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Abstract—Backbone has been used extensively in various capacities, and information loads to be processed. Therefore,
aspects (e.g., routing, route maintenance, broadcast, scheduling)in the remaining of the paper, for the succinctness of our
for wireless ad hpc or sensor_n_etv_vorks rece_ntly. Previous methods presentation, we assume that each wireless node beseaic
are mostly designed to minimize the size of the backbone. . .

However, in many applications, it is desirable to construct a CO,St (or weigh). The cost may also represent tfigessor
backbone with small cost when each wireless node has a costPriority of each node to be a clusterhead. The lower cost
of being in the backbone. In this paper, we first show that means the higher priority. In practice, the cost could represent
previous methods specifically designed to minimize the backbone the power consumption rate of this node if a backbone with
size may produce a backbone with large cost. Then an efficient g hower consumption is needed; the robustness of this
distributed method to construct a weighted backbone with low . . . .

cost is proposed. We prove that the total cost of the constructed _node if f_ault-toler_ant backbone is need_ed, or a function of
backbone is within a small constant factor of the optimum for itS security level if a secure backbone is needed. Therefore,
homogeneous networks when either the nodes’ costs are smoothby defining different costs, our proposed low-cost backbone
(i.e. the maximum ratio of costs of adjacent nodes is bounded) or formation algorithms can be used in various practical appli-

the network maximum node degree is bounded. We also show that . ; ; _
with a small modification the constructed backbone is efficient cations. Recently, many proposed clustering algorithms [14]

for unicast: the total cost (or hop) of the least cost (or hop) [28] al_so considered differer_lt weights aspaority criterion
path connecting any two nodes using backbone is no more than t0 decide whether a node will be a clusterhead. However, the

