorithm 2 picking the set Sax implies that, for every set St ∈ Xb−X , we

have cax

Y (i,ax) ≤ ct

kt,i
. Thus, cax

Y (i,ax) ≤
∑

St∈Xb−X ct∑
St∈Xb−X kt,i

≤ C(Xb−X)
r̃i

. Remember

that, we already proved in Case (1) that C(Xa − X − {Sax}) ≤ C(Xb−X)
r̃i

·∑
St∈Xa−X−{Sax} kt,i. Then we have

C(Xa −X) ≤ C(Xb −X)
r̃i

·
∑

Sj∈Xa−X

Y (i, j) = C(Xb −X).

Summarizing the above proofs, we have C(Xa−X) ≤ 2C(Xb−X), which implies
that C(Xa) ≤ 2C(Xb).

1The statement is not true if we include the possible common set Sax in X since we may only use part
of kax,i copies of element ei in the set Sax to provide coverage to ei by Algorithm 2 while the optimum
solution may use all these kax,i appearances to cover ei.
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Then for all elements in T , the total cost of the sets CA selected by Algorithm 2
is at most 2|T | ·C(Copt(T )). In other words, we have C(Copt(T )) ≤ ∑

ei∈T ξ′(i, T ) =

C(CA) ≤ 2|T |·C(Copt(T )). Thus, C(Copt(T ))
2|T | ≤ ∑

ei∈T ξ(i, T ) = C(CA)
2|T | ≤ C(Copt(T )).

This finishes the proof.

We show by an example that the bound 1
2n is tight for Algorithm 2. Assume that

there are n·r+1 sets S1+(i−1)·r = {ei}, S2+(i−1)·r = {ei}, · · · , Sr−1+(i−1)·r = {ei},
and Sr+(i−1)·r = {ei, · · · , ei} (with r copies of ei), for 1 ≤ i ≤ n, and a set S0 =
{e1, · · · , e1, · · · en, · · · , en} (S0 has r copies of each element ei) with the following
costs (1) the cost of each set Sj is 1 for 1 ≤ j ≤ n · r and j 6= 0 mod r, (2) the cost
of each set Sj is r(1 + ε) for 1 ≤ j ≤ n · r and j = 0 mod r, and (3) the cost of S0

is r(1 + 2ε). Assume that the cover requirement of each element ei is ri = r. It is not
difficult to show that Algorithm 2 will pick all these sets except S0 to cover r copies of
ei and the total cost of picked sets are n(r− 1)+n · r(1+ ε). The optimum solution is
to use the set S0 only with cost r(1 + 2ε). The ratio n(r−1+r(1+ε))

r(1+2ε) could be arbitrarily
close to 2n by selecting sufficiently large r and sufficiently small ε.

There is still a gap between the above result and the upper bound [16]. However,
by dropping the multiset assumption, it is not difficult to prove the following theorem.

Theorem 6 The cost sharing scheme ξ(·, ·) defined by Algorithm 2 is cross-monotone
1
n -core for set cover game when every set Sj is a simple set.

4 Cost Sharing Among Selfish Service Receivers
In Section 3 we assumed that all elements (service receivers) are unselfish and all their
coverage requirements are to be satisfied. In this section, we consider the problem of
selecting service providers under the constraint of a collection of bids B = B1 ∪B2 ∪
· · · ∪ Bn. Each Bi contains a series of bids bi,1, bi,2, · · · , bi,ri , where bi,r denotes the
declared price that element ei is willing to pay for the r-th coverage (i.e., the valuation
of the r-th coverage). In this scenario, we may also consider partial cover, as the total
number of units of service available may be limited by a constant k.

We assume that bi,1 ≥ bi,2 ≥ · · · ≥ bi,ri . This is often true in realistic situations:
the marginal valuations are usually decreasing. A bid bi,r will be served (and the
subsequent bid bi,r+1 will be considered) only if bi,r ≥ price(i, r), where price(i, r) is
the cost to be paid by ei for its r-th coverage. Further, to guarantee that the mechanism
is both strategyproof and budget-balanced, we assume that each set is a simple set.

