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The paper studies topology control in heterogeneous wireless sensor networks, where different
wireless sensors may have different maximum transmission ranges and two nodes can communicate
directly with each other if and only if they are within the maximum transmission range of each
other. We present several localized topology control strategies in which every wireless sensor
maintains logical communication links to only a selected small subset of its physical neighbors
using information of sensors within its local neighborhood in heterogeneous network environment.
We prove that the global logical network topologies formed by these locally selected links are sparse
and/or power efficient and our methods are communication efficient. Here a structure is power
efficient if the total power consumption of the least cost path connecting any two nodes in it is no
more than a small constant factor of that in the original heterogeneous communication network.
By utilizing the wireless broadcast channel capability, and assuming that a message sent by a
sensor node will be received by all sensors within its transmission region with at most a constant
number of transmissions, we prove that all our methods use at most O(n) total messages, where
each message has O(log n) bits. We also conduct extensive simulations to study the practical
performances of our methods.

Categories and Subject Descriptors: C.2.1 [Network Architecture and Design]: Wireless
communication, Network topology; G.2.2 [Graph Theory]: Network problems, Graph algorithms

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: Graph theory, wireless sensor networks, topology control,
heterogeneous networks, power consumption, degree-bounded structure.

1. INTRODUCTION

In wireless ad hoc networks, e.g., the wireless sensor networks, an important re-
quirement is that the network should be self-organized, i.e., transmission ranges
and data paths are dynamically restructured with changing network conditions,
especially the connectivity. In wireless sensor networks, the network has to deter-
mine for each sensor which communication links to its physical neighboring sensors
it has to maintain such that the global logical network topology satisfies some
properties that are important for the long time network performances. Localized
wireless network topology control scheme is to let each wireless node locally adjust
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its transmission power and select which physical neighbors to communicate accord-
ing to a certain strategy, while maintaining a structure that can support energy
efficient routing and can improve the overall network performances. Hence it can
efficiently conserve the transmission energy from soft aspects with low cost.

In the past several years, topology control algorithms have drawn a significant
amount of research interests. Centralized algorithms can achieve optimality or
some approximations, which are more applicable to static network conditions due
to the lack of adaptability to dynamic changes. In contrast, distributed algorithms
are more suitable for dynamic wireless sensor networks since the environment is
inherently dynamic and they are adaptive to topology changes at the cost of pos-
sible less optimality. Furthermore, these localized topology control algorithms, run
by each individual node, only attempt to selectively choose some communication
neighbors of this node. The primary distributed topology control algorithms for ad
hoc networks and sensor networks aim to maintain network connectivity, optimize
network throughput with power-efficient routing, conserve energy and increase the
fault tolerance.

Most prior art [Hu 1993; Li et al. 2001; Li et al. 2001; Li et al. 2002; Ramanathan
and Rosales-Hain 2000; Wattenhofer et al. 2001] on network topology control as-
sumed that wireless ad hoc or sensor networks are modelled by unit disk graphs
(UDG), i.e., two mobile hosts can communicate as long as their Euclidean distance
is no more than a threshold. However, practically, wireless ad hoc networks cannot
be perfectly modelled as UDGs: the maximum transmission ranges of wireless de-
vices may vary due to various reasons such as the device differences and the small
mechanic/electronic errors during the process of transmitting even the transmission
powers of all devices are set the same initially. In [Barriere et al. 2001; Kuhn and
Zollinger 2003], the authors extended UDG into a new model, called quasi unit
disk graphs, which is closer to reality than UDG. In this paper, we study a more
generalized model. Each wireless node u may have its own transmission radius
ru. Then heterogeneous wireless networks are modelled by mutual inclusion graphs
(MG): two nodes can communicate directly only if they are within the transmission
range of each other, i.e., it has a physical link uv if and only if ‖uv‖ ≤ min(ru, rv).
Clearly UDG is a special case of MG. Obviously, in the MG graph model for het-
erogeneous wireless ad hoc networks, a link uv is always symmetric, i.e., u and v
can communicate directly with each other. We adopt this symmetric communi-
cation model since uni-directed links in wireless ad hoc networks are shown to be
costly [Prakash 1999]. The topology control for wireless networks modelled by UDG
has been investigated by a considerable amount of research efforts. The topology
control for heterogeneous networks is even harder, since many properties in homo-
geneous networks disappear in heterogeneous networks. Thus, we cannot simply
extend the ideas from the well-studied topologies, such as GG, RNG and Yao, used
in homogeneous networks to heterogeneous wireless networks.

