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Abstract—We study the throughput capacity and transport
capacity for both random and arbitrary wireless networks under
Gaussian Channel model when all wireless nodes have the same
constant transmission power P and the transmission rate is
determined by Signal to Interference plus Noise Ratio (SINR).
We consider networks with n wireless nodes {v1, v2, · · · , vn}
(randomly or arbitrarily) distributed in a square region Ba with a
side-length a. We randomly choose ns node as the source nodes of
ns multicast sessions. For each source node vi, we randomly select
k points and the closest k nodes to these points as destination
nodes of this multicast session. We derive achievable lower
bounds and some upper bounds on both throughput capacity
and transport capacity for both unicast sessions and multicast
sessions. We found that the asymptotic capacity depends on the
size a of the deployment region, and it often has three regimes.

Index Terms—Wireless networks, throughput capacity, trans-
port capacity, unicast, multicast, Gaussian channel.

I. INTRODUCTION

Recently, the network capacity has been studied extensively
under different network, system, and interference models. The
ground breaking work of Gupta et al. [3] has shown that
when n wireless nodes are randomly placed in a square
region with side-length 1, for randomly picked n pairs of
source/destination nodes, the total information exchangeable
by each pair will go to zero in order of 1√

n log n
as n

tends to ∞ under the protocol interference model (PrIM) and
physical interference model. They also showed in [3] that even
all nodes are located optimally, the amount of information
that can be exchanged by each source/destination pair still
goes to zero in order of 1√

n
. In addition, the authors of

[1], [2] proposed alternative techniques that achieve unicast
capacity Θ( 1√

n log n
) for random wireless networks. Recently,

Francheschetti et al. [4] proved that per-flow unicast capacity
of order 1√

n
is also achievable in networks of randomly located

nodes when Gaussian channel model is used. Hence, the
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unicast capacity gap between randomly and arbitrary wireless
networks is claimed to be closed. However, the work in
[4] is based on Gaussian channel model, while the work in
[3] is based on PrIM and physical interference models, and
the asymptotic capacity bounds may be different in different
models.

Observe that the majority researches in the literature as-
sumed that n nodes are deployed in a 2 dimensional square
of side length 1 or

√
n. Assuming that n nodes are randomly

placed in a square region of side-length a, the main purpose
of this paper is to study the impact of the deployment
region size a on the asymptotic unicast capacity and more
generally the multicast capacity, of large scale random or ar-
bitrary wireless networks under Gaussian channel model. Two
different capacities will be studied, namely, the throughput
capacity and the transport capacity. Under Gaussian channel
model, the data rate between any pair of transceivers (u, v)
is determined by several parameters, including transmission
power P of u, the noise N0, the interference signals from all
other simultaneously transmitting nodes rather than u. Hence,
pairs of nodes can communicate directly with different data
rates. For presentation simplicity, we assume that there is only
one channel in wireless networks. And as always, data are sent
from node to node either by one-hop or by multi-hop manner
until they reach the destination. In addition, we assume every
node has enough buffer to save the relay traffic temporarily
while waiting for being transmitted such that no packet will
be lost through relaying.

Our Main Contributions: In this work we derive analytical
upper bounds and lower bounds of unicast(multicast) capacity
for wireless networks under Gaussian channel model when
n wireless nodes (randomly or arbitrarily) distributed in a
square region with side-length a. We studied different cases
when a is in different range, i.e., a is a function of n.
In general, we observe that the capacity of a random (or
arbitrary) network has three different regimes depending on
the deployment size a. Building on existing milestone results,
our main contributions are to firstly present the tight bounds
on the impact of the deployment size a on the capacity for
majority cases. Our main results are summarized as follows:

Theorem 1: For an arbitrary wireless network, the total
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unicast throughput capacity Λ(n) is:

Λ(n) =





Θ(1) when a = O(1)
Θ(a2) when a = o(

√
n)

Θ(n) when a = Ω(
√

n)
(1)

Theorem 2: For a random wireless network, the minimum
per-flow unicast throughput capacity is:

ϕ(n) =





Θ( 1
n ) if a = O(1)

Θ( a
n ) if a = o(

√
n)

Θ(( a√
n
)−β · 1√

n
) when a = Ω(

√
n)

(2)

Theorem 3: For a random wireless network, an upper bound
(partially achievable) of minimum per-flow multicast through-
put capacity, when ns = Θ(n), is:

ϕk(n) =





O( a
n
√

k
) if a = O(

√
n)

Θ( 1√
n
· 1√

k
) if a = Θ(

√
n),k = O( n

lg2 n
)

O(( a√
n
)−β 1√

n
· 1√

k
) if a = Ω(

√
n),k = O( n

lg2 n
)

(3)
Theorem 4: Consider a random wireless networks, where

nodes following a Poisson distribution with parameter n
a2 are

distributed in Ba with a = Ω(
√

n). Assume that ns random
multicast flows are generated. Under Gaussian channel model,
the per-flow multicast capacity ϕk(n) is at most

ϕk(n) =

{
O(( a√

n
)−β · 1

ns
·
√

n√
k
) if k ≤ n

(log n)β

O( n
nsk ( a√

n
)−β(log n)−

β
2 ), if k ≥ n

(log n)β

(4)

In contrast to [3], [4], studying unicast capacity of wireless
network under Gaussian channel model needs new technical
insight. One of reasons is that the interference concept under
Gaussian channel model is different from PrIM. Under PrIM,
every node has fixed transmission range and interference
range, the data rate between them is fixed as well, thus a
necessary condition for any two nodes to be able to commu-
nicate with each other is that 1) these two nodes must be in the
transmission range of each other; and 2) when a transmitter
is active, all other nodes within its interference range cannot
transmit simultaneously. Compared with PrIM, Gaussian chan-
nel model gives better link rate when other transmissions are
treated as noise. The data rate under Gaussian channel model
is determined by power, distance and noise. Any two nodes can
communicate with each other although the data rate maybe go
to zero when the distance between the transceiver pair is long
or there are too much noise. Hence, some techniques used in
previous work cannot be applied directly to Gaussian channel
model without modification.

The rest of the paper is organized as follows. In Section
II we discuss in detail the network model used. We present
both upper-bounds and lower-bounds of unicast capacity for an
arbitrary wireless network in Section III. The unicast capacity
bounds for random wireless networks are presented in Section
IV. We study the multicast capacity in Section V. We review
the related results in Section VI and conclude the paper in
Section VII.

II. SYSTEM MODEL AND PRELIMINARIES

A. Network Model and Asymptotic Capacity

Consider a square region Ba with side length a. We assume
that there is a set V = {v1, v2, · · · , vn, · · · } ordinary wireless
terminals deployed in Ba following Poisson distribution with
parameter n

a2 . In other words, given a region X with area
x, the probability that there are exactly k nodes inside X

is (n/a2)ke−xn/a2

k! . The expected number of nodes located in
the region Ba is n. We randomly pick ns out of n wireless
terminals as source nodes. Here, ns can be as large as n which
means that every node will serve as a source node. For each
source node vi, we randomly select a point pi in Ba and the
node which is closest to pi will become the destination node
of vi for unicast. Here, if the source node vi chooses itself as
its destination node, we can randomly generate point pi again
to avoid this. For studying multicast capacity, we assume that
each multicast session will have k receivers. For each source
node vi, we randomly pick k points pi,j , 1 ≤ j ≤ k, in Ba

and then the closest node vi,j to pi,j will serve as a destination
node of the ith flow that has the source node vi.

We assume that all nodes have a constant transmission
power P , and for each transceiver pair (vi, vj), node vj

receives the transmitted signal from node vi with power
P · `(d(vi, vj)), where d(vi, vj) is the Euclidean distance
between node vi and vj , `(d) is the transmission loss during a
path with length d. In this paper, we consider the attenuation
function

`(d) = min{1, d−β}
where the constant β > 2. Hence, any two nodes can establish
a direct communication link over a unit bandwidth channel,
of rate R(vi, vj) =

log(1 +
S(vi, vj)

N0 + I(vi, vj)
) = log(1 +

P · `(vi, vj)

N0 +
∑

vq∈T (i) P · `(vq, vj)
)

Here, T (i) is set of nodes transmitting simultaneously with
vi and N0 is the variance of background noise, usually be
a constant, I(vi, vj) is the total interference at the receiving
node vj when vi and vj communicate, and S(vi, vj) denotes
the strength of signal received by vj sent from vi.

