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Abstract

We consider alarge-scale of wireless ad hoc networks whose nodes are distributed randomly in atwo-dimensional
region 2 (more specifically, a unit square). Given n wireless nodes V', each with transmission range r,,, the wireless
networks are often modeled by graph G(V,r,) in which two nodes are connected if and only if their Euclidean
distance is no more than r,.

We first consider how to relate the transmission range with the number of nodes in a fixed area such that the
resulted network can sustain & fault nodes in its neighborhood with high probability when all nodes have the same
transmission range. We show that, for a unit-area square region 2, the probability that the network G(V,r,) is
k-connected isat least e~ when the transmission radius r,, satisfiesnr2 > Inn + (2k — 3)Inlnn — 2In(k —
1)! + 2« for k > 1 and n sufficiently large. This result also applies to mobile networks when the moving of wireless
nodes always generates randomly distributed positions. We also conduct extensive simulations to study the practical
transmission range to achieve certain probability the network being k-connectivity when the number of nodes n isnot
large enough. The relation between the minimum node degree and the connectivity of graph G(V, r) is aso studied.

Setting the transmission range of all nodes to r,, guarantees the k-connectivity with high probability, but some
nodes may have excessive number of neighbors in the graph G(V,r,). We then present a localized method to
construct a subgraph of the network topology G(V, 7, ) such that the resulting subgraph is still k-connected but with
much fewer communication links maintained. We show that the constructed topology has only O(k - n) linksand is
alength spanner. Hereagraph H C G is spanner for graph G, if for any two nodes, the length of the shortest path
connecting them in H is no more than a small constant factor of the length of the shortest path connecting them in
G.

Finally, we conduct some simulations to study the practical transmission range to achieve certain probability of

k-connected when n is not large enough.

. INTRODUCTION

There are no wired infrastructures or cellular networksin ad hoc wireless network. Each mobile node * has an
adjustable transmission range. Node v can receive the signal from node « if node v iswithin the transmission range
of the sender u. Otherwise, two nodes communicate through multi-hop ad hoc wireless links by using intermediate
nodes to relay the message. Consequently, each node in the wireless network also acts as a router, forwarding data
packets for other nodes. We consider that each wireless node has an omni-directiona antenna. This is attractive
because asingle signal transmission of anode can be received by all nodes within its vicinity which, we assume, is
adisk centered at the node.

Wireless ad hoc networks are aso called packet radio networks in the early 70's. While many fundamental
ideas existed about twenty to thirty years ago, recent years we see tremendous research activity in wireless ad
hoc networks due to its applications in various situations such as battlefield, emergency relief, and so on. Mobile
wireless networking enjoys a great advantage over the wired networking counterpart because it can be formedin a
spontaneous way for various applications.

LIn this paper the term node often represents a network device, vertex is a graph term, and point is a geometry term. We often interchange
them if no confusion is caused.
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Hundreds of protocols [1], [2], [3], [4], [5], [6], [7]. [8], [9], [10], [11], [12], [13] that take the unique char-
acteristics of wireless ad hoc networks have been developed. Among them energy efficiency, routing, and MAC
layer protocols have attracted most attention. One of the remaining fundamental and critical issuesis to have fault-
tolerant network deployment without sacrificing the spectrum reusing property. In other words, the network should
support multiple digjoint paths connecting every pair of nodes. Obviously, we can increase the transmission range
of al nodes to increase the fault-tolerance of the network. However, increasing the transmission range will cause
more signal interference (thus reduce the throughput) and increase the power consumption of every node. As power
is ascarce resource in wireless networks, it isimportant to save the power consumption without losing the network
connectivity. The universal minimum power used by all wireless nodes such that the induced network topology is
connected is called the critical power.

Determining the critical power was studied by several researchers [14], [15], [16] recently when the wireless
nodes are statically distributed. Both [14] and [15] use the power assignment induced by the longest incident edge
of the Euclidean minimum spanning tree over wireless nodes V. It was proved by Penrose [17] that, given a set
of points uniformly and randomly distributed in a unit-area square, the longest edge of the minimum spanning tree
asymptotically equals to the longest edge of the nearest neighbor graph. Since the nearest neighbor can be found
locally, we can determine the critical power asymptotically using a localized method instead of constructing the
minimum spanning tree if the wireless devices are randomly and uniformly distributed in a unit area square.

Although determining the critical power for static wireless ad hoc networksiswell-studied, it remainsto study the
critical power for connectivity for mobile wireless networks. As the wireless nodes move around, it isimpossible
to have a unanimous critical power to guarantee the connectivity for al instances of the network configuration.
Thus, we need to find a critical power, if possible, at which each node has to transmit to guarantee the connectivity
of the network almost surely, i.e., with high probability sufficiently close to 1. For simplicity, we assume that the
wireless devices are distributed in a unit square (or disk) according to some distribution function, e.g., uniform
distribution or Poisson process. Additionally, we assume that the movement of wireless devices still keeps them the
same distribution (uniform or Poisson process). Guptaand Kumar [16] showed that there isacritical power almost
surely when the wireless nodes are randomly and uniformly distributed in a unit area disk. The result by Penrose
[17] implies the same conclusion. Moreover, Penrose [17] gave the probability of the network to be connected if
the transmission radius is set as a positive real number » and the number of nodesn goesto infinity.

Let G(V,r) bethe graph defined on V' with edgesuv € E if and only if ||uv|| < r. Here [|uv|| is the Euclidean
distance between nodes u and v. Let Go(X,,,r,) be the set of graphs G(V, r,,) for n nodes V' that are uniformly
and independently distributed in a two-dimensional region 2, which could be a unit-areadisk D or aunit square C
with center at the origin. The problem considered by Gupta and Kumar [16] is then to determine the value of r ,,
such that arandom graphin Gp (X, r,,) is asymptotically connected with probability one asn goesto infinity. Let
Pq (X, ) bethe probability that a graph in Go (X, ry,) is k-connected. Then Gupta and Kumar [16] showed

that if nm - 72 = Inn + c¢(n), then Pq 1(n,r,) — 1iff ¢(n) — +oo asn goes to infinity. The result by Penrose
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[17] implies astronger result: if nm - 72 = Inn + «a, then Py (n,r,) = e ¢ " asn goesto infinity.

