
1

dBBlue: Low Diameter and Self-routing

Bluetooth Scatternet

Wen-Zhan Song Xiang-Yang Li Yu Wang Weizhao Wang

Dept. of Computer Science, Illinois Institute of Technology

10 W. 31st Street, Chicago, IL 60616

{songwen, wangyu1, wangwei4}@iit.edu, xli@cs.iit.edu

DRAFT

2

Abstract

This paper addresses the problem of scatternet formation for single-hop Bluetooth based wireless ad hoc net-

works, with minimal communication overhead. We adopt the well-known structurede Bruijn graphto form the

backbone of Bluetooth scatternet, hereafter calleddBBlue, such that every master node has at most seven slaves,

every slave node is in at most two piconets, and no node assumes both master and slave roles. Our structuredBBlue

also enjoys a nice routing property: the diameter of the graph isO(log n) and we can find a path with at most

O(log n) hops for every pair of nodes without any routing table . Moreover, the network congestion is at most

O(log n/n), assuming that a unit of total traffic demand is equally distributed among all pair of nodes. We discuss

in detail a vigorous method tolocally update the structuredBBlueusing at mostO(log n) communications when a

node joins or leaves the network. In most cases, the cost of updating the scatternet is actuallyO(1) since a node

can join or leave without affecting the remaining scatternet. The number of affected nodes is always bounded from

above by a constant when a node joins or leaves the network. The dBBlue scatternet can be constructed incremen-

tally when the nodes join the network one by one. To facilitate the self-routing and easy updating, a scalable MAC

assignment mechanism is designed to guarantee the packet delivery even during scatternet updating. In addition,

the structure formed by our method can sustain the faults of2 nodes and the network is still guaranteed to be con-

nected. If a node detects a fault of some neighboring master node or bridge slave node, it can dynamically re-route

the packets and the path traveled by the packet is still at mostO(log n) hops. Previously no method can guarantee

all these properties although some methods can achieve some of the properties.

Keywords: Bluetooth networks, scatternet formation, de Bruijn graph, single-hop, low diameter, self-

routing, scalable MAC assignment, fault tolerant, scheduling.

DRAFT

3

I. I NTRODUCTION

Bluetooth [7] is a promising new wireless technology, which enables portable devices to form short-

range wireless ad hoc networks based on a frequency hopping physical layer. Bluetooth ad-hoc network-

ing presents some technical challenges, such as scheduling, network forming and routing. User mobility

poses additional challenges for connection rerouting and QoS services. It has been widely predicted

that Bluetooth will be a major technology for short range wireless networks and wireless personal area

networks. This paper deals with the problem of building ad hoc networks using Bluetooth technology.

According to the Bluetooth standard, when two Bluetooth devices come into each other’s communica-

tion range, one of them assumes the role ofmasterof the communication and the other becomes theslave.

This simple one hop network is called apiconet, and may include more slaves. The network topology

resulted by the connection of several piconets is called ascatternet. There is no limit on the maximum

number of slaves connected to one master, although the number of active slaves at one time cannot exceed

7. If a master node has more than7 slaves, some slaves must be parked. To communicate with a parked

slave, a master has tounpark it, thus possibly parking another active slave instead. The standard also

allows multiple roles for the same device. A node can be master in one piconet and a slave in one or more

other piconets. However, one node can be active only in one piconet. To operate as a member of another

piconet, a node has to switch to the hopping frequency sequence of the other piconet. Since each switch

causes delay (e.g., scheduling and synchronization time), an efficient scatternet formation protocol can

be the one that minimizes the roles assigned to the nodes, without losing network connectivity.

While several solutions and commercial products have been introduced for one-hop Bluetooth commu-

nication, the Bluetooth specification does not indicate any method for scatternet formation. The problem

of scatternet formation has not been dealt with until very recently. The solutions proposed in the literature

can be divided into single-hop and multi-hop solutions. Several criteria could be set as the objectives in

forming scatternet. First of all, the protocol should create degree limited scatternets, to avoid parking any

slave node. Secondly, the number of piconets should be minimized to reduce the inter-piconet scheduling

and communication cost. Thirdly, the formation and maintenance of scatternet should have small com-

munication overhead. Fourthly, the diameter of the scatternet should be small, i.e., the maximum number

of hops between any two devices must be small to provide faster routing. In this paper, we focus on

scatternet formation for single-hop ad hoc networks. In a single-hop ad hoc network, all wireless devices

are in the radio vicinity of each other, e.g., electronic devices in a laboratory, or laptops in a conference

room. A single-hop network can be modeled by a complete graph.

DRAFT

4

Previous literature on scatternet formation assumed that devices are not able to communicate unless

they have previously discovered each other by synchronizing their frequency hopping patterns. Thus,

even if all nodes are within direct communication range of each other, only those nodes, which are syn-

chronized with the transmitter, can hear the transmission. Synchronizing the frequency hopping patterns

is apparently a time consuming and pseudo-random process [12]. In this paper we assume that the prob-

lem of discovering all neighbors within transmission radius of a device is resolved by separate Bluetooth

protocol. One such protocol for discovering all one hop networks is described in [12], [3], while a proto-

col that provides two-hop information to every node is described in [11]. These protocols are applicable

as the pre-phase of our scheme.

This paper addresses the problem of scatternet formation for single-hop Bluetooth based ad hoc net-

works, with minimal communication overhead. We adopt the well-known structurede Bruijn graphto

form the backbone of Bluetooth scatternet, hereafter calleddBBlue, such that every master node has at

most seven slaves, every slave node is in at most two piconets, andnonode assumes both master and slave

roles. Our structuredBBluealso enjoys a nice routing property: the diameter of the graph isO(log n)

and we can find a path with at mostO(log n) hops between every pair of nodes without any routing table.

Moreover, the network congestion is at mostO(log n/n), assuming that a unit total traffic demand is

evenly distributed among all pair of nodes. We discuss in detail a vigorous method tolocally update the

structuredBBlueusing at mostO(log n) communications when a node joins or leaves the network. In

most cases, the cost of updating the scatternet is actuallyO(1) since a node can join or leave without

affecting the remaining scatternet. The number of affected nodes is always bounded from above by a

constant when a node joins or leaves the network. To facilitate self-routing and easy updating, we design

a scalable MAC assigning mechanism for piconet, which can guarantee the packet delivery even during

updating. Our method can construct the structuredBBlueincrementally when the nodes join the network

one by one. In addition, the structure formed by our method can sustain the faults of2 nodes and the

network is still guaranteed to be connected. If a node detects a fault of some neighboring master node

or bridge slave node, it can dynamically re-route the packets and the path traveled by the packet is still

at mostO(log n) hops. Previously no method can guarantee all these properties although some methods

can achieve some of the properties.

The rest of the paper is organized as follows. Section II presents our new Bluetooth formation algo-

rithms for single-hop ad hoc networks. We describe how to build a static scatternet ofn nodes based on

de Bruijn graph and assign roles and labels to them. Section III proposes a vigorous method tolocally and

DRAFT

5

dynamically update the scatternet topology when a node joins or leaves the network. Section IV describes

the routing method for our de Bruijn based scatternet which efficiently finds the next node to go without

any routing table. The related works are discussed in section V. We conclude our paper in Section VI.