Capacity Definition: In this work we will study both
the asymptotic throughput capacity and asymptotic transport
capacity. We assume that any node vi could serve as the source
node for some unicast or multicast. And for each source node
vi, assume that node vi will send data to its receiver(s) by
unicast (or multicast) with a data rate λi.

Let λ = (λ1, λ2, · · · , λn−1, λn) be the rate vector of the
multicast data rate of all multicast sessions. When given a
fixed network G = (V,E), where the node positions of all
nodes V , the set of receivers Ui for each source node vi, and
the unicast (multicast) data rate λi for each source node vi are
all fixed, a multicast rate vector λ bits/sec is feasible if there
is a spatial and temporal scheme for scheduling transmissions
such that by operating the network in a multi-hop fashion and
buffering at intermediate nodes when awaiting transmission,
every node vi can send λi bits/sec average to its destination
nodes in set Ui. That is, there is a T < ∞ such that in every
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time interval (with unit seconds) [(i− 1) ·T, i ·T ], every node
can send T · λi bits to its corresponding receiver(s).

Definition 1 (Throughput Capacity): Given a feasible rate
vector λ, the total throughput of λ is Λk(n) =

∑n
i=1 λi.

The average throughput is λk(n) =
∑n

i=1 λi

ns
, where ns is

the number of unicast (multicast) sessions, and k is the total
number of nodes in each unicast(multicast) session, including
the source node. Given ns sessions with S as source nodes,
the minimum per-flow throughput capacity is defined as

ϕk(n) = min
vi∈S

λi. (5)

In this work, we will focus on the minimum per-flow
throughput capacity. Given any set of successful transmissions
taking place over time and space, we define the transport
capacity as the ability for the network to transmit bits to their
destinations with a distance of one meter (or unit) per second.

Definition 2 (Transport Capacity): An aggregated unicast
transport capacity ΛT

k (n) bit-meters/sec is defined as

Λt
k(n) =

n∑

i=1

liλi (6)

Here, li is the length of the path connecting source node si

and destination node ti in ith unicast session, and λi is the
feasible (achievable) data rate between si and ti.
From now on, we use λT (u, v) to denote the transport capacity
between a pair of nodes u, v.

Definition 3 (Capacity of Random Networks): For a class
of random networks, the per-session asymptotic throughput
capacity is Θ(g(n)) if there are constants 0 < c < c′, s.t.,

lim
n→+∞

Pr(ϕk(n) = cg(n) is feasible) = 1,

lim inf
n→+∞

Pr(ϕk(n) = c′g(n) is feasible) < 1.

NOTATIONS: Throughput this paper, for a continuous region
Ba, we use |Ba| to denote its area; for a discrete set S, we
use |S| to denote its cardinality; for a tree T , we use ‖T‖ to
denote its total Euclidean edge lengths; x → ∞ denotes that
variable x takes value to infinity.

B. Technical Lemmas
To study the asymptotic capacity, we first present several

technique lemmas that are essential for the analysis. For a
random wireless network with n wireless nodes located in a
square region Ba with side length a, we partition Ba into cells
with side length c. Two nodes u and v are said to have cell-
distance d if they are located in two cells that are separated
by d-cells. Please refer to Appendix for corresponding proof.

Lemma 5: Based on a TDMA schedule, for any transceiver
pair (u, v) with cell-distance d, the data rate R(u, v) only
depends on d and c. Furthermore, when c ·d →∞, R(u, v) =
Ω(c−βd−β−2).

Lemma 6: If we partition the square Ba with side length a
into a2

c2 cells with constant side length c, then w.h.p., there are
less than log a

c × nc2

a2 nodes in each cell.
Lemma 7: If we partition square Ba into stripes with

width a and height c1, then with probability at least 1 −√
n

c1
e−c1

√
n( e

2 )2c1
√

n the number of nodes in each stripe will
be no more than 2 c1

a · n.

C. Highway System and related

Some of our routing strategies are built upon the highway
system developed in [4]. Here we briefly review its construc-
tion and some key properties. To begin the construction of
highway system, we partition the deployment box Ba into
m = a√

2c
cells with a side length c. By appropriately choosing

c, we can arrange that the probability that a square contains
at least a Poisson point is as high as we want. Here when
a = O(

√
n), choosing c as some constant is enough, while

when a = Ω(
√

n), we choose c = θ1 · a√
n

for some constant
θ1.

Then based on percolation theorem, we can choose c large
enough such that with high probability (w.h.p.) there are paths
crossing Ba from left to right. These paths can be grouped into
disjoint sets of paths: each group has dδ log me paths, crossing
a rectangle of width m and height (κ log m+εm) cells, for all
k > 0, δ small enough, and a vanishingly small εm so that the
side length of each rectangle is an integer. Same results still
hold when looking for paths crossing Ba from bottom to top.
Then by union bound, we claim that there exist both horizontal
and vertical disjoint paths w.h.p.. These paths are called the
highway system. From now on, we simply call a node highway
node if the node is on one of horizontal or vertical (or both)
paths, otherwise, it will be called non-highway node.

Then we slice the network area into horizontal strips of
constant width c0 such that there are at least as many paths
as slices inside each rectangle of size m × κ log m + εm by
choosing c0 appropriately. Then we impose that nodes from
the ith slice communicate directly with the ith horizontal path.
And it is also proved in [4] that w.h.p., there are at most
Θ(
√

n) nodes contained in each stripe. Finally, we can get
the following important lemma.

Lemma 8: [4] The nodes along the highways can achieve
w.h.p., a per-flow rate of Ω( 1√

n
).

III. UNICAST CAPACITY FOR ARBITRARY NETWORKS

We first study unicast throughput and transport capacity
for an arbitrary wireless network where n nodes arbitrarily
distributed in a square region with side length a.

A. When a = O(1)
Lemma 9: For an arbitrarily network, when side length of

square a = O(1), the total unicast throughput capacity for ns

transceiver pairs is Θ(1). In addition, the transport capacity is
Θ(a) as well.

Proof: The lower bound is clearly Ω(1) since, in any
time slot we pick only one transceiver pair (u and v) to
communicate, all other transmitters are silent. In this case,
the rate R(u, v) = log(1 + P ·`(u,v)

N0+I(u,v) ) = Ω(1) because the
Euclidean distance `(u, v) is at most

√
2a which is a constant,

I(u, v) is zero in this case and N0 is a constant. Thus, the
lower bound of unicast throughput capacity for n unicast
sessions is Ω(1). Clearly, when we pick two nodes within
distance Θ(a), the transport capacity can achieve Ω(1× a).

We then show that the capacity is O(1) by the following ob-
servations. Assume for any time slot t, there are m ≥ 2 simul-
taneously active links in the network. Then for any transceiver
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pair u and v, the rate R(u, v) = log(1+ P ·`(d(u,v))
N0+I(u,v) ) ≤ log(1+

P ·1
N0+

∑
m−1 P ·1 ) = log(1+ 1

N0
P +(m−1)

) ≤ 1
N0
P +(m−1)

≤ 1
m−1 =

O( 1
m ). The last inequality is true since log(1+x) ≤ x). Since

there are m simultaneously active links for time slot t, the total
throughput capacity of the network is O(1). Clearly, in this
case, the upper bound on transport capacity is m

m−1 ·a = O(a)
bits-meters/sec. This completes the proof.
Obviously, the per flow network throughput capacity is Θ( 1

n ).

B. When a = Ω(1), and a = O(
√

n)
Lemma 10: For any pair of source/destination nodes (u, v),

the transport capacity of a direct link e = (u, v) is log(1 +
P ·`(d)

N0+I(u,v) ) ·d where d is the Euclidean distance between node
u and node v. In addition, the transport capacity between u
and v will get its maximum value when d = 1.