Fault toleranceis one of the central challengesin designing the wireless ad hoc networks. To makefault tolerance
possible, first of al, the underlying network topology must have multiple disjoint paths to connect any two given
wireless devices. Here the path could be vertex digjoint or edge digoint. We use the vertex digjoint multiple paths
in this paper considering the communication nature of the wireless networks. In this paper, we are interested in
what is the condition of r,, such that the underlying network topology G(V, r,) is k-connected almost surely when
V' is uniformly and randomly distributed over a two-dimensional domain 2. For simplicity, we assume that the
geometry domain 2 is aunit square C. Guptaand Kumar [16] basically studied the connectivity problemfor k = 1
and Q) being a unit-area disk.

We show that, given n points randomly distributed in a unit square C, if the transmission range r,, satisfies
nr-r2 >Inn+ 2k —1)Inlnn — 2Ink! + a + 21In % then G(V,ry) is (k + 1)-connected with probability
atleast e—¢ " asn goesto infinity. Notice that, this result is analogous to the corresponding result for Bernoulli
graphsG(n,p); See[18]. A similar result was presented by Penrose [17], [19] for the toroidal model instead of the

Euclidean model. He showed that, the hitting radius r,, such that the graph G(V,r},) is (k + 1)-connected satisfies

—a

lim Pr(nmrl <Ilnn+klnlnn —Ink!+a) =e™°

n—o0

Thetoroidal metric is used to eliminate boundary effects.

Our theoretical value gives us insight on how to set the transmission radius to achieve the k-connectivity with
certain probability for a network of n devices; or how many devices are needed to achieve the k-connectivity with
certain probability when the transmission range of each device is afixed value. This result also applies to mobile
networks when the moving of wireless nodes aways generate randomly (or Poisson process) distributed node
positions. Our result has applicationsin system design of large scale wireless networks. For example, for setting
up asensor network monitoring a certain region, we should deploy how many sensors to have a multiple connected
network knowing each sensor can transmit to the farthest range r,. Notice that our result holds only when the
number of wireless devices n goes to infinity, which is difficult to deploy practically. We then conduct extensive
simulationsto study the transmission radius achieving k-connectivity with certain probability for practical settings.
The relation between the minimum node degree and the connectivity of graph G(V, r) is aso studied here.

The remaining of the paper is organized as follows. In Section |1, we review some previous results studying the
transition phenomena for wireless networks. Section |11 studies the critical transmission range for k-connectivity
of the wireless ad hoc networks when the wireless nodes are randomly and uniformly distributed in a unit-area
square C. In Section 1V, we present a localized method to control the network topology. The resulting topology
can not only sustain k& node faults, but also approximates the original unit disk graph well in terms of the energy
consumption. Our experimental results presented in V will verify our theoretical results. We conclude our paper

and discuss possible future research directionsin Section V1.
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Il. LITERATURE REVIEW

Givenanevent Y, let Pr (Y') bethe probability of Y. We denote the expected value of arandom variable X by
E[X],i.e, E[X] =) «-Pr(X = ) for adiscrete variable. As standard, we write log for base-2 logarithm and

In for natural logarithm. We say afunction f(n) — a if lim,_, f(n) = a.

A. Point Process

A point set processis said to be a uniform random point process, denoted by X',,, inaregion Q2 if it consists of n
independent points each of which is uniformly and randomly distributed over (2.

The standard probabilistic model of homogeneous Poisson processis characterized by the property that the num-
ber of nodesin aregion is a random variable depending only on the area (or volume in higher dimensions) of the

region. In other words,

AA
(k!) Lo~ M

« For any region ¥, the conditional distribution of nodesin ¥ given that exactly k& nodes in the region is joint

« The probability that there are exactly k nodes appearing in any region ¥ of area A is

uniform.

Here after, we let P,, be a homogeneous Poisson process of intensity n on the unit square C = [—0.5,0.5] x
[-0.5,0.5].

B. Connectivity and Minimum Degree

A graphiscalled k-vertex connected (k-connected for simplicity) if, for each pair of vertices, thereare k mutually
vertex digjoint paths (except end-vertices) connecting them. Equivalently, a graph is k-connected if thereis no a
set of & — 1 nodes whose removal will partition the network into at least two components. Thus, a k-connected
wireless network can sustain the failure of £ — 1 nodes. A graph is called k-edge connected if, for each pair of
vertices, there are k mutually edge disjoint paths connecting them. The vertex connectivity, denoted by x(G), of a
graph GG isthe maximum k& such that G is k vertex connected. The edge connectivity, denoted by £(G), of agraph
G isthe maximum k such that G is k edge connected. The minimum degree of a graph G is denoted by 6(G) and
the maximum degree of agraph G is denoted by A(G). Clearly, for any graph G, (G) < £(G) < §(G) < A(G).
We will omit the symbol G in the above notationsif it is clear from the context.

A graph property is called monotone increasing if G has such property then all graphs on the same vertex set
containing G as a subgraph have this property. Let Q be any monotone increasing property of graphs, for example,
the connectivity, the k-edge connectivity, the k-vertex connectivity, the minimum node degree at least &, and so on.
Thehittingradius o(V, Q) istheinfimum of al r such that graph G(V, r) has property Q. For example, o(V, k > k)
is the minimum radius r such that G(V,r) is at least k vertex connected; o(V,d > k) is the minimum radius r at
which the graph G(V, r) hasthe minimum degree at least k. It is obviousthat, for any V/,

o(V,k > k) > o(V,8 > k).
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Penrose [19] showed that these two hitting radii are asymptotically same for n points V' randomly and uniformly

distributed in aunit square and n. goes to infinity.

C. Literature Review

The connectivity of random graphs, especially the geometric graphs and its variations, has been considered in
the random graph theory literature [18], in the stochastic geometry literature [20], [17], [21], [19], [22], and in the
wireless ad hoc network literature [23], [24], [25], [16], [26], [27], [28], [29].

Let's first consider the connectivity problem. Given n nodes V' randomly and independently distributed in a
unit-areadisk D, Guptaand Kumar [16] showed that G(V, r ;) is connected dmost surely if n - r2 > Inn + c(n)
for any ¢(n) with ¢(n) — oo asn goes to infinity. Notice this bound is tight as they also proved that G(X',,, 7))
is asymptotically disconnected with positive probability if nm - 72 = Inn + ¢(n) and limsup,, ¢(n) < +o0. In
other words, the connectedness of the network has atransition phenomenawhen the transition rangeincreases. The
wireless network composed of randomly distributed mobile hosts will become connected almost abruptly.