II. DBBLUE SCATTERNET CONSTRUCTION

A. de Bruijn Graph

Our dBBlue scatternet first builds a backbone based on the well-known de Bruijn graph [5]. The de

Bruijn graph, denoted byB(d, k), is a directed graph withdk nodes. Assume that each node is assigned

a unique label of lengthk on the alphabet{0, · · · , d − 1}. There is an edge inB(d, k) from a node

with labelx1x2 · · ·xk to any node with labelx2 · · ·xky, wherey ∈ {0, · · · , d − 1}. Figure 1 illustrates

B(2, 3). It is well-known that the de Bruijn graph enables self-routing intrinsically. The self-routing

path from a source node with a labelx1x2 · · ·xk to the target node with a labely1y2 · · · yk is x1x2 · · ·xk

→ x2 · · ·xky1 → x3 · · ·xky1y2 → · · · → xky1 · · · yk−1 → y1 · · · yk. Observe that, we could find a

shorter route by looking for the longest sequence that is both a suffix ofx1x2 · · ·xk and a prefix of

y1y2 · · · yk. Suppose thatxi · · ·xk = y1 · · · yk−i+1 is such longest sequence. The shortest path between

the source and the target isx1 · · ·xk → x2 · · ·xkyk−i+2 → · · · → xi−1 · · ·xkyk−i+2 · · · yk−1 → y1 · · · yk.

Clearly, the route between any two nodes is at mostk hops, i.e.,B(d, k) has diameterk = logd n, where

n = dk is the number of nodes of the graph.

111

001 011

010

100 110

000 101

Fig. 1. The de Bruijn graphB(2, 3).

The classical de Bruijn graph isbalancedin the sense that the labels of all nodes have the same length.

The de Bruijn graph can be generalized to any set of vertices whose labels form a universal prefix set. In

[6], Fraigniaud and Gauron proposed a novel method to construct an efficient topology for P2P network

based on the generalized de Bruijn graph defined on a universal prefix set.“A universal prefix set is a set

S of labels on an alphabetΣ such that, for any infinite wordw ∈ Σ?, there is auniqueword inS, which

is a prefix ofw. The empty set is also a universal prefix set.”[6] For instance,{00, 01, 100, 101, 110, 111}
is a universal prefix set on alphabetΣ = {0, 1}, but{00, 01, 10} and{00, 01, 100, 1000, 101, 110, 111}
are not. There is a directed edge from nodeu = x1x2 · · ·xk to another nodev in the generalized de

DRAFT

6

Bruijn graph ifx2 · · ·xk is the prefix of the label of nodev. We denote a generalized de Bruijn graph

aspseudo-balancedif the lengths of the node labels are different by at most one, which includes the

balancedde Bruijn graph. For simplicity, we still denote a pseudo-balanced de Bruijn graph on alphabet

{0, 1} by B(2, k) if the node labels have length at leastk bits and at mostk + 1 bits. We also say that a

node fromB(2, k) is at levelk if its label hask bits.

In this paper, we only consider thepseudo-balancedbinary de Bruin graphB(2,m). Node labels in a

pseudo-balancedde Bruijn graph correspond to all the leaf nodes in afull binary tree, in which the depth

difference between any two leaf nodes is at most one and each internal node has two children, Figure

2 illustrates the correspondence between them. In the figure, the pseudo-balanced de Bruijn graph is

defined on the leaf nodes and directed edges.

root

0000 0001 0010 0011

001000 011010 100 101 110 111

10 110100

10

Fig. 2. The correspondence between full binary tree and pseudo-balanced de Bruijn graph.

In a pseudo-balanced de Bruijn graphB(2, k), each node has at most4 out-neighbors and2 in-

neighbors. To route a packet from a nodeu with label x1x2 · · ·xs−1xs to another nodev with label

y1y2 · · · yt−1yt, wheres, t ∈ [k, k + 1]. Nodeu will forward the packet to its neighbor node with label

x2 · · ·xs−1xs, or x2 · · ·xs−1xsy1, or x2 · · ·xs−1xsy1y2, whichever exits. Notice that since the labels of

the nodes form a universal prefix set, we know thatexactlyone of these three labels does exist. The fol-

lowing nodes keep forwarding the packet similarly until it reaches nodev. Consequently, the diameter of

pseudo-balanced de Bruijn graph is stillO(log n). In this paper, we propose a scalable scatternet structure

based on pseudo-balanced de Bruijn graphB(2, k).

In a pseudo-balanced de Bruijn graphB(2,m), two nodes are calledcritical pair if they only differ in

the least significant bit of their labels. Letu0, u1, · · · , up be the sequence of nodes visited by a traversal

of all leaf nodes in the corresponding binary tree ofB(2,m). A nodeui is called thesuccessorof

another nodeui−1 andui−1 is called thepredecessorof another nodeui. Herei − 1 takes value(i− 1)

mod (p + 1). For example, in Figure 2, nodes0010 and0011 is a critical pair; node010 is the successor

of the node0011.

DRAFT

7

B. MAC Address Assignment for Piconet

Our dBBlue protocol always maintains apseudo-balancedde Bruijn graphB(2,m) as the backbone

of the network. Here the choosing of the integerm will be discussed later.

Every node in the backbone of dBBlue scatternet will be assigned amasterrole. We will add abridge

slavenode for every pair of master nodes that are connected in the backbone. Thus, every master node

will bring at mostsix bridge slave nodes so far since every node in a pseudo-balancedB(2,m) has at

most6 edges incident.

We then add some free slave nodes to each master node, and call thempure slavenodes.

Before we discuss in detail our scatternet construction methods, we present our novel rule of assigning

the MAC address in a piconet. In our dBBlue scatternet, when we route a packet to a destination node

v, we only know the piconet ID of the nodev, sayy1y2 · · · yk, which is same as the label of its master

node, and the MAC address, sayz1z2z3, of this node in that piconet. The detail routing mechanism will

be discussed in Section IV. When some node joins or leaves the scatternet, we often have to reorganize

some piconets and thus re-assign the MACs of some nodes. Our method of assigning MAC addresses

in a piconet and reorganizing the piconets guarantees that the new piconet (even the new MAC address)

can be found by a simple appending or deleting the least significant bit, which keeps the label prefix of

updated nodes unchanged so that the delivery of the packets on the way to those updated nodes will not

be interrupted.

In a piconet, MAC address000 is always reserved for the master node. For simplicity, we omit the

MAC address of a master node hereafter while representing its label, i.e., the master node with label

x1x2 · · ·xm−1xm actually has a label(x1x2 · · ·xm−1xm, 000) if consistent labels with slave nodes are

needed. Remember that, in a pseudo-balanced de Bruijn graph, any node has2 in-neighbors and at

most4 out-neighbors, so MAC addresses011 and111 are always reserved for the two bridge slaves

connecting to in-neighbors, MAC010, 101, 001 and110 are reserved for bridge slaves to connecting out-

neighbors if they exist, and100 is reserved for the7th slave (it must be a pure slave) if it exists. Figure

3 illustrates all four possibilities for the piconet MAC address assignment according to the number of

out-neighbors in scatternet backbone. In the figure, for simplicity, we usey1y2 · · · ym−1ym(y) to denote

a node with labely1y2 · · · ym−1ym or y1y2 · · · ym−1ymy, whichever exists in the network. Notice that a

master node in the constructed scatternet based on a pseudo-balanced de Bruijn graphB(2,m) always

has two incoming neighbors. For example, a master nodex1x2 · · ·xm in level m can have incoming

neighbor0x1x2 · · ·xm−1 or 0x1x2 · · ·xm, but not both since the de Bruijn graph is built upon a universal

DRAFT

8

prefix set; similarly another incoming neighbor is1x1x2 · · ·xm−1(xm). Analogously, a master node

x1x2 · · ·xmxm+1 in levelm+1 has incoming neighbors0x1x2 · · ·xm−1(xm) and1x1x2 · · ·xm−1(xm).