We use a greedy algorithm (see Algorithm 3) similar to the one for the traditional
set cover game [6]. Informally speaking, we start with y = 0, where y is the cost to
be shared by each bid served. We raise y until there exists a set Sj whose cost can be
sufficiently covered by the element copies in Sj , if each element copy needs to pay y.
To adapt to the multicover scenario, we make the following changes:
? For any set Sj 6∈ Cgrd and any ei, we define the collection of alive bids B

(j)
i of ei

with respect to Sj to be {bi,ri−r′i+1} if k′j,i > 0 (i.e., k′j,i = 1 since Sj is a simple
set) and bi,ri−r′i+1 ≥ y, or ∅ if otherwise. That is, if y is the cost to be paid for each

bid served, B(j)
i contains the bid of ei covered by Sj that can afford the cost (if any).
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? Define the value vj of Sj as
∑n

i=1 |B(j)
i |, and its effective average cost as cj

vj
.

Algorithm 3 Cost sharing for multicover game with selfish receivers.
1: Cgrd(B)←∅; A←∅; y←0; k′←k; B′ = ∅;
2: while A 6= U and k′ > 0 do
3: Raise y until one of the two events happens:
4: if B

(j)
i = ∅ for all Sj then U←U \ {ei};

5: if cj ≤ vj · y for some set Sj then
6: Cgrd(B)←Cgrd(B)

⋃{Sj}; k′←k′ − vj ;
7: for all element ei with B

(j)
i 6= ∅ do

8: price(i, ri − r′i + 1)← cj

vj
; B′←B′ ∪ {bi,ri−r′i+1};

9: r′i←r′i − 1;
10: if r′i = 0 then A←A

⋃{ei};
11: update all B

(j′)
i for all Sj′ 6∈ Cgrd and ei ∈ Sj

⋂
Sj′ ;

When the algorithm terminates, B′ contains all bids (of all elements) that are
served. We first prove the following property about this mechanism:

Lemma 7 For each ei, price(i, r) is non-decreasing with respect to r.

PROOF. It suffices to show that right after a set St′ is added into Cgrd and all relevant
r′i’s and B

(j′)
i ’s are updated (as stated in Line 9 and Line 11 of Algorithm 3), there is

no Sj 6∈ Cgrd with cost ci < vi · y. For each ei, bi,r is non-increasing with respect to
r. Therefore, after a bid of ei is served by St′ , the bid (i.e., bri−r′i+1) assigned to the
element copy of ei in Sj will not increase, or even no longer be alive if either r′i = 0
or y > bri−r′i+1). Therefore, the value vj can only decrease, implying cj ≥ vj · y.

The following lemma directly follows Lemma 7:

Lemma 8 For any set St′ ∈ Cgrd and any ei ∈ St′ , if no bid of ei is served by St′ ,
then no bid of ei will be served in the subsequent rounds.

Theorem 9 Algorithm 3 defines a strategyproof mechanism. Further, the total cost of
the sets selected is no more than ln dmax times that of an optimal solution.

PROOF. We first prove that the mechanism is ln dmax-efficient. More specifically, we
need to show that the total cost of the sets in Cgrd(B) computed by Algorithm 3 is no
more than ln dmax times that of the optimum cover Copt(B′). Again, here B′ is the
collection of bids that are actually covered by Cgrd(B).

In Theorem 2 we showed that
∑

ei∈U xi ≤ OPT(U) for the cost allocation method
defined in Section 3. Recall that, for Theorem 2, in order to make the cost allo-
cation method ln 1

dmax
-core, each element ei only pays ln price(i,r)

ln dmax
for its r-th cov-

erage. Therefore, for the cost allocation method defined in this section, we have∑
ei∈U xi ≤ ln dmax ·OPT(U).
However, we still need to modify the proof of Theorem 2 to take into consideration

the introduction of bids. It is easy to see that Cgrd(B′) = Cgrd(B). In other words,
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if the collection of bids given is B′ instead of B, Algorithm 3 will still pick exactly
the same set of sets (with the exactly same order). With B′ as the set of bids to be
served, since eventually every bid of B′ is served, this problem is the same as the
set cover game without bids. Therefore, we have C(Cgrd(B)) = C(Cgrd(B′)) ≤
ln dmax · C(Copt(B′)).