Notice that, they actually derived their results for a homogeneous Poisson process of pointsin D instead of the
independent and uniform point process. They showed that the difference between them is negligible. Additionally,
asimilar result by Penrose[17], [22] showed that the sameresult holdsif the geometry domainin which thewireless
nodes are distributed is a unit-area square C instead of the unit-areadisk D.

Independently, Penrose [17] showed that the longest edge M ,, of the Euclidean minimum spanning tree (EM ST)

of n points randomly and uniformly distributed in a unit area square C satisfies that

lim Pr(noM? —Ilnn<a)= e ",
n—o0

for any real number o. Remember that, the longest edge of EM ST is always the critical power [14], [15]. Thus, the
result in [17] is actually stronger than that in [16] since it will give the probability that the network is connected.
For example, if weset @ = Inlnn, we have Pr (nrM2 < Inn +Inlnn) = e~ /12" |t implies that the network
is connected with probability at least e~/ if the transmission radius of each node r,, satisfies nar2 = Inn +
Inlnn. Noticethat e=*/1"" > 1 — L frome=® > 1 — z for z > 0. By setting a = In n, the probability that the
graph G(V, r,,) is connected is at least e /" > 1 — L where nzr2 = 2Inn. Notice that the above probability is
only truewhenn goesto infinity. When n isafinite number, the probability of the graph being connected is smaller,
i.e., we need transmission radius much larger than r,, to guaranteethat the network of n randomly distributed points
are connected almost surely. Inthis paper, wewill present thefirst experimental study of the probability of the graph
G(V,r,) being connected for finite number n. Notice that Bettstetter [23] also conducted simulations recently to
study the k-connectivity, minimum degree being &, and their relations. However, they used the toroidal model
instead of the actual Euclidean model.

One closely related question to the critical transmission radiusis the coverage problem: consider disks of radius
r are placed in atwo-dimensional unit-areadisk D with centersfrom a Poisson point process with intensity n, when

will these disks cover the unit-disk. A result shown by Hall [30] implies that, if n7 - 72 = Inn + Inlnn + ¢(n)
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and ¢(n) — oo, then the probability that thereis avacancy areain D is0 asn goesto infinity; if ¢(n) - —oo, the
probability that thereis a vacancy in D is at least % This implies that the hitting radius r,, such that G(V,r,,) is
connected satisfies 7 - 2 < 4nnnInnteln) for () 5 4o,

Anocther closely related problem is when will a Bernoulli graph be connected if we increase the probability of
the links being chosen. Let B(n, p(n)) be the set of graphs on n nodes in which each edge of the completed graph
K, is chosen independently with probability p(n). Then it has been shown that the probability that a graph in
B(n,p(n)) isconnected goesto oneif p(n) = W for any ¢(n) — oo. Although their asymptotic expressions
are the same with that by Gupta and Kumar [16], but we can not apply this to the wireless model as, in wireless
networks, the existences of two edges are not independent, and we do not choose edges from the completed graph
using Bernoulli model.

We then review the results concerning the k-connectivity of arandom graph.

For general graphs, Bollobas and Thomason (see Theorem 7.5 of [18]) proved that, if ¢(n) — oo, ¢(n) <

InInlnn and p(n) = Rotb=lIninnzcn) ‘then graphs from B(n, p(n)) almost surely have minimum degree k

and thus almost surely are k-connected.
It was proved by Penrose [19] that, given any metric [, with 2 < p < oo and any positive integer k,

lim Pr(o(Xn,k > k) =o0(Xn,6 > k)) = 1.

n—o0

The result is analogous to the well-known results in the graph theory [18] that graph becomes k vertex connected
when it achieves the minimum degree & if we add the edges randomly and uniformly from (g)' possibilities. The
result by Penrose [19] says that a graph of G(X,,,r) becomes k-connected amost surely at the moment it has
minimum degree k by letting » go from 0 to co. However, this result does not imply that, to guarantee a graph
over n points k-connected almost surely, we only have to connect every node to its k£ nearest neighbors. Let V'
be n points randomly and uniformly distributed in a unit square (or disk). Xue and Kumar [29] proved that, to
guarantee a geometry graph over V' connected, the number of nearest neighbors that every node has to connect is
asymptotically ©(Ilnn). Dette and Henze [20] studied the maximum length of the graph by connecting every node
to its k£ nearest neighbors asymptotically. We conjecture that, given n random points V' over a unit-area square,
to guarantee a geometry graph over V' (k + 1)-connected, the number of nearest neighborsthat every node has to
connect isasymptotically ©(Inn + (2k — 1) Inlnn). We leave this as future work.

Similarly, instead of considering X',,, Penrose also considered a homogeneous Poisson point process with inten-
sity n on the unit-areasguare C. Penrose gave |oose upper and lower bound on the hitting radiusr ,, = o(Py,,d > k)
as 212—{‘1 < nrd < d!'21nn for homogeneous Poisson point process on a d-dimensional unit cube, This result is too
loose. More importantly, the parameter £ does not appear in this estimation at all. In this paper, we derive an exact
bound on r,, for two-dimensional n points V' randomly and uniformly distributed in C such that the graph G(V, r ,,)
is k-connected with high probability.

We a so conduct experimentsto study the probability that a graph has minimum degree k& and has vertex connec-

tivity & simultaneously. Surprisingly, we found that, this probability is sufficiently closeto 1 even n is at the scale
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of 100. This observation implies a simple method (by just computing the minimum vertex degree) to approximate
the connectivity of a random geometry graph.

Penrose [17], [19] dso studied the k-connectivity problem for d-dimensional points distributed in a unit-area
cube using the toroidal model instead of the Euclidean model as one way to eliminate the boundary effects. He [19]
showed that the hitting radius r,, such that the graph G(V, r,,) is (k + 1)-connected satisfies

—a

lim Pr(nmrl <Inn+klnlnn —Inkl+a) =€ *

n—o0

Dette and Henze [20] studied the largest length, denoted by r,, 1, here, of the kth nearest neighbor link for
n points drawn independently and uniformly from the d-dimensional unit-length cube or the d-dimensional unit
volume sphere. They gave asymptotic result of this length accordingas k < d, k = d, or k < d. For unit volume
cube, they use the norm [, instead of the Euclidean norm .. For the unit volume sphere, their result implies that,
whend =2andk > 2,
lim Pr(nﬂ'ri’k <Inn+ 2k —3)Inlnn —2In(k —1)! —2(k —2)In2+In7 +2a) =e~¢ *

n—o0

Notice that, Penrose [19] had showed that when the domain is a unit-area square, the probability that a random
geometry graph G(V, r,,) is k-connected and has minimum vertex degree k goesto 1 asn goesto infinity. Conse-
quently, we can conjecture that the transmission radius r,, such that the graph G(V, r,,) is k-connected with high
probability satisfies nrr? ~ Inn + (2k — 3)Inlnn — 21In(k — 1)! + 2a. Wewill provethis later.