On the other hand, the number of out-neighbors of a node in the pseudo-balanced de Bruijn graphB(2,m)

could be1, 2, 3, 4. Notice that only the nodes at levelm could have3 or 4 out-neighbors and those at

levelm + 1 could have1 out-neighbor.

Table I summarizes the rule of assigning the MAC address to the bridge slave nodes in a piconet. Their

MAC addresses can be calculated uniquely according to the label bit difference between current piconet

and neighboring piconet IDs. For example, if the masteru is labeledx1x2 · · ·xs and its out-neighborv

is labeledx2 · · ·xsy1y2, then the MAC addresses of their bridge slave isy1y2y2 assigned byu, andx111

assigned byv. Remember that every bridge slave has two MAC addresses: one MAC address in each of

the two piconets it resides.

TABLE I

THE RULE TO ASSIGNMAC ADDRESS TO BRIDGE SLAVE NODES.

In-Neighbor Out-Neighbor

Node yx1 · · ·xr x2 · · ·xs x2 · · ·xsy1 x2 · · ·xsy1y2

x1 · · ·xs y11 010 y1y1y1 y1y2y2

Notice that, in bluetooth scatternet, the bridge slave nodes have two independent piconet IDs and MAC

addresses in two piconets respectively. However, since the routing mechanism in de Bruijn is directional,

only their piconet ID and MAC address assigned by their in-master is public and meaningful for routing,

saying label in the remaining paper, and the other one is only used for intra-piconet communication.

Figure 4 illustrates one piconet in the scatternet. Here nodesu, I1, I2, O1 andO2 assume master roles

and form the backbone for scatternet. These master nodes are connected in the de Bruijn graph by

bridge slavesv3, v7, v2 andv5 respectively. Assume that nodeu has a labelx1x2 · · ·xm−1xm. Nodes

I1, I2 denote the two incoming neighbors of nodeu, with label 0x1x2 · · ·xm−1 and 1x1x2 · · ·xm−1

respectively. NodesO1, O2 denote the two outgoing neighbors of nodeu, with labelx2 · · ·xm−1xm0 and

x2 · · ·xm−1xm1 respectively. Nodesv1, v4, andv6 are the pure slave nodes ofu in the scatternet. The

labelof nodevi (i ∈ {1, 2, 4, 5, 6}) is (x1x2 · · ·xm−1xm, i), wherei is the MAC address of nodevi in this

piconet, andv3 andv7 has publiclabel (0x1x2 · · ·xm−1, xmxmxm) and (1x1x2 · · ·xm−1, xmxmxm),

respectively, which is consistent with the prefix ofI1 andI2 respectively. Notice that the MACs ofv3

andv7 in the piconet mastered by nodeu are3 and7 respectively, which are used only by nodes in this

DRAFT

9

m

(x)m

(x)

m+1

xm+1

001

010

101

110

011

1111

0 ...x1 xm−1

...x1 xm−1

100

...x
... 2x1x2 x

(a) One out-neighbor

(x)

(x)m

m

x2 xm

x2 xm0

001

010

101

110

011

1111

0 ...x1 xm−1

...x1 xm−1

100

... 1

x
...

1x2 xm
...

(b) Two out-neighbors

m

(x)m

(x)

x2 xm00...

x2 xm0... 1

x2 xm

001

010

101

110

011

1111

0 ...x1 xm−1

...x1 xm−1

100

...

x

1

1x2 xm
...

(c) Three out-neighbors

m(x)

(x)m

x2 xm00...

x2 xm0... 1

x2 xm
... 10

x2 xm
... 11

001

010

101

110

011

1111

0 ...x1 xm−1

...x1 xm−1

x

100

1x2 xm
...

(d) Four out-neighbors

Fig. 3. MAC address assignment for a piconet. Here a master node is denoted by a square, a pure slave is denoted

by a circle, and a bridge slave is denoted by a triangle.

DRAFT

10

piconet and not broadcasted to the network.

2

v5

v1 v6v4

v3

v7 u

I 1

I 2 2O

O

v

1

Fig. 4. An example of a piconet (with nodes inside the shaded region) formed by our method.

As will see in Section III, our labeling rule makes the updating of the scatternet topology and nodes’

labels much easier when new nodes join the network or some existing nodes leave the network. For an

incremental updating of the scatternet, there are two scenarios when a new node joins the network. The

first case is that there is a master node who has afreeslot for a pure slave. We then directly assign the

newly joined node as the pure slave of that master node. The second case is that no master node has

free slot for a pure slave. We then have to split some piconet and in turn create some free slots for pure

slaves. The splitting of a piconet is performed such that the resulting backbone (formed by master nodes

and bridge slaves) is still a pseudo-balanced de Bruijn graph. When a piconet is splitted (or two piconets

are merged), the labels of some nodes have to be updated. While updating the topology, it is possible

that some packets are already on their way to the destinations (via or toward this splitting piconet). Our

labeling rule makes sure that the packets can still be routed without any interruption because the target

can still be reached by the old label according to our prefix-based routing mechanism. Notice that only

the local nodes are assigned new labels, and the re-labeling is also conducted locally. More details will be

addressed in Section IV. Hence, our MAC assignment facilitates the self-routing mechanism and provides

the resilience even during topology update.

Moreover, because each bridge node guarantees to be assigned different MACs in different piconets,

the inter-piconet scheduling in dBBlue scatternet becomes easier especially when the Bluetooth system

runs the synchronous services, i.e. the physical link is synchronous connection-oriented(SCO)[7]. In

SCOmode, synchronizing the clocks of allmastersnodes could solve the scheduling conflict problem on

bridges, since here the MAC address of each slave is used as its time slot in the corresponding piconet.

DRAFT

11

C. Static Scatternet Construction

Givenn nodes currently distributed in the network, this section gives an efficient algorithm to construct

our de Bruijn based scatternetdBBlue, which has a low diameter and a bounded node degree property.

In other words, we first study the construction of the scatternet for a staticn-nodes network, which will

serve as the base for our dynamic construction.

Our method will construct a balanced de Bruijn graphB(2,m) as the initial backbone of the network.

We will choose integerm such that2m−1 < dn
6 e ≤ 2m. The choosing ofm guarantees that there are

enough bridge slave nodes, which implies that no master node serves as a bridge slave.

Our method does not consider the detail of the neighbor discovering process. We assume that every

node already knows the existence of the other nodes.

Algorithm 1: Static DeBruijn-Based Scatternet

1. Assume that there is a leader already among thesen nodesS. The leader could be the node with the

smallest ID. We give thetokento the leader and call it token node. The token node randomly selects2m

nodes (including itself) into the master setM which assume themasterroles in final scatternet topology,

where2m−1 < dn
6 e ≤ 2m andn is the number of nodes inS. Let r = n − 3 · 2m, which is the total

number of nodes that can be assigned as pure slaves.