Now we prove that the mechanism is strategyproof. Recall that the profit of ei

is defined to be the total value of all served bids of ei minus the total cost ei has to
pay. Suppose for the sake of contradiction that element ei can benefit (i.e., achieve
a higher profit) from lying about its truthful bids. Among these “profit-increasing”
lies, let Bi = {bi,1, bi,2, · · · , bi,rj

} be one of the “most truthful lies” of ei with the
maximum q such that bi,r = bi,r for all r < q and bi,q 6= bi,q .

There are two cases:
Case 1: bi,q < bi,q . There are two subcases.

• Subcase 1.a: When ei is truthful, bid bi,q is served by Sj ∈ Cgrd . By reporting
bi,q instead of bi,q , ei must have caused this bid not to be served by Sj . Otherwise
ei does not need to lie, a contradiction to the assumption that Bi is the most
truthful lie. We claim that ei will not benefit from this. First of all, ei will not
gain any profit in Sj . (In contrast, ei will gain a nonnegative profit in Sj if it is
truthful.) Further, by Lemma 8, bids bi,q, bi,r3+1, · · · , bi,ri will not be served by
Cgrd in later rounds, and thus ei cannot make any more profit. Therefore, it is
more advantageous for ei to bid truthfully.

• Subcase 1.b: When ei is truthful, bid bi,q is not served by any St′ ∈ Cgrd. Since
bi,q < bi,q , bid bi,q cannot be served either, and therefore there is no point for ei

to lie about its q-th bid.

Case 2: bi,q > bi,q . There are also two subcases.

• Subcase 2.a: When ei is truthful, bid bi,q is not served by any St′ ∈ Cgrd. If by
reporting bi,q instead of bi,q this bid is still not served (and thus all subsequent
bids will not be served either, according to Lemma 8), it does not make any
difference because the outcome is exactly the same as when ei is truthful, and
hence ei does not need to lie at all. If ei is served by a set Sj ∈ Cgrd, ei is
profit-losing in this round because price(i, q) > bi,q; further, it cannot make any
profit in later rounds, because price(i, r)’s are non-decreasing while bi,r’s are
non-increasing with respect to r.

• Subcase 2.b: When ei is truthful, bid bi,q is served by a set Sj ∈ Cgrd. Since
bi,q > bi,q , bid bi,q will be served either, and therefore the only incentive for ei

to report bi,q instead of bi,q is that it also needs to lie about the next bid bi,q+1

such that bi,q+1 > bi,q (since we enforce that the bids are non-increasing). In
this sequence of lies, there must be one bid, say, bi,q′ , that makes a difference:
the q′-th bid is served by a set by reporting bi,q′ but will not be served by any set
by reporting bi,q′ . However, as already shown in Subcase 2.a, ei will not benefit
from this.
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This finishes the proof.

In [6] multicover game was also considered. However, the algorithm used is dif-
ferent from ours and also they did not assume that the bids by the same element are
non-increasing, and their mechanism is not strategyproof.

5 Selfish Service Providers
In the previous sections, we studied how the costs of the service providers are shared
among service receivers such that approximate budget-balance and some fairness are
achieved. The underline assumption made so far is that the service providers are truth-
ful in revealing their costs of providing the service. In this section, we will address the
scenario when service providers are selfish in revealing their costs.

5.1 Strategyproof Mechanism
Remember that in the generalized set cover problem, there is a set U of n elements
that need to be covered: each element ei need to be covered ri times, and each agent
1 ≤ j ≤ m can cover a subset of elements Sj with a cost cj . Let c = (c1, c2, · · · , cm).
We want to find a subset of agents D such that

⋃
j∈D Sj has ri copies of element ei

for every element ei ∈ U . The social efficiency of the output D is −∑
j∈D cj , which

is the objective function to be maximized. Clearly a VCG mechanism [31, 5, 12] can
be applied if we can find the subset of S that satisfies the multicover requirement of
elements in U with the minimum cost. Unfortunately this is NP-hard. We showed that
the greedy method presented in Algorithm 1 has an approximation ratio of ln dmax.