The main contributions of this paper are as follows. We present several localized
topology control strategies in which every wireless sensor maintains communications
to only a selected small subset of its physical neighbors in heterogeneous network
environment. Here an algorithm is said to construct a topology H locally if, every
node u can decide which edges uv belong to H using only the information of nodes
ACM Transactions on Sensor Networks, Vol. 2, No. 3, 04 2005.
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within a constant number of hops of u. We prove that the global logical network
topologies formed by these locally selected links are sparse and/or power efficient
and our methods are communication efficient. Here a structure is power efficient
if the total power consumption of the least cost path connecting any two nodes
in it is no more than a small constant factor of that in the original heterogeneous
communication network. By utilizing the wireless broadcast channel capability, and
assuming that a message sent by a sensor node will be received by all sensors within
its transmission region with at most a constant number of transmissions, we prove
that all our methods use at most O(n) total messages, where each message has
O(log n) bits. By further assuming that the transmission ranges of two neighboring
nodes are within a constant γ factor of each other (such wireless network is called
smoothed), we prove that some of the proposed structures also have a constant
bounded logical node degree. We also conduct extensive simulations to study the
practical performances of our methods.

The rest of the paper is organized as follows. In Section 2, we introduce the
background and review previous methods. Limitations on heterogeneous network
topology control are discussed in Section 3. We describe various localized methods
in which individual wireless sensor nodes collectively form a sparse structure in Sec-
tion 4, form a sparse power spanner in Section 5, and form a degree-bounded power
and length spanner in Section 6. We also analyze the communication complexities
of these methods. Our theoretical results are corroborated in the simulations in
Section 7. We conclude our paper in Section 8 with the discussion of future works.

2. PRELIMINARIES

2.1 Heterogeneous Wireless Network Model

A heterogeneous wireless network, e.g., wireless sensor networks, is composed of a
set V of n wireless devices (called node hereafter) v1, v2, · · · , vn, in which each node
vi has its own maximum transmission power p′i. Let εi be the mechanic/electronic
error of a node vi in its power control. Then the maximum transmission power
considered in this paper is actually pi = p′i − ε. We adopt a common assumption
in the literature that the power needed to support the communication between
two nodes vi and vj is ‖vivj‖β , where β ∈ [2, 5] is a real number depending on the
environment and ‖vivj‖ is the Euclidean distance between vi and vj . Consequently,
the signal sent by a node vi can be received by all nodes vj with ‖vivj‖ ≤ ri, where
rβ
i ≤ pi/p0, p0 is the uniform threshold that a signal with power p0 can be recognized

by a node. 3 Thus, for simplicity, we assume that each mobile host vi has its own
transmission range ri. The heterogeneous wireless ad hoc network is then modelled
by a mutual inclusion graph (MG), where two nodes vi, vj are connected if and only
if they are within the transmission range of each other, i.e., ‖vivj‖ ≤ min(ri, rj).
Previously, only a few methods are known for topology control when the networks
are modelled as mutual inclusion graphs.

3Notice that, in practice, not all nodes within distance of ri of node vi can receive the signal sent
by vi. We adopt the model used here because of two reasons: first, it is the model that is widely
used for the theoretical study of heterogeneous wireless ad hoc networks; second, using this model,
we are able to show that our methods generate topologies with some nice properties.
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In this paper, we also assume that each wireless node knows its geometry position

either via GPS or some localization methods [Cheng et al. ; Hu and Evans 2004].
Notice that given the estimated geometry positions of all wireless nodes, we can de-
rive the mutual inclusion communication network topology (called derived network
topology) (DMG) which has a link vivj if and only if ‖vivj‖ ≤ min(ri, rj). Here
vi denotes the estimated geometry position of the wireless node vi. In this paper,
we assume that the structure DMG is same as the physical communication net-
work MG even under the presence of the geometry position error (i.e., the distance
‖vivi‖ between estimated location vi and its physical location vi) by a localization
method. The correctness of our methods do not require that each wireless node
knows the exact geometry position information. But on the other hand, the spanner
properties proved for our methods do depend on the the localization precision.