Proof: According to the definition, the transport capacity
between link (u, v) is

λT (u, v) = log(1 +
P · `(d)

N0 + I(u, v)
) · d = log

(
(1 +

P · `(d)

N0 + I(u, v)
)d

)

Clearly, when we fix the position of receiver v, to increase
or decrease d by removing sender v will not change I(u, v).
When 0 < d ≤ 1, l(d) = min{1, d−β} = 1, thus λT (u, v)
will get to its maximum value when d = 1.

When d > 1, λT (u, v) = log
(
(1 + P

N0+I(u,v)d
−β)d

)
. It is

not difficult to show that log(1+ P
N0+I(u,v)d

−β)d is decreasing
when d > 1 where β > 2. This finishes the proof.

Lemma 11: For an arbitrary network, when side length a of
the deployment square is a = Ω(1) and a = O(

√
n), the total

unicast throughput capacity for n transceiver pairs is Θ(a2).
In addition, the transport capacity is also Θ(a2).

Proof: First, we prove that the total throughput capacity
is at least Ω(a2).

We partition the whole square into a2 cells with side length
1. Next, we assume there is one transceiver pair in each cell.
Assume for cell Si, node u and v are chosen as source and
receiver respectively. Based on a TDMA scheduling scheme,
we let the transmitter in Si be able to transmit only if all
transmitters in the Si and Si’s nearest 24 neighbor cells keep
silent. Next we show that when all transceiver pairs in all grey
cells exchange data simultaneously, for any pair of transmitter
u and receiver v, the data rate between them is Ω(1) due to
Lemma 5.

Next, we give a matching upper bound so that our results
are indeed tight. First, we partition the whole square region
into Θ(a2) cells with side length Θ(1). Here, the partition is
arbitrary, that means the partition can be shifted wherever you
want. For those cells close to the boundary with side length
o(1), we simply consider them as a cell with side length Θ(1)
as well, this will not affect the number of our cells (Θ(a2)),
thus will not affect our proof. For any cell Si, assume there are
j simultaneously transmitting nodes {vi1, vi2, · · · , vij} inside
Sj . Thus the unicast throughput capacity contributed by cell
Si is

∑j
k=1 λik. Here, λik is the feasible transmitting rate

of the kth transmitter inside of Si. In addition, we do not
assume that a receiver exists in the same cell as its transmitter.
Clearly, adding one or more transmitters into Si or replacing

current transmitter(s) with others (originally silent nodes in
this time slot) will not improve the unicast throughput capacity
contributed by Si due to Lemma 9. Thus, the total unicast
throughput capacity is equal to

∑Θ(a2)
i=1

∑j
k=1 λij , which is

bounded by O(a2 × 1) = O(a2).
Observe that the total throughput capacity Ω(a2) clearly

is achievable by carefully placing a pair of nodes with
distance Θ(1) in each cell. This construction also gives us
a lower bound Ω(a2) on the transport capacity. We then
show that the transport capacity is also O(a2). Assume
that (u1, v1), (u1, v1), · · · , (um, vm) are m pairs of source-
destinations that achieve the best transport capacity. Lemma
10 shows that the largest transport capacity will be achieved
when each link has distance O(1). This finishes the proof.

C. When a = Ω(
√

n)

Lemma 12: For an arbitrarily network, when the side length
of square a = Ω(

√
n), the total unicast throughput capacity

for n transceiver pairs is Θ(n).
Proof: Clearly, the upper bound here is O(n) because

there are at most bn
2 c nodes that can transmit simultaneously

with a constant transmission rate. Next we show that by the
following construction, for an arbitrary wireless network, the
total unicast throughput capacity is Ω(n) when the side length
a = Ω(

√
n).

We partition the region into m = n
c2 small rectangles

with side length r = c × a√
n

. Here, we can round c up
to some constant such that c2 ≥ 2 and m is an integer. In
each small square, we put one source/destination pair within
small distance d1 around the center. First, we show when all
transmitters transmit simultaneously, for any transceiver pair
(u, v), the data rate is R(u, v) = Ω(1) based on a TDMA
schedule. The proof idea is exactly same with the one used in
Lemma 11. The total interference is

I(u, v) ≤
∞∑

i=1

8iP · ((2i− 1)
ca√
n

)−β .

Notice that this sum clearly converges if β > 2 when
a = Ω(

√
n), so I(u, v) is a constant. Therefore, the data rate

between u and v is R(u, v) = log(1 + P ·`(d(u,v))
N0+I(u,v) ) = Ω(1),

because `(d(u, v)) = min{1, |uv|−β} is also a constant.
Thus, at any time, based on our TDMA scheduling, there

are at least bn/2
9 c links that can be active simultaneously, so

the lower bound capacity for n transceiver pair is Ω(n). This
finishes the proof.

In summary, from Lemmas 9, 11, and 12, we get Theorem
1.

IV. UNICAST CAPACITY FOR RANDOM NETWORKS

In this section, we present both lower bounds and upper
bounds of unicast capacity for a large scale random wireless
network. We will study the capacity based on three scenarios
a = O(1), a = Ω(1) and a = O(

√
n), or a = Ω(

√
n).
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A. When a = O(1)
When the side length a = O(1) and n goes to ∞, the

unicast case for random wireless networks is similar with the
one for arbitrary wireless networks.

Theorem 13: For a wireless network with n nodes ran-
domly placed in a square region with side length a, the total
unicast throughput capacity is Θ(1) when a = O(1).

Proof: According to Lemma 9, we know the capacity for
random wireless networks is also O(1) when a = O(1). In
addition, if we only choose one pair of source/destination to
transmit at any time slot the unicast capacity we can archive
is Ω(1) by Lemma 9. This finishes the proof.

Similarly it is not difficult to derive the following theorem.
Theorem 14: For a random wireless network with n ran-

domly placed nodes in a square region Ba, the per-flow unicast
throughput capacity is Θ( 1

n ) when a = O(1) and ns = Θ(n).

B. When Θ(1) ≤ a ≤ Θ(
√

n)
Next we show that when the side length a satisfies 1 ≤ a ≤√
n, the per flow unicast throughput capacity is Ω( a

n ) when
there are n unicast flows by constructing the following routing
and link scheduling scheme.

By the percolation theory and the results in [4], when we
partition the whole square into small cells with side length c,
we can select one node from each cell and construct Ω(m)
horizontal and Ω(m) vertical “highways” (or say disjoint
paths) from left to right and from top to bottom respectively as
the backbone of the whole wireless network with probability
1 − e−c2

. Here, m = a
c , where c is rounded up such that

m is an integer. In addition, we can choose c large enough
such that Ω(m) paths can be partitioned into a number of
disjoint groups each with dδ log me disjoint paths, and each
group are contained in a stripe with width m cells and height
(κ log m − εm) cells, for all κ > 0, δ small enough, and a
non-zero small εm such that the side length of each stripe is
integer. The same is true when we partition the square into
vertical stripes with side length m× (κ log m− εm).

Routing Strategy: Our routing strategy is based on the
backbone (highway system) we constructed. For each pair of
source/destination nodes u and v, assume u is in the ith stripe.
If u is not on the highway, we will find a highway node uen

in the same stripe to be the entrance node of u, i.e., uen will
be the first highway node which will relay packets of u. To
find this entrance node, we draw a vertical line from u, and
the closest highway node (from this line) which is in the same
stripe will be chosen as uen. For destination node v, if v is not
a highway node, we use the same method to draw a vertical
line from v, and find the closest highway node as the exit node
uex. See Fig. 1 for illustration.

There are three phases for any pair of source/destination
nodes (u, v) to communicate.

1) If u is not the highways nodes, u will find some entrance
node uen and send data to uen by one hop.

2) uen will relay the data of u to exit node vex of node v
through highway (involving both vertical and horizontal
highways).

