dBBlue: Low Diameter and Self-routing

Bluetooth Scatternet

Wen-Zhan Song Xiang-YangLi YuWang Weizhao Wang
Dept. of Computer Science, lllinois Institute of Technology
10 W. 31st Street, Chicago, IL 60616

{songwen, wangyul, wangwei®iit.edu, xli@cs.iit.edu

DRAFT

Abstract

This paper addresses the problem of scatternet formation for single-hop Bluetooth based wireless ad hoc net-
works, with minimal communication overhead. We adopt the well-known strucki@ruijn graphto form the
backbone of Bluetooth scatternet, hereafter callB&lug such that every master node has at most seven slaves,
every slave node is in at most two piconets, and no node assumes both master and slave roles. OudBBlature
also enjoys a nice routing property: the diameter of the gragh(isgn) and we can find a path with at most
O(logn) hops for every pair of nodes without any routing table . Moreover, the network congestion is at most
O(logn/n), assuming that a unit of total traffic demand is equally distributed among all pair of nodes. We discuss
in detail a vigorous method tocally update the structurgBBlueusing at mosO(log n) communications when a
node joins or leaves the network. In most cases, the cost of updating the scatternet is é¢tijadince a node
can join or leave without affecting the remaining scatternet. The number of affected nodes is always bounded from
above by a constant when a node joins or leaves the network. The dBBlue scatternet can be constructed incremen-
tally when the nodes join the network one by one. To facilitate the self-routing and easy updating, a scalable MAC
assignment mechanism is designed to guarantee the packet delivery even during scatternet updating. In addition,
the structure formed by our method can sustain the faultsmafdes and the network is still guaranteed to be con-
nected. If a node detects a fault of some neighboring master node or bridge slave node, it can dynamically re-route
the packets and the path traveled by the packet is still at ®@st;) hops. Previously no method can guarantee

all these properties although some methods can achieve some of the properties.

Keywords: Bluetooth networks, scatternet formation, de Bruijn graph, single-hop, low diameter, self-

routing, scalable MAC assignment, fault tolerant, scheduling.

DRAFT

. INTRODUCTION

Bluetooth [7] is a promising new wireless technology, which enables portable devices to form short-
range wireless ad hoc networks based on a frequency hopping physical layer. Bluetooth ad-hoc network-
ing presents some technical challenges, such as scheduling, network forming and routing. User mobility
poses additional challenges for connection rerouting and QoS services. It has been widely predicted
that Bluetooth will be a major technology for short range wireless networks and wireless personal area
networks. This paper deals with the problem of building ad hoc networks using Bluetooth technology.

According to the Bluetooth standard, when two Bluetooth devices come into each other's communica-
tion range, one of them assumes the rolmakterof the communication and the other becomesstage
This simple one hop network is calledpiconet and may include more slaves. The network topology
resulted by the connection of several piconets is calledadternet There is no limit on the maximum
number of slaves connected to one master, although the number of active slaves at one time cannot exceed
7. If a master node has more thaslaves, some slaves must be parked. To communicate with a parked
slave, a master has tmparkit, thus possibly parking another active slave instead. The standard also
allows multiple roles for the same device. A node can be master in one piconet and a slave in one or more
other piconets. However, one node can be active only in one piconet. To operate as a member of another
piconet, a node has to switch to the hopping frequency sequence of the other piconet. Since each switch
causes delay (e.g., scheduling and synchronization time), an efficient scatternet formation protocol can
be the one that minimizes the roles assigned to the nodes, without losing network connectivity.

While several solutions and commercial products have been introduced for one-hop Bluetooth commu-
nication, the Bluetooth specification does not indicate any method for scatternet formation. The problem
of scatternet formation has not been dealt with until very recently. The solutions proposed in the literature
can be divided into single-hop and multi-hop solutions. Several criteria could be set as the objectives in
forming scatternet. First of all, the protocol should create degree limited scatternets, to avoid parking any
slave node. Secondly, the number of piconets should be minimized to reduce the inter-piconet scheduling
and communication cost. Thirdly, the formation and maintenance of scatternet should have small com-
munication overhead. Fourthly, the diameter of the scatternet should be small, i.e., the maximum number
of hops between any two devices must be small to provide faster routing. In this paper, we focus on
scatternet formation for single-hop ad hoc networks. In a single-hop ad hoc network, all wireless devices
are in the radio vicinity of each other, e.g., electronic devices in a laboratory, or laptops in a conference

room. A single-hop network can be modeled by a complete graph.

DRAFT

Previous literature on scatternet formation assumed that devices are not able to communicate unless
they have previously discovered each other by synchronizing their frequency hopping patterns. Thus,
even if all nodes are within direct communication range of each other, only those nodes, which are syn-
chronized with the transmitter, can hear the transmission. Synchronizing the frequency hopping patterns
is apparently a time consuming and pseudo-random process [12]. In this paper we assume that the prob-
lem of discovering all neighbors within transmission radius of a device is resolved by separate Bluetooth
protocol. One such protocol for discovering all one hop networks is described in [12], [3], while a proto-
col that provides two-hop information to every node is described in [11]. These protocols are applicable
as the pre-phase of our scheme.

This paper addresses the problem of scatternet formation for single-hop Bluetooth based ad hoc net-
works, with minimal communication overhead. We adopt the well-known strudi@ruijn graphto
form the backbone of Bluetooth scatternet, hereafter callue such that every master node has at
most seven slaves, every slave node is in at most two piconetsparudle assumes both master and slave
roles. Our structureBBluealso enjoys a nice routing property: the diameter of the gragh(isgn)
and we can find a path with at mastlog n) hops between every pair of nodes without any routing table.
Moreover, the network congestion is at méstlogn/n), assuming that a unit total traffic demand is
evenly distributed among all pair of nodes. We discuss in detail a vigorous methmzhtly update the
structuredBBlueusing at mosO(log n) communications when a node joins or leaves the network. In
most cases, the cost of updating the scatternet is actQdlly since a node can join or leave without
affecting the remaining scatternet. The number of affected nodes is always bounded from above by a
constant when a node joins or leaves the network. To facilitate self-routing and easy updating, we design
a scalable MAC assigning mechanism for piconet, which can guarantee the packet delivery even during
updating. Our method can construct the structiB8lueincrementally when the nodes join the network
one by one. In addition, the structure formed by our method can sustain the fadltsookes and the
network is still guaranteed to be connected. If a node detects a fault of some neighboring master node
or bridge slave node, it can dynamically re-route the packets and the path traveled by the packet is still
at mostO(log n) hops. Previously no method can guarantee all these properties although some methods
can achieve some of the properties.

The rest of the paper is organized as follows. Section Il presents our new Bluetooth formation algo-
rithms for single-hop ad hoc networks. We describe how to build a static scattermetooles based on

de Bruijn graph and assign roles and labels to them. Section Il proposes a vigorous métleathtand

DRAFT

dynamically update the scatternet topology when a node joins or leaves the network. Section IV describes
the routing method for our de Bruijn based scatternet which efficiently finds the next node to go without

any routing table. The related works are discussed in section V. We conclude our paper in Section VI.