2. The token node assigns itself a label0m, and each node inM a uniquem bits label in the range from

0 · · · 01 to 1 · · · 11. The set of nodesM forms a de Bruijn graphB(2,m) as the scatternet backbone.

3. The token node, with labelx1 · · ·xm, selects2 nodes1 from the remaining nodes as its bridge slaves,

and assigns them labels(x1 · · ·xm, 010) and(x1 · · ·xm, 101) respectively. Here010, 101 will also serve

as the Medium Access Code (MAC) for these two slaves in the piconet mastered by this token node.

The token node uses its bridge slave node(x1 · · ·xm, 010) to connect with its out-neighborx2x3 · · ·xm0

and the bridge slave node(x1 · · ·xm, 101) to connect the out-neighbor nodex2x3 · · ·xm1.

4. Then the token node selectst = min{3, r} nodes2 from the remaining as its slaves and assigns them

with labels(x1 · · ·xm, 001), (x1 · · ·xm, 100) and(x1 · · ·xm, 110) in the order if they exist. Letr = r−t.

After that, it passes thetokento its successor.

5. Repeat the above steps (3) and (4) until all nodes inM are processed or no more nodes left. After all

nodes have been processed, the current token node passes thetokenback to node0m again.

Once the initial topology construction is finished, the token nodet will be responsible for the following

1There are two special nodes0m and1m, which only have 1 out-neighbor, we then just use one bridge slave node to connect

with its out-neighbor.
2Node0m and1m may choose5 nodes as its pure slaves since they only have one in-neighbor and one out-neighbor.

DRAFT

12

node joining and leaving issues. Master nodes form the backbone of bluetooth scatternet, and a piconet

works like a node in de Bruijn graph.

111

001 011

010

100 110

000 101

Fig. 5. dBBlue Bluetooth Scatternet.

Figure 5 illustrates a dBBlue scatternet containing48 nodes based onB(2, 3) graph.

Theorem 1:In dBBlue scatternet, each master has no more than7 slaves and each slave works as a

bridge for at most2 piconets. And the number of piconets is at mostbn
3 c and at leastdn

6 e. Moreover, the

computation cost isO(n) for static construction.

Proof. From the topology construction, each master carries at most5 same prefix slaves, and2 different

prefix slaves since each node inB(2,m) graph has at most2 in-neighbors, so each master has no more

than7 slaves. And, each slave exists as a free slave or as the bridge between its same prefix masteru and

one ofu’s out-neighbors, so the degree of a slave node is at most 2.

Let n = 6a − b, whereb ∈ [0, 5] and2m is the number of masters. Then2m−1 < dn
6 e ≤ 2m implies

2m−1 + 1 ≤ a ≤ 2m. Thus,n = 6a− b ≥ 6(2m−1 + 1)− b andn = 6a− b ≤ 6 ¦ 2m− b. Consequently,

3 · 2m + (6− b) ≤ n ≤ 6 · 2m − b, which impliesdn
6 e ≤ 2m ≤ bn

3 c.
It is obvious that the total computation cost of constructing static dBBlue scatternet isO(n).

In this paper we always assume that a bluetooth piconet consists of at most7 slaves and1 master.

If future bluetooth technology allows a master to bring more slaves, sayp, our scatternet construction

method can adapt easily as follows. The scatternet backbone will be still based onB(2,m) de Bruijn

graph. However,m is chosen such that2m−1 < d n
p−1e ≤ 2m. In other words, every master node will

carryp − 4 pure slaves and4 bridge slaves to connect to its two out-neighbors and two in-neighbors in

the de Bruijn graphB(2, m). It is not difficult to show that using de Bruijn graphB(2, m) will create a

scatternet with less piconets than usingB(d,m′) for d > 2 since each master node will carry less pure

slaves in the later case. On the other hand, the scatternet based onB(d,m′) for d > 2 does provide a

better fault tolerance since the degree of each master node is increased to2d.

DRAFT

13

III. D YNAMIC SCATTERNET UPDATING

In this section we describe a vigorous method tolocally update the scatternet topology dynamically

when some node joins or leaves the network. Considering each piconet as an abstract node in the de

Bruijn graph, our goal is to maintain a scalable pseudo-balanced de Bruijn graph.

A. Token Based Updating

First consider the case when a node wants to join the network. We have to assign a role for this newly

joined node. There are several possible scenarios about the existing scatternet: (1) the existing scatternet

has a master node that has free slave slots, then we can simply assign this newly joined node as the pure

slave of this master node; (2) all master nodes in the existing scatternet already have7 slaves, we then

have to expand the backbone of the scatternet to incorporate this newly joined node. In other words, we

have to split some piconet to two such that the two new piconets will have some free pure slave slots to

hold this newly joined node.

Several methods can be used to implement the above scheme. For instance, when a node leaves, we do

nothing if the backbone of the scatternet is untouched so that some update cost is reduced. However, this

approach suffers a large cost when a node joins the network since we have to find where to put the newly

joined node. One method is to use the broadcast method to travel the whole scatternet to find the master

node with a free pure slave slot when a node joins. This may perform better if only a few of the existing

piconets have free slots. The other method is to randomly select a master node and check if it has free

slot. If it does not, we then select another random master node until one such master node is found. This

approach performs better if the majority of the piconets have free slots.

To make the updating efficient, we should be able to quickly find the master node with an empty slot

for a joining node and a pure slave to replace a leaving node if there is any. Our approach is to keep the

current scatternetcompactand assign a special node thetokenin a way such that all master nodes with

label less than the token node donot have empty slot, and all master nodes with label larger than the

token node do have empty slot. When a new node joins the network, we can simply assign it the empty

pure slave slot and then update the token node if necessary. When a node leaves the network, we have to

update the scatternet to keep the scatternet compact. Thus, we possibly have to move some nodes to fill

the slot emptied by this left node.

Before we present the detail of our methods of updating the scatternet, we first study the possible status

of the scatternet, which need be recorded in the token node.

DRAFT

14

When a new node requests joining the network, there are three possible scenarios to be discussed.

1. Current backbone is a balanced de Bruijn graph. Figure 6 illustrates an example. The token is held by

the master node with the smallest label among all master nodes that have less than5 same-prefix slaves.

In this status, the master node with the token has some free slot for newly joined node and so do all master

nodes with larger labels.

token

i−1 i i+1

Fig. 6. Token in balanced de Bruijn graph.

2. Current backbone is pseudo-balanced de Bruijn graphB(2,m) underexpandingstatus, i.e., many

nodes join the scatternet. Figure 7 illustrates an example. The token is held by the first master node with

less than5 same-prefix slaves in levelm + 1 if it exists, otherwise the first master node in levelm holds

the token. In this status, all master nodes in levelm andm + 1 do not have free slots except the last two

master nodes in levelm + 1. In other words, at most two master nodes have free slots.

level m
token

ii−1

i+1

level m+1

Fig. 7. Token in pseudo-balanced de Bruijn graph under expanding status.