3 (or 4) times of the least cost (or hop) path in the original ultimate goal of the majority protocols is still to minimize the
communication graph. Our theoretical results are corroborated sjze of the cluster (or backbone), not the total weight of the
by our simulation studies. Finally, we discuss several possible ad ¢ ,ster (or backbone). In this paper, we study how to construct
hoc network applications of our proposed backbone formation - . .
algorithms. a sparse backbone efficiently for a set of We_|ght_egl ereless
nodes such that the total cost of the backbone is minimized and
there is a cost (or hopgfficientroute connecting every pair of
wireless nodes via the constructed network backbone. Here a
route is cost (or hops respefficientif its cost (or hops resp.)
is no more than a constant factor of the minimum cost (or
Wireless networks draw lots of attentions in recent yeat®ps resp.) needed to connect the source and the destination in
due to its potential applications in various areas. Many routinge original communication graph when all possible physical
protocols have been proposed for wireless ad hoc netwodesmmunication links are considered.
recently. The simplest routing method is to flood the messageWwe propose a novel distributed method to generate weighted
which not only wastes the rare resources of wireless nodgackbone with a good approximation ratio while using small
but also diminishes the throughput of the network. One wayymmunication cost. Our methods work not only for ho-
to avoid flooding is to let each node communicate with onlynogeneous networks, but also for heterogeneous networks.
a selected subset of its neighbors , or to use a hierarchig@ prove that the total cost of the constructed backbone is
structure like Internete.g, connected dominating set (CDS)within min(46 + 1, 18log(A +1)) + 10 times of the optimum
based routing [1]-[5]. for homogeneous networks when all nodes have the same
Efficient distributed algorithms for constructing connecteglansmission range. Heré is the maximum ratio of costs
dominating sets in ad hoc wireless networks were well studiefl two adjacent wireless nodes arddis the maximum node
[3]-[14]. Most of the proposed methods try to minimize thelegree in the communication graph. Notice that the advantage
number of clusterheads, i.e., the number of nodes in tBeour backbone is that the total cost is small compared with
backbone. However, in many applications of wireless ad h@ge optimum when either the costs of wireless nodes are
networks, minimizing the size of the backbone is not sufficierdmooth,i.e., two neighboring nodes’ costs differ by a small
For example, different wireless nodes may have different cosignstant factor, or the maximum node degree is low. The total
for serving as a clusterhead, due to device differences, powgimber of messages of our methoddém) for any network
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ywang32@uncc.edu with a small modification the constructed backbone is efficient
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communication graph. This is significant since our backboneWe call all nodes within a constarit hops of a nodeu
structure is much sparser than the original communicatiamthe communication grapt¥ as thek-local nodesor k-hop
graph, which significantly reduces the cost of routing withouteighborsof u, denoted byV;(u), which includes: itself. The
losing much ground on the performance of unicast. k-local graph of a node, denoted byGy(u), is the induced
The rest of the paper is organized as follows. In Sectigraph of G on Ny (u), i.e., G(u) is defined on vertex set
Il, we provide preliminaries necessary for describing our new,(u), and contains all edges i& with both end-points in
algorithms. In Section Ill, we review the related works inVy(u).
literature, including formations of connected dominating sets A subset of vertices in a grapfd is anindependent seif
and weighted clustering methods. Then, the possible bad pfer- any pair of vertices, there is no edge between them. It is
formances of several classical methods are shown by exam@enaximal independent sétno more vertices can be added
in Section IV. Section V presents our new weighted backbote it to generate a larger independent set. It isnaximum
formation algorithms, and Section VI gives the theoreticéhdependent setMIS) if no other independent set has more
performance analysis of the proposed algorithms. Sectivertices. The independence number, denotedv@s), of a
VII presents some experimental results. In Section VI, wgraphG is the size of the maximum independent seGofThe
discuss several possible network applications of our proposetbcal independence numbetenoted byn!*!(G), is defined
weighted backbone formation algorithms. Finally, we concludes /¥ (G) = max,cy (G (u)). It is well-known that for a
our paper in Section IX by discussing dynamic maintenancait disk graph,o!J(UDG) < 5 [29] and oP(UDG) < 18
of the backbone and some future research directions. [30].
A subsetS of V is a dominating setif each nodeu
in V is either in S or is adjacent to some node in S.
Nodes from S are called dominators, while nodes not in
In this section, we give some definitions and notations thgt are called dominatees. Clearly, any maximal independent
will be used in our presentation later. We assume that a8kt is a dominating set. A subsét of V is a connected
wireless nodes are given as a $étof n points in a two dominating se{CDS) if C' is a dominating set an@' induces
dimensional space. Each wireless node has an omni-directionatonnected subgraph. Consequently, the node€§’ ican
antenna. This is attractive for a single transmission of a nogemmunicate with each other without using noded/in- C.
can be received by all nodes within its vicinity. Each noda dominating set with minimum cardinality is calledinimum
has some computational power. We always assume that gtgninating set(MDS). A connected dominating set with
nodes are almost-static in a reasonable period of time. inimum cardinality is theninimum connected dominating set
communication grapttz = (V, £) over a setV of wireless (MCDS). In wireless ad hoc networks, assume that each node
nodes has an edgev between nodes andv if and only if + has a cost(u). Then a connected dominating €gis called
u andv can communicate directly with each other, i.e., insid@eighted connected dominating §&CDS). A subset of V/
the transmission region of each other. Hereafter, we alwagsa minimum weighted connected dominating @4WCDS)
assume tha€; is a connected graph. Lék:(u) be the degree if ¢’ is a WCDS with minimum total cost. In this paper, we
of nodew in a graphG and A be the maximum node degreestudy efficient algorithms to construct a low-cost backbone
of all wireless nodes (i.eA = max,cy dg(u)). Notice that which can approximate the MWCDS well.
the average node degree is caltighsityof the network. We
assume that each wireless nadéas a cost(u) of being in
the backbone. Here the cast:) could be the value computed
based on a combination of its remaining battery power, its Efficient distributed algorithms for constructing connected
mobility, its node degree in the communication graph, argbminating sets in ad hoc wireless networks were well studied
so on. We will discuss several possible weight functions f¢8]-[14]. The notion of cluster organization has been used
different applications in Section VIII in detail. In generalfor wireless ad hoc networks since their early appearance.
smaller ¢(v) means that the node is more suitable of beingakeret al.[7], [8] introduced a fully distributed linked cluster
in the backbone. Let = max;;cg c(i)/c(j), whereij is the architecture mainly for hierarchical routing and demonstrated
edge between nodésand j, E is the set of communication its adaptivity to the network connectivity changes. The notion
links in the wireless networks, and the maximum operationof the cluster has been revisited by Gedtal. [31], [32]
is taken on all pairs of adjacent nodeandj in G. In other for multimedia communications with the emphasis on the
words,d is the maximum ratio of costs of two adjacent nodesllocation of resources to support the multimedia traffic in
We callé the cost smoothnegssf the wireless networks. Whenan ad hoc environment. In [33], Ga&t al. proposed a
0 is bounded by some small constant, we say the node castsdomized algorithm for maintaining the discrete mobile
aresmooth centersij.e., dominating sets. They showed that it approximates
When the transmission region of every wireless node msinimum dominating sewithin O(1) with very high proba-
modeled by a unit disk centered at itself, the communicatidaility. Recently, Alzoubiet al. [6], [34] proposed a method
graph is often called anit disk graph denoted by DG(V'), to approximateminimum connected dominating seithin 8
in which there is an edge between two nodes if and only if theithose message complexityd¥n logn) and time complexity
distance is at most one. We also call such wireless netwoiksO(n) for wireless networks modeled by unit disk graphs.
ashomogeneous networks Alzoubi, et al. [35] continued to propose a localized method
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approximating the MCDS within a constant time using alustering method. A nice literature review of cluster methods
linear number of messages. Mara#hieal. [36] studied several can be found in [25]. In [39], Basagrét al. also showed
approximation results for unit disk graphs, such as methods the performance comparison of some proposed protocols for
maximum independent sehinimum vertex coveminimum clustering and backbone formation. Most of these proposed
coloring and minimum dominating setExisting clustering weighted clustering algorithms applied the simple greedy
methods first choose some nodes to act as coordinatorsalgforithms where the nodes with highest priority (lowest cost)
the clustering procesd,e, clusterheads. Then a cluster idsecome clusterheads. For example, cluster method in [18]
formed by associating the clusterhead with some (or all) eélects a node with the lowest cost among its unchosen
its neighbors. Previous methods differ on the criterion fareighbors to serve as a clusterhead. These greedy heuristics
the selection of the clusterhead, which is either based on therk well in practice, but as we will show in Section IV that
lowest (or highest) ID among all unassigned nodes [8], [32hey may generate a backbone with a high cost compared
or based on the maximum node degree [31], or based on sonmith the optimum. Some of these methods [20], [22] are
generic weight [14] (the node with the largest weight will beandomized algorithms, nodes become clusterheads randomly
chosen as a clusterhead). In [13], Chetnal. also proposed with a weighted election probability. In [15], Turgut proposed
a localized algorithm to build connected dominating set f@a genetic algorithm to optimize cluster processing. All of
topology maintenance for ad hoc networks. In their methodtleese cluster methods do not guarantee any approximation
node becomes a dominator when two of its neighbors canmatio of the weighed cluster (or backbone) compared with
reach each other either directly or via one or two dominatottfie optimum. Notice that, Basagni [16] gave an algorithm to
Similarly, Wu and Li [4], [12] proposed their localized con-solve maximal weighted independent setwireless networks
nected dominating set method usingnarking processvhere and Basagnet al. [40] studied the performance of a greedy
a node is marked true if it has two unconnected neighbordustering algorithm (highest weight nodes become cluster
It is shown that the set of marked nodes forms a CDS. Thagads) fomaximum weighted independent sepeer-to-peer
then reduce the size of the CDS by applying tdominant networks, but here our solution for cluster is a distributed
pruning rules In [11], Dai and Wu further extended theirapproximation algorithm fominimum weighted dominating
pruning rules tok-hop neighborhood in order to achievingset and minimum weighted connected dominating wsetich
better results. Recently, Kuhn and Wattenhofer [37] proposedi@ well-known NP-hard problems. kt al. [41] presented a
new distributed MDS approximation algorithm based on lineaentralized approximation algorithm for weighted maximum
programming (LP) relaxation technigues. For an arbitraipdependent set for some special graphs. Guha and Khuller
parametek and maximum degred, their algorithm computes [42] studied centralized algorithms for weighted minimum
a dominating set of expected sigf kA%/*log A|]MDS|) in  connected dominating set in general graphs, by combining
O(k?) rounds where each node has to sénd@>A) messages a weighted set cover approximation algorithm and a node-
of sizeO(log A). Moreover, the authors further gave the timeveighted Steiner tree approximation algorithm they achieved
lower bounds for the distributed approximation of MDS impproximation ratid3 Inn. In [43], they further improved the
[38]. approximation ratio td .35 Iln n which is the best known ratio.
Many proposed clustering algorithms [14]—[28] also consida addition, any approximation algorithm with ratie for the
ered different weights asgiority criterion to decide whether unweighted (connected) dominating set problem automatically
a node will be a clusterhead. Notice, the ultimate goal gfives ratio« - § for the weighted version. In particular, the
the majority protocols is still to minimize the number oknown PTAS for dominating set in UDG [44] implies that
clusterheads (or the size of the backbone), not the total weigbgighted dominating set in UDG can be approximated with
of clusterheads (or the backbone). For example, methadsio (1 + ¢) - ¢ for arbitrarye > 0.
in [14], [19], [26] considered the stability or mobility of
each .node as the we|g.ht. They preferred the node with hlghlv CLASSICAL GREEDY METHODS NOT WORK WELL
stability and low mobility to be the clusterhead. However,
the definitions of stability or the evaluation methods used areMost of the proposed method in the literature are aim to find
different. In [21], authors also combined the stability witla small dominating set for homogeneous networks. Many of
the degree of each node as the weight. The higher priorityem are based on classical greedy algorithms. Since, in this
is given to relatively stable and high degree nodes. Methopaper, we are interested in distributed methods, we will thus
in [20], [22] considered clustering in heterogeneous sensworinly discuss the priori distributed greedy methods here. If
networks, where each node has different energy level. Mage insist on applying these distributed methods to approximate
of them used the remaining energy or energy consumptitire minimum weighted dominating set, they may produce a
rate as the weight. Both [28] and [27] considered two factolgickbone that is arbitrarily worse than the optimum. We will
in the priority: available energy and the speed, though theow by examples that three classical methods do not generate
used different equations to combine them. In [18], Chatterj@gedominating set whose cost is always comparable with ours
et al. considered a combined weight metric for their clusterinign the worst case.
algorithm, that takes into account several system parameter3he first method to generate a dominating set is to generate
like the node-degree, transmission power, mobility and tleemaximal independent set as follows [17], [29]. First, assume
battery power of the nodes. Similarly, Noce#it al. [25] that all nodes are marked &8HITE originally, which repre-
also combined these four facts to be the weights for theients that the node is not assigned any role yet. A node



sends a messagamDominator to all its one-hop neighbors arbitrarily larger than the optimum solution. See Figure 2(b)
if it has the smallest cost (ID is often used if every nodfor illustration of an instance in UDG. Assume that + 1

has a unit cost) among all it8YHITE neighbors. Nodeu wireless nodes are distributed as shown in Figure 2(b). The
also marks itselfDominator. When a nodev received a nodes’ costs ofu;, v;, andw are1l, 1 —¢ and 1 — 2e,
messagdamDominator from its one-hop neighbors, node respectively. The dominators selected by the third method are
then marks itselDominatee. Node v then sends a messagenodesw andv; (0 < ¢ < n), the total cost of the solution
lamDominatee to all its one-hop neighbors. Clearly, theis n(1 —¢) + 1 — 2¢. However, the optimal solution formed
nodes marked witlbominator indeed form a dominating set.by nodew and seven nodes from; has total cos8 — 2e.