[I. DBBLUE SCATTERNET CONSTRUCTION
A. de Bruijn Graph

Our dBBlue scatternet first builds a backbone based on the well-known de Bruijn graph [5]. The de
Bruijn graph, denoted by3(d, k), is a directed graph with* nodes. Assume that each node is assigned
a unique label of lengtlt on the alphabef0,--- ,d — 1}. There is an edge i#(d, k) from a node
with labelz,z; - - -z, to any node with labet; - - - zy, wherey € {0,--- ,d — 1}. Figure 1 illustrates
B(2,3). Itis well-known that the de Bruijn graph enables self-routing intrinsically. The self-routing
path from a source node with a labglzs - - - 2, to the target node with a labglys - - - yr iSz129 - - - xp,

— Lo TRpY1 — T3 TEYiYe — - — TEpY1---Yk—1 — Y1 -ye. Observe that, we could find a
shorter route by looking for the longest sequence that is both a suffixef- - -z, and a prefix of
Y2 - - Yk Suppose that; - --xx = y1 - - - yx—i+1 IS such longest sequence. The shortest path between
the source and the targetis- - -z, — X9« TpYk—jao — - — Ti1* ThYk—it2" Yb—1 — Y1 Yk-
Clearly, the route between any two nodes is at mdsops, i.e.,B(d, k) has diametek = log,;n, where

n = d" is the number of nodes of the graph.

00

SN~ TN

. 000 010 101 111,

NS TN

100— 110
Fig. 1. The de Bruijn grapi(2, 3).

The classical de Bruijn graph mlancedn the sense that the labels of all nodes have the same length.
The de Bruijn graph can be generalized to any set of vertices whose labels form a universal prefix set. In
[6], Fraigniaud and Gauron proposed a novel method to construct an efficient topology for P2P network
based on the generalized de Bruijn graph defined on a universal prefiA setiversal prefix set is a set
S of labels on an alphabéet such that, for any infinite word) € X*, there is auniqueword in S, which
is a prefix ofw. The empty set is also a universal prefix §61.For instance{00, 01,100, 101,110,111}
is a universal prefix set on alphal¥t= {0, 1}, but{00,01, 10} and{00, 01, 100, 1000, 101,110,111}

are not. There is a directed edge from nade- zz5 - - - x;, to another node in the generalized de

DRAFT

Bruijn graph ifzs - - - z, is the prefix of the label of node. We denote a generalized de Bruijn graph

as pseudo-balanced the lengths of the node labels are different by at most one, which includes the
balancedde Bruijn graph. For simplicity, we still denote a pseudo-balanced de Bruijn graph on alphabet
{0,1} by B(2, k) if the node labels have length at leagbits and at most + 1 bits. We also say that a
node fromB(2, k) is at levelk if its label hask bits.

In this paper, we only consider tipseudo-balancetinary de Bruin graptB (2, m). Node labels in a
pseudo-balancede Bruijn graph correspond to all the leaf nodes falabinary tree, in which the depth
difference between any two leaf nodes is at most one and each internal node has two children, Figure
2 illustrates the correspondence between them. In the figure, the pseudo-balanced de Bruijn graph is
defined on the leaf nodes and directed edges.

root

O/\K
°K /)K YaX

001 OlO 011 100 101 110 111

,77\/ >

/
0000 0001 0010 OOllf

Fig. 2. The correspondence between full binary tree and pseudo-balanced de Bruijn graph.

In a pseudo-balanced de Bruijn gragh2, k), each node has at mostout-neighbors an in-
neighbors. To route a packet from a nodevith label 125 - - - 2512, to another node with label
Y1y - - - Y—1yt, Wheres, t € [k, k + 1]. Nodew will forward the packet to its neighbor node with label
To-- Ts_1Ts, OFTo -+ XTs_1TsY1, OF Lo - - - Ts_1X5Y1Y2, Whichever exits. Notice that since the labels of
the nodes form a universal prefix set, we know #sedctlyone of these three labels does exist. The fol-
lowing nodes keep forwarding the packet similarly until it reaches nod&onsequently, the diameter of
pseudo-balanced de Bruijn graph is sillllog n). In this paper, we propose a scalable scatternet structure
based on pseudo-balanced de Bruijn gr&gh, k).

In a pseudo-balanced de Bruijn grapii2, m), two nodes are callectitical pair if they only differ in
the least significant bit of their labels. Le§, v, - -, u, be the sequence of nodes visited by a traversal
of all leaf nodes in the corresponding binary treeR®f2, m). A nodeuw; is called thesuccessomof
another node;,_; andu;_; is called thepredecessoof another node:;. Herei — 1 takes valugi — 1)
mod (p + 1). For example, in Figure 2, nodé810 and0011 is a critical pair; nod®10 is the successor

of the node)011.

DRAFT

B. MAC Address Assignment for Piconet

Our dBBlue protocol always maintainggaeudo-balancede Bruijn graphB(2, m) as the backbone
of the network. Here the choosing of the integewill be discussed later.

Every node in the backbone of dBBlue scatternet will be assigmedsterrole. We will add abridge
slavenode for every pair of master nodes that are connected in the backbone. Thus, every master node
will bring at mostsix bridge slave nodes so far since every node in a pseudo-bald@ed:) has at
most6 edges incident.

We then add some free slave nodes to each master node, and cgfitteestavenodes.

Before we discuss in detail our scatternet construction methods, we present our novel rule of assigning
the MAC address in a piconet. In our dBBlue scatternet, when we route a packet to a destination node
v, we only know the piconet ID of the node sayyi1ys - - - yi, Which is same as the label of its master
node, and the MAC address, say»z3, of this node in that piconet. The detail routing mechanism will
be discussed in Section IV. When some node joins or leaves the scatternet, we often have to reorganize
some piconets and thus re-assign the MACs of some nodes. Our method of assigning MAC addresses
in a piconet and reorganizing the piconets guarantees that the new piconet (even the new MAC address)
can be found by a simple appending or deleting the least significant bit, which keeps the label prefix of
updated nodes unchanged so that the delivery of the packets on the way to those updated nodes will not
be interrupted.