3. Current backbone is a pseudo-balanced de Bruijn graphB(2,m) undershrinkingstatus, i.e., many

nodes leave the scatternet. Figure 8 illustrates an example. The token is held by the master node in

level m with the smallest label. In this status, each master node in levelm + 1 and levelm has4 and2

same-prefix slave nodes respectively.

level m+1

i+1

i−1

i

token

level m

Fig. 8. Token in pseudo-balanced de Bruijn graph under shrinking status.

DRAFT

15

Those statusesbalanced, expanding, shrinkingwill be recorded in the token data structure.

B. Node Joining

When a new node joins the network, there are three cases.

1. Token status isbalanced, that is to say, the current backbone is a balanced de Bruijn graph. See Figure

6 for an illustration.

(a) The token nodex1...xm has less than7 slaves. Then it simply adds the joining node into its slave

set and assigns it a label(x1 · · ·xm, y1y2y3), wherey1y2y3 is one of the un-assigned MAC address in

{001, 100, 110}. If the token node now has7 slaves, then it passes the token to its successor.

(b) The token node is fully occupied by slaves. This could happen only when all master nodes in the

scatternet have7 slaves. Then the token is passed back to node0m if it is not at node0m. Change the

token status toexpandingand call Method 1 to split the current piconet mastered by the token node into

two parts and add the joining node as a new pure slave with label(x1 · · ·xm0, 001).

2. Token status isexpanding, that is to say, current backbone is a pseudo-balanced de Bruijn graph under

expanding status. See Figure 7 for an illustration.

(a) If the token node is in level(m+1), i.e., with(m+1)-bits labelx1...xm+1, the it must has less than

7 slaves. It simply adds the joining node into its slave set and assigns it a label(x1 · · ·xm+1, y1y2y3),

wherey1y2y3 is one of the un-assigned labels in{001, 100, 110}. If the token node now has7 slaves,

then passes the token to its successor.

(b) If the token node is in levelm, i.e., with m-bits labelx1...xm. This could happen only when all

master nodes in the scatternet has been fully occupied by7 slaves. Call Method 1 to split the current

piconet mastered by this token node into two piconets, and add the joining node as a new slave with label

(x1 · · ·xm0, 001).

3. Token status isshrinking, that is to say, current backbone is a pseudo-balanced de Bruijn graph under

shrinking status. See Figure 8 for an illustration. In this case, the token node surely has exactly four

slaves (see node leaving for more details). We first add the joining node as the slave of the token node

and assign it one of the un-assigned MAC addresses in{001, 100, 110}. Call Method 1 to split current

piconet into two piconets, and pass the token to the successor in levelm. If the current token node is1m,

then set token status tobalancedand pass the token to master node0m+1. In other words, we basically

undo the updating (piconets merging) caused by the previous node leaving event.

We then present our algorithm that splits one piconet mastered by nodex1 · · ·xm to two new piconets

mastered by nodex1 · · ·xm0 and nodex1 · · ·xm1 respectively.

DRAFT

16

Method 1: Piconet split due to node joining

1. Token nodeu = x1 · · ·xm promotes its slave nodev = (x1 · · ·xm, 100) as the master for a new

piconet. We change the label(x1 · · ·xm, y1y2y3) of a pure slave node or an out-neighbor bridge slave

node by simply appendingy2 in the MAC address, i.e., the new label is(x1 · · ·xmy1, y2y3y2). Two new

piconets have master nodes with labelsx1 · · ·xm0 andx1 · · ·xm1 respectively. The detail of labelling

and role updating is as follows:

(a) (x1 · · ·xm, 000) ⇒ (x1 · · ·xm0, 000), which assumes master role in first piconet.

(b) (x1 · · ·xm, 001) ⇒ (x1 · · ·xm0, 010), which assumes a bridge slave role in first piconet.

(c) (x1 · · ·xm, 010) ⇒ (x1 · · ·xm0, 101), which assumes a bridge slave role in first piconet.

(d) (x1 · · ·xm, 100) ⇒ (x1 · · ·xm1, 000), which assumes master role in second piconet.

(e) (x1 · · ·xm, 101) ⇒ (x1 · · ·xm1, 010), which assumes a bridge slave role in second piconet.

(f) (x1 · · ·xm, 110) ⇒ (x1 · · ·xm1, 101), which assumes a bridge slave role in second piconet.

Notice this label extension still preserves their prefix. Thus, after the piconet splitting, the message

delivery will not be interrupted at all because old addresses are still reachable since the new label has the

same prefix. In addition, the nodes with new labels for the corresponding MAC addresses will serve the

bridge slave role in the two newly created piconets. Figure 9 illustrates the change while piconet splitting.

m... 0,101

x1 xm... 1,010

x1 xm... 0,010

x1 xm... 1,101

x1 xm... 0,001

x1 xm... 0

x1 xm... 1

x1 xm...

x1 xm... ,001

x1 xm... ,010

x1 xm... ,100

x1 xm... ,101

x1 xm... ,110

Joining

v

v

u

x
u

1 x

Fig. 9. Piconet splits due to node joining.

2. Then, bothu andv need reselect the bridge slaves to connect with its in-neighbors and out-neighbors

if needed. Simultaneously, bothu andv’s neighbors need reselect its same-prefix bridge slaves to connect

with u andv. The selection still follows the rule described in Section II-B, Figure 3 illustrates all possible

scenarios. Since the master nodes in the new piconets are in levelm + 1, each of them has at most2 out-

neighbors in the pseudo-balanced de Bruijn graphB(2,m). Thus, we have enough bridge slave nodes for

each new piconet. At the same time, their in-neighbor master nodesyx1x2 · · ·xm−1(xm), wherey = 0

or 1, of nodeu andv in the de Bruijn graph have to change one pure slave to bridge slave for connecting

DRAFT

17

nodeu or v. Notice this update is only restricted to local regions, so the update is totally localized.

3. Finally, the token is still kept by the master nodex1...xm0, whose previous label isx1...xm.

C. Node Leaving

If a node leaves elegantly, it should first notify the token node before leaving. If a master/slave node

leaves because unexpected reason such as power off, all of its neighborhood will detect it soon and notify

the token node. Our method does not consider the detail of the exception detection process, we assume

the token node can detect the node leaving in short time.

When the token node detects the node leaving, then there are three cases to be addressed again:

1. Token status isbalanced, that is to say, current backbone is a balanced de Bruijn graph. Here two

cases need be discussed:

(a) If the token node does have pure slave node, then the token node requests one pure slave to replace

the position of the leaving node, including the label;

(b) If the token nodeu has no pure slave nodes, then it passes the token to its predecessor, say nodev.

There are two scenarios also, which as discussed as follows.

i. If nodev has pure slaves, then it requests one pure slave to replace the position of the leaving node.

ii. If nodev also has no pure slaves. This could happen only whenv = 1m, and all master nodes have

only 2 slaves serving bridge slave role. Token nodev changes the token status toshrinking, and call

Method 2 to merge its corresponding critical pair, then ask one pure slave to replace the position of the

leaving node.

2. Token status isexpanding, that is to say, current backbone is a pseudo-balanced de Bruijn graph under

expanding status.

(a) If the token node is in levelm, i.e., with m-bits labelx1...xm. This could happen only when

all master nodes in the scatternet has been fully occupied by7 slaves. The token need be passed the

predecessor, which will ask one pure slave node to replace the position of the leaving node.