3) vex will transmit the data to v directly at last.

one vertical path
one of horizontal paths

v

uen

vex

u

Fig. 1. For source/destination pair (u, v). u will draw a line and find
entrance node uen to highway and v will draw a line to find exit node
vex from highway. This is also a simple case of our routing strategy for
source/destination pair (u, v). u will send packet to uen first, then uen will
relay packets to vex through both horizontal and vertical highway path. At
last, vex will send packets to the destination node v.

Lemma 15: For any wireless node u, u can achieve a rate
of Ω( a

n ) to some node vex on the highway system based on a
TDMA schedule when the side length a satisfies Θ(1) ≤ a ≤
Θ(
√

n). Here log a > 1.
Proof: We know that after we partition the whole square

into horizontal (or vertical) stripes with size m × (κ log m −
εm), node v can find an entrance node uen on one of dδ log me
disjoint paths within distance κ log m +

√
2c by the triangle

inequality. By Lemma 5, we can get the data rate between u
and uen is Ω((log m)−β−2). In addition, we know there are at
most log m× n

m2 nodes that will share the bandwidth together
due to Lemma 6. Therefore the lower bound of the per-flow
capacity is

Ω(
(log m)−β−2

log m× n
m2

) = Ω(
a

n
)

This finishes the proof.
Clearly, the data rate achievable between destination node

v and the exit node vex is Ω( a
n ) as well by applying Lemma

15 reversely. The remaining part is to compute the per-flow
capacity of highway phase. Then we get our lower bound
of unicast capacity by choosing the minimum one between
draining phase and high-way phase.

Lemma 16: The nodes on the highways can achieve per-
flow capacity rate of Ω( a

n ) with high probability based on a
TDMA schedule when Θ(1) ≤ a ≤ Θ(

√
n).

Proof: By Lemma 5, because any two adjacent nodes
on the highways are at most one cell away and the side-
length c is a constant, any two adjacent nodes on highway
can communicate with each other with constant rate based on
a TDMA schedule.

In addition, we know that if we partition the square with
side length a into a

c1
stripes with size c1 × a, each stripe will

contain at most 2 c1n
a nodes w.h.p., by Lemma 7. Here, c1 can

be rounded up such that a
c1

is integer. Thus, for each node on
the highway, it will relay traffic for at most 2 c1n

a nodes with
high probability. So, the per-flow capacity for each highway
node is Ω( a

n ). This finishes the proof.
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Theorem 17: The per-flow unicast throughput capacity is
Ω( a

n ) when Θ(1) ≤ a ≤ Θ(
√

n).
Proof: Based on Lemma 15 and Lemma 16, this theo-

rem immediately follows when we choose the minimum one
between the lower bound for draining phase and the lower
bound for high way phase as the lower bound of per-flow
unicast capacity.

Next, by calculating a matching upper bound of per-flow
unicast capacity, we can show that our results are indeed tight.

Lemma 18: Given a source/destination pair randomly
placed in a square of side length a, the expected Euclidian
distance between them is c2a for some constant c2.

Theorem 19: There is a constant c3 such that, with proba-
bility at least 1− 2e−nsc2

3/32, the per flow unicast throughput
capacity that can be supported by any routing strategy is at
most c3a

cns
= O( a

ns
).

The detailed proof can be found in Appendix.
Obviously, when a =

√
n, our upper bound shows that the

results in [4] is indeed tight.

C. When a = Ω(
√

n)
When we partition square region Ba into cells with side

length g, as long as we scale g carefully, the highway system
still exists. Notice that here g is not a constant but a function
of a and n, g = θ3

a√
n

, for some constant θ3. In this case, we
use the same routing strategy as described in Subsection IV-B
to give a lower bound of unicast capacity first.

Lemma 20: For a random wireless network with n nodes
randomly placed in Ba, by our routing strategy, the achievable
per-flow unicast throughput capacity is Ω(( a√

n
)−β · 1√

n
) when

a = Ω(
√

n).
Proof: We partition the square Ba into m2 = (a/g)2 =

θ2
3n cells with side length g = θ3

a√
n

. Here we can choose

constant θ3 carefully such that a2

g2 is an integer. Then for any
cell Si, the probability that this cell Si contains at least one
node is 1−e−θ2

3 . Again, by appropriately choosing θ3, we can
make the above probability high enough. So the Euclidean
distance between any two adjacent nodes (both horizontal
and vertical) from the highway system we got by percolation
theorem is bounded by

√
5g. Next, we use a TDMA scheduling

such that a transmitter inside cell Si can transmit iff all
transmitters inside the closest 24 cells keep silent. Since any
two adjacent highway nodes are at most one cell away from
each other, then by Lemma 5, the transmission rate between
any two adjacent nodes u and v on highway system is at least

Ω(||g||−β) = Ω((
√

5c5
a√
n

)−β) = Ω((
a√
n

)−β).

In addition, we know that each node on highway relays packets
for at most 2c1n

a = O(
√

n) nodes by Lemma 7. Thus, the per-
flow unicast capacity is at least

Ω((
a√
n

)−β · 1√
n

)

This finishes our proof.
From now on, we will derive matching upper bound on the

minimum per-flow unicast capacity. We first give the proof of
the existence of a number of cells each of which contains only

a constant number of nodes. Then we give an upper bound on
minimum data rate by showing the congestion in those cells.

Definition 4: We say a cell is quasi-closed cell if it contains
at most c4 nodes, here c4 is some constant. As illustrated
in Figure. 2(a), we call a path of cells quasi-closed cut if it
contains only quasi-closed cells and crosses from left to right
side of Ba. Furthermore, we define the length of a quasi-closed
cut as the total number of cells it contains.

Lemma 21: For any 5
6 < p < 1, there exists a constant c4

such that the probability that any cell contains no more than
c4 nodes is at least p.

Proof: Denoting by x the number of nodes con-
tained in one cell. We know that the expected value of
x is n

a2/(θ3· a√
n

)2
= θ2

3 . According to Lemma 36, we get

Pr (x ≥ c4) <
c4(1− θ2

3
n )

(c4−θ2
3)2

. Thus, Pr (x < c4) ≥ 1 − c4(1− θ2
3

n )

(c4−θ2
3)2

.
For any desired p, we can choose c4 large enough such that
p ≤ 1− c4

(c4−θ2
3)2

. This finishes our proof.

(a) Quasi-closed cut (b) Quasi-closed cell net

Fig. 2. (a) Here a cell is called quasi-closed cell and marked grey if it
contains at most c4 nodes. (b) The colored cells compose a Quasi-closed cell
net.

Lemma 22: Some quasi-closed cuts must be crossed by at
least c5ns unicast sessions w.h.p.., for some constant c5.

Proof: As shown in [4], for all κ > 0 and 5
6 < p < 1

satisfying 2 + κ log(6(1 − p)) < 0, there exists a number of
disjoint groups containing at least dδ log me disjoint paths in
every group, and each group is constraint in a stripe of size
m× (κ log m− εm) cells, for δ small enough satisfying

δ log
p

1− p
+ 1 + κ log(6(1− p)) < 1 (7)

and a non-zero small εm such that the side length of each
stripe is integer. Based on Lemma 21, same results can be
used to prove the existence of our quasi-closed cuts.

For any constant κ ≤ 1
3

m
log m and δ ≥ 1

log m , we pick c4

carefully based on Lemma 21 to make sure that the preceding
inequality (7) is satisfied. Then, w.h.p., there exists at least
three disjoint groups containing at least one quasi-closed cut
in each group, and every group is bounded by a stripe with
width a and height at most a

3 . Here we only focus on the
middle group, for each unicast session, the probability that it
must cross the same quasi-close cut in the middle group is no
less than 1

3 .
Denote by y the number of unicast sessions which cross

the same quasi-closed cut belonging to the middle group.
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According to Lemma 36, we get

Pr
(
y ≤ ns

6

)
≤ e

−2( ns
3 −ns

6 )2

ns

Thus, Pr
(
y > ns

6

)
> 1 − e−

ns
18 . Here if we set c5 as 1

6 , the
lemma follows when ns goes to infinity.

Lemma 23: With high probability, some of the quasi-closed
cells must be crossed by at least c6

ns√
n

unicast sessions for
some constant c6.