2.2 Current State of Knowledge

Many structures were proposed for topology control in homogeneous wireless ad hoc
networks. Due to limited spaces, we will briefly review some of proximity geometric
structures. The relative neighborhood graph [Toussaint 1980] RNG(V ) consists of
all edges uv such that the intersection of two circles centered at u and v and with
radius ‖uv‖ do not contain any vertex w from V . The Gabriel graph [Gabriel and
Sokal 1969] GG(V ) contains edge uv if and only if disk(u, v) contains no other
vertices of V , where disk(u, v) is the disk with edge uv as a diameter. Both GG(V )
and RNG(V ) are connected, planar, and contain the Euclidean minimum spanning
tree of V . The intersections of GG(V ), RNG(V ) with a connected UDG(V ) are
connected. Delaunay triangulation, denoted by Del(V ), is also used as underlying
structure by several routing protocols. Here a triangle 4uvw belongs to Del(V ) if
its circumcircle does not contain any node inside. It is well known that RNG(V ) ⊆
GG(V ) ⊆ Del(V ). The intersection of Del(V ) with a connected UDG(V ) has a
bounded length spanning ratio [Li et al. 2002].

The Yao graph [Yao 1982] with an integer parameter k ≥ 6, denoted by
−−→
Y Gk(V ),

is defined as follows. At each node u, any k equally-separated rays originated at u
define k cones. In each cone, choose the shortest edge uv among all edges from u, if
there is any, and add a directed link −→uv. Ties are broken arbitrarily or by ID. The
resulting directed graph is called the Yao graph. Let Y Gk(V ) be the undirected
graph by ignoring the direction of each link in

−−→
Y Gk(V ). Some researchers used

a similar construction named θ-graph [Lukovszki 1999], the difference is that it
chooses the edge which has the shortest projection on the axis of each cone instead
of the shortest edge in each cone.

The initial effort for topology control in heterogeneous wireless networks was
reported in [Song et al. 2003] by the same authors of this paper. In [Song et al.
2003], we showed how to perform topology control based on Yao structure for het-
erogeneous wireless networks. Recently, several structures that extend the relative
neighborhood graph and local minimum spanning tree were proposed in [Li et al.
2004] for topology control in heterogeneous wireless networks. They build directed
network topologies while the methods presented here build undirected topologies
that are beneficial for routing. Since their original methods cannot preserve the
network connectivity, two structures were proposed in the online version of their
ACM Transactions on Sensor Networks, Vol. 2, No. 3, 04 2005.
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paper [Li et al. 2004]: an extended relative neighborhood graph and an extended
local minimum spanning tree.

2.3 Spanners and Stretch Factors

When constructing a subgraph of the original communication network MG, we may
need consume more power to connect some nodes since we may disconnect the most
power efficient path connecting them in MG. Thus, naturally, we would require that
the constructed structure approximates MG well in terms of the power consumption
for unicast routing. In graph theoretical term, the structure should be a spanner
[Arya et al. 1995; Lukovszki 1999]. Let G = (V,E) be a n-vertex weighted connected
graph. The distance in G between two vertices u, v ∈ V is the length of the shortest
path between u and v and it is denoted by dG(u, v). A subgraph H = (V, E′), where
E′ ⊆ E, is a t-spanner of G if for every u, v ∈ V , dH(u, v) ≤ t·dG(u, v). The value of
t is called the stretch factor or spanning ratio. When the graph is a geometric graph
and the weight is the Euclidean distance between two vertices, the stretch factor
t is called the length stretch factor, denoted by `H(G). For wireless networks, the
mobile devices are usually powered by batteries only. We thus pay more attention
to the power consumptions. When the weight of a link uv ∈ G is defined as the
power to support the communication of link uv, the stretch factor of H is called the
power stretch factor, denoted by ρH(G) hereafter. The power, denoted by pG(u, v),
needed to support the communication between a link uv in G is often assumed to
be ‖uv‖β , where 2 ≤ β ≤ 5. Obviously, for any weighted graph G and a subgraph
H ⊆ G, we have the following lemma (the detailed proof can be found in [Li et al.
2001]):

Lemma 1. [Li et al. 2001] Graph H has stretch factor δ if and only if for any
link uv ∈ G, dH(u, v) ≤ δ · dG(u, v).

Thus, to generate a spanner H with spanning ratio ρ, we only have to make sure
that every link uv of G is approximated within a constant factor ρ: there is a path
connecting u and v in H with weight at most ρ times the weight of uv.