(b) If the token node is in level(m + 1), i.e., with(m + 1)-bits labelx1...xm+1. If the token node does

have pure slave node, then the token node requests one pure slave to replace the position of the leaving

node, otherwise two cases need be discussed here:

i. The least significant bit of the token node’s label is1. The token will be passed to be passed the

predecessor, which will ask one pure slave node to replace the position of the leaving node.

ii. The least significant bit of the token node’s label is0. It first merges its corresponding critical pair

by calling Method 2, then requests one pure slave to replace the position of the leaving node. Now if

DRAFT

18

the current token node is0 · · · 0, then it changes the token status tobalancedand passes the token to its

predecessor1 · · · 1.

3. Token status isshrinking, that is to say, current backbone is a pseudo-balanced de Bruijn graph under

shrinking status.

(a) If the token node is not0 · · · 0, then it passes the token to its second predecessor with least significant

bit 0 in level (m + 1), which will call Method 2 to merge its critical pair piconet and ask one pure slave

to replace the position of the leaving node.

(b) If the token node is0 · · · 0, then it changes the token status tobalancedand passes the token to node

1 · · · 1, which will ask one pure slave to replace the position of leaving node.

One special case is that the token node leaves. In this case, the token node will promote one of its

pure slaves to replace it, i.e., to be the master node and the new token node. If no new pure slave exits,

similarly, we have to ask some pure slave node from its predecessor to replace its role. When the token

node did not leave elegantly, it is more complicated and we need fault tolerance about the token node,

which is out of the scope of this paper.

We then describe our method to merge two piconets that are mastered by a critical pair.

Method 2: Piconet merge due to node leaving

1. Assume that the token nodeu = x1 · · ·xm0 requests merging with its sibling master nodev =

x1 · · ·xm1. The new piconet has master node with labelx1 · · ·xm. Notice that nodeu and nodev

each has at most2 out-neighbors in the de Bruijn graph. The label change will be achieved by simply

deleting the least significant bit as follows:

(a) (x1 · · ·xm0, 000) ⇒ (x1 · · ·xm, 000), which is the master node in the new piconet.

(b) (x1 · · ·xm0, 010) ⇒ (x1 · · ·xm, 001), which is a pure slave node or the bridge slave node to connect

master nodex1 · · ·xm00 if it exists.

(c) (x1 · · ·xm0, 101) ⇒ (x1 · · ·xm, 010), which is the bridge slave node to connect master node

x1 · · ·xm0(1), whichever exists.

(d) (x1 · · ·xm1, 000) moves to replace the leaving node position.

(e) (x1 · · ·xm1, 010) ⇒ (x1 · · ·xm, 101), which is the bridge slave node to connect master node

x1 · · ·xm1(0), whichever exists.

(f) (x1 · · ·xm1, 101) ⇒ (x1 · · ·xm, 110), which is a pure slave node or the bridge slave node to connect

master nodex1 · · ·xm11 if it exists.

Notice this label shrink still preserves the label prefix. Thus, after the piconets merging, the message

DRAFT

19

delivery will not be affected at all because de Bruijn graph uses prefix based routing, old addresses are

still reachable by the same prefix. The piconets mergence will not cause any routing problem although

the node label shrink is not acknowledged by other nodes. At the same time, the sibling master node

v = x1 · · ·xm1 leaves to replace the position of leaving node. To continue the message delivery for node

v, the new master nodeu will keep the new label ofv for a period of time and forwards the message

targeted tov accordingly. More detail is discussed in Section IV. Figure 10 illustrates the change of

labels by merging piconets.

m...

x1 xm... ,001

x1 xm... ,101

x1 xm... ,110

x1 xm... 0,101

x1 xm... 1,010

x1 xm... 0,010

x1 xm... 1,101

x1 xm... 0

x1 xm... 1

x1 xm... ,010

x1 xm... 1

u

v

u

v

x

 replace leaving node

1 x

Fig. 10. Piconets merge due to node leaving.

2. Then, nodeu need reselect the bridge slaves to connect with its in-neighbors and out-neighbors if

needed. Simultaneously, the neighboring master nodes ofu andv need reselect their same-prefix bridge

slaves to connect withu. The selection still follows the same rule described in Section II-B, please see

Figure 3 for an illustration for all possible scenarios. Notice this update is totally localized.

3. The token is now kept by the master nodex1 · · ·xm.

It is not difficult to prove the following theorem.

Theorem 2:Our methodlocally updates the dBBlue scatternet using at mostO(log n) communications

when a node joins or leaves the network. In most cases, the cost of updating the scatternet is actuallyO(1)

since the node can leave and join without affecting the remaining scatternet. The number of nodes affected

when a node leaves or joins the network is always bounded from above by a constant. Our method can

construct the structure incrementally when nodes join the network one by one.

D. Bounded Network Size

The method described so far can incrementally construct the scatternet when the nodes join the network

one by one and can update the scatternet structure efficiently when nodes leave or join the network even

frequently without affecting the worst case properties of the scatternet. This method is efficient in most

cases, however, it could generate lots of merging and splitting of piconets in the worst case: a node joins

the scatternet which causes the splitting of a piconet, then a node leaves which in turn causes the merging

DRAFT

20

of two piconets, and repeat joining, leaving.

In most applications, the size of the bluetooth network is often stable, for example, within[n, c ·n] for a

small constantc > 1. If this is the case, we can apply the following approach to build the scatternet. First,

we use Algorithm 1 to build a scatternet withn nodes. When a new node joins the network, we first try to

find an empty pure slave slot for this node from the current token node. If no empty slot exists, we then

pass the token to the successor of the current token node. When all master nodes in the scatternet have7

slaves, we will start creating another piconet to connect to the current backbone. In other words, instead

of having3 pure slave nodes, a master node from the scatternet backbone will replace the pure slave nodes

by 3 piconets (at maximum). We call such piconetsassociatedwith the master node of the backbone.

Clearly, a backbone based on a balanced de Bruijn graphB(2, m) could support from3 · 2m nodes to

6 · 2m nodes without associating piconets. By associating piconets to the master nodes of backbone, the

number of nodes it can support is increased to27 · 2m since we can replace each pure slave node by a

piconet of8 nodes.

One disadvantage of associating piconets to master nodes is that every master node in the backbone

will have to forward more messages than the scatternet created by the method described previously. The

other disadvantage is that when the network size goes beyond its supported scope, the updating of the

scatternet is more costly than before.

IV. ROUTING IN SCATTERNET

We first describe the routing in the dBBlue scatternet with a balanced backbone. If both source and

target nodes are masters, we assume the source master nodeu has a labelx1x2 · · ·xm and the target

master nodev has a labely1 · · · ym. According to the routing mechanism described in Section II-A, node

u simply forwards the message to its neighbor master nodeu1 = x2 · · ·xmy1, relayed by their common

bridge node(x1 · · ·xm, 010) if y1 = 0 or by (x1 · · ·xm, 101) if y1 = 1. Thenu1 forwards the message

again to its neighbor master node accordingly. Clearly, the message is guaranteed to reach the target in

at most2m steps. If the source node is a slave, it first sends the messages to its master node. Notice

that a pure slave node has only one master node and the bridge slave node has two master nodes. Then

the bridge slave node just randomly picks one master node. Similarly if the target node is a slave, the

message will be first forwarded to its master node. The procedure of routing message between these

two master nodes is same as the previous description. Clearly, the routing path from one master node to

another master node is at most2m hops. The longest path between two nodes happens from a slave node

to another slave node, which is at most2m + 2 hops. From2m−1 < dn
6 e, we havem < 1 + logdn

6 e.