In a piconet, MAC addres800 is always reserved for the master node. For simplicity, we omit the
MAC address of a master node hereafter while representing its label, i.e., the master node with label
1T+ T;m—1Zm, actually has a labgle iz, - - - x,,— 124, 000) if consistent labels with slave nodes are
needed. Remember that, in a pseudo-balanced de Bruijn graph, any no#2lénkhasighbors and at
most4 out-neighbors, so MAC addresses] and111 are always reserved for the two bridge slaves
connecting to in-neighbors, MAC10, 101, 001 and110 are reserved for bridge slaves to connecting out-
neighbors if they exist, anth0 is reserved for th&th slave (it must be a pure slave) if it exists. Figure
3 illustrates all four possibilities for the piconet MAC address assignment according to the number of
out-neighbors in scatternet backbone. In the figure, for simplicity, we/uge - - y,,—1ym (y) to denote
a node with label ys - - - Y —1ym OF Y192 - - - ym_1ymy, Whichever exists in the network. Notice that a
master node in the constructed scatternet based on a pseudo-balanced de Bruif(@raphalways
has two incoming neighbors. For example, a master ngde - - - z,,, in level m can have incoming

neighbor0zxzs - - - &1 Or0z129 - - - 2.5, but NOt both since the de Bruijn graph is built upon a universal

DRAFT

prefix set; similarly another incoming neighborlis;xs - - - x,,—1 (2,). Analogously, a master node
T1X9+* + TmTmy1 INlevelm 4+ 1 has incoming neighbokseza - - - Tp—1(2,) @ndlziza - - - Ty—1(Thm).
On the other hand, the number of out-neighbors of a node in the pseudo-balanced de Bruifg(@raph
could bel, 2,3,4. Notice that only the nodes at level could have3 or 4 out-neighbors and those at
levelm + 1 could havel out-neighbor.

Table | summarizes the rule of assigning the MAC address to the bridge slave nodes in a piconet. Their
MAC addresses can be calculated uniquely according to the label bit difference between current piconet
and neighboring piconet IDs. For example, if the mastes labeledz;zs - - - x5 and its out-neighbov
is labeledz; - - - xsy192, then the MAC addresses of their bridge slave,ig 7z assigned by, andz;11
assigned by. Remember that every bridge slave has two MAC addresses: one MAC address in each of
the two piconets it resides.

TABLE |

THE RULE TO ASSIGNMAC ADDRESS TO BRIDGE SLAVE NODES

In-Neighbor Out-Neighbor
Node Yyry - Ty T2 Ts Tg - TsYl T2 TsY1Y2
Ty T yll 010 Y11y Y1y212

Notice that, in bluetooth scatternet, the bridge slave nodes have two independent piconet IDs and MAC
addresses in two piconets respectively. However, since the routing mechanism in de Bruijn is directional,
only their piconet ID and MAC address assigned by their in-master is public and meaningful for routing,
sayinglabel in the remaining paper, and the other one is only used for intra-piconet communication.
Figure 4 illustrates one piconet in the scatternet. Here nadég I, O; andO, assume master roles
and form the backbone for scatternet. These master nodes are connected in the de Bruijn graph by
bridge slavess, v, vo andwvs respectively. Assume that nodehas a labekxzs - - - x,,_12,,,. Nodes
I, I, denote the two incoming neighbors of nodewith label 0xq25 - - - 2,1 @and lzi2g - - - 1
respectively. Node®,, O, denote the two outgoing neighbors of nadevith labelzs - - - z,, 12,0 and
o - Tm_1Zm 1 respectively. Nodes,, vg, anduvg are the pure slave nodes ©fin the scatternet. The
labelof nodev; (i € {1,2,4,5,6})is (z1x2 -+ - Tim—12m, i), Wherei is the MAC address of nodg in this
piconet, andvs andwv; has publiclabel (0x1z2 - - - -1, Ty Tmam) and (1x122 -+ L1, T TmTm),
respectively, which is consistent with the prefixigfand I, respectively. Notice that the MACs of;

andvy in the piconet mastered by nodeare3 and7 respectively, which are used only by nodes in this

DRAFT

e o001
0%, - m_lmo “onl - A 010 -0 X2 X
® 100
LX) m_lcxnp 11 e
> 110”

o001
0X; - Xy (Ky) 011
B—A XXX 010 — =5 X2 Xm0

\I y °
! 100

1X) o Xy (Kp) 111 A 101 —>m X2 Xl
) 1107

‘ a001 —=0 %2 Xs00
0Xp e Xy 1(Xm) 011
XXy 010 \’\ 0 XpXp01
> °100 |

LX) m—leJn) 111 AlOl*&». Xp- Xl
- 0110

‘ a01 —=1 X2+ Xu00
OXl o m](Xm) 011 PN,
XXy 010 — D0 X2 Xn01
> ©i00 |

1X - m—lcxm) 111 A101*&». Xy Xm10
e All(}*’l Xpo Xl 1

(d) Four out-neighbors
Fig. 3. MAC address assignment for a piconet. Here a master node is denoted by a square, a pure slave is denoted

by a circle, and a bridge slave is denoted by a triangle.

DRAFT

10

piconet and not broadcasted to the network.

%;;f
/l\

\W_V4WS/

Fig. 4. An example of a piconet (with nodes inside the shaded region) formed by our method.

As will see in Section Ill, our labeling rule makes the updating of the scatternet topology and nodes’
labels much easier when new nodes join the network or some existing nodes leave the network. For an
incremental updating of the scatternet, there are two scenarios when a new node joins the network. The
first case is that there is a master node who hfisesslot for a pure slave. We then directly assign the
newly joined node as the pure slave of that master node. The second case is that no master node has
free slot for a pure slave. We then have to split some piconet and in turn create some free slots for pure
slaves. The splitting of a piconet is performed such that the resulting backbone (formed by master nodes
and bridge slaves) is still a pseudo-balanced de Bruijn graph. When a piconet is splitted (or two piconets
are merged), the labels of some nodes have to be updated. While updating the topology, it is possible
that some packets are already on their way to the destinations (via or toward this splitting piconet). Our
labeling rule makes sure that the packets can still be routed without any interruption because the target
can still be reached by the old label according to our prefix-based routing mechanism. Notice that only
the local nodes are assigned new labels, and the re-labeling is also conducted locally. More details will be
addressed in Section IV. Hence, our MAC assignment facilitates the self-routing mechanism and provides
the resilience even during topology update.

Moreover, because each bridge node guarantees to be assigned different MACs in different piconets,
the inter-piconet scheduling in dBBlue scatternet becomes easier especially when the Bluetooth system
runs the synchronous services, i.e. the physical link is synchronous connection-o8&@gd]. In
SCOmode, synchronizing the clocks of aflastersnodes could solve the scheduling conflict problem on

bridges since here the MAC address of each slave is used as its time slot in the corresponding piconet.

DRAFT

11

C. Static Scatternet Construction

Givenn nodes currently distributed in the network, this section gives an efficient algorithm to construct
our de Bruijn based scattern@BBlue which has a low diameter and a bounded node degree property.
In other words, we first study the construction of the scatternet for a statardes network, which will
serve as the base for our dynamic construction.

Our method will construct a balanced de Bruijn grap®, m) as the initial backbone of the network.
We will choose integern such tha™! < [%] < 2™. The choosing ofn guarantees that there are
enough bridge slave nodes, which implies that no master node serves as a bridge slave.

Our method does not consider the detail of the neighbor discovering process. We assume that every
node already knows the existence of the other nodes.

Algorithm 1: Static DeBruijn-Based Scatternet
1. Assume that there is a leader already among thesedesS. The leader could be the node with the
smallest ID. We give théokento the leader and call it token node. The token node randomly sé&&cts
nodes (including itself) into the master sgtwhich assume thmasterroles in final scatternet topology,
where2m1 < [§] < 2™ andn is the number of nodes ifi. Letr = n — 3 - 2™, which is the total
number of nodes that can be assigned as pure slaves.

