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We study the asymptotic delay and throughput in mobile ad hoc networks where 𝑛 ad hoc
nodes are distributed uniformly on a 2-D square (torus) region of area 𝑛. The communica-
tions between nodes are characterized by Gaussian Channel model, instead of the simplified
protocol model or physical model. The mobility of nodes is characterized by two general
broad classes of practical mobility models, i.e., hybrid random walk models and discrete
random direction models, which generalize many mobility models used in the literature.
Our results either fill the gap in this area or generalize a stream of milestone results on
asymptotic capacity, delay, and the tradeoffs developed recently.

I. System Model

We consider an ad hoc network consisting of 𝑛 mobile
nodes that are distributed uniformly on a square region
ℛ(𝑛) = [0,

√
𝑛]2 initially. After that, all nodes move

in accordance with the specific mobility.

I.A. Random Mobility Model

We focus on two classes of mobility models: (1)
Hybrid Random Walk Mobility Model (HRWMM)
and (2) Discrete Random Direction Mobility Model
(DRDMM), due to their generality, [1]. We partition a
square of area 𝔞 into 𝔞

𝔠 subsquares of area 𝔠, let 𝕃(𝔞, 𝔠)
denote the resulted lattice.

HRWMM: Divide the region ℛ(𝑛) = [0,
√
𝑛]2

into 𝑛 squares of area 1 (henceforth referred as cells),
resulting a lattice 𝕃(𝑛, 1). We next divide the region
ℛ(𝑛) into 𝑛1−2𝜀 squares of area 𝑛2𝜀 (henceforth re-
ferred as super cells) for 𝜀 ∈ [0, 12 ], resulting a lattice
𝕃(𝑛, 𝑛2𝜀). Then, there are 𝑛2𝜀 cells in each super cell.

Time is divided into phases of equal unit duration.
Without loss of generality, we assume that the dura-
tion of each phase under HRWMM is 𝐿h

p = 1. Ini-
tially, each node is equally likely to be in any of the
cells, independent of the other nodes. At the begin-
ning of each phase, a node uniformly chooses one cell
at random from a randomly selected adjacent super
cell, and jumps to the new cell from its current cell.
And it will stay at the new cell during this phase.
Please see Fig. 1(a). Particularly, for 𝜀 = 1

2 , the
above mobility model is essentially the i.i.d. model

(Fig.1(b)); and for 𝜀 = 0, it becomes the random walk
model (Fig.1(c)).

DRDMM: Divide the deployment region ℛ(𝑛)

into a lattice 𝕃(𝑛, 𝑛2𝜂). Time is divided into phases
of equal duration 𝐿d

p. Initially, each node is equally
likely to be in any of the cells, independent of the
other nodes. The motion of a node during this phase
is as follows: At the beginning of each phase, a node
uniformly chooses an end point at random within a
randomly selected adjacent cell, and moves to the end
point at the velocity of constant order Θ(1), as in [1].
To keep the duration of all phases the same, the speed
of the node is set in proportion to the distance between
the start point and end point. Note that the duration
of the phases is 𝐿d

p = Θ(𝑛𝜂). Please see Fig. 1(d).
Particularly, for 𝜂 = 1

2 , the above mobility model is
essentially similar to the random way-point mobility
model (Fig.1(e)); and for 𝜂 = 0, it degenerates into
the random walk model, which is the discrete time
version of the Brownian motion model (Fig.1(f)).

I.B. Communication Model

When time is divided into slots of sufficiently small
duration, it is reasonable to assume that the position of
each node is invariable (approximately) during a slot.
Then, how small the duration, denoted by 𝐿s, should
be to ensure the above assumption?

Under the HRWMM, since the motion of every
node happens instantaneously at the beginning of each
phase, it follows that the position of each node re-
mains the same during a whole phase. Hence, we set
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Figure 1: Illustrations of Mobility Models.

𝐿s = 𝐿h
p = 1 for HRWMM. Under the DRDMM,

each node moves with velocity of constant order,
which is infinitesimal relative to the extended scal-
ing, during a phase. Thus, it is acceptable to set 𝐿s

to be a constant number. Without loss of generality,
for DRDMM, we also set 𝐿s = 1.

We call the time slot with duration 𝐿𝑠 static slot
in the following content. Intuitively, we can treat the
MANET as a static network during one static slot. For
any directed link 𝑖, we use t𝑖 and r𝑖 to denote its trans-
mitter and receiver. Let 𝑖𝑡, t𝑡𝑖 and r𝑡𝑖, denote 𝑖, t𝑖 and
r𝑖 presented during static slot 𝑡, correspondingly.