Proof: First, we will prove that, w.h.p.. in each group,
there exists a quasi-closed cut whose length is no more than
Θ(
√

n). Since there are at least dδ log a
g e disjoint paths in each

group, and the size of one group is a
g × (κ log a

g − ε a
g
), then

by pigeonhole principle, there exists at least one quasi-closed
cut, say Q, in each group which occupies no more than

a
g × (κ log a

g − ε a
g
)

dδ log a
g e

= O(
a

g
) = O(

√
n)

cells, when g = Θ( a√
n
). Then together with Lemma 22, there

exists at least one cell in Q which is crossed by at least c6
ns√

n
unicast sessions for some constant c6. Notice that it equals to
Θ(
√

n) when ns = Θ(n). This finishes our proof.
Lemma 24: For a random wireless network with n nodes

randomly placed in Ba, the minimum per-flow unicast capacity
is at most O(( a√

n
)−β · 1√

n
) when a = Ω(

√
n).

Proof: According to Lemma 23, we know that for any
routing strategy, there always exist some cells which contain
only constant number of nodes while helping at least c6

√
n

unicast sessions to relay (when ns = Θ(n)). Then the per-flow
unicast capacity is at most

O(
( a√

n
)−β

c6
√

n
) = O((

a√
n

)−β · 1√
n

)

This finishes the proof.
Lemma 20 and Lemma 24 together imply Theorem 25.
Theorem 25: For a random wireless network with n nodes

randomly placed in Ba with a = Ω(
√

n), the minimum per
flow unicast throughput capacity is Θ(( a√

n
)−β · 1√

n
).

Theorem 2 then follows from Theorem 14, Theorem 17,
Theorem 19 and Theorem 25.

V. MULTICAST CAPACITY FOR RANDOM NETWORKS

In this section, we focus on deriving upper bounds for the
multicast capacity. To study the multicast capacity, we first
present one technique lemma which will be frequently used
throughout this section.

Lemma 26: We partition square region Ba into cells with
side length g. Given a multicast session Mi, let Ti be the
multicast tree for Mi and C(Ti) denote the number of cells
used by the multicast tree Ti, then when k < θ4 · a2

g2 , w.h.p.,

C(Ti) ≥ θ3
|EMSTMi

|
g where |EMSTMi | denotes the length

of Euclidean Minimum Spanning Tree spanning Mi, θ3 and
θ4 are some constants.

The detailed proof can be found in Appendix.

A. Upper Bound When a = O(
√

n)
In this subsection, we provide an upper bound of multicast

capacity when a = O(
√

n). Similar as previous approach, we
partition the square region Ba with side length a into cells
with side length c where c is some constant, then the total
number of cells is m2 = a2

c2 = Θ(a2).
Lemma 27: Given one multicast session Mi with one

source and k−1 receivers randomly selected and all receivers
are placed in a square region of side-length a, the Euclidean
minimum spanning tree EMST(Mi) has an expected total
edge length c1

√
ka for a constant c1 ∈ (0, 2

√
2]

Theorem 28: When a = O(
√

n), with probability at least
1 − 2e−nsc2

8/32, the minimum per flow multicast throughout
capacity by any routing strategy, is at most

O(
a

ns

√
k

) (8)

The detailed proof can be found in Appendix.

B. Upper Bound When a = Ω(
√

n)
Our main idea for upper bound on capacity is to show the

existence of quasi-closed cell net i.e., the cell net which is
composed by all quasi-closed cells. Furthermore, by proving
that with high probability, any multicast routing tree will
cross a sufficient large number of quasi-closed cells, we can
show that some cell will be used by many flows i.e., the
congestion in some quasi-closed cells. Please see Figure. 2(b)
for illustration.

Next, we explain our proof in details: First we partition the
square region Ba into m2 = c2

8n cells with side length c8
a√
n

for some constant c8. Then based on the results in [4] and
Lemma 21, we can choose c8 large enough such that Ω(m)
quasi-closed cuts can be partitioned into a number of disjoint
groups each with dδ log me disjoint quasi-closed cuts, and each
group is constraint in a stripe of size m× (κ log m− εm), for
all κ > 0, δ small enough, and a non-zero small εm such
that the side length of each stripe is integer. The same is true
when we partition the square into vertical stripes with side
length m × (κ log m − εm). Notice that all of the horizontal
and vertical stripes together partition Ba into super-cells with
side length

(κ log m− εm)× a

m
= (κ log m− εm)× c8 · a√

n

Theorem 29: When k = O( n
lg2 n

) and ns = Θ(n), with
probability at least 1 − 2e−nsc2

8/32, the minimum per flow
multicast throughout capacity by any routing strategy is at
most O(( a√

n
)−β · 1

ns
·
√

n√
k
).

The detailed proof can be found in Appendix.
Observe that our result matches the upper bound derived

in [5] when a =
√

n. Similar to the Theorem 2 of [5], we
will derive another upper bound on multicast capacity using
different approaches. The basic idea is to show that, for a
random network topology, a cluster of nodes exists, that is
relatively isolated from the rest of the nodes. The separation
distance is at the same order of the size of the isolated cluster
of nodes. Consequently, the average rate of the information
that can be sent/received by the nodes of the cluster is limited.
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Theorem 30: Assume that ns random multicast flows are
generated. The per-flow multicast throughout capacity ϕk(n)
is at most O(( a√

n
)−β(log n)1−

β
2 /(nsp3)), which is

ϕk(n) =

{
O( n

nsk ( a√
n
)−β(log n)−

β
2 ), if k ≤ n

log n

O( 1
ns

( a√
n
)−β(log n)1−

β
2 ), if k ≥ n

log n

(9)

Proof: Similar to the Theorem 2 of [5], we can prove
that, with high probability, there is a cluster of Θ(log n)

nodes inside a cell of size h = a
3

√
log n

n , and the cluster
is separated from the rest of nodes with distance at least
a
3

√
log n

n . Furthermore let p3 be the probability that at least
one node in this isolated cluster is a source or terminal of
a multicast session. Then we can show that p3 = Θ(k log n

n )
when k = O( n

log n ), and p3 = O(1) when k = Ω( n
log n ).

Obviously, the maximum link rate that can be supported for
any link uv with u inside this isolated cluster and v outside
of this cluster is at most log(1 + P ·h−β

N0
) = Θ(h−β) since

h → ∞ when n → ∞. Notice that there are Θ(log n)
nodes inside this isolated cluster. Consequently, the total data
rate that can be transmitted from/to this cluster is at most
Θ(log n) ·Θ(h−β) = Θ(( a√

n
)−β(log n)1−

β
2 ) since each node

inside the cluster can not receive from multiple nodes. Since
there are ns flows and the probability that a given flow has
a receiver node inside this isolated cluster is p3, the expected
number of flows that will have receivers inside this isolated
cluster is p3ns. Using Azuma’s inequality we are able to prove
that with high probability, there are p3ns/2 flows that will have
receivers inside this isolated cluster. Let ϕ be the minimum
per-flow multicast data rate. Thus, we have

ϕ · p3ns/2 ≤ c11(
a√
n

)−β(log n)1−
β
2

for some constant c11. Consequently

ϕ = O((
a√
n

)−β(log n)1−
β
2 /(nsp3)).

The theorem then follows directly.
The preceding upper bound on multicast is derived by

analyzing an isolated cluster of nodes. For a random wireless
network (n nodes randomly distributed in a region Ba, or
nodes following a Poisson distribution with parameter n

a2 ), it
is proved in [13] that, w.h.p., the nearest neighbor graph has an
edge of length Θ(a

√
log n

n ). By exploring this long edge, we
are able to derive another upper bound on multicast capacity.