I1l. FAULT TOLERANCE BY K-CONNECTIVITY

In this section we concentrate on the hitting radius for the k-connectivity for n randomly and uniformly dis-
tributed pointsin a unit-area square C. We build our result based on the result by Penrose [19].

For convenience, instead of the random point process X',,, we consider a homogeneous Poisson point process
of rate n, denoted by P,,, on a unit-area square C. Same as[19], we let £(k, n,r) denote the expected number of
points of P,, with degree k in a graph of G(P,,,r). Let D(x,r) bethe disk centered at x with radiusr. Given a
point x, let v,.(x) be the area of theintersection of D(x,r) with the unit-areasquare C. Additionaly, let

e~ nUr(x)

Dnre(x) = (- vn(x)* - =

Here ¢,, 1 (x) isthe probability that point x has degree k. Then, it was known [19] that

E(k,n,r) = n/ Gnr ke (X)dX.
c

Then Penrose [19] (Theorem 1.2) proved that:
Theorem 1: Let a be any real number. Given any metric i, onC with1 < p < oo and any integer £ > 0, and r,
satisfying the following condition

lim E(k,n,r,) =e” %,
n—oo
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then we have
nlgr;o Pr(o(Pu,d >k+1)<r,)=e "

Notice that, the same theorem is true when the random point process P, is used instead of the homogeneous
Poisson point process. The remainder of this section is devoted to estimate the value r ,,. Penrose [19] agreed that
ry, 1S NOt S0 easy to find because of the dominance of complicated boundary effects. The estimated radius r ,, also
makes the graph G(P,,, r,,) k-connected with probability e ¢ when n goesto infinity since Penrose [19] proved

that it isalmost surely that o( X,k > k) = 0(X,,0 > k) and o(Py, & > k) = 0o(Py,0 > k) asn goesto infinity.

A. Lower Bound

We first study the asymptotic lower bound for the hitting radiusr ,, for the (k + 1)-connectivity.
Obviously, v,.(x) < 7r? for any point x inside the unit-area square C. Since ¢, .. (x) isamonotoneincreasing

function of v,.(x), we have

Grr(X) = (0 v,(x))F ——r

We then bound £ (k, n, ) asfollows.

777,'777”2

k!

e

E(k,n,r) = n/ Gk (X)dx < n(n - wr?)k
c

Notice that if we use 772 for v,.(x) instead of the actual area v, (x), the computed radius r is less than the actual
required radius. Thisis becausev,.(x) < 7r? for point x near the boundary of the square. Thus the probability that
thereis at least k neighbors within distance r of point x is increased when we use 772 for v,.(x) for point x near
the boundary. To remedy the approximated area rr 2, the actual value r should be larger than the computed one.

We estimate  when v,.(x) = 772 is used as the area measurement. Let y = 7r2. Fromlim,, o, £(k,n,7,) =

e ®, wehavee ® = lim, o n(n - y)*e .

. We will relax the condition by ignoring the condition of n going

infinity. In other words, we consider that

It implies that, by taking In on both sides,
—a=lnn+klnn+klny —ny — In(k!).

Thus,
—klny +ny = (k+ 1)Ilnn —In(k!) + a.

Dividing both side by k, we have

kE+1 1
L —Ilny = %lnn— Eln(k!)—l—

@
kY ke
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Letz = zy. Then,Iny =Inz +Ink — Inn. Then

k+1 1 «
_ — _ _ _ _ | _
z—Ilnz=Ink—-Ilnn+ A Inn % In(k!) + A

1 1
= Elnn—l—lnk— Eln(k!) + %.
Noticethat if z = Inz + ¢, thenz > ¢t + Int, wheret > 0. Then, we have

1 1 o' 1 1 o}
= _ = N 4+ — - _ = N+ —
z > klnn+lnk kln(k.)—f- ? +1n (klnn+1nk kln(k.)+ k>

1 1 1
> Elnn-{—lnk - Eln(k!) + % —l—ln(Elnn).

Consequently, by substituting back z = %72, we have

1 1
%m*z > %an— Eln(k!)+%—lnk+lnlnn,

which implies that
nar: >Inn+ klnlnn — lnk! + a.

"y

Notice that the function (n - y)* efk", achieves the maximum value when y = % It is monotone decreasing for

y > % and monotone increasing for y < % We always assume that £ is a fixed constant throughout this paper.
Then we have the following theorem.

Theorem 2: Givenn wireless nodes V' randomly and uniformly distributed in a unit-area square. If we want the
graph G(V,r,,) to be (k + 1)-connected with probability at least e = *, the transmission radius r,, satisfies

nrr? >1nn+ klnlnn — Ink! + a. (D]

Notice that, for the toroidal model, Penrose [19] gave the same exact bound for r ,, such that the graph is guar-
anteed to be (k + 1)-connected asymptotically. Moreover, the result by Gupta and Kumar [16] and the result by
Penrose [17] is just a special case when k& = 0, if this bound is tight. Notice that, in our analysis, we implicitly
assumethat £ > 0. Additionally, the lower bound of our analysis could be improved by considering a more tight

area estimation for point x near the boundary of the square, but the analysis will be much more complicated.