We then show by example that the produced dominating seis easy to show that seven unit disks centered abdes
may be arbitrarily larger than the optimum solution. Althougamong some:; can cover alk;;. Our method described later
the instance illustrated here uses UDG as communicatiail produce an optimal dominating set in this special case.
graph, it is not hard to extend this to general communication

graph. See Figure 1 for an illustration. Assume thatireless V. EFFICIENT LOow-COST BACKBONE FORMATION
nodesu, v andw are distributed along a line with one unit ALGORITHMS
interval. The nodes’ costs of, v, and w are co, 1, and  |n this section, we will propose a distributed algorithm

1—e respectively. The dominators selected by the first meth@gat can construct a low-cost backbone (weighted connected
are nodesw andu, and the total cost of the solution i®. dominating set) for a wireless ad hoc netw@#kby assuming
However, the optimal solution is formed bywith a total cost that each wireless node has a cost:(u) of being on the
1. Our method presented later does produce a dominating sg&tkbone. We will prove that the total cost of the constructed

of total cost2 — . backbone is no more thanin(a/?(G) log(A+1), (o¥(G) -
u v w 1)0 + 1) + 2a!1(@) times of the optimum solution. Notice
[ ] ]o 10 that, for homogeneous wireless networks modeled by UDG, it
[ere} —€

implies that the backbone produced by our method has a cost
Fig. 1. An example where the first method fails to produce low cost weightél® More thanmin(18log(A + 1),46 + 1) + 10 times of the
connected dominating set. optimum solution.
We assume that each node knows the IDs and costs of

The second method of constructing a dominating set [&ll its 1-hop neighbors, which can be achieved by requiring
[45] is based on minimum weighted set cover [46]. Theach node to broadcast its ID and cost to its 1-hop neighbors
method can be described in a centralized way as follows: iifitially. This protocol can be easily implemented using syn-
each round, we select an unselected nodéth the minimum chronous communications as did in [7], [8]. If the number of
ratio c(i)/d;, whered; is the number of nodes not coverecheighbors of each node is known a priori, then this protocol
by previously selected dominators. It is well-known that thisan also be implemented using asynchronous communications.
centralized method produces a dominating set whose to@lr method has the following two phases: the first phase
cost is no more tharog(A + 1) times of the optimum, (clustering phase) is to find a set of wireless nodes as the
where A is the maximum original degree of all nodes. Irdominator$ and the second phase is to find a set of nodes,
[6], Alzoubi et al. gave an example (as in Figure 2(a)) withcalled connectors to connect these dominators to form the
a family of instances for which the size of the solutioffinal backbone. Notice that these two phases could interleave
computed by the second method is larger than the optimumthe actual construction method. We separate them just for
solution by a logarithm factor when all nodes have the sarttée sake of easy presentations.
weight. Although the instance illustrated here uses UDG as
communication graph, obviously, we can extend this to & Finding Dominators

gengral c_ommunication gr_aph. I_n this example, all nodes have, s thep propose our method of constructing a dominating
E;]!m't Wi'ggt.' For the Qetall O.f th'ls example, ‘T‘fe [z] Mé)reoveget whose total cost is comparable with the optimum solution.
this method is expensive to implement in a distributed way. §, nethod first constructs a maximal independent set (MIS)

is expensive to find the nodawith the minimum raF|0c(i)/di uﬁing node weight as selection criterion. Then for each node
among all unchosen nodes. Our method described later Wil "MIS. we run local greedy set cover method leal
produce a dominating set whose size is no more théimes neighborhoodN: (v) to find some node& RDY, to cover all

of the optimum for unit weighted UDG. More importantly, Ourone-hop neighbors of. If GRDY, has a total cost smaller
method is a fully distributed method. Y

: L ) thanv, then we use7RDY,, to replacev, which will further
The third method to select the dominating set is propos?ga Y P

by Bao and Garcia-Luna-Aceves [28]. Unlike the previous twp duce the cost of MIS. Our method is illustrated in Algorithm
methods, this is a fully localized method and it can be executed
in 2 rounds using synchronous communication model. A no%ee
decides to become a dominator if either one of the following
two criteria are satisfied: 1) the node has the smallest cost ifiwe will interchange the terms cluster-head and dominator. The node that

its one-hop neighborhood' 2) the node has the smallest cosiifot @ cluster-head is also calleddinary node ordominatee A node is
. lledwhite node if its status is yet to be decided by the clustering algorithm.

the one-hop neighborhood of one of its One'hc’p .neighbors. \ﬁﬁally, all nodes are white. The status of a node, after the clustering method
show by an example that the produced dominating set mayfld&hes, could belominatoror dominatee

For the example illustrated by Figure 1, the MIS will
two nodesw and u, whose cost is large. Node is
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Fig. 2. Examples where the greedy methods fail to produce low cost weighted connected dominating set.

Algorithm 1 Construct Low-cost Dominating Set

Several methods [7], [8], [29], [31], [35] have been proposed

1: First assume that all nodes are originally marM®dITE. in the literature to find the connectors. However, all of these

2: A nodeu sends a messagegyDominator to all its one- methods only consider the unweighted scenario. We can show
hop neighbors if it has the smallest cost among all itsy examples that these methods generally do not produce a
WHITE neighbors. Nodeu also marks itselfPossible- weighted connected dominating set with good approximation
Dominator. ratio.

: When a node received a messadgyDominator from its
one-hop neighbors, nodethen marks itselDominatee.
Node v then sends a messagg@mDominatee to all its
one-hop neighbors.

4: When a nodev receives a messagambDominatee from
its neighborv, nodew removes nodes from its list of
WHITE neighbors.

: Each nodeu marked with PossibleDominator collects
the cost and ID of all of its two-hop neighbofé; (u).