2. The token node assigns itself a lab&l, and each node if/ a uniquem bits label in the range from
0---01tol---11. The set of noded/ forms a de Bruijn grapl3(2, m) as the scatternet backbone.

3. The token node, with label; - - - z,,, select2 nodes! from the remaining nodes as its bridge slaves,
and assigns them labgls; - - - z,,,,010) and(z; - - - ., 101) respectively. Her@10, 101 will also serve

as the Medium Access Code (MAC) for these two slaves in the piconet mastered by this token node.
The token node uses its bridge slave nédge- - - z,,,010) to connect with its out-neighbafxs - - - x,,0

and the bridge slave node; - - - x,,,, 101) to connect the out-neighbor nodexs - - - z, 1.

4. Then the token node seledts- min{3, r} nodes’ from the remaining as its slaves and assigns them
with labels(zy - - - z,, 001), (z1 - - - 2y, 100) and(xq - - - x4, 110) in the order if they exist. Let = r—t.
After that, it passes thikento its successor.

5. Repeat the above steps (3) and (4) until all node¥/iare processed or no more nodes left. After all
nodes have been processed, the current token node pastseetitzack to nodé™ again.

Once the initial topology construction is finished, the token nogdil be responsible for the following

'There are two special node& and1™, which only have 1 out-neighbor, we then just use one bridge slave node to connect

with its out-neighbor.
2Node0™ and1™ may choosé nodes as its pure slaves since they only have one in-neighbor and one out-neighbor.

DRAFT

12

node joining and leaving issues. Master nodes form the backbone of bluetooth scatternet, and a piconet

works like a node in de Bruijn graph.

Fig. 5. dBBlue Bluetooth Scatternet.

Figure 5 illustrates a dBBlue scatternet containigodes based oB(2, 3) graph.

Theorem 1:In dBBlue scatternet, each master has no more thglaves and each slave works as a
bridge for at mose piconets. And the number of piconets is at midst and at leasf i |. Moreover, the
computation cost i®)(n) for static construction.

Proof. From the topology construction, each master carries at sremine prefix slaves, arxddifferent
prefix slaves since each nodeft{2, m) graph has at mo in-neighbors, so each master has no more
than7 slaves. And, each slave exists as a free slave or as the bridge between its same prefix amaster
one ofu’s out-neighbors, so the degree of a slave node is at most 2.

Letn = 6a — b, whereb € [0,5] and2™ is the number of masters. Theft—! < [%2] < 2™ implies
om=1 11 <q<2™ Thus,n = 6a—b > 6(2’“‘1 +1)—bandn = 6a —b < 6.2™ — b. Consequently,
3-2™+(6—-0) <n<6-2" — b, whichimplies[¢] <2™ < |%].

It is obvious that the total computation cost of constructing static dBBlue scattemét s

In this paper we always assume that a bluetooth piconet consists of afralastes andl master.
If future bluetooth technology allows a master to bring more slavespsayr scatternet construction
method can adapt easily as follows. The scatternet backbone will be still bageom) de Bruijn
graph. Howeverm is chosen such tha&™ ! < (1%1 < 2™, In other words, every master node will
carryp — 4 pure slaves and bridge slaves to connect to its two out-neighbors and two in-neighbors in
the de Bruijn graptB(2,m). It is not difficult to show that using de Bruijn gragh(2, m) will create a
scatternet with less piconets than usiB@i, m’) for d > 2 since each master node will carry less pure
slaves in the later case. On the other hand, the scatternet bade@on’) for d > 2 does provide a

better fault tolerance since the degree of each master node is increa@ged to

DRAFT

13

IIl. DYNAMIC SCATTERNET UPDATING

In this section we describe a vigorous methodaally update the scatternet topology dynamically
when some node joins or leaves the network. Considering each piconet as an abstract node in the de

Bruijn graph, our goal is to maintain a scalable pseudo-balanced de Bruijn graph.

A. Token Based Updating

First consider the case when a node wants to join the network. We have to assign a role for this newly
joined node. There are several possible scenarios about the existing scatternet: (1) the existing scatternet
has a master node that has free slave slots, then we can simply assign this newly joined node as the pure
slave of this master node; (2) all master nodes in the existing scatternet already $laves, we then
have to expand the backbone of the scatternet to incorporate this newly joined node. In other words, we
have to split some piconet to two such that the two new piconets will have some free pure slave slots to
hold this newly joined node.

Several methods can be used to implement the above scheme. For instance, when a node leaves, we do
nothing if the backbone of the scatternet is untouched so that some update cost is reduced. However, this
approach suffers a large cost when a node joins the network since we have to find where to put the newly
joined node. One method is to use the broadcast method to travel the whole scatternet to find the master
node with a free pure slave slot when a node joins. This may perform better if only a few of the existing
piconets have free slots. The other method is to randomly select a master node and check if it has free
slot. If it does not, we then select another random master node until one such master node is found. This
approach performs better if the majority of the piconets have free slots.

To make the updating efficient, we should be able to quickly find the master node with an empty slot
for a joining node and a pure slave to replace a leaving node if there is any. Our approach is to keep the
current scatternetompactand assign a special node tfod&enin a way such that all master nodes with
label less than the token node dot have empty slot, and all master nodes with label larger than the
token node do have empty slot. When a new node joins the network, we can simply assign it the empty
pure slave slot and then update the token node if necessary. When a node leaves the network, we have to
update the scatternet to keep the scatternet compact. Thus, we possibly have to move some nodes to fill
the slot emptied by this left node.

Before we present the detail of our methods of updating the scatternet, we first study the possible status

of the scatternet, which need be recorded in the token node.

DRAFT

14

When a new node requests joining the network, there are three possible scenarios to be discussed.
1. Current backbone is a balanced de Bruijn graph. Figure 6 illustrates an example. The token is held by
the master node with the smallest label among all master nodes that have lessanag-prefix slaves.
In this status, the master node with the token has some free slot for newly joined node and so do all master

nodes with larger labels.

Fig. 6. Token in balanced de Bruijn graph.

2. Current backbone is pseudo-balanced de Bruijn gr@ph m) underexpandingstatus, i.e., many
nodes join the scatternet. Figure 7 illustrates an example. The token is held by the first master node with
less tharb same-prefix slaves in leveb + 1 if it exists, otherwise the first master node in leweholds

the token. In this status, all master nodes in lewedndm + 1 do not have free slots except the last two

master nodes in leveh 4 1. In other words, at most two master nodes have free slots.

levelm

levelm+1 ~ =L i 7 /I L.

Fig. 7. Token in pseudo-balanced de Bruijn graph under expanding status.

3. Current backbone is a pseudo-balanced de Bruijn gia{hm) undershrinking status, i.e., many
nodes leave the scatternet. Figure 8 illustrates an example. The token is held by the master node in
level m with the smallest label. In this status, each master node intevell and levelm has4 and2

same-prefix slave nodes respectively.

level m___

levelm+1 _~ =L JI\ /I ...