DRAFT

21

Thus, the diameter of the de Bruijn-based scatternet is4 + 2 logdn
6 e.

Theorem 3:For any two nodes in dBBlue scatternet, there is a path with at most4 + 2 logdn
6 e hops

and such path can be found locally by each intermediate node based on the label of the target.

Notice that, two assumptions are made in our routing scheme described above: (1) the source node

knows the label of the target node, and (2) the backbone of the scatternet is based on a balanced de Bruijn

graph. We will not try to resolve the first assumption in this paper, but discuss it briefly here. In the

network communication, usually only IP address of the target is known. We can adopt a mechanism

similar to that used in Peer-to-peer system D2B[6]: theLabel-IPAddrpairs are distributively stored in

masternodes on backbone in the way that the prefix of IP address matches the label of the hostmaster

node. Any node can query the backbone using the target IP address to get the target label and then sends

message to the target node based on the target node’s label. TheLabel-IPAddrpair of a node can also be

broadcasted to the whole network if the nodes’ leaving and joining is not frequent, i.e., the labels of nodes

do not change frequently. Here, we discuss briefly how to perform broadcast in de Bruijn graph such that

it guarantees to reach each node exactly once. We initiate the broadcast from node0m. Each node with

label0y1 · · · ym−1 continues forwarding the message to its out-neighbors. The forwarding is terminated

when it reaches the nodes whose most significant bit is1. Figure 11 illustrates such broadcast procedure.

The broadcast basically works same as the breadth first search (BFS) in a binary tree. Clearly, a node will

only forward the message to nodes with larger labels. Thus, a node receives the message exactly once.

The communication cost of such broadcasting is exactlyn messages.

11...111

00...010 00...011

00...000

10...000

00...001

Fig. 11. Broadcast in de Bruijn graph.

We then discuss in detail how to route the packets when the scatternet backbone is pseudo-balanced.

Assume the source master nodeu has a labelx1x2 · · ·xs−1xs and the target master nodev has label

y1y2 · · · yt−1yt, wheres, t ∈ [k, k + 1]. Nodeu will forward the packet to its out-neighbor master node

v with a labelx2 · · ·xs−1xs, or x2 · · ·xs−1xsy1, or x2 · · ·xs−1xsy1y2. Notice that since the labels of all

DRAFT

22

nodes are a universal prefix set, we know thatexactlyone of these three labels does exist. Consequently,

the diameter of pseudo-balanced de Bruijn graph is stillO(log n). The bridge slave node fromu to v

could have a MAC address as follows (1)010 if a master node with labelx2 · · ·xs−1xs exists; or (2)

y1y1y1 if a master node with labelx2 · · ·xs−1xsy1 exists; or (3)y1y2y2 if a master node with label

x2 · · ·xs−1xsy1y2 exists. Notice that we do not need any lookup table for relaying, since the MAC of

a relaying bridge can be calculated easily. See Section II-B for more detail about the rules of labelling

nodes and assigning MAC addresses in a piconet. A shorter route is obtained by looking for the longest

sequence that is suffix ofx1x2 · · ·xs and prefix ofy1y2 · · · yt.

For the purpose of illustration, let’s see how we route packets from a master nodex1x2x3x4 = 0010

to a master nodey1y2y3y4 = 0001 in the scatternet based on the de Bruijn graph illustrated in Figure 2.

First, the master node0010 checks the labels of all out-neighbor master nodes and finds that master node

with labelx2x3x4 = 010 exists. Then it forwards the packet to master node010 via the bridge slave node

with MAC 010. Similarly, master nodex2x3x4 = 010 forwards the packet to master node with label

x3x4y1 = 100 via the bridge slave with MAC010. Finally, the master nodex3x4y1 = 100 forwards the

packet to nodey1y2y3y4 = 0001 via the bridge slave with MAC010. Notice that the last step it takes a

shorter path other than via another master nodex4y1y2y3 = 0000.

At last, we discuss how to route the messages while the scatternet is on updating due to nodes leaving

or joining the network. When a node joins the network, the piconet mastered by the token node may be

split into two piconets. Clearly, the message still can be routed since the labels of the two newly created

piconets are the children of this token node. Similarly, when two piconets are merged to create a new

piconet, the label-based routing still successfully route the packets. The remaining case is that when a

node leaves, we may need find a pure slave nodev from the current token nodet to fill the space emptied

by this left node. When a message targeted to nodev reaches the piconet mastered by the token nodet,

nodev has already been moved. To remedy this, we apply a mechanism similar to the mail-forwarding

service provided by the post-office: the master nodet will keep a record of the nodes moved to other

piconets and its new label within a time window. When a message targeted forv reaches, the master node

forwards the message to the new destination and also acknowledges the source node of the new label of

v. The source node will then cache the label of nodev if it is frequently used. To decrease messages

forwarding, every master node could record the frequency that a slave node receives messages from other

node. When a pure slave node is visited frequently by other nodes, then we switch its role with one of

the bridge slaves with same prefix and broadcast the new labels of these two nodes to the network. When

DRAFT

23

we have to move a pure slave node to other piconet to make the scatternet compact, the pure slave node

is the least frequently visited nodes among the current piconet.

V. RELATED WORK

Zaruba, Basagni and Chlamtac [14] proposed two protocols for forming connected scatternet. In both

cases, the resulting topology is termed abluetree. The number of roles each node can assume is limited

to two or three. The first protocol is initiated by a single node, called theblueroot, which will be the root

of the bluetree. A rooted spanning tree is built as follows. The root will be assigned the role of master.

Every one hop neighbor of the root will be its slave. The children of the root will be now assigned an

additional master role, and all their neighbors that are not assigned any roles yet will become slaves of

these newly created masters. This procedure is repeated recursively till all nodes are assigned. Each node

is slave for only one master, the one thatpagedit first. Each internal node of the tree is a master on one

piconet, and slave of another master (its parent in the initial tree). In order to limit the number of slaves,

they [14] observed that if a node in unit disk graph has more than five neighbors, then at least two of them

must be connected. This observation is used to re-configure the tree so that each master node has no more

than5 slaves. If a master node has more than5 slaves, it selects its two slavess1 ands2 that are connected

and instructss2 to be master ofs1, and then disconnectss2 from itself. Such branch reorganization is

carried throughout the network. However, whether this approach will terminate is not proved in [14].

Tanet al. [13] proposed a similar method for single-hop network. In the second protocol [14], several

roots are initially selected. Each of them then creates its own scatternet as in the first protocol. In the

second phase, sub-tree scatternets are connected into one scatternet spanning the entire network. Notice

that the tree topology suffers from a major drawback: the root is a communication bottleneck as it will

be overloaded by communications between the different parts of the tree. Obviously, the root node in

the tree-based scatternet is the bottleneck of the network and its congestion isO(1), assuming that total

traffic demand is a unit and is uniformly distributed. In addition, dynamic updating that preserves correct

routing is not discussed in these protocols.

Law, Mehta and Siu [8] described an algorithm that creates connected degree bounded scatternet in

single-hop networks. The final structure is a tree like scatternet, which limits efficiency and robustness.