. Using the greedy method for minimum weighted set cover
(like the second method), node selects a subset of its Algorithm 2 Low-cost Connector Selection

two hop-neighbors to coveall the one-hop neighbors ;. Every dominatee node broadcasts to its 1-hop neighbors
(including u) of nodeuw. If the cost of the selected Subset, the list of its One_hop dominator@l (U) using message
denoted byGRDYu, is smaller than the cost of nOdﬁ OneHopDominatorList(v’DI(U)). When a nodew re-
then nodeu sends a messagéuAreDominator(w) to ceives OneHopDominatorList(v, Dy (v)) from one-hop
each nodew in the selected subset. Otherwise, nade neighbor, it puts the dominator, € D; (v) to Dy(w) if

just marks itselfDominator. u ¢ Di(w). Update the pathP;(z,u) asuvw if it has a
: When a nodew received a messag¥ouAreDomina- smaller cost.

tor(w), nodew marks itselfDominator. 2: When a dominatee nodev received message®ne-

Given a dominating sef, let VirtG be the graph connect-
ing all pairs of dominators: and v if there is a path in the
original graphG connecting them with at most hops. It is
well-known that the graplir¢tG is connected [6]. It is natural
to form a connected dominating set by finding connectors to
connect any pair of dominatoisandw if they are connected
in VirtG. This strategy was used in several previous methods,
such as [6]-[8], [29], [32].

HopDominatorList from all its one-hop nodes, for each
dominator nodeu € Ds(w), nodew sends out message
TwoHopDominator(w, u, x, ¢(x)), wherewzu is the least

PossibleDominator and thus performs the local set cover.
Clearly Ny (u) = {u,v,w} and Ny (u) = {u,v}. The local set
cover will selectv to cover all nodes inV; (u) sincev covers
both nodes inV; (u). Note thate(v) < ¢(u), so nodeu will

let v be a dominator. The othdPossibleDominator w will

cost pathPs(w, u).

: When a dominator: receives a messagevoHopDom-
inator(w, u, z, c¢(x)) from its neighborw, it puts u to
Ds(z) if uw ¢ Ds(z), and updates the patRs(z,u) as

uwzz if ¢(w) + ¢(z) has a less cost.

Each dominator; builds a virtual edg@w to connect each
neighboring dominator. The length ofuv is the cost of
path Ps;(u,v). Notice that here the cost of end-nodes
and v is not included. All virtual edges forms agdge
weightedvirtual graph VirtG in which all dominators
are its vertices.

Run a distributed algorithm to build a MST on graph
VirtG. Let VM ST denoteM ST (VirtG).

rls? For any virtual edgee € VMST, select each of the
dominatees on the path corresponding s a connector.

keep itself as a dominator since the local set cover gets worse
solution than itself. The final dominating set is thém w}, 4
which is close to optimur{v}.

B. Finding Connectors

The second step of weighted connected dominating s%t
formation is to find someonnectors(also calledgateway® ’
among all the dominatees to connect the dominators. Then t
connectors and the dominators fornmcannected dominating
set (or called backbone).




Our connector selection method for weighted connectdthe bounds or¥;, can be improved by a tighter analysis.
dominating set is also based on this observation. First, Wwe [30], Li et al. gave the detailed proof to show that for
define two dominators: and v as neighboring dominators unit disk graph the number of independent node2-imops
if they are at most3 hops away,i.e., they are neighbors neighborhood (not including thiehop neighbors) is at mo38
in the graphVirtG. Let LCP(u,v,G) denote the least costwhile the number of independent noded thop neighborhood
path uv,vs - - - vpv between vertices, and v on a weighted is at most5. Therefore, there are at mo$8 independent
graph G, and £L(u,v,G) denote the total cost of nodes omodes inside the disk centered at a nedeith radius2, i.e,
path LCP(u,v,G) excluding v and v, i.e, L(u,v,G) = o (UDG) = 18.
> 1<i<k c(vx). For every pair of neighboring dominatots Theorem 2:Algorithm 1 constructs a dominating set whose
and v, our method will find the shortest path with at mostotal cost is no more thamin(18log(A + 1),48 + 1) times
3 hops to connect them. The nodes on this shortest paththe optimum for networks modeled by UDG.
will be assigned a role of connector. Our method uses the Proof: First, we prove the total cost of the maximal
following data structures and messages:It)(v) is the list independent setM/ 1S formed by all PossibleDominator
of dominators that arg-hops away from a node 2) P.(v,u) nodes is no more tha# + 1 times of the optimum. Assume
is the least cost path fromto u using at mosk-hops (Notice node v is a node from the optimun®PT. If u is not a
u andv may be less thak-hops away); 3DneHopDomina- PossibleDominator node then there are at mdstPossible-
torList(v, D1 (v)): nodesD;(v) are the dominators of node Dominator nodes around.. Let v}, v¥,--- ,v¥ denote them.
that arel-hop fromwv; 4) TwoHopDominator(v, u, w,c(w)): The cost of one of these five nodes is smaller than the cost of
nodew is a2-hop dominator of node and the pathiwv has wu, otherwise node: will be selected as RossibleDominator
the least cost. Algorithm 2 illustrates our method in detail. node. W.l.0.g., let(v}) < ¢(u). We also know that(v}) <

The graph constructed by combining all of dominators and- ¢(u) for 2 < i < 5. Thus,> >, ;5 c(v}") < (40 + 1)c(u).
the connectors selected by the above algorithm is calledfave summarize the inequations for all nodes in the optimum
weighted connected dominating set (WCDS) graphbi@mek- dominating seODPT, we get

bong. Notice that since we run MST on graghirtG, the

constructed backbone is a sparse graph, i.e., it has only Iine£ Z c(vi’) < (40+1) Z c(u) = (40+1)c(OPT).
number of links. u€OPT 1i<5 ueoPT
Notice that every node in MIS will appear ag* for at
VI. PERFORMANCEGUARANTEE least one node: € OPT since OPT is a dominating set.
In this section, we first study the performances of th®hus,c(MIS) = > o\/5c(v) < 3 copr do1<ics (V).
proposed weighted backbone in term of the total node coktfollows that o
Then, by a small modification of the backbone formation
algorithm, we can make our weighted backbone more efficient

for the unicast routing. Then, we prove the total cost of the nodes selected by the
greedy method in Step 6 of Algorithm 1 is no more than

A. Total Cost of the Backbone 181og(A + 1) times of the optimum. Assume that node

First, we would like to build a weighted backbone whosguns the greedy algorithm and gets the subsetG&DY,,,
total node cost is as less as possible. We will show that thad the cost of the selected subséGRDY,) is at most
backbone constructed by our method is comparable to the:). It is well known that the dominating set generated by
optimum when the network is not dense, or the costs of thige greedy algorithm for set cover is no more thag f
nodes do not have a dramatic chanige, being smooth. Our times of the optimum if every set has at mogtitems.
analysis following is on the homogeneous networks, but Here, we know that every dominator can cover at mast
can be extended to general heterogeneous networks with@gininatees, thus(GRDY,,) < log(A+1)-c(LOPT,). Here
difficulty. Before describing our result, we first review anwOPT, is an optimum dominating set (using nodes from
important observation of thdominating seon UDG, which N, (u)) when the set of nodes to be covered are tHgop
will play an important role in our proofs later. After clusteringneighborhood ofu (including u). Assume thatO PT,, is the
one dominator node can be connected to many dominategshset of the global optimum solution, denoted as OPT, for
However, it is well-known that a dominatee node can only b&/ W DS which falls in the2-hops neighborhood df, i.e.,
connected to at modive independent nodes in the unit diskOoPT,, = OPT () N2(u). Obviously OPT, is a dominating
graph model. In other words, thelocal independence numberset for Ny (u). Thus, we have:(LOPT,) < ¢(OPT,), since
of UDG, ol (UDG), is 5. Generally, it is well-known that, for LOPT,, is the local optimum. Thereforeg(GRDY,,) <
each node, there are at most a constant nump&(UDG))  log(A + 1) - ¢(LOPT,) < log(A + 1) - ¢(OPT,). Consider
of independent nodes that are at mdstunits away. The all nodes in the MIS, we get
following lemma which bounds the number of independent
nodes withink units from a node is proved in [29] by using ¢(GRDY) < > «(GRDY,) <log(A+1)- Y  c(OPT,).
a simple area argument. ueMIs ueMIS