Fig. 8. Token in pseudo-balanced de Bruijn graph under shrinking status.

DRAFT

15

Those statusdsalanced expandingshrinkingwill be recorded in the token data structure.

B. Node Joining

When a new node joins the network, there are three cases.
1. Token status ibalancedthat is to say, the current backbone is a balanced de Bruijn graph. See Figure
6 for an illustration.

(a) The token node:;...x,, has less thafi slaves. Then it simply adds the joining node into its slave
set and assigns it a labét; - - - z,,,, y1y2y3), Wherey;ysys is one of the un-assigned MAC address in
{001,100, 110}. If the token node now h&gslaves, then it passes the token to its successor.

(b) The token node is fully occupied by slaves. This could happen only when all master nodes in the
scatternet have slaves. Then the token is passed back to ni3déf it is not at node0™. Change the
token status texpandingand call Method 1 to split the current piconet mastered by the token node into
two parts and add the joining node as a new pure slave with {abel - z,,,0,001).

2. Token status iexpandingthat is to say, current backbone is a pseudo-balanced de Bruijn graph under
expanding status. See Figure 7 for an illustration.

(a) If the token node is in levelm + 1), i.e., with (m + 1)-bits labelx; ...x,, 11, the it must has less than
7 slaves. It simply adds the joining node into its slave set and assigns it a(fabel z,, 11, y132y3),
wherey; y2y3 is one of the un-assigned labels{if01, 100,110}. If the token node now has slaves,
then passes the token to its successor.

(b) If the token node is in leveln, i.e., withm-bits labelx;...z,,. This could happen only when all
master nodes in the scatternet has been fully occupied digives. Call Method 1 to split the current
piconet mastered by this token node into two piconets, and add the joining node as a new slave with label
(z1 - x,0,001).

3. Token status ishrinking that is to say, current backbone is a pseudo-balanced de Bruijn graph under
shrinking status. See Figure 8 for an illustration. In this case, the token node surely has exactly four
slaves (see node leaving for more details). We first add the joining node as the slave of the token node
and assign it one of the un-assigned MAC addressg8(, 100, 110}. Call Method 1 to split current
piconet into two piconets, and pass the token to the successor imlevelhe current token node iK™,
then set token status tialancedand pass the token to master n@de!. In other words, we basically
undo the updating (piconets merging) caused by the previous node leaving event.

We then present our algorithm that splits one piconet mastered byaoederz,,, to two new piconets

mastered by node, - - - x,,,0 and noder; - - - x,,,1 respectively.

DRAFT

16

Method 1: Piconet split due to node joining
1. Token nodew = x; - - -z, promotes its slave node = (z; - - x,,, 100) as the master for a new
piconet. We change the labgt; - - - x,,,, y132y3) of a pure slave node or an out-neighbor bridge slave
node by simply appending; in the MAC address, i.e., the new labelis; - - - z,,y1, y2y3y2). Two new
piconets have master nodes with labejs - - z,,0 andz - - - z,,,1 respectively. The detail of labelling
and role updating is as follows:
(@) (z1---zm,000) = (z1 - - 2,0, 000),
(b) (z1---xm,001) = -+ 20,010
©) (z1---zm,010) =
d) (z1---xm, 100) =
€) (xy-- -z, 101) =

® (z1---2m,110) = (x1--- 2,1, 101), which assumes a bridge slave role in second piconet.

which assumes master role in first piconet.
, Which assumes a bridge slave role in first piconet.

which assumes master role in second piconet.

)

(1)

(z1 -+ x,0,101), which assumes a bridge slave role in first piconet.
(21 -+ T 1,000),

()

x1 - xm1,010), which assumes a bridge slave role in second piconet.

Notice this label extension still preserves their prefix. Thus, after the piconet splitting, the message
delivery will not be interrupted at all because old addresses are still reachable since the new label has the
same prefix. In addition, the nodes with new labels for the corresponding MAC addresses will serve the

bridge slave role in the two newly created piconets. Figure 9 illustrates the change while piconet splitting.

0 X1:-X0,001

@X, X, 001 U/ ® X;--Xm0,010
Xy Xm0
X1:Xm,010 X1+Xm0,101
uy v
Xq o+ Xpy BK=® X1--Xn, 100

X]_---melol _— 1V.<.X1---Xm11010
1 Xm
[

@ X1--Xm,110 X1-+Xm1,101

Fig. 9. Piconet splits due to node joining.

2. Then, bothu andv need reselect the bridge slaves to connect with its in-neighbors and out-neighbors
if needed. Simultaneously, bottandw’s neighbors need reselect its same-prefix bridge slaves to connect
with » andwv. The selection still follows the rule described in Section II-B, Figure 3 illustrates all possible
scenarios. Since the master nodes in the new piconets are imlevdl, each of them has at masbut-
neighbors in the pseudo-balanced de Bruijn grB8p, m). Thus, we have enough bridge slave nodes for
each new piconet. At the same time, their in-neighbor master npdes - - - z,,—1(x,,), wherey = 0

or 1, of nodeu andv in the de Bruijn graph have to change one pure slave to bridge slave for connecting

DRAFT

17

nodeu or v. Notice this update is only restricted to local regions, so the update is totally localized.

3. Finally, the token is still kept by the master nade..x,,,0, whose previous label is; ...z,,.

C. Node Leaving

If a node leaves elegantly, it should first notify the token node before leaving. If a master/slave node
leaves because unexpected reason such as power off, all of its neighborhood will detect it soon and notify
the token node. Our method does not consider the detail of the exception detection process, we assume
the token node can detect the node leaving in short time.

When the token node detects the node leaving, then there are three cases to be addressed again:

1. Token status idalanced that is to say, current backbone is a balanced de Bruijn graph. Here two
cases need be discussed:

(a) If the token node does have pure slave node, then the token node requests one pure slave to replace
the position of the leaving node, including the label;

(b) If the token node: has no pure slave nodes, then it passes the token to its predecessor, say node
There are two scenarios also, which as discussed as follows.

i. If nodew has pure slaves, then it requests one pure slave to replace the position of the leaving node.

ii. If nodew also has no pure slaves. This could happen only when1™, and all master nodes have
only 2 slaves serving bridge slave role. Token nadehanges the token status ghrinking and call
Method 2 to merge its corresponding critical pair, then ask one pure slave to replace the position of the
leaving node.
2. Token status igxpandingthat is to say, current backbone is a pseudo-balanced de Bruijn graph under
expanding status.

(a) If the token node is in levemn, i.e., with m-bits labelz;...z,,. This could happen only when
all master nodes in the scatternet has been fully occupied dlgves. The token need be passed the
predecessor, which will ask one pure slave node to replace the position of the leaving node.