Theorem 31: The per-flow multicast throughout capacity
ϕk(n) of ns flows, when deployment square Ba has side-
length a = Ω(

√
n) and k = ω(

√
n), is at most

ϕk(n) = O

(
1
ns

n

k

(
a√
n

)−β

(log n)−
β
2

)
(10)

Proof: Assume that the longest edge in the nearest
neighbor graph of the random network is uv. Then for node
v, the probability p3 that it is chosen as a terminal of a given
multicast flow is p3 = k

n . It is easy to show that, with high
probability (at least 1− e−

k2
2n ), the number of multicast flows

that will choose the node v as a terminal is at least nsp3/2

when k = ω(
√

n). Observe that the total data rate that node v

can receive is at most R(v) = O

((
a√
n

)−β

(log n)−
β
2

)
since

the shortest link incident at node v is at least Θ(a
√

log n
n ).

Then we have ϕk(n) · nsp3/2 ≤ R(v). The theorem then
directly follows.

Combining Theorem 29, Theorem 30, and Theorem 31, we
have Theorem 4. When ns = n and a =

√
n, we have

Corollary 32: The per-flow multicast throughout capacity
ϕk(n) of n flows for networks in B√n is at most

ϕk(n) =

{
O( 1√

n
√

k
) if k ≤ n

(log n)β

O( 1
k (log n)−

β
2 ), if k ≥ n

(log n)β

(11)

In a summary, we can get Theorem 3 based on above
discussions. Observe that our upper bound on multicast ca-
pacity is achievable when k = n for broadcast [19] and
k = O( n

(log n)2β+6 ) [20]. Our upper bounds also improve the
result in [5].

VI. LITERATURE REVIEWS

Gupta and Kumar [3] studied the asymptotic capacity of a
multi-hop wireless networks for two different models. When
each wireless node is capable of transmitting at W bits per
second using a fixed range, the throughput obtainable by each
node for a randomly chosen destination is Θ( W√

n log n
) bits per

second under a non-interference protocol, where n in number
of nodes. If nodes are optimally assigned and transmission
range is optimally chosen, even under optimal circumstances,
the throughput is only Θ( W√

n
) bits per second for each node.

Similar results also hold for physical interference model.
Notice that the results presented in [3] did not consider the
additional burden in coordinating access to wireless channels,
the effect of mobility and link failures, the effect of the need
to route traffic in a distributed way. They also did not address
the delay of the route. The delay could caused by burst traffic
or when nodes are mobile and links are not stable. It can also
be imagined that using directional antennas or beam-forming
will help to improve the spatially concurrency of transmissions
and thus the capacity of the networks.

Grossglauser and Tse [7] recently showed that mobility
actually can help to improve the capacity if we allow arbitrary
large delay. Their main result shows that the average long-term
throughput per source-destination pair can be kept constant
even as the number of nodes per unit area increases. Notice
that this is in sharp contrast to the fixed network scenario
(when nodes are static after random deployment). The main
idea used in [7] is to use some intermediate node to serve as
ferry node: this node will carry the data from the source node
and move around and it will dump the data to the target node
when it is within its communication range. In other words,
essentially, the result presented in [7] still obey the capacity
bound proposed in [3]: the capacity is improved because the
average distance L a packet has to be transmitted is reduced
from Θ(1) in [3] to Θ(r(n)) in [7]. In summary, for random
networks, under the protocol model, the achievable throughput
capacity λ(n) and the average travel distance L satisfies



9

λ(n) · L ≤ Θ( W
∆2n·r(n) ). This phenomenon has also been

observed in [10]. They found that the traffic pattern determines
whether the per node capacity of a wireless network will scale
to large networks. They observed that non-local traffic patterns
in which the average distance grows with the network size
result in a rapid decrease of per node capacity. They also
examined the interactions of the 802.11 MAC and the ad hoc
forwarding and the effect on the capacity of wireless networks.
Although 802.11 discovers reasonably good schedules, they
nonetheless observed capacities markedly less than the optimal
even for very simple networks, such as chain and lattice
networks, with very regular traffic patterns. This confirms the
importance of using carefully designed transmission schedule
to improve the network throughput whenever it is possible.

In [3], the capacity of wireless networks are solved under
a number of assumptions, among them point-to-point coding
which excludes for example the multi-access and broadcast
codes. In [6] Gastpar and Vetterli studied the capacity of wire-
less networks when network coding can be used to improve
the capacity. They essentially considered the same physical
model under different traffic pattern (relay traffic pattern).
They allow for arbitrary complex network coding. In their
model, there is only one source and destination pair while
all other nodes will assist this transmission. They show that
the capacity of such wireless networks with n nodes under
relay traffic pattern behaves like log n bits per second. This
demonstrates the power of network coding: under the point-
to-point coding assumption considered in [3], the achievable
data rate is constant, independent of the number of nodes.

Broadcast capacity of an arbitrary network has been studied
in [9], [14]. They essentially show that the broadcast capacity
of a given network is Θ(W ) for single source broadcast and
the achievable broadcast capacity per node is only Θ(W/n)
if each of the n nodes will serve as source node.

Multicast capacity was recently studied in the literature,
e.g., [11], [12], [15], [16], just name a few. Jacquet and
Rodolakis [16] studied the scaling properties of multicast for
random wireless networks. They claimed that the maximum
rate at which a node can transmit multicast data is O( W

kn log n ).
Li et al. [11], [12] studied asymptotic multicast capacity
for protocol interference model. Assume for each node vi

(1 ≤ i ≤ n), randomly and independently pick k − 1
points pi,j (1 ≤ j ≤ k − 1) from the square, and then
vi multicast data to the nearest node for each pi,j . They
defined the aggregated multicast capacity as the total data rate
of all multicast sessions in the network and then gave the
matching asymptotic upper bounds and lower bounds for it.
They showed the total multicast capacity is Θ(

√
n

log n · W√
k
)

when k = O( n
log n ) and when k = Ω( n

log n ), the total multicast
capacity is equal to the broadcast capacity, i.e., Θ(W ). Mao
et al. [18] studied the multicast capacity for hybrid networks.
They derived several capacity regimes based on the relations
of the number k of receivers per multicast session, the total
number n of nodes, and the number m of base stations.

Instead of studying the capacity problem either under
protocol model or physical model, Franceschetti et al. [4]
addressed the unicast capacity under Gaussian Channel, they

proposed a routing and scheduling scheme using high way
system based on percolation theorem and proved that a rate
1√
n

is achievable in networks of randomly located nodes when
Gaussian channel is used. Zheng [19] pointed out that using
multihop relay, the rate of broadcasting continuous stream
is Θ((log n)−

β
2 ) in random extended networks. Regardless

of the density, information can diffuse at constant speed,
i.e., Θ(1). Most recently, Li et al. [20] proposed that, when
nd = O( n

(log n)2β+6 ) and ns = Ω(n
1
2+θ), the achieving per-

session multicast throughput is w.h.p. of order Ω(
√

n
ns
√

nd
)

using percolation model, where θ > 0 is a constant. All
the above results are derived under the bounded propagation
model ( [21]) and for a single network. Gupta et al [22]
study the transport capacity of the Gaussian multiple access
channel (MAC), which consists of multiple transmitters and
a single receiver, and the Gaussian broadcast channel (BC),
which consists of a single transmitter and multiple receivers.
Recently, Toumpis [17] study the capacity bounds when the
traffic is non-uniform, i.e., not all nodes are required to
receive and send similar volumes of traffic. Their results are
asymptotic, i.e., they hold with probability going to unity as
the number of nodes goes to infinity. Keshavarz-Haddad and
Riedi [5] derived some upper bounds on multicast capacity
for Gaussian channel model. They also present algorithms
for multicast and claimed that the capacity achieved by their
method matches the upper bound. Their bounds are not tight,
e.g., rate of W is not achievable when k ≥ n

log n .

VII. CONCLUSIONS

In this paper, we studied the impact of the size of the
deployment region on the asymptotic unicast and multicast
throughput capacity for wireless networks under Gaussian
channel model. We derived asymptotic matching upper-bounds
and lower-bounds of unicast capacity for arbitrary and random
wireless networks in different cases. Our upper-bounds im-
prove the previous result and uses new analyzing techniques.
A number of interesting and challenging questions remain
as future work. The first question is to close the gap on
multicast capacity by presenting possibly new tight upper-
bounds and designing algorithms to achieve the asymptotic
multicast capacity. Next, what will be the multicast capacity
when nodes have different transmission power, or each node
can adjust the transmission power during the communication?
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VIII. APPENDIX

A. Useful Known Results

Throughout this paper, we will repeatedly use the following
results from probability theory literature.