Lemma 1:For every nodev, the number of independentRemember that for each node the number of independent
nodes inside the disk centered atwith radius k-units, nodes in the 2-hops neighborhood wofis bounded by18.
a*(UDG), is bounded by a consta#it = (2k + 1). Therefore, each dominator is counted at migstimes (once

e(MIS) < (46 + 1)c(OPT).



for each nodew € MIS that selectv to GRDY,). Thus, that spans all dominators selected by Algorithm 1. Following
> wemrs C(OPT,) < 18¢(OPT). lemma shows that there exists a trBg, whose cost equals
For each node: in MIS, we either usex as a dominator the cost of7;,, and every dominatee nodein 7/, has a
or useGRDY,, as dominators, whichever has a smaller costode degree at most'(G).
Then, the total weight of the final dominating set is at most Lemma 5:There exists a treel, , in G’ spanning all
dominators selected in Algorithm 1 and connectors in this tree

pt

Z min(c(u), ¢(GRDY.,)) has degree at most!'!(G).
ueMIS Proof: We prove this by construction. Consider any
< min( Z c(u), Z ¢(GRDY,)) optimum cost tred,,, spanning all dominators. In treg,,;,
ueMIS ueMIS assume there exist some connectors whose degrees are greater
<min(46 + 1,18log(A + 1)) - ¢(OPT). than ol'/(G). We choose any one of them as the root. The

o depth of a connector is defined as the hops from this connector
This finishes our proof. o o ® {0 the root inT,,. We process all connectors in T,

Notice that here the approximation ratioriin(181og(A+  \yhose degree is greater thaf!(G) in an increasing order
1),45 +1). So if one oflog(A + 1) and § is a constant, o thejr depths. Notice that, as we will see later, the depth
the approximation ratio is a constant. Our analysis i al3¢ 4 node does change in our construction, but it will only
pessimistic. As our simulation shows that the practical p&fjcrease. Assume that currently we are processing a node

formance is much better than this theoretical bound. It is eagih more thana!!l (G) neighbors. Clearly, there are at least

to generalize the above result to heterogeneous networks. o neighbors ofu in tree T,,, that are connected, say q.

_ Theorem 3:For a network modeled by a grafili, Algo-  Npotice eitherp or ¢'s depth is greater tham sincew only
rithm 1 constructs a dominating set whose total cost is pRs gne parent. Without loss of generality, we assumepthat
more thanmin(a/?)(G) log(A +1), (al'l(G) —1)d + 1) times  gepth is bigger than's depth. We then remove edgg and
of the optimum. add edgepg. Then,u’s degree decreases hywhile all other
Now, we need to prove the total cost of connectors selectgghnectors whose depth is less than or equat’soremains
by Algorithm 2 is also bounded. The following lemma abouyjnchanged ang's degree increases by Notice this will result

the relationship betweed(u, v, &) and L(u, v, VirtG) will iy 3 new tree spanning all dominators while keep the cost of
be used in the proof. . _ the tree unchanged. Update the depth of ngdad all nodes
Lemma 4:For any pair of dominatorsu and v, of the subtree rooted af (the depths will increase by one).
L(u, v, VirtG) < 2- L(u,v,G). Repeat the above iteration until all nodes are processed. It is
Proof: Notice that the original graph is node weighte@pyious that the above process will terminate. The resulting
while the virtual grapl/irtG is edge weighted. Here, lete) {ree isT” .. ]

be the weight of edge = u;u; andc(e) = L(u;, u;, G). W For trepeT;pt, we define its weight(7%,,) as the sum of

assume that patiw, v, - - - viv is the least cost path connectinghe cost of all connectors. We also defifd’) = > cer cl€)

u andv in the original graph G, as shown in Figure 3. for an edge weighted tre®. The above lemma implies that
For any dominatee nodein original communication graph, there is an optimum tree connecting all dominators with node

it must be dominated by at least one dominator. Thus, we C88gree at mosi for networks modeled by UDG.

assume that node; is nodev;’'s dominator as shown in Figure  Theorem 6:The connectors selected by Algorithm 2 have

3. For dominatorsu; and u;1, we argue that the length of g total cost no more thad- o!')(G) times of the optimum for

u;u;+1 IS at most the summation of the cost@fandviii. networks modeled by.

Notice thatu;v;v;+1u;+1 is a3-hops path betweem; andu; Proof: Let K be another virtual complete graph whose

whose length is:(v;) + c(vit1). Thus, the length ofi;u; 11 i vertices are all dominators selected in Algorithm 1 and edge

at mostc(v;) + c(vi4+1). Thus we have:(u;u;+1) < c¢(v;) +  length equal the cost of least cost path between two dominators

c(viy1) for 1 <i <k — 1. Similarly, we also have(uui) < on original graphG. Following we argue the weight of MST

c(v1) ande(uv) < c(vy). Summing all these inequalities, weon graphK; is at mosta!!(G) times the weight of treg”,

pt-
get For spanning tre€l’

»t» We root it at an arbitrary node

b1 and duplicate every link irl, ,, (the resulting structure is

k
L(u,v,VirtG) < C(m)+c(m)+z c(Uitig) < ch(vi).called DT?,,). Clearly, every node inD7y, has an even
=1 degree now. Thus, we can find an Euler circuit, denoted by

i=1

e EC(DT, ,), that uses every edge dP7T, , exactly once,
This finishes our proof. " which is pequivalent to say that every edggﬂ@t(G) is used
u w2 3 w 5 6 & exactly twice. Consequently, every nodein V(77 ,) is used

! 1 ! ! ! o " exactly dr;  (vi) times. Heredg(v) denotes the degree of a
g & o o & Do g nodew in a graphG. Thus, the total weight of the Euler circuit

is at mosta'(G) times of ¢(T?,

opt
c(EC(DT,,,)) < (@) - e(Ty,).

In graph GG, we set all dominators’ cost t0 to obtain a Notice that here if a node) appears multiple times in

new graphG’. Assumely,, is the tree with the minimum cost EC(DT,,,), its weight is also counted multiple times in

), i.e,
Fig. 3. L(u,v,G) > 2 L(u,v, VirtQ).



c(EC(DT;,,))- In previous section, we prove that the total cost of WCDS is
If we walk along £EC(DT,,), we visit all dominators, no more than a constant times of the optimum, which implies
and the length of any subpath between dominatorsaand that our structure is energy efficient for broadcast.
u; is not smaller thanl(u;,u;,G). Therefore, the cost of Notice that in the construction of the low-cost backbone we
EC(DT;,,) is at leastc(MST(K¢)) since MST(K¢) is apply MST (virtual minimal spanning tree) to reduce the total
the minimum cost tree spanning all dominators and the edgast of the backbone, it makes the backbone very sparse which
uw;u; in MST(K¢) corresponds to the path with the least coshay hurt the performance of the unicast routing, since less
betweenu; andwu;. In other words, power efficient pathes can be used for routing. Therefore, when
considering unicast routing, we can remove the MST step and
(EC(DT5py)) 2 «(MST(Kupg))- use the pathes in graphirtG as the backbone. Specifically,
Consequently, we have we can modify our backbone formation algorithms by 1)
a , removing steps 5, 6, and 7 (collecting 2-hop information and
) < aH(G) - e(Top)- (1) running the greedy algorithm for set over) from Algorithm 1;
Now we prove the weight o/ ST(VirtG) is at most two 2) modifying PossibleDominator to Dominator in step 2 of
times the weight of\/ ST (K ). For any edgee = usu; € Algorithm 1; and 3) removing steps 5 and 6 (building VMST)