(b) If the token node is in levelm + 1), i.e., with (m + 1)-bits labelz;...x,,11. If the token node does
have pure slave node, then the token node requests one pure slave to replace the position of the leaving
node, otherwise two cases need be discussed here:

i. The least significant bit of the token node’s labellis The token will be passed to be passed the
predecessor, which will ask one pure slave node to replace the position of the leaving node.

ii. The least significant bit of the token node’s labebislt first merges its corresponding critical pair

by calling Method 2, then requests one pure slave to replace the position of the leaving node. Now if

DRAFT

18

the current token node & - - 0, then it changes the token statushdancedand passes the token to its
predecessar - - - 1.

3. Token status ishrinking that is to say, current backbone is a pseudo-balanced de Bruijn graph under
shrinking status.

(a) Ifthe token node is ndi- - - 0, then it passes the token to its second predecessor with least significant
bit 0 in level (m + 1), which will call Method 2 to merge its critical pair piconet and ask one pure slave
to replace the position of the leaving node.

(b) If the token node i§ - - - 0, then it changes the token statudtdancedand passes the token to node
1---1, which will ask one pure slave to replace the position of leaving node.

One special case is that the token node leaves. In this case, the token node will promote one of its
pure slaves to replace it, i.e., to be the master node and the new token node. If no new pure slave exits,
similarly, we have to ask some pure slave node from its predecessor to replace its role. When the token
node did not leave elegantly, it is more complicated and we need fault tolerance about the token node,
which is out of the scope of this paper.

We then describe our method to merge two piconets that are mastered by a critical pair.

Method 2: Piconet merge due to node leaving
1. Assume that the token node = z; ---z,,0 requests merging with its sibling master node=
x1---xm1l. The new piconet has master node with label - - z,,. Notice that node: and nodev
each has at mo& out-neighbors in the de Bruijn graph. The label change will be achieved by simply
deleting the least significant bit as follows:

(@) (x1---2,0,000) = (x1 - - - zm, 000), which is the master node in the new piconet.

(b) (1 ---2,,0,010) = (z1-- -z, 001), which is a pure slave node or the bridge slave node to connect
master node - - - 2,00 if it exists.

(©) (x1+2,0,101) = (x1---xm,010), which is the bridge slave node to connect master node
x1 -, 0(1), whichever exists.

(d) (z---x,»1,000) moves to replace the leaving node position.

€) (xy---x,l,010) = (x1---xm,101), which is the bridge slave node to connect master node
x1 -2, 1(0), whichever exists.

() (x1---2m1,101) = (x1 - - - zm, 110), which is a pure slave node or the bridge slave node to connect
master node; - - - z,,, 11 if it exists.

Notice this label shrink still preserves the label prefix. Thus, after the piconets merging, the message

DRAFT

19

delivery will not be affected at all because de Bruijn graph uses prefix based routing, old addresses are
still reachable by the same prefix. The piconets mergence will not cause any routing problem although
the node label shrink is not acknowledged by other nodes. At the same time, the sibling master node
v =1 - xyl leaves to replace the position of leaving node. To continue the message delivery for node
v, the new master node will keep the new label of) for a period of time and forwards the message
targeted tov accordingly. More detail is discussed in Section IV. Figure 10 illustrates the change of

labels by merging piconets.

E<:X1---Xmo,01o O, X, 001
X1+ Xm0
X1-Xm0,101 ®X;:-Xn,010
u
Xq X

o lV X1+Xm1,010 X1--Xm 101
1 m

® X;--Xn1,101 ® X1+Xm, 110

\
X1+ Xm1 M replace leaving node

Fig. 10. Piconets merge due to node leaving.

2. Then, nodeu need reselect the bridge slaves to connect with its in-neighbors and out-neighbors if
needed. Simultaneously, the neighboring master nodesaoflv need reselect their same-prefix bridge
slaves to connect with. The selection still follows the same rule described in Section 1I-B, please see
Figure 3 for an illustration for all possible scenarios. Notice this update is totally localized.
3. The token is now kept by the master nade - - z,,.

It is not difficult to prove the following theorem.

Theorem 2:Our methodocally updates the dBBlue scatternet using at ni@dbg n) communications
when a node joins or leaves the network. In most cases, the cost of updating the scatternet iggdtually
since the node can leave and join without affecting the remaining scatternet. The number of nodes affected
when a node leaves or joins the network is always bounded from above by a constant. Our method can

construct the structure incrementally when nodes join the network one by one.

D. Bounded Network Size

The method described so far can incrementally construct the scatternet when the nodes join the network
one by one and can update the scatternet structure efficiently when nodes leave or join the network even
frequently without affecting the worst case properties of the scatternet. This method is efficient in most
cases, however, it could generate lots of merging and splitting of piconets in the worst case: a node joins

the scatternet which causes the splitting of a piconet, then a node leaves which in turn causes the merging

DRAFT

20

of two piconets, and repeat joining, leaving.

In most applications, the size of the bluetooth network is often stable, for example, jwithim| for a
small constant > 1. If this is the case, we can apply the following approach to build the scatternet. First,
we use Algorithm 1 to build a scatternet witmodes. When a new node joins the network, we first try to
find an empty pure slave slot for this node from the current token node. If no empty slot exists, we then
pass the token to the successor of the current token node. When all master nodes in the scattérnet have
slaves, we will start creating another piconet to connect to the current backbone. In other words, instead
of having3 pure slave nodes, a master node from the scatternet backbone will replace the pure slave nodes
by 3 piconets (at maximum). We call such piconassociatedvith the master node of the backbone.
Clearly, a backbone based on a balanced de Bruijn gi@hm) could support frons - 2 nodes to
6 - 2™ nodes without associating piconets. By associating piconets to the master nodes of backbone, the
number of nodes it can support is increase@7o 2™ since we can replace each pure slave node by a
piconet of8 nodes.

One disadvantage of associating piconets to master nodes is that every master node in the backbone
will have to forward more messages than the scatternet created by the method described previously. The
other disadvantage is that when the network size goes beyond its supported scope, the updating of the

scatternet is more costly than before.

IV. ROUTING IN SCATTERNET

We first describe the routing in the dBBlue scatternet with a balanced backbone. If both source and
target nodes are masters, we assume the source masten madea labekz; - - - z,,, and the target
master node has a labe}; - - - y,,,. According to the routing mechanism described in Section 1I-A, node
u simply forwards the message to its neighbor master ngde - - - - z,,91, relayed by their common
bridge nod€(z; - - - x,,,010) if y3 = 0 or by (zy - - - 2, 101) if y; = 1. Thenu, forwards the message
again to its neighbor master node accordingly. Clearly, the message is guaranteed to reach the target in
at most2m steps. If the source node is a slave, it first sends the messages to its master node. Notice
that a pure slave node has only one master node and the bridge slave node has two master nodes. Then
the bridge slave node just randomly picks one master node. Similarly if the target node is a slave, the
message will be first forwarded to its master node. The procedure of routing message between these
two master nodes is same as the previous description. Clearly, the routing path from one master node to
another master node is at m@st hops. The longest path between two nodes happens from a slave node

to another slave node, which is at mast + 2 hops. From2™~! < [%], we havem < 1 + log[%].

DRAFT

21

Thus, the diameter of the de Bruijn-based scatterneti log[& .