Let Cgrd(S, c, U, r) be the sets selected from S (with cost specified by a cost vector
c = (c1, · · · , cm)) by the greedy algorithm to cover elements in U with cover require-
ment specified by a vector r = (r1, · · · , rn) (see Algorithm 1). Notice that the output
set is a function of S, c, U , and r. The type of an agent could be each set cj , i.e., the
elements in Sj are assumed to be a public knowledge. Here, we consider a more gen-
eral case: the type of an agent is (Sj , cj). In other words, we assume that every service
provider j could lie not only about its cost cj but also about the elements it could cover.
This problem now looks very similar to the combinatorial auction with single minded
bidder studied in [18], but with the following differences: in the set cover problem here
we want to cover all the elements with at least a given cover requirement and the sets
chosen can have some overlap while in combinatorial auction we want to maximize the
sum of the cost of all sets and the chosen sets are disjoint.

Assume that we use Algorithm 1 to find a set cover, and want to apply VCG mech-
anism to compute the payment to the selected agents. The payment to an agent j is 0
if Sj 6∈ Cgrd. Otherwise, the payment to a set Sj ∈ Cgrd is

PV CG
j = C(Cgrd(S \ {Sj}, c|j∞, U, r))− C(Cgrd(S, c, U, r)) + cj .

Here C(X ) is the total cost of the sets in ξ for X ⊆ S . We show that this payment
scheme based on VCG is not truthful by the following example. Consider the universal
set U = {e1, e2, · · · , en} and S = {S1, S2, · · · , Sn+1}, where Si = {ei} for 1 ≤
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i ≤ n, and Sn+1 = {e1, e2, · · · , en}. The cost ci = 1
n−i+1 , for 1 ≤ i ≤ n, and

cn+1 = 1 + ε, where ε is a small positive number. It is easy to show that the payment
to agent 1 is PV CG

1 = 1 + ε − Hn + 1/n, which is less than its cost 1/n. In other
words, the mechanism M = (Cgrd,PV CG) is not truthful.

For the moment, we assume that agent j won’t be able to lie about its element Sj .
We will drop this assumption later. Clearly, the greedy set cover method presented in
Algorithm 1 satisfies a monotone property: if a set Sj is selected with a cost cj , then
it is still selected with a cost less than cj . Monotonicity guarantees that there exists a
strategyproof mechanism for generalized set cover games using the greedy method to
compute its output. We then show how to compute the payment to each service provider
efficiently. We assume that for any set Sj , if we remove Sj from S , S still satisfies the
coverage requirements of all elements in U . Otherwise, we call the set cover problem
to be monopoly: the set Sj can charge an arbitrarily large cost in the monopoly game.
The following presents our strategyproof mechanism for multiset multicover set cover
problem.

Algorithm 4 Strategyproof payment Pgrd
j to service provider Sj ∈ Cgrd.

1: Cgrd←∅ and s←1;
2: k′←k, r′i = ri for each ei;
3: while k′ > 0 do
4: pick the set St 6= Sj in S \ Cgrd with the minimum effective average cost;
5: Let vt and vj be the values of the sets St and Sj at this moment;
6: κ(j, s)← vj

vt
ct and s←s + 1;

7: Cgrd←Cgrd ∪ {St};
8: k′←k′ − vt;
9: for each ei, r′i←max{0, r′i − kt,i};

10: Pgrd
j = maxs−1

t=1 κ(j, t) is the payment to selfish service provider Sj .

It is easy to show that Pgrd
j computed by Algorithm 4 is the threshold cost for set

Sj such that it is selected in the greedy set cover if and only if it reports a cost less than
Pgrd

j . Thus, the mechanism M = (Cgrd,Pgrd) is strategyproof (when the agent j does
not lie about the set Sj of elements it can cover) and the payment Pgrd

j is the minimum
payment to the selfish service provider j among any strategyproof mechanism using
the greedy set cover method described in Algorithm 1 as its output.

We now consider the scenario when agent j can also lie about Sj . Assume that
agent j cannot lie upward2, i.e., it can only report a S′j ⊆ Sj . We argue that agent
j will not lie about its elements Sj . Notice that the value κ(j, s) computed for the

s-th round is κ(j, s) = vj

vt
ct =

∑
1≤i≤n min(r′i,kj,i)∑
1≤i≤n min(r′i,kt,i)

ct. Obviously vj cannot increase

when agent j reports any set S′j ⊆ Sj . Thus, falsely reporting a smaller set S′j will not
improve the payment of agent j.