(MST(Kg)) < c(EC(DT!

opt

MST(K¢), from Lemma 4, we have from Algorithm 2. Notice.that the changes to Algorithm 1
) are not necessary as will see later. Le®WCDS be the

c(e) > L(us,u;,G) > E(“iv“j’vmc;). constructed backbone. If a nodevants to unicast a message,
2 it follows the following procedure. If node is not a dominator

For each edge = u;u; € MST(Kg), we connect them in and nodev is not a neighbor of;, nodeu sends the message
graphVirtG using pathLCP(u;, u;, VirtG). This constructs to one of its dominators. Then the dominator will transfer the
a connected subgrap/ ST’ on graphVirtG whose cost is message to the target or a dominator of the target through
not greater than twice of the weight 8 ST (K ). Thus, we the backbone. Now, we prove that the backbone is a spanner
have for unicast applicationj.e., every route in the constructed

. , network topology is efficient. Remember a routeefficient
o(MST(VirtG)) < co(MST') <2-¢(MST(Kc))- () i its total cost (or total hop number) is no more than a

The theorem follows from combining inequalities (1) angonstant factor of the minimum total cost (or total hop number)
(2): needed to connect the source and the destination in the original
) ] , communication graph. The constant is called cost (or hops)
c(MST(Virt@)) < 2¢(MST(Kg)) < 2a(G) - c(Topt). stretch factor.
= We first prove the backbone has a bounded cost stretch

Notice that Theorem 6 also implies the following sidef@ctor. o
product result: given a group of receivers in a node weighted  h€orem 8:For any communication graph, the cost stretch
network, the connectors found through VMST have total co&ctor of UWCDS s at moss.
no more tharga!l(G) times of the minimum cost multicast ~ Proof: Consider any source nodeand target node
tree. For the special case of UDG, the total cost of tfBat are not connected directly in the original communication
connectors is no more tha times of the optimum multicast 9raPh G- Assume the least cost paliCP(s, ¢, &) from s to
tree. Here we assume that the receivers have (ost tin GisTlg, (s, t) = viva...v, Wherev, = s andvy, = t, as
Combining Theorem 3 and Theorem 6, we get the followinfjustrated by Figure 3. We construct another path in UWCDS
theorem which is one of the main contributions of this papdfom s to ¢ and the total cost of this path is at mastimes
Theorem 7:For any communication graphi, our algorithm ©f the cost of the least cost paliCP (s, t, &).

constructs a weighted connected dominating set whose totalOr @ny dominatee nodein original communication graph
cost is no more than G, we will show that there must exist one dominagowhose

) . . cost is not greater thap’s cost. First, from our selection
min(a?(G)log(A + 1), (a(G) = 1)6 + 1) + 2a!(G)  procedure of the maximal independent set, ngdés not
selected to MIS implies that, at some stage, there is a neighbor,

times of the optimum. X . .
P qY . with smaller cost selected to MIS, which will be

Specifically, for homogeneous wireless networks model ibleDominator. Notice that this PossibleDominat
by a unit disk graph, our algorithm constructs a WeightedossI cLominator. Notice thal, thisFossibieLominator

connected dominating set whose total cost is no more th%ﬁgzqi‘sr?l‘?t/ sne?;(iggesrzl;nﬁ?g;{%]}él )Sit;ugﬁ;ﬁérHt%gfbv(er)’ this
in(181log(A + 1),40 + 1) + 10 times of the optimum. } ’ v . )
min(18log(A +1),40 +1) + P Notice that clearly, there is at least one node,«sdg GRDY,,

. that dominates nodg sincep is a one-hop neighbor of node
B. Unicast Performance uw and GRDY,, covers all one hop neighbors af (including
After we construct the backbone WCDS, if a nadevants ). Clearly, all dominators iG RDY,, has cost no more than
to broadcast a message, it follows the following procedure.dfu) from ¢(GRDY,,) < ¢(u). If nodew is in final structure,
nodew is not a dominator, then it sends the message to owe setq asu, otherwise, sey as nodev. We call nodeg as
of its dominators. When the message reaches the backbarmep’s small dominator Notice thaty andp can be the same
it will be broadcast along the virtual minimal spanning treeiode.



For each node; in the pathLCP(s, t, G), letu; be its small Second, for eacHPossibleDominator node, it needs to
dominator if v; is not a dominator, else lai; be v; itself. collect the costs and IDs of all of its two hop neighbors.
Notice that there is a 3-hop pathv;v;+1u;+1 In the original This step may cost lots of communications (at moXtn)
communication graplz. Then from Algorithm 2, we know messages when no geometry information is known, where
there must exist one or two connectors connectingndu; 1, m in the number of links in the original UDG). Recently
and also the cost summation of these connectors is at most@ainescu [47] proposed a communication efficient method
cost summation of; andv; ;. We define a path, denoted by(usingO(n) messages) to colleé;(u) for every node: when
LCP(s,t,UWCDS), to connects andt¢ in UWCDS as the the geometry information is known for networks modeled by
concatenation of all patHsCP (u;, u;4+1, VirtG), for1 <i < UDG.

k —2, and a least cost path (with two hops) connecting  Third, after applying the greedy method nadenay send a
up—1 andt. Remember that the pathCP(u;,u;+1,VirtG) messagelouAreDominator to nodew, but since the number
is only the least cost path among all paths conneciingnd of independent nodes in two hops ofv is bounded by a
u;+1 USing at mosB hops. constant, the total number of this kind of messages is also

We then show that the pathCP(s,t, UWCDS) has O(n).

a cost no more tharg times of the pathLCP(s,¢,G),  Consequently, Algorithm 1 use®(n) messages. n
where LCP(s,t,G) is the least cost path connecting |t s easy to show that Algorithm 1 use®(m) messages
and { in the original communication graplt:. Clearly, for a general networks or the geometry information of all
> izt L(ui; uigy, VirtG) < c(v1)+2-3 255 ¢(vi)+¢(vk-1).  nodes is unknown. For Algorithm 2, first, the number of
Notice that, in our unicast routing algorithm, when the targ‘?ﬁessages in the first three steps is at n@@t). Obviously,
nodet is within two hops of the dominator node. 1, node \ye can construct the minimum spanning treeldintG using
up—1 Will not send the data to dominator nodg. Instead, ()(y; +pnlogn) number of messages. In practice, we may not
if target ¢ is one hop neighbor of node;, ., it will directly need construct the minimum spanning tree exactly: a local-
send data to node otherwise, node;—, will find a least jzeq approximation of the minimum spanning tree [48] may
cost node, sayw, to connect to the target nodedirectly. perform well enough, which has a message complexity only
Obviously, ¢(w) < ¢(vx-1) since nodevy_1 connectsux—1  O(n). In addition, if only unicast running on the backbone, we

and target. Thus, the total cost of the path in the constructegh jgnore the MST construction, then the message complexity
backbone is is only O(m).

k=2 k-l We also study the time complexity of our algorithms. For

D Lluis i, VirtG) + Llug—1,t, VirtG) + ) e(u;) Algorithm 1, the first four steps take at moS{n) in time.
i=1 i=1 To collect the information of two-hop neighbors, we apply the

k—2 k—1 . N
method proposed by Calinescu [47], which also takes at most
< cv) +2 Z c(vi) + e(vp-1) + c(vr-1) + Z c(vi) O(n) in time. Notice that the time complexity of the greedy
b1 =2 =t method in [5], [45] (based on the set covering method in [46])
< 326(”) is at mostO(mA), wherem is number of nodes participating
pt a in the algorithm andA is the maximum node degree. So the
. ixth step of Algorithm 1 takes at Ay A) where A
This finishes our proof. g " Step of AOriim = 18Kes & MOSHA;A) where As

. ) . is the maximum number of two-hop neighbors. Sidce< n
Similar with the proof in [29], we can prove that andA, < A?, the sixth step takes at masS{A®) (or O(nA)).