B. Upper Bound

We showed that if we want the network G/(V,r,,) to be (k + 1)-connected with probability at least e —*~ ", we
have to set the transmission radius r,, satisfying inequality (1) for n points randomly and uniformly distributed
in a unit-area square. In this section, we continue to study the upper bound of the transmission radius to achieve
the same (k + 1)-connectivity. The estimated upper bound is different from the lower bound even asymptotically.
Again, we derive the upper bound from the equation n fc Gk (X)dx =€,

We partition the unit square to threeregions: theregion | is[—0.5+r,0.5 — r] x [-0.5 4+ r,0.5 — r], the region

Il is four corners, and the remaining is the region 11. See Figure 1. We compute the areav ,.(x) for point x located
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11

Fig. 1. Theareav,(x) for apoint x.

in these three regions separately. Obviously, for any x inregion |, v,.(x) = mr2. For apoint x in region |I, assume

its distance to the boundary of C is z, then the area

vp(x) = 7r? —1r? cosfl(z) +zV 1?2 — 22
T

Here(0 < 2 < r. Assumez = rcosf, where0 < 6 < 7/2. Thenv,.(x) = r’(m — 0 + sinf cosh). Itiseasy to

show that

71"/'2

2
T(l +cos@) < r*(m — 60 +sinfcos ) < % + 2r? cos .

By substituting z = r cos #, we bound v,.(x) asfollows

71"/'2 r 2

r
T—F?J}S’UT(X)ST—FQT;E

Let r* bethe solution of n [, ¢ .k (x)dx = e~®. Let Q be any subregion of C. Let w(x) be any function such

—n-w(x)

that w(x) < v(x) and is monotone increasing of r. Let ¢, 1 (x) = (n - w(x))* - ——F—. Thus, ¢p .k (x) <

$nrk(x). Letr' bethe solution of n [, ¢n,,k(x)dx = e~*. Thenr* < r/. Thisis because w(zx), v.(z) are

monotone increasing functions of r, and (ny)ke;?” is monotone increasing function when y < k/n. Thus, to

bound the transmission radius r from above so that the graph G(V, r) is (k + 1)-connected, we use the lower bound

of v,.(x) and we also only computethe integral for region | and region 1. Notice,

) efnv,,(x)
/C (00 () S dx

e—nvr(x) e—nvr(x)

> /I<nvr<x>>k e+ /Hmw(x))k o

Obvioudly, for region |, we have

—nun(x) —ner?
/(Twr(x))k ¢ o dx = (n-mr?)k. ¢ (1 —2r)2.
I .

The integra over region Il is 4 times of the integral over the rectangle region near the boundary, where the length

of therectangleis 1 — 2r and thewidthis r. Assumethat the distance of a point x to the boundary is . Notice that
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vr(x)>“7r2+7”"a: Lety—l+ Irz. We have

>8(1—27') /777‘2 (TL )ke—nyd
- k/" T y:wgz y y

Heret = nrr?. The last equation comes from [ zFe=*dz = —e=*k! Zf:o 2. Then the transmission radius
J:
o(Pn, k > k)) isbounded from above by the solution of the following equation.
et

k j j
e~ —n - tk o (11— 27")2 + 8(17;2T) (e—t/2 Z (t/?) _ e—tz t_)

| 1
j=0 J: j=0 J:
8 (/2"
k€ o—t/2\02)"
<n-t _k' + k X
The inequality comes from e —*/2 (t/ﬁ) e t/2 (i/Q for j < ¢/2. Here we assume that k < ¢/2. Remember

that heret = nr? > Inn asymptotically from our lower bound analysis. The rest of the section is then devoted to
approximate r using above inequality.

LetA=n-tre andB = S ke /2 (t/Z) . Thus, 8 = g’,jf;ii = T’”t . Then, by taking In on both sides

of theinequality, we have

—a < InA+In(1+ g)

1 kl k4 Il k"
= Inn+klnt—t—Inkl+In(l + ———).
( Qkﬁ\/nt)
Thus, we have
Inn + klnt — Ink! (1 4+ ke @)
t<Inn+klnt—Ink!'+a+In(1+ .
( Qk\/ﬂ'nt)

Noticethat In(1 + ) < z forany 1 > z > 0 and In(1 + z) ~ In x for z sufficiently larger than one. We solve

inequality (2) by recursion asfollows. Firstlet ¢t; = Inn — In k! + « astheinitia solution. It is easy to show that

/2 . . . . .
B = 87’; f/;ﬁ « 1. Thus, we can estimate the solution by substituting ¢, to inequality (2)

8k eh/?
Zkﬁ \/TLtl )

When n is large enough, we have t ~ Inn + klnlnn — In k! + «. In this situation, however, we have 5 =

to<lnn+klnt; —Ink!+a+1In(l+

25\'}; % = ng\’“/; (ln,f.‘t €% goesto infinity when r goesto infinity. Thus, by substitutingt, = Inn+kInlnn—
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In k! 4+ « to inequality (2), we have the third estimation of the solution as follows

| 8ketz/?
ts < 1nn+k1nt2—lnk.+a+ln(l+m)
8ket2/2
= 1nn+k1nt2—lnk'+a+ln2k\/_ (klnlnn+a—lnk' Ints)
3 3 1 8k
— _2 1y 2 z _ = _°or
lnn 21nk.+2a+2k1nlnn+(k 2)lnt2+1n2k\/7?.
Notice that
Ints = In(lnn+klnlnn —Ink! + a)
Inlnn — In k!
= lnlnn—l-ln(l—{—knnn nk+a)
Inn

klnlnn —Ink!+ «
lnn '

< Inlnn+

Thus, we have the third estimation ¢3 as

t3

1

3 3 1 1 8k

— Zlnkl+ 2 - _ = =

Inn 2lnk.+ 2a+ 2lclnln71+(lc 2)lnlnn+ln 3/
1 3 3 8k

p—y — —_ —_ = ' u—

Inn + 2(3]9 1)Inlnn 21nk.+ 2oz+1n e

We can continueto substitute ¢; to get amore accurate solution ¢, and so on. It is easy to show that thefinal solution

of ¢ is bounded by solution of the following equality when n goesto infinity

et/2

2'~f it

1
lnn+k1nt—lnk'+a+ln +z——lnn——l t.

\/_ 2

t = lnn+klnt—Ink!'+a+In(———%

Thisimplies that
k
t=Inn—2lnk! +2a+21n8— + (2k — 1)Int.

/T

Thuswe can bound ¢ by the following approximation, when n goes to infinity

t=Ilnn+ (2k—1)Inlnn —2lnk! +2a +21n 2k8\/_

Consequently, we have
Theorem 3:Given n wireless nodes V' randomly and uniformly distributed in a unit-area square. If we set the

transmission radiusr,, to satisfy that

nar? > Inn + (2k — 1) Inlnn — 2Ink! + 2a + 2In —— Qk

\/_

then the graph G (V, r,,) is (k + 1)-connected with probability at least e =¢ * when n goesto infinity.