2This can be achieved by imposing a large enough penalty if an agent could not provide the claimed
service when it is selected.
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Theorem 10 Algorithm 1 and 4 together define a ln dmax-efficient strategyproof mech-
anism M = (Cgrd,Pgrd) for multiset multicover set cover game.

Notice that so far we assumed that each set Sj is an individual agent. In practice, it
is possible that a selfish agent controls several different sets in S . Assume that there are
g agents {1, 2, · · · , g}. Each agent i controls a subset Si ⊂ S such that

⋃g
i=1 Si = S ,

and Si ∩ Sj = ∅ for i 6= j. We still use Algorithm 1 to find a greedy set cover.
Assume that we want to compute a payment to a set Sj owned by agent a. The payment
computing algorithm has to be changed as follows: the line 4 of Algorithm 4 is replaced
by “pick the set St in S − Cgrd − Sa with the minimum effective average cost”.

5.2 Sharing the Payment Fairly
In the previous subsection, we only define what is the payment to a selfish service
provider Sj . A remaining question is how the payment should be charged. A nat-
ural way is to charge the payments to all service receivers fairly (under some sub-
tle definitions) to encourage cooperation among service receivers. One natural way
of defining fair payment sharing is to extend the fair cost sharing method. Con-
sider a strategyproof mechanism M = (O,P). Let P(T ) be the total payment to
the selfish service providers when T is the set of service receivers to be covered.
A payment sharing scheme is simply a function π(i, T ) such that π(i, T ) = 0 for
any element ei 6∈ T . A payment sharing scheme is called α-budget-balanced if
α · P(T ) ≤ ∑

ei∈T π(i, T ) ≤ P(T ). A payment sharing scheme is said to be a
core if

∑
ei∈S π(i, T ) ≤ P(S) for any subset S ⊂ T . A payment sharing scheme is

said to be a α-core if it is α-budget-balanced and it is a core.
Let us first consider the strategyproof payment method Pgrd. We first prove the

following theorem.

Theorem 11 There is no α-core payment sharing scheme for the payment method
Pgrd if α > 1

ln n .

PROOF. Consider the example used in the proof of Theorem 3: we duplicate every set
used in that example with the same cost. It is easy to show that Pgrd(U) = Hn−1−1+
2−3ε
n−1 . Consider a set T = {e1, · · · , en−1}. The payment Pgrd(T ) is 1 − ε. From the
core property, we have

∑
ei∈T π(i, U) ≤ Pgrd(T ) and π(i, {en}) ≤ Pgrd({en}) =

2−3ε
n−1 . Thus, α ≤

∑
ei∈U π(i,U)

Pgrd(U)
' 1

Hn−1
. This finishes the proof.

It is easy to show that if we share the payment to a service provider equally among
all service receivers covered by this set, the scheme is not in the core of the game. We
leave it as an open problem whether we can design an α-core payment sharing scheme
for the payment Pgrd with α = O( 1

ln n ).
In the next, we study the cross-monotone payment sharing scheme. A payment

sharing scheme is said to be cross-monotone if π(i, T ) ≤ π(i, S) for any two subsets
S ⊂ T and i ∈ S. A payment sharing scheme is said to be a cross-monotone α-core if
it is α-budget-balanced, it is a core, and it is cross-monotone.

Similar to Theorem 4, we propose the following conjecture.
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Conjecture 1 For the strategyproof mechanism M = (Cgrd,Pgrd) of a set cover
game, there is no payment sharing scheme π(·, ·) that is cross-monotone α-core for
α = 1

n + ε.

In the remaining of this section we will present a cross-monotone budget-balanced
payment sharing scheme for a strategyproof payment scheme of the set cover game.
Our payment sharing scheme is coupled with the following payment scheme. The
strategyproof mechanism uses the output called least cost set: for each service receiver
ei, we find the service provider Sj with the least cost efficiency cj

min(ri,kj,i)
to cover the

element ei. New cost efficient sets are found till the cover requirement of ei is satisfied.
The output method of the mechanism is described in Algorithm 5.