2.4 Sparseness and Bounded Degree

All well-known proximity graphs (GG(V ), RNG(V ), Del(V ) and Y G(V )) have
been proved to be sparse graphs when network is modelled as a UDG. Recall that
a sparse graph means the number of edges is linear with the number of nodes.
The sparseness of all well-known proximity graphs implies that the average node
degree4 is bounded by a constant. Moreover, we prefer the maximum node degree
is bounded by a constant, because wireless nodes have limited resources and a
large number of communication neighbors often implies huge signal interference in
wireless communications. In addition, unbounded degree (or in-degree) at a node
u will often cause large overhead at u, whereas a bounded degree increases the
network throughput. In addition, bounded degree will also give us advantages when

4Throughout this paper, we use node degree as an alternative of logical node degree, i.e., the
number of selected neighbors, unless we explicitly use physical node degree to denote the number
of nodes within transmission radius. Similarly, without causing confusion, when we talk about
links, we always mean logical links.
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apply several routing algorithms. Therefore, it is often imperative to construct a
sparse network topology with a bounded node degree while it is still power-efficient.
However, Li et al. [Li et al. 2001] showed that the maximum node degree of RNG,
GG and Yao could be as large as n − 1. The instance consists of n − 1 nodes vi

lying on the unit circle centered at a node u ∈ V . Then each edge uvi belongs to
the RNG(V ), GG(V ) and

−−→
Y Gk(V ).

Recently, in homogeneous wireless ad hoc networks, some improved or combined
proximity graphs [Wang and Li 2003; Song et al. 2004] have been proposed to
build planar degree-bounded power spanner topology, which meets all preferred
properties for unicast. In heterogeneous networks, only a few research efforts [Li
et al. 2004; Song et al. 2003] are reported so far. In the following, we will first discuss
the difficulties and limitations for topology control in heterogeneous networks, then
present our localized strategies in detail.

3. LIMITATIONS

In heterogeneous wireless ad hoc networks, a connected planar topology5 does not
necessarily exist. Figure 1 (a) shows an example. There are four nodes x, y, u and
v in the network, where their transmission ranges rx = ry = ‖xy‖ and ru = rv =
‖uv‖, and node u is out of the transmission range of node x and y, while node v
is in the transmission range of node y and out of the range of x. The transmission
ranges of x and y are illustrated by the dotted circles. According to the definition
of MG, there are only three edges xy, vy and uv in the symmetric communication
graph. Hence any topology control method can not make the topology planar
while keeping the communication graph connected. On the other hand, it is worth
to think whether we can design a new routing protocol on some pseudo-planar
topologies. As will see later, the pseudo-planar topology GG(MG) and RNG(MG)
proposed in this section has some special properties which are different from other
general non-planar topologies. For instance, two intersecting triangles can not share
a common edge. We leave it as a future work to further investigate them.

Another limitation for topology control in heterogeneous networks is that the
node degree can not be bounded by a constant if the ratio of the transmission radii
of two neighboring nodes is unbounded. Figure 1 (b) shows such an example. In
the example, a node v has p + 1 incoming neighbors wi, 0 ≤ i ≤ p. Assume that
each node wi has a transmission radius rwi = rv/3p−i and ‖vwi‖ = rwi . Here rv is
the transmission range of node v. Obviously, ‖wiwj‖ > min(rwi , rwj ), i.e., any two
nodes wi, wj are not directly connected in MG. Then, none of those edges incident
on v can be deleted, hence there is no topology control method that can bound the
node degree by a constant without violating the connectivity. Consider the example
illustrated by Figure 1 (b), edges vwi, 0 ≤ i ≤ p, are all possible communication

5Here, we call a geometry structure planar topology if there are no physical edge intersections
in the geometric structure. It is different with the standard definition of planar graph which
allows re-drawing the graph on a plane without crossing edges. One of the reasons that we use
the special definition here is in wireless ad hoc networks some geometric routing algorithms use
the real geometric positions for routing, and they ask for the underline geometric structure to be
a planar topology without moving the node or using curved edges. Notice that using standard
definition of planar, every connected graph has a planar subgraph, e.g., a spanning tree.
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Fig. 1. Limitations on heterogeneous networks: (a) Planar topology does not exist. (b) Degree of
node v can not be bounded by constant.

links. Thus, node v in any connected spanning graph has degree p+1. On the other
hand, we will show in section 6, in the worst case, any connected MG graph has
degree O(log2 γ) where γ = maxv∈V maxw∈I(v)

rv

rw
. Here, I(v) = {w | wv ∈ MG}.