Theorem 9:For any communication graph (not necessaril¥h . . : . .
. erefore, the time complexity of Algorithm 1 ©(nA) in
a UDG model), the hops stretch factor of UWCDS s at MOForst case. For Algorithm 2, the most time consuming step is

2

4. to build a MST onVirtG. Obviously, we can construct the
. _ MST using at mosO(m + nlogn) time.
C. Message and Time Complexity

Compared with data processing, wireless node spends more
energy in data communication. Here we show that our algo- VIl. SIMULATION RESULTS
rithms are efficient in term of communication complexity. ) ) . . )

Theorem 10:Algorithm 1 usesO(n) messages if the net- In this section, we conduct extensive simulations on random
works are modeled by UDG and the geometry information Getworks to evaluate the performances of our proposed distrib-
all nodes is known. uted weighted backbone and compared them with previously

Proof: First, for messageéryDominator andlamDom- greedy algorithms. The simulation platform was developed by
inatee, every node at most sends out once this kind dpe authors using C++. In the simulation, we assume nodes

messages. Thus, the total number of these two messagela& unlimited buffering and ignore all possible retransmis-
O(n). sions at the MAC and PHY layer. The main purpose of these

simple settings of simulations is only to evaluate then-
2Actually, the bound i$+ 2, wherek is the number of hops of the shortestnetwork performances (geometric properties) of the different

hop path in the original communication graph. The basic idea of the prooffigckbones formed by different algorithms such as the total
similar with the idea used in proof of Lemma 4 and illustrated by the example ’

in Figure 3. Since 1-hop neighbors can directly communicate with each oth3{€ight of the backbone and the hop (or cost) spanning ratios
for any nodes that are at least 2-hops away, the bourd is of the backbone.



A. Practical Implementation (greedy 1) and is on the similar level with other two methods.

Since the distributed construction of MST in Algorithm j_n a_ddi_ti_on, our method produces a dominating set Who_se size
is expensive in term of message complexi®({: +nlogn)), 'S significantly Igss than that_ produced_by the method in [28]
we implement a localized approximation of MSiBcalized (greedy 3) and is on the similar level W|th other two methods..
minimum spanning tre€MST) [48] to reduce the messagesThe set-cover .based method (greedy 2) is _the only one tha_t is
to O(n). For a general edge weighted gragh the k-local comparaple with our me@hod for both mgtrlcs. However, '|t is
minimum spanning tree M ST}, (G)) contains adirected @ centralized n_1eth_od while our is a distributed method with a
edge s if edge uwv belongs toMST(Ny(u)). In our case, Small communication cost. . o
for the edge weighted grapWirtG, each dominator node 2) Cost of Backbone:After getting the dominating set
will first collect all dominator nodes that are at mashops (Figure 4(e)) by Algorithm 1, we apply Algorithm 2 to find
away in VirtG. Typically k is 1 or 2 in our methods. Node the connectors. Figure 6(e) shows the backbone after adding
u then constructs the minimum spanning tiegST (N, (x)) SOMe connectors to the _dominating_ set. Notice that we used
and keep all edgesw € MST(Ny(u)). The union of all the local minimum spanning tree to find the cpnnectorsmstead
such selected links form the local minimum spanning tre@f the global minimum spanning tree (that is why the graph
Notice that here the weight of a linkv is the cost of the WCDS in Figure 6(e) is not a tree). We also apply Algorithm
least cost path (with< 3 hops) connecting: and v in G. 2 0 find the connectors for the other three greedy methods
It is easy to prove that the global minimum spanning trd€ comparison, and the results shown in Figure 6(a)-(c). We
MST(G) is a subgraph of the local minimum spanning tre@lso implement a variation of another copnected dom!natlng
LMST;(G). Unfortunately, in the worst case, the total costet method by Wu and Li [4], [12]. Their method using a
of LMST,(G) could be arbitrarily larger than the cost ofmarking processplus two dominant pruning rulesto build
MST(G). However, our simulations show that it is within &h€ CDS. We modified it to compare costs instead of IDs
small constant factor on average. The advantage of using tA¢he dominant pruning rules. The result CDS is shown in
local minimum spanning tree instead of the global minimufiigure 6(d). It is obviously that their method generate more

spanning tree is the significant reduction in the communicatigipminators than other methods, the reason is they did not
cost. use MST (or LMST) in the formation. Also their original

method is used to minimize the size of CDS not its total cost.
Notice that more dominators in the backbone means better
performances during the unicast routing.

We then evaluate the performance of our new distributedwe plot the total cost of the weighted backbone in Figure
weighted backbone formation algorithm by simulations on (a). As expected, the total cost of the backbone produced
random networks. In our experiments, we randomly generateg our method is less than that produced by the MIS based
a setV of n wireless nodes with random costs drawn fronmethod (greedy 1) and that produced by Wu and Li's method.
[1,100] and the induced DG(V), then tested the connectivity However, the results from the other two greedy methods are
of UDG(V). If it is connected, we construct different clusslightly better than ours (though on the similar level). The
tering algorithms o/ DG(V) to form dominating sets and main reason is that we use the same MST-based method to
measure the total costs of these dominating sets. Then, geected the connectors for all greedy methods. One interesting
apply our new method to construct the weighted backbonshservation is: though the size of the backbone becomes stable
We test the total cost of the final backbone and measure theen the network becomes denser, the average total cost of the
average and maximum cost/hop spanning ratios. backbone for greedy methods decreases over the increasing of

In the experimental results presented hergjireless nodes the network density. This may be due to that dense network
are randomly distributed in &00m x 500m square, and the provides more candidates for backbone with potential lower
transmission range is set 100m. We tested all algorithms by costs.
varyingn from 50 to 275, where50 vertex sets are generated 3) Cost of Unicast RoutingFor unicast, we can simp|ify
for each case. The average and the maximum were compuiggorithm 2 by directly using VirtG as the final backbone.
over all these>0 vertex sets. Notice, the parameter setting ®panning ratios of the final unicast backbone are plotted in
our experiments here is just for demonstrations. We have trigfyure 7 (b). Notice that the average cost and hop spanning
other various settings, the results and performances are staifios are indeed small (almo$}. The maximum cost span-
due to space limit, we can not present all of them here.  ning ratio is less thas. The maximum hop spanning ratio is

1) Cost of Dominators:First, we compare our algorithmno more thard. These maps well to the theoretical bounds,
with the three previous greedy algorithms to find a dominatinghich are3 and4 respectively.
set. Figure 4 gives an example of the original communication
graph with node costs (Figure 4 (a)) and different dominatinq/III
sets by different greedy methods (Figure 4 (b)-(e), black™ "
squares are the dominators).