Lemma 33 (Azuma’s Inequality): Suppose that random
variables X0, X1, X2, · · · , Xn, · · · are martingale and
|Xk −Xk−1| ≤ ak almost surely for any k ≥ 1. Then for all
positive integers N and all positive real number t, we have

Pr (|XN −X0| ≥ t) ≤ 2 exp

(
− t2

2
∑N

i=1 a2
k

)

Recall that here a sequence of random variables Xi, 0 ≤
i, are called martingale if they satisfy that: E(XN+1 |
X0, X1, · · · , XN ) = XN .

Lemma 34 (Chebyshev’s Inequality): For a variable X ,

Pr (|X − µ| ≥ A) ≤ V ar(X)
A2

,

where µ = E(X), V ar(X) is the variance of X , and A > 0.
Lemma 35 (Law of large numbers): Consider n uncorre-

lated variables Xi, 1 ≤ i ≤ n with same expected value
µ = E(Xi) and variance σ2 = V ar(Xi). Let X =

∑n
i=1 Xi

n .
∀ε > 0,

Pr
(|X − µ| < ε

) ≥ 1− σ2

n · ε2 .

Lemma 36 (Binomial Distribution): Consider n indepen-
dent variables Xi ∈ {0, 1}, p = Pr (Xi = 1), and X =∑n

i=1 Xi.
{

Pr (X ≤ ξ) ≤ e
−2(n·p−ξ)2

n , when 0 < ξ ≤ n · p.

Pr (X > ξ) < ξ(1−p)
(ξ−n·p)2 , when ξ > n · p.

(12)

Lemma 37: [4] For a Poisson random variable X of pa-
rameter λ,

Pr (X ≥ x) ≤ e−λ(eλ)x

xx
, for x > λ

B. Proof of some technical lemmas

Proof for Lemma 5:
Proof: We use the similar idea as Theorem 3 in [4] to

prove this. We first partition the square into a2

c2 cells with side
length c, here c can be rounded such that a2

c2 is an integer.
Then we divide time into a sequence of q = (c3(d + 1))2

successive mini-time-slots. Here, c3 is a constant no less than
2 and can be rounded such that q is an integer. Then based
on a TDMA schedule, in each mini-time-slot, we let only one
node in each of the disjoint sets (square with color grey) to
transmit simultaneously.

First, we know the distance between u and v is at most√
2(d+1)c. Hence, the signal strength received by v is at least

S(u, v) ≥ P · `(√2(d + 1)c) = P ·min{1, (
√

2(d + 1)c)−β}.
Next,we analyze the total interference received by v based on
our TDMA scheduling described above. Given a transmitter u
in one cell si, we know the receiver v is in some cell that is at
most d-cells apart from si. The total interference caused by all
other simultaneous transmissions can be computed as follows.
First, any transmitter located in one of the eight closest cells
is at least c3(d + 1) − (d + 1) cells away from v, then the
Euclidean distance is at least c · (c3(d + 1)− (d + 1)). Next,
any transmitter of the sixteen next closest cells has Euclidean
distance from v is at least c · (2c3(d + 1) − (d + 1)), and so
forth. Thus, the total interference caused by all simultaneous
transmitters is

I(u, v) ≤
∞∑

i=1

8i · P · (c · i · (c3 − 1)d + i · c3 − 1)−β

≤
∞∑

i=1

8P

cβ

i

(i(c3 − 1)d)β
=

8P

(c3 − 1)β(cd)β

∞∑

i=1

1
iβ−1

Clearly, when β > 2, the summation in the above formula
converges. So the total interference is at most c2P · (cd)−β ,
here c2 = 8

(c3−1)β

∑∞
i=1

1
iβ−1 is a constant.

We can get the data rate R(u, v) is at least

R(u, v) = log(1 +
S(u, v)

N0 + I(u, v)
)

≥ log(1 +
P ·min{1, (

√
2(d + 1)c)−β}

N0 + c2P (cd)−β
)

which does not depend on n.
Clearly, when both c and d are constants, R(u, v) = Θ(1).

When c · d → ∞, by taking the limit for c · d → ∞ and by
the fact that every transmitter can transmit once every q2 =
(c3(d + 1))2 mini-time-slots, the lemma follows.
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Proof for Lemma 6:
Proof: The proof follows from Lemma 37. Let An be the

event that there is at least one cell with more than log a
c × nc2

a2

nodes. Since the number of nodes x in each cell of the partition
is a Poisson random variable of parameter nc2

a2 , by the union
the Chernoff bounds, we have Pr(An) ≤ (a

c )2 Pr(x > log a
c×

nc2

a2 ) ≤ (a
c )2e−

nc2

a2 (
nc2

a2 e

log a
c×nc2

a2
)

nc2

a2 log a
c

. which tends to 0 as n

tends to infinity.

Proof for Lemma 7:
Proof: Let x be the number of nodes falling in one rectan-

gle with size c1 × a and An be the event that there is at least
one rectangle with more than nodes, by Lemma 37, we get

Pr(An) ≤
√

n
c1
×Pr(x > c1

√
n) ≤

√
n

c1
e−c1

√
n( ec1

√
n

c1
√

n
)
2c1

√
n

=
√

n
c1

e−c1
√

n( e
2 )2c1

√
n. When n tends to infinity, it goes to 0.

This finishes the proof.

Proof for Theorem 19:
Proof: First, we partition Ba into cells with side length c,

here c is some constant. Let C(Pi) denote the number of cells a
routing path Pi will use, i.e., the number of cells crossed by Pi.
Let variable L =

∑ns

i=1 C(Pi), denoting the total load of all
cells. Here the load of a cell by a routing method is the number
of flows visiting the cell for the unicast path constructed. Then
L ≥ ∑ns

i=1 li/(
√

2 a
m ), where li denotes the Euclidian distance

between the i-th source/destination pair.
Define random variables Xq =

∑q
j=1(lj − E(lj)).

Then E(Xq+1 | X1, · · · , Xq) = E(
∑q+1

j=1(lj − E(lj)) |
X1, · · · , Xq) = E(

∑q
j=1(lj − E(lj)) + (lq+1 − E(lq+1) |

X1, · · · , Xq) = Xq + E(lq+1 − E(lq+1)) = Xq . In other
words, variables Xi are martingale.

In addition, |Xq − Xq−1| = |lq − E(lq)| ≤ √
2a.

Note that the last inequality holds for any lq [12].
From Azuma’s Inequality, we have Pr (|Xns −X0| ≥ t) ≤
2 exp(− t2

2
∑ns

i=1 8a2 ). Let t = ε
∑ns

i=1 E(|li|). Clearly, εnsc3a ≤
t ≤ εns

√
2a for some constant c3. Note that X0 = 0.

Then, Pr (
∑ns

i=1 li ≤
∑ns

i=1 E(li)− t) ≤ Pr (|Xns | ≥ t) ≤
exp(− t2

2
∑ns

i=1 8a2 ) ≤ exp(− (εnsc3a)2

8nsa2 ) = exp(−nsε2c2
3

8 ). Thus,
for a constant ε ∈ (0, 1),

Pr

(
ns∑

i=1

li ≤ (1− ε)ns

√
2a

)
≤ 2e−

nsε2c23
8

Thus, by letting ε = 1
2 , we have Pr

(∑ns

i=1 li ≥ ns

√
2a/2

) ≥
1− 2e−nsc2

3/32. Then, Pr (L ≥ nsm/2) ≥ 1− 2e−nsc2
3/32.

Recall that L denotes the total load of all cells. Then by
pigeonhole principle, with probability at least 1− 2e−nsc2

3/32,
there is at least one cell, that will be used by at least nsc3m

m2

flows. According to Lemma 9, we know that the capacity of a
cell with constant side length is O(1). Thus, with probability
at least 1 − 2e−nsc2

3/32, the minimum data rate that can be
supported using any routing strategy, due to the congestion in
some cell, is 1

nsm

c3m2
= c3m

ns
= c3a

cns
= O( a

ns
), since m = a/c

for some constant c.