Algorithm 5 Least cost set greedy for multiset multicover game.
1: Let Clcs ← ∅.
2: for all element ei ∈ T do
3: Let r′i ← ri;
4: while r′i > 0 do
5: Find the set St with the minimum ratio minSj∈S−Clcs

cj

min(kj,i,r′i)
;

6: Let r′i ← r′i −min(kj,i, r
′
i).

7: Let Clcs ← Clcs ∪ {St}.

We then show how we define the mechanism M = (Clcs,P lcs). The payment,
denoted by pi

j , of an element ei to a selected set Sj is the largest cost that Sj can
declare while Sj is still selected to cover ei. If the set Sj is not selected to cover ei,
then pi

j = 0. The final payment to a set Sj is defined as P lcs
j = maxei∈U pi

j . We call
this mechanism as the least cost set mechanism. Algorithm 6 describes our payment
method using Algorithm 5 to compute the output.

Algorithm 6 Compute the payment P lcs
j to a set Sj in Clcs.

1: Let Clcs ← ∅, pi
j = 0 for 1 ≤ i ≤ n and s = 1;

2: for all element ei ∈ T do
3: Let r′i ← ri;
4: while r′i > 0 do
5: Find the set St 6= Sj with the minimum ratio minSx∈S−Clcs−{Sj}

cx

min(kx,i,r′i)
;

6: Let κ(j, i, s) = min(kj,i,r
′
i)

min(kt,i,r′i)
ct;

7: Let r′i ← r′i −min(kj,i, r
′
i);

8: Let Clcs ← Clcs ∪ {St} and s←s + 1;
9: pi

j←max1≤x<s κ(j, i, s);
10: P lcs

j ←max1≤i≤n pi
j ;

Theorem 12 The mechanism M = (Clcs,P lcs) is 1
2n -efficient and strategyproof.

PROOF. The proof that the mechanism is 1
2n -efficient can be directly derived from the

proof of Theorem 5. To show that it is strategyproof, we first show that the payment
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to a set Sj is indeed the largest possible cost it could declare while it is still selected
by Algorithm 5. This can be easily verified from the description of our method. Then
we show that a set agent j cannot lie its cost cj to improve its payment. When it is not
selected originally, we have cj ≥ P lcs

j . If it lies a cost larger than P lcs
j , its profit does

not change; If it lies a cost smaller than P lcs
j , its profit becomes negative: P lcs

j − cj .
Similarly, when it is originally selected, lying cannot improve its profit. This finishes
the proof.

We then study how we charge the service receivers so that a budget-balance is
achieved and the charging scheme also is fair under some concepts. Notice that, given
a subset of elements T , we can view the total payments P(T ) to all service providers
covering T as a “cost” to T . The payment computed by mechanism M = (Clcs,P lcs)
clearly is cohesive. Then naturally, we could use the cost-sharing schemes studied be-
fore to share this special cost among elements. However, it is easy to show by example
that the previous cost-sharing schemes (studied in Section 3) are not in the core and
also not cross-monotone.

Roughly speaking, our payment sharing scheme works as follows. Notice that a
final payment to a set Sj is the maximum of payments pi

j by all elements. Since
different elements may have different value of payment to set Sj , the final payment
P lcs

j should be shared proportionally to their values, not equally among them as cost-
sharing. Figure 2 illustrates the payment sharing scheme that follows.

en

pi−1
j

pn
j

pi+1
j

pi
j

ei

ei+1

p1
j

e1

Sj

ei−1

p1
j

pi
j − pi−1

j

pi+1
j − pi

j

ξi
j =

p1
j

n +
∑i

t=2
pt

j−pt−1
j

n−t+1

Figure 2: Share the payment to service providers among service receivers fairly.