July 14, 2003 DRAFT



14

Obvioudly, if @ — oo, thene ¢~ — 1. For example, if we set a = Inlnn, i.e.,, want the graph G(V,r,,) to
be (k + 1)-connected with probability at least e ~'/™"™ > 1 — L, we have to set the transmission radius r,, that
satisfies

nar? >Inn + (2k + 1) Inlnn — 2Ink! + 21n Sk
N
If we want to the graph G(V, r,,) to be (k + 1)-connected with probability at least e 1/ > 1 — % we haveto set

the transmission radius r,, satisfying

8k
2k /r

Additionally, if « — —oo, thene=¢ ° — 0. Then it implies that the graph G(V, r,,) will be (k + 1)-connected

nmr? > 31lnn + (2k — 1)Inlnn — 2Ink! + 2ln ——~=

with very low probability if this bound of the hitting radiusis tight.

Notice that the above analysis of the asymptotic upper bound of the transmission radius can also be used to derive
atighter lower bound on the transmission radius. We use the fact that ”T’"Z + I - o < vp(x) to derive the upper
bound of the transmission radius. To analyze the lower bound, we have to use the fact that v .(x) < “7”2 +2r-x
to estimate the area v,.(x) for point x near the boundary. In addition, we have to compute the integral in al three
regions. To simplify the analysis, for point x in region Ill, we also use v ,.(x) < ’”‘ + 2r - x to estimate the
area v, (x). Then similar to the above analysis of upper bound, the lower bound on ¢ is at least the solution of the

following equation

—t k

k
—a ke —1 t)
e *=n-t o (1—2r 2 20_2 _

tI
1)
07
By tedious computing, we can compute the asymptotic lower bound as
t>lnn+ (2k—1)Inlnn — 2Ink! + 2a.

REMARK: Although we have computed the lower and upper bounds for the transmission range r ,, such that the
graph G(V, r,,) is (k+ 1)-connected with probability at least e ¢, these bounds hold only when n goesto infinity
and k is assumed to be a constant. When n is a practical finite number (especially when n is comparable with £!),

our bounds do not hold anymore. This observation is witnessed by our experimental results.

IV. TOPOLOGY CONTROL FOR FAULT TOLERANCE

In this section, we study how to control the network topology given a n nodes network that is aready k fault
tolerant. After selecting the hitting radius for the &-connectivity, we can model the network topology as a unit disk
graph(UDG) by scaling the radius to one unit. A unit disk graph is the graph in which two nodes are connected if
their distance is not more than one unit.

Dueto the nodes’ limited resourcein wireless ad hoc networks, the scalability is crucial for network operations.
Oneeffective approachisto maintain only alinear number of links using alocalized construction method. However,

this sparseness of the constructed network topology should not compromise on the fault tolerance and compromise
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too much on the power consumptions for both unicast and broadcast/multicast communications. We are interested
in constructing a sparse network topology efficiently for a set of static wireless nodes such that every unicast route
in the constructed network topology is power efficient, in addition to be & fault tolerant. Here a route is power
efficientfor unicasting if its power consumption is no more than a constant factor of the minimum power needed to
connect the source and the destination. A network topology is said to be power efficient if there is a power efficient
route to connect any two nodesin this topology.

In the most common power-attenuation model, the signal power fals as Tiﬁ, where r is the distance from the
transmitter antennaand 3 is a constant between 2 and 5 dependent on the wireless transmission environment. This
is called path loss For simplicity, we only consider the path loss of the signal. Thus, the power needed to support
alink uv is |juv||?, where ||uv|| is the Euclidean distance between v and v.

Lukovszki [36] gave a method to construct a spanner that can sustain k-nodes or links failures for complete
graph. Our topology control method is based on this method and the following Yao structure [32]. The Yao graph
over a (directed) graph GG with an integer parameter p > 6, denoted by ﬁp(G), is defined as follows. At each
nodew, any p equal-separated rays originated at v define p equal cones. In each cone, choose the shortest (directed)
edgeuv € G, if thereis any, and add adirected link @?. Ties are broken arbitrarily. Let Y G ,(G) bethe undirected
graph by ignoring the direction of each link in Y_CE,,(G). See the following Figure 2 for an illustration of selecting
edgesincident on « in the Yao graph.

Fig. 2. Thenarrow regions are defined by 8 equal cones. The closest node in each cone is a neighbor of w.

Li etal.[34],[33],[35] had proposed to use the Yao structure on the unit disk graph for topol ogy control without
sacrificing too much on the energy conservation. Some researchers used a similar construction named 6-graph [36].
The differenceis that, in each cone, it chooses the edge which has the shortest projection on the axis of the cone
instead of the shortest edge. Here the axis of aconeis the angular bisector of the cone. For more detail, please refer
to[36]. It is obviousthat the Yao structure does not sustain k faults in a neighborhood of any node since each node
only has at most p neighbors and one neighbor selected in each cone at most. However, we can modify the Yao
structure as follows such that the structure is k-fault tolerant.

Each node u defines any p equal-separated rays originated at u, thus defines p equal cones, wherep > 6. In each
cone, node u chooses the k£ + 1 closest hodes in that cone, if there is any, and add directed links from u to these
nodes. Ties are broken arbitrarily. Let Y, .41 bethefinal topology formed by all nodes.

Theorem 4:Thestructure Y, ;.11 can sustain k£ nodes faultsif original unit disk graph is £ node faults tolerant.
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PrRoOOF. For simplicity, assume that all & fault nodes vy, vs, - - -, v; ae neighbors of a node u. We show that the
remaining graph of Y, ;41 (removed of nodes v, vs, - - -, v, and all linksincident on them) is still connected.

Notice that the origina unit disk graph is & node faults tolerant. Thus, the degree of each nodeis at least k& + 1.
Additionaly, with the k fault nodes vy, vs, - - -, v removed, thereis still a path in UDG to connect any pair of
remaining nodes. Assume that the path uses node v and have alink uw. We will prove by induction that thereisa
path in the remaining graph to connect » and w.

If uw hasthe smallest distance among all pair of nodes, then ww must bein Y, j1, thusin the remaining graph.

Assume the statement is true for node pair whose distance is the rth shortest. Consider uw with the (r + 1)th
shortest length.

If wisoneof the k + 1 closest nodesto u in some cone, then link uw remainsin the remaining graph. Otherwise,
for the conein which node w resides, there must have other k& + 1 nodes which are closer to « than w and they are
connected by u inY), ;41. Since we only have k failure nodes, at |east one of the links of Y, ;.1 in that cone will
survive, say link uz. It is easy to show that ||zw|| < |juw|| < 1. Thenlink uw can be replaced by link vz and a
path from z to w by induction. This finishes the proof.