Proof for Lemma 26:

Proof: We will prove this lemma using some existing
results under protocol model, especially the area argument
[12]. For the sake of our proof, assume that every node has
an artificial “transmission radius” r such that each node v
can only communicate with other nodes in its transmission
range (a transmitting disk with its center at v and radius r). In
addition, we define the area covered by a tree T as the union of
its nodes’ transmitting disks. Then by showing a lower bound
on the area of the region covered by any multicast tree T , we
can give the desired lower bound on the number of cells it
will cross.

Recall Lemma 11 in [11], it is proved that in protocol model,
the area of the region D(T ), w.h.p., is at least θ0

√
kar when

k < θ1 · a2

r2 for some constant θ0 and θ1. Here r denotes
the transmission range of each node in protocol model and
D(T ) denotes the region covered by all transmitting disks of
all transmitting nodes (internal nodes of T ) in the any multicast
tree T . Unfortunately, this result can not help us directly, since
in our model, each node has no fixed transmission range r.
Instead, any pair of nodes can communicate with each other
even though the data rate may be very small. Based on the
original network under Gaussian channel model, we construct
a new network under protocol model as follows.

1) Set each node’s transmission range as the side length of
each cell g.

2) Add some artificial “additional relay nodes” Vad such that
any pair of nodes will have enough relay nodes along its
link to make sure that the minimum number of cells the
routing path crosses under protocol model is no more than
the number of cells the direct link will cross in Gaussian
channel model. Notice that Vad cannot be selected as
source or receivers, they can only act as relay nodes.

Let T be any multicast tree in original network under Gaussian
channel model and Tp denote the corresponding multicast
tree( spanning the same multicast session) constructed on
this network under protocol model. We have two important
observations here:

1) Our preceding two modifications will not affect the proof
for Lemma 11 in [11]. In other words, the lower bound
on |D(Tp)| still holds,

2) Furthermore, any link in Gaussian channel model can
be simulated by using these artificial “additional relay
nodes” in the protocol model such that the number of
cells it will cross is not increased. So the lower bound of
C(T ) is no smaller than the lower bound of C(Tp).

Together with Lemma 11 in [11], we get

D(Tp) ≥ θ0

√
kar = θ0

√
kag (13)

Since one transmitting disk can cover no more than 4 cells,
we have C(Tp) ≥ θ0

√
kag/4× g2 = θ0

4 ·
√

ka
g . It follows that

when k < θ4 · a2

g2 , with high probability,

C(T ) ≥ θ0

4
·
√

ka

g
.

Since |EMST | ≤ 2
√

2
√

ka, if we set θ3 as θ0
4 /2

√
2, our

lemma follows.

Proof for Theorem 28:
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Proof: Let variable L =
∑ns

i=1 C(Ti), denoting the total
load of all cells. Here the load of a cell by a routing method
is the number of flows visiting the cell for the multicast tree
constructed. Then based on Lemma 26, we know that L ≥∑ns

i=1 θ3|EMST(Mi)|/( a
m ) with high probability. Notice that

E(
∑ns

i=1 |EMST(Mi)|) = nsc7a
√

k.
Define random variables Xq =

∑q
j=1(|EMST(Mj)| −

E(|EMST(Mj)|)). Then E(Xq+1 | X1, · · · , Xq) =
E(

∑q+1
j=1(lj−E(lj)) | X1, · · · , Xq) = E(

∑q
j=1(lj−E(lj))+

(lq+1−E(lq+1) | X1, · · · , Xq) = Xq +E(lq+1−E(lq+1)) =
Xq , so variables Xi are martingale.
|Xq − Xq−1| = ||EMST(Mq)| − E(|EMST(Mq)|)| ≤

E(|EMST(Mq))| ≤ 2
√

2
√

ka. This inequality holds for any
EMST(Mq) [12].

From Azuma’s Inequality, we have Pr (|Xns
−X0| ≥ t) ≤

2 exp(− t2

2
∑ns

i=1 8ka2 ) Let t = ε
∑ns

i=1 E(EMST(Mi)). Clearly,

εnsc8

√
ka ≤ t ≤ 2

√
2nsε

√
ka. Note that X0 = 0. Then,

Pr (
∑ns

i=1 |EMST(Mi)| ≤
∑ns

i=1 E(|EMST(Mi)|)− t) ≤
Pr (|Xns

| ≥ t) ≤ exp(− t2

2
∑ns

i=1 8ka2 ) ≤
exp(− (εnsc8

√
ka)2

8nska2 ) = exp(−nsε2c2
8

8 ). Thus, for a constant
ε ∈ (0, 1),

Pr

(
ns∑

i=1

|EMST(Mi)| ≤ (1− ε)nsc9

√
ka

)
≤ 2e−

nsε2c28
8

Then by letting ε = 1
2 , we have

Pr

(
ns∑

i=1

|EMST(Mi)| ≥ nsc9

√
ka/2

)
≥ 1− 2e−nsc2

8/32.

Based on Lemma 26, we get

Pr
(
L ≥ nsθ3c9

√
km/2

)
≥ 1− 2e−nsc2

8/32.

It implies that

Pr
(
L ≥ nsθ3c9

√
km/2

)
≥ 1− 2e−nsc2

8/32 if k ≤ θ1

√
n.

(14)
Recall that L denotes the total load of all cells. Then by

pigeonhole principle, with probability at least 1− 2e−nsc2
8/32,

there is at least one cell, that will be used by at least nsc10
√

km
m2

flows where c10 = θ3c9. Again, according to Lemma 9, the
capacity of a cell with constant side length is O(1). Thus,
when ns = Θ(n), with probability at least 1 − 2e−nsc2

8/32,
the minimum data rate that can be supported using cellular
routing strategy is at most, for any routing strategy, due to the
congestion in some cell, 1

nsc10
√

km

m2

= m
c10ns

√
k

= O( a
ns

√
k
).

This finishes the proof of the theorem.

Proof for Theorem 29:
Proof: Our proof again is to analyze the load of some

cells. We use L to denote the total load of all cells. Then we get
L ≥ ∑ns

i=1 θ3|EMST (Mi)|/
(
(κ log m− εm)× a

m

)
based on

Lemma 26. Since Pr
(∑ns

i=1 |EMST(Mi)| ≥ nsc9

√
ka/2

)
≥

1− 2e−nsc2
8/32, from Lemma 26, we get

Pr
(

L ≥ nsc10

√
k

m

lg m

)
≥ 1− 2e−nsc2

8/32.

for some constant c10 = c9θ3. Here we use L to denote the
total number of flows crossing some super-cell. Notice that
here “crossing” means visiting and leaving. We get,

Pr
(
L ≥ L− nsk = nsc10

√
k

m

lg m
/2− nsk

)
≥ 1−2e−nsc2

8/32.

It is easy to show that, any multicast routing tree will cross
at least dδ lg me quasi-closed cuts if it crosses three super-
cells. Denoted by L′ the total number of flows crossing some
quasi-closed cut. We have L′ ≥ L

3 × dδ lg me.
It follows that, with probability at least 1− 2e−nsc2

8/32, the
total load of all quasi-closed cell is at least

nsc10

√
k m

lg m/2− nsk

3
× dδ lg me.

Then by pigeonhole principle, with probability at least 1 −
2e−nsc2

8/32, there is at least one quasi-closed cell, that will be

used by at least
nsc10

√
k m

lg m
/2−nsk

3 ×dδ lg me
m2 flows which can be

rewritten as

θ2
ns

√
k√

n

for some constant θ2 when k = O(( m
lg m )2). Then with

probability at least 1 − 2e−nsc2
8/32, the minimum data rate

that can be supported using any routing strategy, due to the
congestion in some quasi-closed cell, is at most

O(
( a√

n
)−β

√
n

θ2ns

√
k

) = O((
a√
n

)−β · 1
ns
·
√

n√
k

), (15)

when the number of receivers k per-flow is O( n
log2 n

).