Under Gaussian channel model, for any set of links,
say 𝒮𝑡, that transmit simultaneously at slot 𝑡, the rate
of a link 𝑖𝑡 ∈ 𝒮𝑡 is 𝑅𝑡

𝑖 = 𝐵 × log(1 + SINR𝑡
𝑖),

where SINR𝑡
𝑖 =

𝑃 ⋅ℓ(t𝑡𝑖,r𝑡𝑖)
𝑁0+

∑
𝑗∈𝒮𝑡−{𝑖} 𝑃 ⋅ℓ(t𝑡𝑗 ,r𝑡𝑖)

. Here, 𝑃

denotes the transmission power of each transmitter,
𝑁0 > 0 denotes the ambient noise power at the re-
ceiver, ℓ(t𝑡𝑖, r

𝑡
𝑖) = min{1, ∣t𝑡𝑖 − r𝑡𝑖∣−𝛼} denotes the

power attenuation function and 𝛼 > 2 is the power
attenuation exponent.

Throughout the paper, we let the expression 𝑓(𝑛) :

[𝜙1(𝑛), 𝜙2(𝑛)] represent that 𝑓(𝑛) = Ω(𝜙1(𝑛)) and
𝑓(𝑛) = 𝑂(𝜙2(𝑛)); let 𝑓(𝑛) : (𝜙1(𝑛), 𝜙2(𝑛)) repre-
sent that 𝑓(𝑛) = 𝜔(𝜙1(𝑛)) and 𝑓(𝑛) = 𝑜(𝜙2(𝑛)).

II. Communication Strategy
II.A. Contact and Waiting Intervals

Under a given communication strategy S, a key pa-
rameter is the critical distance 𝔩S, within which two
nodes will communicate directly, where 𝔩S : [1,

√
𝑛].

Depending on a specific mobility model and the criti-
cal distance 𝔩S, we can define the contact interval dur-
ing which data can be transmitted continually between
the nodes with a distance of order 𝑂(𝔩S); and we de-
fine the waiting interval it takes a packet to wait for
the next transmission at a relay node.

II.B. Classical Two-Hop Strategy

Two-hop strategy was first proposed by Grossglauser
and Tse [2]. Under the two-hop strategy, for each
packet 𝑧 from session 𝑘, the complete relay path can
be denoted by 𝒫𝑘,𝑧 = {1𝑡1𝑘,𝑧, 2𝑡2𝑘,𝑧}. There are gener-
ally three phases under the two-hop strategy: (1) S→R
phase, during which the source node t1,𝑘,𝑧 transmits
the packet 𝑧 to a relay node r1,𝑘,𝑧 , i.e., t2,𝑘,𝑧; (2) wait-
ing phase, during which r1,𝑘,𝑧 holds the packet 𝑧 until
it meet the destination node r2,𝑘,𝑧 within a distance
of 𝔩S, and (3) R→D phase, during which r1,𝑘,𝑧 trans-
mits the packet 𝑧 to r2,𝑘,𝑧 . Please see the illustration
in Fig.2. Here, the duration of S→R phase and R→D
phase is of the same order as the contact time with the
parameter 𝔩S; the duration of the waiting phase can be
derived based on the first hitting time. S→R phase and
R→D phase are the contact intervals, and the waiting
phase is the waiting interval.

III. Main Results and Discussions

III.A. Main Results

To the best of our knowledge, this work is first one
to study the scaling laws for MANETs under the
Gaussian Channel model in extended networks. We
mainly focus on deriving the capacity and delay for
the extended MANET under the well-known two-hop
strategy without replications [2] that has been exten-
sively studied under the protocol or physical models
for dense networks.

Our scheme is a simple threshold-based method:
when the distance between two nodes is at most a
threshold 𝔩S, these two nodes are requested to commu-
nicate directly; otherwise, they communicate via the
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Figure 2: Decomposition of Two-Hop Communica-
tion. 𝐿c and 𝐿w denote the average duration of the
contact intervals and waiting intervals, respectively.
𝐿s denotes the duration of static slots. Here, 𝐿h

p =

𝐿s = 1 and 𝐿d
p = Θ(𝑛𝜂), 0 ≤ 𝜂 ≤ 1

2 . Note that
the contact intervals and waiting intervals always can
be divided into static slots; under the HRWMM, they
also can be divided into motion phases; while, un-
der the DRDMM, they are not necessarily divided into
motion phases due to the continuous motion of nodes.

two-hop relay strategy. Depending on this key param-
eter 𝔩S : [1,

√
𝑛], we derive the asymptotic capacity

and delay bounds for both HRWMM and DRDMM as
following:

Average Capacity: (H: HRWMM, D: DRDMM)

H:

{
Ω( log𝑛⋅𝑛2𝜀

(𝔩S)2
), when 𝔩S :

[
𝑛𝜀

√
log 𝑛,

√
𝑛
]

Θ(1), when 𝔩S :
[
1, 𝑛𝜀

√
log 𝑛

] ∩ [1,
√
𝑛]

D:

⎧
⎨
⎩

Ω
(

log𝑛⋅𝑛𝜂

(𝔩S)2

)
, when 𝔩S :

[
𝑛𝜂

√
log 𝑛,

√
𝑛
]

Ω( 1
𝑛𝜂 ), when 𝔩S :

[
𝑛𝜂, 𝑛𝜂

√
log 𝑛

] ∩ [1,
√
𝑛]

Ω( 1
𝔩S
), when 𝔩S : [1, 𝑛𝜂] .