Noticethat for the case where the nodes removed are not all neighbors of the same node, the induction proof also

holds. Inductionis based on all pair of hodes.

Our techniques of constructing k-connected subgraph of UDG (assuming UDG is aready k-connected here) can
be applied to amore general graph G if there is an embedding, denoted by E(G), of G in the plane such that there
isan edgein E(G) if and only if their distance is not more than one unit. Notice that here an embedding of G in
the planeis to assign each vertex a two-dimensional position.

We then show that the above structure approximates the original unit disk graph well. More specifically, we will
show that it isaspanner even with k fault nodes. Let IT  (u, v) bethe shortest path connecting « and v in aweighted
graph G, and ||I1 g (u, v)|| bethelength of Il (u, v). Thenagraph G isat-spanner of agraph H if V(G) = V(H)
and, for any two nodesw and v of V (H), ||l g (u, v)|| < |11 g (u,v)||. With H understood, we a'so call ¢ the length
stretch factorof the spanner G.

Let o (u,v) be the path found by a unicasting routing method ¢ from node « to v in a weighted graph G,
and ||oc(u,v)|| be the length of the path. The spanning ratio achieved by a routing method o is defined as
maxy, v ||oc(u, v)||/||uv||. Notice that the spanning ratio achieved by a specific routing method could be much
larger than the spanning ratio of the underlying structure. Nonetheless, a structure with a small spanning ratio is
necessary for some routing method to possibly perform well.

Theorem 5:Thestructure Y), 1.1 is alength spanner even with & nodes faults.

PrROOF. To prove the length spanner property, it is easy to show that we only have to prove each pair of nodes u
and w with |Juw]|| < 1 is approximated by a path with length no more than a constant factor, say 3, of ||uw||. The

proof is similar to Theorem 4: we proveit by induction on the length of ||uw]|. Follow the proof of Theorem 4, we
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only have to show that
luz|| + Bllzw|| < Blluwl|

for any node z with ||uz|| < |Juw|| and z liesin the same cone as w does. Obviously, we need to set

_ |||
= X —_— .
Ve, |uz||<[luw| |[uw]] — ||zw]|

H _ 2 i _ 0s _ 1 —
Noticethat o = Zwuz < 7’7. Then asimple geometry revealsthat 5 = max COSCF;M) ywheref = 5 /uwxr < 752,

The minimum valuefor 5 is . In other words, the spanning ratio of the remaining structureis at most .

1
1—2sin(7/p)

Due to limited power and resource of wireless nodes, wireless topol ogies always prefer to have bounded node
degree, such that every wireless nodes only keep constant neighbors. The node degree of the structure Y, ;.1 isat
most p(k + 1), wherep > 6. Recently, Bahramgiri et al. [37] showed how to decide the minimum transmission
range of each node such that the resulted directed communication graph is k-connected. We can prove that their
resulted graph is also alength spanner even with & nodes faults (the proof is omitted here sinceit issimilar to ours).
However, their method does not bound the node degree. Figure 3(a) shows an example in which node u can have
as many as neighbors even after applying their method. Then we give a careful enhancement of their protocol to
bound the node degree. In Bahramgiri’s method, they increase the power step by step until there is no gap greater
than a: between the successive neighbors or the power reaches the maximum power. They proved that if o < g—;:
then the resulted graph is k-connected. After applying their method, we can remove some links by the following
method. For a node u, we divide its transmission range into ‘% equal cones (each cone have an angle «/2). We
select only one neighbor in each cone ¢ if there is any, delete all other links. However, if for a cone ¢, one of its
adjacent cones, say b, does not have any neighbors of «, we select the boundary neighbor v such that vu forms the
smallest angle with cone b; if both adjacent cones of ¢ are empty, we select two neighborsin ¢ (close to the two
boundary of cone c respectively); if ¢ does not have empty adjacent cones, we can select any one of the neighbors.
See Figure 3(b) for illustration. Since the gap between any two successive remaining neighborsis still not greater
than «a (except the empty cones), it is easy to show that the constructed graph is till k-connected if o < g—’; The
node degree is bounded by %’T = %’T When a = g—’,; the node degree is bounded by 6%, which is amost the same
asours.

V. EXPERIMENTS

We had analyzed the theoretical condition for the transmission radiusr ,, such that the graph G(V, r,,) is (k + 1)-
connected with high probability. To confirm our theoretical analysis, we conduct simulations to see what is the
practical value of r,, such that the wireless network G(V,r,,) is (k + 1)-connected with high probability. Notice
that Bettstetter [23] also conducted simulations recently to study the &-connectivity, minimum degree being k&, and

their relations. No explicit expression of r isgivenin [23].
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@ (b)
Fig. 3. (a) node u does not have bounded degree in graph generated by Bahramgiri’s protocol; (b) new method to bound node degree for
Bahramgiri’s protocol.

A. System Model

The geometry domain, in which the wireless nodes are distributed, isa unit squareC = [—0.5,0.5] x [-0.5, 0.5].
As shown by previous results, we know that the random point process X', and the homogeneous Poisson point
process P,, will have the same connectivity behavior asymptotically. For the simplicity of conducting simulations,
we choosen pointsthat are randomly and uniformly distributed in C. For each randomly generated point set V' and
a transmission radius r, we construct the graph G(V, r) in a centralized manner. To speed up the construction of
G(V,r), we partition the points into grids of size . Thus, a point p can only connect with points from at most 9

grids: one grid containing p and 8 adjacent grids.

B. Computing the Connectivity

One of the mgjor stepsin conducting the simulationsis to compute the connectivity of an induced unit disk graph
G(V,ry). Itiseasy to test whether agraph is connected by simply checking if a spanning tree containsal n nodes.
To test whether the graph G(V, r,,) is k-connected, we use the following observation: it is k-connected if and only
if the minimum cut is at least k, which is equivalent to that the flow between any pair of nodes is at least k. So,
given the graph G(V, r,,), we compute the maximum flow between any pair of nodes by assigning each edge a
weight one. A simpler method by using BFS to compute how many disjoint paths connecting a node v to a node
u. Thetime complexity of this approachis O(n2m), wherem is the number of edgesin G(V, r) which could be as

large as n2. For unit-capacity flow, there is an O(min(m, n?/2)m!/?) time complexity algorithm [38].