Theorem 3:For any two nodes in dBBlue scatternet, there is a path with at ses2 log[& | hops
and such path can be found locally by each intermediate node based on the label of the target.

Notice that, two assumptions are made in our routing scheme described above: (1) the source node
knows the label of the target node, and (2) the backbone of the scatternet is based on a balanced de Bruijn
graph. We will not try to resolve the first assumption in this paper, but discuss it briefly here. In the
network communication, usually only IP address of the target is known. We can adopt a mechanism
similar to that used in Peer-to-peer system D2B[6]: lthbel-IPAddrpairs are distributively stored in
masternodes on backbone in the way that the prefix of IP address matches the label of thexbiest
node. Any node can query the backbone using the target IP address to get the target label and then sends
message to the target node based on the target node’s labdlabékelPAddrpair of a node can also be
broadcasted to the whole network if the nodes’ leaving and joining is not frequent, i.e., the labels of nodes
do not change frequently. Here, we discuss briefly how to perform broadcast in de Bruijn graph such that
it guarantees to reach each node exactly once. We initiate the broadcast frofi"dgach node with
label 0y, - - - y,—1 continues forwarding the message to its out-neighbors. The forwarding is terminated
when it reaches the nodes whose most significant bitigure 11 illustrates such broadcast procedure.

The broadcast basically works same as the breadth first search (BFS) in a binary tree. Clearly, a node will
only forward the message to nodes with larger labels. Thus, a node receives the message exactly once.
The communication cost of such broadcasting is exactlyessages.

00...000

00...001

./'\gi)...mo 00...011

Fig. 11. Broadcast in de Bruijn graph.

We then discuss in detail how to route the packets when the scatternet backbone is pseudo-balanced.
Assume the source master noddnas a labelk x5 - - - 25,125 and the target master nodehas label
Yy1y2 - - Y—1yt, Wheres, t € [k, k + 1]. Nodewu will forward the packet to its out-neighbor master node

v with alabelzy - - x5 125, Orxg - - 25 _1x5y1, O X2 - - s_125y1y2. Notice that since the labels of all

DRAFT

22

nodes are a universal prefix set, we know #eactlyone of these three labels does exist. Consequently,
the diameter of pseudo-balanced de Bruijn graph is Gtilbgn). The bridge slave node from to v

could have a MAC address as follows (I)0 if a master node with labet; - - - x,_ x5 exists; or (2)

y1y1y1 if @ master node with labets - - - z5_12,y; exists; or (3)y1y272 if a master node with label

To - Ts_1XsY1y2 €XiSts. Notice that we do not need any lookup table for relaying, since the MAC of

a relaying bridge can be calculated easily. See Section II-B for more detail about the rules of labelling
nodes and assigning MAC addresses in a piconet. A shorter route is obtained by looking for the longest
sequence that is suffix af zs - - - ¢ and prefix ofy1ys - - - y¢.

For the purpose of illustration, let's see how we route packets from a masterpege;x, = 0010
to a master node; yoysys = 0001 in the scatternet based on the de Bruijn graph illustrated in Figure 2.
First, the master nod#10 checks the labels of all out-neighbor master nodes and finds that master node
with labelzoxz3z4 = 010 exists. Then it forwards the packet to master ndtevia the bridge slave node
with MAC 010. Similarly, master node,x3x4 = 010 forwards the packet to master node with label
x3x4y1 = 100 via the bridge slave with MA®10. Finally, the master node;xz4y; = 100 forwards the
packet to node 2334 = 0001 via the bridge slave with MA©®10. Notice that the last step it takes a
shorter path other than via another master nadgy.ys = 0000.

At last, we discuss how to route the messages while the scatternet is on updating due to nodes leaving
or joining the network. When a node joins the network, the piconet mastered by the token node may be
split into two piconets. Clearly, the message still can be routed since the labels of the two newly created
piconets are the children of this token node. Similarly, when two piconets are merged to create a new
piconet, the label-based routing still successfully route the packets. The remaining case is that when a
node leaves, we may need find a pure slave nddem the current token nodeto fill the space emptied
by this left node. When a message targeted to nodches the piconet mastered by the token rpde
nodev has already been moved. To remedy this, we apply a mechanism similar to the mail-forwarding
service provided by the post-office: the master noaell keep a record of the nodes moved to other
piconets and its new label within a time window. When a message targeteddaches, the master node
forwards the message to the new destination and also acknowledges the source node of the new label of
v. The source node will then cache the label of nodéit is frequently used. To decrease messages
forwarding, every master node could record the frequency that a slave node receives messages from other
node. When a pure slave node is visited frequently by other nodes, then we switch its role with one of

the bridge slaves with same prefix and broadcast the new labels of these two nodes to the network. When

DRAFT

23

we have to move a pure slave node to other piconet to make the scatternet compact, the pure slave node

is the least frequently visited nodes among the current piconet.

V. RELATED WORK

Zaruba, Basagni and Chlamtac [14] proposed two protocols for forming connected scatternet. In both
cases, the resulting topology is termellaetree The number of roles each node can assume is limited
to two or three. The first protocol is initiated by a single node, calledtheroot which will be the root
of the bluetree. A rooted spanning tree is built as follows. The root will be assigned the role of master.
Every one hop neighbor of the root will be its slave. The children of the root will be now assigned an
additional master role, and all their neighbors that are not assigned any roles yet will become slaves of
these newly created masters. This procedure is repeated recursively till all nodes are assigned. Each node
is slave for only one master, the one tpagedit first. Each internal node of the tree is a master on one
piconet, and slave of another master (its parent in the initial tree). In order to limit the number of slaves,
they [14] observed that if a node in unit disk graph has more than five neighbors, then at least two of them
must be connected. This observation is used to re-configure the tree so that each master node has no more
than5 slaves. If a master node has more thaaves, it selects its two slavesands, that are connected
and instructss, to be master 0§, and then disconnects from itself. Such branch reorganization is
carried throughout the network. However, whether this approach will terminate is not proved in [14].
Tanet al. [13] proposed a similar method for single-hop network. In the second protocol [14], several
roots are initially selected. Each of them then creates its own scatternet as in the first protocol. In the
second phase, sub-tree scatternets are connected into one scatternet spanning the entire network. Notice
that the tree topology suffers from a major drawback: the root is a communication bottleneck as it will
be overloaded by communications between the different parts of the tree. Obviously, the root node in
the tree-based scatternet is the bottleneck of the network and its congesdigh isissuming that total
traffic demand is a unit and is uniformly distributed. In addition, dynamic updating that preserves correct
routing is not discussed in these protocols.

Law, Mehta and Siu [8] described an algorithm that creates connected degree bounded scatternet in
single-hop networks. The final structure is a tree like scatternet, which limits efficiency and robustness.
A single-hop Bluetooth scatternet formation scheme based on 1-factors is described in [1]. However,
piconets are not degree limited in that scheme.