We plotted the performances (average total cost of theAs we mentioned in the introduction (Section I), the pro-
backbone and average number of dominators) of all methodgiosed distributed algorithms for minimum weighted connected
Figure 5. Our method produces a dominating set whose costi@minating set can be used in wireless ad hoc networks to
significantly less than that produced by the MIS based methfidm a low-cost network backbone for unicast routing or

B. Performance Comparisons

PRACTICAL APPLICATIONS INWIRELESSAD HOC
NETWORKS
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Fig. 4. Different dominating sets by different greedy methods from the same unit disk graph.
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Fig. 5. Total cost and number of cluster-heads of different greedy methods (when the number of nodes a6etr@Tb).
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Fig. 6. Different connected dominating sets by different methods from the same unit disk graph.
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broadcasting application. The cost which we used as the ingtiidied thetime indexingproblem in sensor networks. To

of our algorithms could be a@eneric cost, which defined enable time-indexed in-network storage of sensor data, they

by various practical applications. Here we list some possibdelected a subset of sensdrs,, rendezvous points to collect,

weights maybe used in wireless ad hoc networks. compress and store sensor data from its neighborhood for pre-
Energy Consumption Rate Most backbone-based unicastefined periods of time. To consider the energy and storage

routing or broadcasting protocols [1]-[3], [5] deliver packetbalancing, we can apply our weighted clustering algorithm

only through the backbone or restrict the flooding packets fa select the rendezvous points. Another example, in [51], a

the backbone, thus the nodes serving as clusterheads or simple clustering algorithm is used for selecting the mobile

nectors in the backbone consume more energy than ordinagents to perform intrusion detection in wireless ad hoc

nodes. If we use the energy consumption rate at each nodeesvorks. We can also apply our method to their intrusion

its weight, using the proposed low-cost backbone formatiatetection system to achieve more robust and power efficient

algorithm, we can achieve an energy efficient backbone whegent selection.

the total energy consumption of this backbone is at most

constant times of the energy consumption of the optimum. IX. SUMMARY AND FUTURE WORK

Also the unicast carried on the backbone is also power

efficient, compared with the least energy consumption pathIn this paper, we present a new algorithm to construct a

in the original communication graph. Another way to builFParse structure for network backbone in wireless ad hoc

s ) . networks. A communication efficient distributed algorithm
energy-efficient backbone is to select nodes with the maxi- . .

. . — . “was presented for the construction of a weighted connected
mum amount of remaining energy (equivalently, the minimum

) o éiominating set, whose size is guaranteed to be within a
amount of consumed energy if the initial energy of each node - .
is same). small constant factor of the minimum (when eitheor A

is a constant). We also show that with a small modification

Fault Tolerant Rate: Fault tolerance is al n importan ) o
issuaeu itn \?vi?e?esfs S(EIeho?unteSvng?s Ciinsc: ic());es arré:o rfoétﬁ]e constructed backbone is efficient for both cost and hops
and in a dynamic environment. If ’each node estimates t§ough losing the low cost property). This topology can be
y : constructed locally. Our simulations confirmed that our new

probability of being fault and we treat it as the We'ghtb?ckbone indeed has well performances in random networks.

we can use our proposed algorithm to build a fault-toleran T )
) Notice in our algorithm we assume that the nodes are
backbone for routing. The fault tolerant rate can be evaluate - : ; :
L . - almost-static in a reasonable period of time. However, in some
by considering the mobility (stability, speed) of the node, thaed hoc network apolications. the network could be hiahl
quality of links (link failures) around the node, the mterferencg bp ' gnly

level at the node, or other metric. Some research along t gamic. Therefore, _after _the generation of the welghted
) : ackbone, the dynamic maintenance of the backbone is also
line have been done in [14], [19], [21], [26]. Assume thats . ) .
. . . . an important issue. Two major events may cause the backbone
the probability that the wireless node € V' will have fault in ; .
bsoleted: 1)topology changesiue to node moving, node

cqmputlng or communicating with its neighbors. Two pOS.SIbIj((;)fining or leaving, node failure: and 2)eight changesvhen
criteria could be used to measure the fault-tolerant quality Ol iahts are assigned based on some observed status of nodes
a backboneife, a CDSS C V): 0, ¢ pi Of I, cspi. Inthe 1\ oi 9 '

first case, the cost (or called weight) of nodeis assigned as Notice that some of the practical weights we discussed above

¢(v;) = ps, while in the latter case, the cost of is assigned change frequently, such as battery level and quality of links.

o Therefore, a dynamic update method for our backbone is
asc(v;) = logp;. Then building most fault-tolerant backbone : )
. ; , X L needed. Usually, there are two kinds of update methods: on-
is equivalent to find a CDS with the minimum total cost.

Security Level: Our proposed algorithm can also be appliegeman.d update_ or perlod!cal update._ M.OSt of th? existing
?(Ilgsterlng algorithms are invoked periodically, while some
al

in designing secure routing protocols. Since ad hoc networ . . )
lack a central authority for authentication and key distribution gorithms (such as [18]) perform the updating only when it

L X . iS required (e., on-demand). Our algorithm can adapt and
security is hard to achieve. In [49], Liat el. proposed a . .

) combine both of these two update methods. If no major
dynamic trust model for ad hoc network. Each node has 6':1 oloav change or no remarkable weiaht chande. no undate
security level by observing its neighbor. By using the securi{ pology 9 9 ge, P

level information got from their method, we can apply ou\rxm be performed until some pre set_tmer expires. In other

. : . . words, we perform our algorithm periodically with a pre-set

low-cost method to build a backbone for routing with high. X . :

. X ; fime. The time could be set quite long depending on the
security. We could assign the cost to a node using a mett}o

analog to the case of fault-tolerance discussed above ypes of the weight and applications. This kind of global
; . . . update also insures the load balance throughout the network.
More different metrics can be considered as the weight

our method, such as traffic load, signal overhead, battery levi Ft for some major topology Cha’?ge (such as a cIL_Jsterhead
. ies) or tremendous change of weights (such as a big drop of
and coverage. As done in [15], [18], [25], we can also use "’ . . i
: . . . . . security level), an on-demand update will be performed. Notice
a combined weight function to integrate various metrics

i . . . i '
consideration to form a more robust and efficient backborﬁﬂéat since our algorithm is a localized algorithrthe update

for wireless ad hoc networks in general applications process can be performed only in a local area where the change

Beside forming the backbone for routing or broadcasting,ccurs’ in_other words, the backbone is easy to maintain

our W?ighted C|USte.ring algorithm (Algorithm 1) can also be 3By usinglocalized minimum spanning trg&MST) instead of MST, our
used in other applications. For example, Zhestgal. [50] distributed algorithm becomes a localized algorithm.



locally when the nodes move around. However, it remains @]
open problem how to update the topology efficiently while
preserving the approximation quality.

There are many interesting open problems left for furth&s]
study. Remember that, we use the following assumptions
on wireless network model: omni-directional antenna, sing!pg]
transmission received by all nodes within the vicinity of the
transmitter. The problem studied here will become much more
complicated if we relax some of these assumptions. It is al
interesting to see the practical performance differences of all
proposed methods such as methods by Bakeaal., Alzoubi
et al,, and our methods proposed here, in mobile environmergi]
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