C. Experimental Results

TRANSITION PHENOMENA: A graph property of G(V,r) is said to satisfy a transition phenomenaif thereis a
radius o such that the graph G(V, r) amost surely does not have this property whenr» < r and the graph G(V, r)
almost surely hasthis property when r > r. It was aready shown that the property that G(V, r) has the minimum
node degree k satisfies a transition phenomena; additionally, the graph G(V, r) is k-connected satisfies a transition

phenomena.
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Probabilty of k-connected when n=50 Probabilty of k-connected when n=100
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Fig. 4. Transition phenomena of a graph being k-connected.

Our simulations shown in Figures 4 and Figures 5 confirm the theoretical results. We found that the transition
becomes faster when the number of nodes increases. For testing the transition phenomena of the connectivity, we
test n = 50 and n = 100 two cases. Wetest 0.1 < r < 0.9 using interval 0.02, i.e., we test total 40 different
transmission radii. Given atransmission radius  and number of nodes n, we generate 500 sets of random n points
in C. We compute the connectivity of each graph G(V, ) and summarize how many is k-connectedfor k =1, 2, 3
and 4. For testing the transition phenomena of the min-degree, we test n. = 100, 200, 300, and 400. Other settings
are same as the test for connectivity transition.

CONNECTIVITY AND MINIMUM DEGREE: Penrose [19] showed that the hitting radius for k-connectivity and
the hitting radius for achieving minimum degree k£ are asymptotically same for points randomly and uniformly
distributed in a unit-area sguare as n goes to infinity. We conduct extensive simulations on various number of
points n = 50, 100, 200, 300, 400 and 500. Given n, k, and «, we select r according to the bound given in
Theorem 3. Here the connectivity ¥ = 1,2 and @ € {0,Inlnn,lnn}. Thus, there are total 36 cases. For each
case, we generate 500 random point sets. Our simulations illustrated by Figure 6 show that the probability that
G(V,r) is k-connected when its minimum degreeis k is aready sufficiently close to onewhen n is at the order of
50, especialy when « is set asln n. Thissurprising result implies afast method to approximate the connectivity of
agraph by simply counting the minimum node degree.

CONNECTIVITY FOR SMALL POINT SET: Theoretically, we derived an asymptotic bound of the transmission
range r,, for n points randomly and uniformly distributed in a unit-area square such that the graph G(V,r ,,) is
k-connected with certain probability. We have to admit that the result holds only when n is large enough compared
with k!. Wefirst conduct simulations to measure the gap between the theoretical probability of graph G(V, r) being
k-connected and the actual statistical probability of it being &-connected for various radius r. Typically, we set
nrr? =Inn+ (2k — D Inlnn — 2Ink! 4+ 20 + 21n 85— Thentest all 54 cases of n = 50, 100, 200, 300, 400,

2
and 500, k = 1, 2, 3,and 4, « = 0, Inln n, and In. The corresponding theoretical k-connectivity probabilities for

themare X, 1 — —,and 1 — = when @ = 0, Inlnn, and In respectively. The probability is computed over 500

Inn’

different random point sets. Figure 7 illustrates our simulation results.
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Probabilty of k-connected when alpha = 0 Probability of k-connected when alpha = log(log() Probabilty of k-connected when alpha = log(n)
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Fig. 7. Probability G(V, r) is k-connected if r is set theoretically.

It is not surprised that the probability found by simulationsis much lower than the theoretical analysis (denoted
by the upper blue curves). Notice that the theoretical range r is not always monotone increasing of £ whenn isa

small value. Thisisthe reason some curves cross each other in our figures.

Probabilty of minDegree=k when aipha = 0 Probabilty of minDegree=k when alpha = log(log(n)) Probabilty of minDegree=k when alpha = log(n)

200 250 300 h 50 100 150

50 100 0
number of points number of points

Fig. 8. Probability G(V, r) has minimum degree k if r is set theoretically.

Figure 8 illustrates our simulation results for the probability that G(V,r) has minimum degree ¥ compared
with the theoretical analysis. Notice, as expected, the probability gap for min-degree is smaller than that for the
k-connectivity.

PRACTICAL TRANSMISSION RANGES FOR k-CONNECTIVITY: Since the asymptotic bound of the transmission
range r,, for n points randomly and uniformly distributed in a unit-area square such that the graph G(V,r ,,) is k-
connected with certain probability holds only when n is large enough compared with &!, we need study what is the
actual transmission range required to achieve the k-connectivity with certain probability. It is possible to analyze
more accurately what is the theoretical requirement for »,, when n is not large enough. However, the analysis is
much more complicated as we cannot omit some “constant” terms in any formula anymore. We leave this tight
analysis as possible future work. Alternatively, we conduct simulations to find that practical transmission ranges
when n is not large enough. It is not surprise that the actual required range is larger than the theoretical bound.
However, we found that the actual transmission range takes a similar decreasing pattern as the theoretical result

when n. goesto infinity.
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Fig. 9. (a): Practical range that G(V, r) is k-connected with probability 1/e. (b)Practical range that G(V, r) is k-connected with probability

1—n.

V1. CONCLUSION

We consider a large-scale of wireless ad hoc networks whose nodes are distributed in a two-dimensional unit
sguare region. As fault-tolerance isimperative for wirel ess networks, we showed that, to make the graph G(V, r ,,)
(k + 1)-connected almost surely, the transmission range r,, should satisfy nz - r2 > Inn + (2k — 1) Inlnn —
21n(k — 1)! 4 ¢(n) for any ¢(n) with ¢(n) — oo asn goesto infinity. Our result holds also in mobile networks
when the movement of nodes are also random. We also conducted extensive simulations to study the relations
between the minimum node degree and the connectivity of the induced unit disk graphs. Practical transmission
ranges were also studied by simulations when n is not a large integer. We found that, although it is different from
the theoretical analysis when n is small, it has the same decreasing pattern as our theoretical analysis. We leave an
accurate theoretical analysis of the transmission range to achieve k-connectivity, minimum degree & when number
of nodesn issmall.

We also presented a localized method to control the network topology given a k-faults tolerant deployment of
wireless nodes such that the resulting topology is still fault tolerant but with much fewer communication links
maintained. We showed that the constructed topology has only linear number O(k - n) of links and is a length
spanner.

We assumed that the wireless nodes are generated by random point process, or Poisson point process. In practical
applications, the wireless nodes could have some other estimated di stributions such as the inhomogeneous Poisson
point process. Thisis much more complicated than the cases studied by known previous results. We leave this as
possible future work.
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