Average Delay: (H: HRWMM, D: DRDMM)

H:

⎧⎨
⎩

Θ
(

𝑛
(𝔩S)2

+ log𝑛
𝑛2𝜀−1

)
, when 𝔩S : [1, 𝑛𝜀] ∩ [1,

√
𝑛)

Lower bound Ω(𝑛
1−2𝜀

log𝑛 ), when 𝔩S : [𝑛𝜀,
√
𝑛)

Upper bound 𝑂(𝑛
1−2𝜀

log𝑛 + 1), when 𝔩S = Θ(
√
𝑛)

D:

⎧
⎨
⎩

Θ
(

𝑛
(𝔩S)2

+ log𝑛
𝑛𝜂−1⋅

)
, when 𝔩S : [1, 𝑛𝜂] ∩ [1,

√
𝑛)

Lower bound Ω(𝑛
1−𝜂

log𝑛 ), when 𝔩S : [𝑛𝜂,
√
𝑛)

Upper bound 𝑂(𝑛
1−𝜂

log𝑛 ), when 𝔩S = Θ(
√
𝑛)

III.B. Discussion of Results

Insights of Results for HRWMM: (1) Under the
classical two-hop strategy, to achieve the capacity of
order Θ(1) for dense networks, the critical distance is
set to be 𝔩S = Θ( 1√

𝑛
) [2]. Then, it is intuitive that

by a simple scaling extension from dense networks
to extended networks, i.e., by letting 𝔩S = Θ(1),
the capacity is achieved of order Θ(1). We first
prove that the tight bound of 𝔩S deriving the capac-

ity of a constant order under the Gaussian Channel
model is Θ(min{𝑛𝜀

√
log 𝑛,

√
𝑛}) (The feasible re-

gion is 𝔩S : [1,min{𝑛𝜀
√
log 𝑛,

√
𝑛}]). (2) For i.i.d

mobility model, i.e., the case of 𝜀 = 1
2 , a surprising

result arises: the capacity and delay can be simulta-
neously achieved of order Θ(1) under the setting of
𝔩S = Θ(

√
𝑛). Recall that under i.i.d mobility model

the position of any node is independent of that in the
adjacent time slots. That means that in the extended
network the velocity of each node under i.i.d model is
assumed to increase to infinity (of order Θ(

√
𝑛)). The

specificity of i.i.d mobility model just contributes to
this surprising result. (3) Furthermore, for the delay,
in the first regime, i.e., 𝔩S : [1, 𝑛𝜀] ∩ [1,

√
𝑛), by using

the tight bound, we get that the delay is inversely pro-
portional to (𝔩S)

2 when 𝔩S : [1, 𝑛𝜀√
log𝑛

], and becomes
invariable when 𝔩S is beyond the threshold of order
Θ( 𝑛𝜀√

log𝑛
). For the other two regimes, it is an inter-

esting future work to derive tight bounds if they exist,
which can possibly enhance the insights of the issue.

Insights of Results for DRDMM: (1) For the cases
of 0 < 𝜂 ≤ 1/2, including the random way-point
mobility model, one has to let 𝔩S = Θ(1) in order to
achieve the capacity of optimal order, i.e., Θ(1). For
the discrete Brownian mobility model, i.e., the case of
𝜂 = 0, the capacity of optimal order can be achieved
when 𝔩S : [1,

√
log 𝑛]. (2) The bound on the delay is

tight in the regime of 𝔩S : [1, 𝑛𝜂]∩ [1,
√
𝑛). The delay

is inversely proportional to (𝔩S)
2 when 𝔩S : [1, 𝑛𝜂/2√

log𝑛
],

and becomes invariable when 𝔩S is beyond the thresh-
old of order Θ( 𝑛𝜂/2√

log𝑛
).

Common Insights for Both Models: The capacity
is independent of the power attenuation exponent of
Gaussian Channel model, although it decreases with
𝔩S for some regimes. The reason for this phenomenon
lies in the fact that when the link rate changes with
the link length under Gaussian Channel model, the
data transmitted via long-distance links are indeed in-
finitesimal relative to those via short links.
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