A single-hop Bluetooth scatternet formation scheme based on 1-factors is described in [1]. However,

piconets are not degree limited in that scheme.

Salonidiset al. [12] proposed another topology construction algorithm recently. It first collects neigh-

borhood information using an inquiry procedure, where senders search for receivers on randomly chosen

DRAFT

24

frequencies, and the detected receivers reply after random backoff delay. Leader is elected in the process,

one for each connected component. Leader then collects the information about the whole network, de-

cides the roles for each node, and distributes back the roles. In other words, basically, it is a centralized

approach. Thus, the solution is not scalable, and not localized. Moreover, how to assign the roles is not

elaborated in [12]. They also assume up to36 nodes in the network. Another centralized solution for

single-hop networks, where the traffic between any pair of nodes is known a priori, is described in [9].

Sun, Chang and Lai [10] described a self-routing topology for single-hop Bluetooth networks. Nodes

are organized and maintained in a search tree structure, with Bluetooth ID’s as keys (these keys are also

used for routing). It relies on a sophisticated scatternet merge procedure with significant communication

overhead for creation and maintenance. Bluerings as scatternets are proposed in [4]. Ring structure for

Bluetooth has simplicity and easy creation as advantage, but it suffers large diameter (i.e., the maximum

number of hops between any two devices) and large number of piconets.

The works are most related to our dBBlue scatternet construction method is [2] and [6].

Barriere, Fraigniaud, Narajanan, and Opatrny [2] described a connected degree limited and distributed

scatternet formation solution based on projective geometry for single-hop networks. They assume that

only slave nodes can act as bridges. They described procedures for adding and deleting nodes from the

networks and claimed that its communication cost isO(log4 n log4 log n) and the computation cost is

O(log2 n log2 log n), wheren is the number of nodes in the network. The degree of the scatternet can

be fixed to anyq + 1, whereq is a power of a prime number. However, in their method, every node

need hold information of the projective plane and the master node who has the ”token” needs to know the

information of the projective scatternet (which label should be used for the new coming master and which

existing nodes need to be connected to it). However, the authors did not discuss in detail how to compute

the labels for the new master and its slaves, and what will happen when the number of nodes reaches the

number of nodes of a complete projective scatternets.

Notice that our dBBlue scatternet can be easily transformed to support a Bluetooth network in which a

piconet has any numberp ≥ 6 of slaves, while the method in [2] can only support the piconet withq + 1

slaves whereq is a power of a prime number. Moreover, the dynamic updating cost of dBBlue is at most

O(log n).

The construction of dBBlue scatternet is inspired by the method proposed by Fraigniaud and Gauron

[6] for constructing a network topology for P2P environment based on de Bruijn graph. When a node

u joins the P2P network, it [6] randomly selects a nodev in the de Bruijn graph and then creates two

DRAFT

25

children nodes ofv: one forv and one foru. This random selection of nodev cannot be applied to

Bluetooth scatternet since it may create a de Bruijn graph with node whose degree is large than7. It is not

difficult to show that for Bluetooth scatternet, we can only afford the de Bruijn graph whose node label

lengths differ by at most1. In this paper, we proposed a novel method for assigning MAC addresses to

nodes such that a self-routing is still possible during the updating procedures when node leaves or joins

the network. The de Bruijn graph is used as backbone of the scatternet in our dBBlue structure.

VI. CONCLUSION

In this paper, we addressed the problem of scatternet formation for single-hop Bluetooth based ad hoc

networks, with minimal communication overhead. We adopted the well-known structurede Bruijn graph

to form the backbone of thedBBluescatternet. The diameter of the scatternetdBBlueis O(log n) and

we can find a path with at mostO(log n) hops between every pair of nodes without using any routing

table. A useful MAC assignment mechanism is integrated in dBBlue protocol to support efficient and

resilient self-routing, and hence facilitates the inter-piconet scheduling especially when Bluetooth system

runs inSCOmode. We discussed in detail the method tolocally update the structuredBBlueusing at most

O(log n) communications when a node joins or leaves the network. In most cases, the cost of updating the

scatternet is actuallyO(1). Our method can construct the structuredBBlueincrementally when the nodes

join the network one by one. In addition, the structure formed by our method can sustain the faults of2

nodes and the network is still guaranteed to be connected. If a node detects a fault of some neighboring

master node or bridge slave node, it can dynamically re-route the packets and the path traveled by the

packet is still at mostO(log n) hops. Previously no method can guarantee all these properties although

some methods can achieve some of the properties.

REFERENCES

[1] S. Baatz, S. Bieschke, M. Frank, P. Martini, C. Scholz, and C. Kuhl. Building efficient bluetooth scatternet topologies

from 1-factors. InProc. IASTED Wireless and Optical Communications WOC, 2002.

[2] L. Barriere, P Fraigniaud, L. Narajanan, and J. Opatrny. Dynamic construction of bluetooth scatternets of fixed degree and

low diameter. In14th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 781–790, 2003.

[3] S. Basagni, R. Bruno, and C. Petrioli. Device discovery in bluetooth networks: A scatternet perspective. InProc. IFIP-TC6

Networking Conference, Networking 2002, 2002.

[4] F. Cgun-Choong and C. Kee-Chaing. Bluerings - bluetooth scatternets with ring structure. InProc. IASTED Wireless and

Optical Communications WOC, 2002.

[5] N. de Bruijn. A combinatorial problem. InKoninklijke Nederlandse Academie van Wetenschappen, 49, pages 758–764,

1946.

DRAFT

26

[6] Pierre Fraigniaud and Philippe Gauron. The content-addressable network d2b. Technical Report Technical Report TR-

LRI-1349 (also appeared in 22nd ACM Symp. on Principles of Distributed Computing (PODC)), 2003.

[7] Jaap C. Haartsen. The bluetooth radio system.IEEE Personal Communications, 7:28–36, 2000.

[8] C. Law, A.K. Mehta, and K.Y. Siu. Performance of a new bluetooth scatternet formation protocol. InProc. ACM Sympo-

sium on Mobile Ad Hoc Networking and Computing MobiHoc, pages 183–192, 2001.

[9] D. Miorandi and A. Zanella. On the optimal topology of bluetooth piconets: Roles swapping algorithms. InProc.

Mediterranean Conference on Ad Hoc Networks MedHoc, 2002.

[10] C.K. Chang M.T. Sun and T.H. Lai. A self-routing topology for bluetooth scatternets. In2002 International Symposium

on Parallel Architectures, Algorithms and Networks (ISPAN ’02), 2002.

[11] C. Petrioli and S. Basagni. Degree-constrained multihop scatternet formation for bluetooth networks. InProc. IEEE

GLOBECOM, 2002.

[12] T. Salonidis, P. Bhagwat, L. Tassiulas, and R. LaMaire. Distributed topology construction of bluetooth personal area

networks. InProc. IEEE INFOCOM, 2001.

[13] G. Tan, A. Miu, J. Guttag, and H. Balakrishnan. Forming scatternets from bluetooth personal area networks. Technical

Report MIT-LCS-TR-826, MIT, 2001.

[14] G.V. Zaruba, S. Basagni, and I. Chlamtac. Bluetrees - scatternet formation to enable bluetooth based ad hoc networks. In

Proc. IEEE International Conference on Communications(ICC), 2001.

DRAFT