Salonidiset al. [12] proposed another topology construction algorithm recently. It first collects neigh-

borhood information using an inquiry procedure, where senders search for receivers on randomly chosen

DRAFT

24

frequencies, and the detected receivers reply after random backoff delay. Leader is elected in the process,
one for each connected component. Leader then collects the information about the whole network, de-
cides the roles for each node, and distributes back the roles. In other words, basically, it is a centralized
approach. Thus, the solution is not scalable, and not localized. Moreover, how to assign the roles is not
elaborated in [12]. They also assume uB€onodes in the network. Another centralized solution for
single-hop networks, where the traffic between any pair of nodes is known a priori, is described in [9].

Sun, Chang and Lai [10] described a self-routing topology for single-hop Bluetooth networks. Nodes
are organized and maintained in a search tree structure, with Bluetooth ID’s as keys (these keys are also
used for routing). It relies on a sophisticated scatternet merge procedure with significant communication
overhead for creation and maintenance. Bluerings as scatternets are proposed in [4]. Ring structure for
Bluetooth has simplicity and easy creation as advantage, but it suffers large diameter (i.e., the maximum
number of hops between any two devices) and large number of piconets.

The works are most related to our dBBlue scatternet construction method is [2] and [6].

Barriere, Fraigniaud, Narajanan, and Opatrny [2] described a connected degree limited and distributed
scatternet formation solution based on projective geometry for single-hop networks. They assume that
only slave nodes can act as bridges. They described procedures for adding and deleting nodes from the
networks and claimed that its communication cosDigog® nlog? logn) and the computation cost is
O(log? nlog?logn), wheren is the number of nodes in the network. The degree of the scatternet can
be fixed to anyy + 1, whereq is a power of a prime number. However, in their method, every node
need hold information of the projective plane and the master node who has the "token” needs to know the
information of the projective scatternet (which label should be used for the new coming master and which
existing nodes need to be connected to it). However, the authors did not discuss in detail how to compute
the labels for the new master and its slaves, and what will happen when the number of nodes reaches the
number of nodes of a complete projective scatternets.

Notice that our dBBlue scatternet can be easily transformed to support a Bluetooth network in which a
piconet has any number> 6 of slaves, while the method in [2] can only support the piconet withl
slaves where is a power of a prime number. Moreover, the dynamic updating cost of dBBlue is at most
O(logn).

The construction of dBBlue scatternet is inspired by the method proposed by Fraigniaud and Gauron
[6] for constructing a network topology for P2P environment based on de Bruijn graph. When a node

u joins the P2P network, it [6] randomly selects a nadi@& the de Bruijn graph and then creates two

DRAFT

25

children nodes of: one forv and one foru. This random selection of nodecannot be applied to
Bluetooth scatternet since it may create a de Bruijn graph with node whose degree is lafgdttisamot

difficult to show that for Bluetooth scatternet, we can only afford the de Bruijn graph whose node label
lengths differ by at most. In this paper, we proposed a novel method for assigning MAC addresses to
nodes such that a self-routing is still possible during the updating procedures when node leaves or joins

the network. The de Bruijn graph is used as backbone of the scatternet in our dBBlue structure.

VI. CONCLUSION

In this paper, we addressed the problem of scatternet formation for single-hop Bluetooth based ad hoc
networks, with minimal communication overhead. We adopted the well-known strasuBeuijn graph
to form the backbone of théBBluescatternet. The diameter of the scattemi@Blueis O(logn) and
we can find a path with at mos2(log n) hops between every pair of nodes without using any routing
table. A useful MAC assignment mechanism is integrated in dBBlue protocol to support efficient and
resilient self-routing, and hence facilitates the inter-piconet scheduling especially when Bluetooth system
runs inSCOmode. We discussed in detail the methotbtzally update the structudBBlueusing at most
O(log n) communications when a node joins or leaves the network. In most cases, the cost of updating the
scatternet is actuallg (1). Our method can construct the structdi&Blueincrementally when the nodes
join the network one by one. In addition, the structure formed by our method can sustain the faults of
nodes and the network is still guaranteed to be connected. If a node detects a fault of some neighboring
master node or bridge slave node, it can dynamically re-route the packets and the path traveled by the
packet is still at mos©(logn) hops. Previously no method can guarantee all these properties although

some methods can achieve some of the properties.

REFERENCES

[1] S. Baatz, S. Bieschke, M. Frank, P. Martini, C. Scholz, and C. Kuhl. Building efficient bluetooth scatternet topologies
from 1-factors. InProc. IASTED Wireless and Optical Communications We@D2.

[2] L. Barriere, P Fraigniaud, L. Narajanan, and J. Opatrny. Dynamic construction of bluetooth scatternets of fixed degree and
low diameter. InL4th ACM-SIAM Symp. on Discrete Algorithms (SOQFEges 781-790, 2003.

[3] S.Basagni, R. Bruno, and C. Petrioli. Device discovery in bluetooth networks: A scatternet perspeétee. IRIP-TC6
Networking Conference, Networking 20@®02.

[4] F. Cgun-Choong and C. Kee-Chaing. Bluerings - bluetooth scatternets with ring structBrecItASTED Wireless and
Optical Communications WQQ002.

[5] N. de Bruijn. A combinatorial problem. IKoninklijke Nederlandse Academie van Wetenschapg@npages 758—764,
1946.

DRAFT

[6]

[7]
(8]

9]

[10]

[11]

[12]

[13]

[14]

26

Pierre Fraigniaud and Philippe Gauron. The content-addressable network d2b. Technical Report Technical Report TR-
LRI-1349 (also appeared in 22nd ACM Symp. on Principles of Distributed Computing (PODC)), 2003.

Jaap C. Haartsen. The bluetooth radio systl#f&E Personal Communications:28—36, 2000.

C. Law, A.K. Mehta, and K.Y. Siu. Performance of a new bluetooth scatternet formation proto€dbdnACM Sympo-

sium on Mobile Ad Hoc Networking and Computing MobiHoages 183-192, 2001.

D. Miorandi and A. Zanella. On the optimal topology of bluetooth piconets: Roles swapping algorithmBrodn
Mediterranean Conference on Ad Hoc Networks Med2002.

C.K. Chang M.T. Sun and T.H. Lai. A self-routing topology for bluetooth scatternet2002 International Symposium

on Parallel Architectures, Algorithms and Networks (ISPAN ;@22)02.

C. Petrioli and S. Basagni. Degree-constrained multihop scatternet formation for bluetooth netwoR®c. I[lEEE
GLOBECOM 2002.

T. Salonidis, P. Bhagwat, L. Tassiulas, and R. LaMaire. Distributed topology construction of bluetooth personal area
networks. InProc. IEEE INFOCOM 2001.

G. Tan, A. Miu, J. Guttag, and H. Balakrishnan. Forming scatternets from bluetooth personal area networks. Technical
Report MIT-LCS-TR-826, MIT, 2001.

G.V. Zaruba, S. Basagni, and I. Chlamtac. Bluetrees - scatternet formation to enable bluetooth based ad hoc networks. In

Proc. IEEE International Conference on Communications(ICZDP1.

DRAFT