Without loss of generality, assume that 0 ≤ p1
j ≤ p2

j ≤ · · · ≤ pn
j , i.e., pj = pn

j . We
then divide the payment pj into n portions: p1

j , p2
j −p1

j , · · · , pi
j−pi−1

j , · · · , pn
j −pn−1

j .
Each portion pi

j−pi−1
j is then equally shared among the last n− i+1 elements, which

have the largest n− i + 1 payments to Sj .
Our payment sharing method applies to a more general cost function. A cost func-

tion P is said to be maximum-view cost (MV cost) if it is defined as Pj = maxei∈U pi
j

where pi
j is the view of the cost of set Sj by element ei. Obviously, the traditional cost
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c is a MV cost function by setting pi
j = cj for each element ei. The payment function

P lcs is also a MV cost function.

Algorithm 7 Sharing MV cost P among receivers.
1: Initialize ξ(i, U) = 0 and ζj(i, U) = 0. Here ζj(i, U) denotes the payment to set

Sj shared by the element ei when the set of elements is U .
2: for all Sj ∈ S do
3: For all elements ei, we compute the payment pi

j . Sort the payments pi
j , 1 ≤ i ≤

n, in an increasing order. Assume that p
σ(1)
j , p

σ(2)
j , · · · , p

σ(n−1)
j , p

σ(n)
j are the

sorted list of payments in an incremental order.

4: For elements eσ(1), · · · , eσ(n), let ζj(σ(i), U)←∑i
t=1

p
σ(t)
j −p

σ(t−1)
j

n−t+1 . Here we

assume that p
σ(0)
j = 0. Update the payment sharing as follows: ξ(i, U) =

ξ(i, U) + ζj(i, U) for each ei ∈ U .
5: ξ(i, U) is the final payment sharing of service receiver ei.

A service receiver is called free-rider in a payment sharing scheme if its shared total
payment is no more than 1

n of its total payment it has to pay if it acts alone. Notice
that, when a service receiver acts alone, the same mechanism is applied to compute the
payment to the service providers.

Theorem 13 The payment sharing scheme described in Algorithm 7 is budget-balanced,
cross-monotone, in the core and does not permit free-rider.

PROOF. It is easy to see that the payment sharing scheme is budget-balanced: the
payment difference p

σ(i)
j −p

σ(i−1)
j is equally shared among n− i+1 service receivers

that have the largest n − i + 1 payments to the set Sj . It also doe not permit free-
rider since, for a service receiver a = σ(i), the shared payment of pj is ζj(σ(i), U) =
∑i

t=1

p
σ(t)
j −p

σ(t−1)
j

n−t+1 ≥ p
σ(i)
j

n . The total shared payment by an element ei is ξ(i, U) =
∑

Sj∈S ζj(i, U) ≥ ∑
Sj∈S

pi
j

n = ξ(i,{i})
n .

We only need to show that it is cross-monotone and in the core. It is obviously in
the core since for any subset of elements X and any set Sj , the total shared payments∑

i∈X ζj(i, U) ≤ maxi∈X pi
j . Notice that maxi∈X pi

j is the payment to set Sj if X
is the actual set of elements. Then

∑
i∈X ξ(i, U) =

∑
Sj∈S

∑
i∈X ζj(i, U) is at most

the total payment to all sets by X when the subset X of elements plays alone. Clearly
the cost sharing method ξ(·, ·) is cross-monotone: more receivers added to a given
subset of players T will not increase ζj(i, T ), thus not increase ξ(i, T ). This finishes
the proofs.

6 Conclusion
We studied cost sharing and strategyproof mechanisms for various set cover games
[19]. We gave an efficient cost allocation method that always recovers 1

ln dmax
of the
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total cost, where dmax is the maximum size of all sets. We further gave an efficient
cost sharing scheme that is 1

2n -budget-balanced, core and cross-monotone. When the
elements to be covered are selfish agents with privately known valuations, we presented
a strategyproof charging mechanism. When the sets are selfish agents with privately
known costs, we presented two strategyproof payment mechanisms in which each set
maximizes its profit when it reports its cost truthfully. We also showed how to fairly
share the payments to all sets among the elements.

There are a number of open questions left for future research. Are the bounds on
the α-budget-balanced cost sharing schemes tight, although we proved that they are
asymptotically tight? Consider the strategyproof mechanism M = (Cgrd,Pgrd). Is
there a payment sharing method that is 1

ln n -core? Is there a payment sharing method
that is cross-monotone 1

n -core? Is this 1
n a tight lower bound?
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