In the example, recall that 3prw0 = rv, hence γ equals to 3p for this example.
Thus, v has degree log3 γ + 1 = O(log2 γ). In the paper, we always assume γ is a
constant. It is practical, since two wireless devices in a nearby region often have
similar transmission ranges. Generally, we call a wireless network smoothed if γ is
a constant for this network.

4. HETEROGENEOUS SPARSE STRUCTURE

In this section, we propose a strategy for all nodes to self-form a sparse structure,
called RNG(MG), based on the relative neighborhood graph. We will prove that
the total number of links of this structure is O(n).

Definition 1 Structure RNG(MG). A link uv ∈ MG is kept in RNG(MG)
if and only if there is no another node w inside lune(u, v) and both links uw and wv
are in MG. Here lune(u, v) is the intersection of disk(u, ‖uv‖) and disk(v, ‖uv‖).

The construction algorithm will be similar to Algorithm 2 later, thus we omit
it here. Notice that the total communication cost of constructing RNG(MG) is
O(n log n) bits, assuming that the radius and ID information of a node can be
represented in O(log n) bits. In addition, the structure RNG(MG) is symmetric:
if a node u keeps a link uv, node v will also keep the link uv. Thus, a node u does
not have to tell its neighbor v whether it keeps a link uv or not.

It is not difficult to prove that structure RNG(MG) is connected by induction.
On the other hand, same as the case in homogeneous networks (i.e., UDG mode),
RNG(MG) does not have a bounded length stretch factor, nor a constant bounded
power stretch factor, and does not have a bounded node degree. In this paper, we
will show that RNG(MG) is a sparse graph: it has at most 6n links.

In the following, we define a new structure, called ERNG(MG), and present a
localized algorithm to construct it.

Definition 2 Structure ERNG(MG). Each node u keeps the link to neigh-
bor v ∈ B(u) if and only if there is no another node w ∈ B(u) inside lune(u, v)
and both links uw and wv are in MG. Here B(u) = {v | rv ≥ ru and uv ∈ MG}
and lune(u, v) is the intersection of disk(u, ‖uv‖) and disk(v, ‖uv‖). All the links
kept by all nodes form the final structure ERNG(MG).

ACM Transactions on Sensor Networks, Vol. 2, No. 3, 04 2005.
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Algorithm 1 Constructing-ERNG
1: Each node u initiates sets EMG(u) and EERNG(u) to be empty. Here EMG(u)

is the set of links of MG known to u so far and EERNG(u) is the set of links of
ERNG known to u so far.

2: Then, each node u locally broadcasts a Hello message with IDu, ru and its
position (xu, yu) to all nodes within its transmission range. Note that ru =
pu

1/β is its maximum transmission range.
3: while node u receives a Hello message from some node v do
4: If ‖vu‖ ≤ min{ru, rv}, then node u adds a link uv to EMG(u).
5: If rv ≥ ru, then node u performs the following procedures. Node u checks if

there is another link uw ∈ EMG(u) with the following additional properties:
1) w ∈ lune(u, v), 2) rw ≥ ru, and 3) ‖wv‖ ≤ min{rw, rv}. If no such link
uw, then add uv to EERNG(u).

6: For any link uw ∈ EERNG(u), node u checks if the following conditions hold:
1) v ∈ lune(u, w), and 2) ‖wv‖ ≤ min{rw, rv}. If the conditions hold, then
remove link uw from EERNG(u).

7: end while
8: For each link uv ∈ EERNG(u), node u informs node v to add link uv.
9: The final topology is the undirected graph formed by the union of all links in

EERNG(u) for each node u (ignoring the direction), and is called ERNG(MG)
.

We then prove the following lemma.

Lemma 2. Structure ERNG(MG) has at most 6n links.

Proof. Consider any node u. We will show that u keeps at most 6 directed links
uv, with rv ≥ ru, emanated from u. Assume that u keeps more than 6 directed
links. Obviously, there are two links uw and uv such that ∠wuv < π/3. Thus, vw
is not the longest link in triangle 4uvw. Without loss of generality, we assume that
‖uw‖ is the longest in triangle 4uvw. Notice that the existence of link uw implies
that ‖uw‖ ≤ min(ru, rw) = ru. Consequently, ‖vw‖ ≤ ‖uw‖ ≤ min(ru, rw). Thus,
from the fact that ru ≤ rv, we know ‖vw‖ ≤ min(rv, rw). Hence, link vw does
exist in the original communication graph MG. It implies that link uw cannot be
selected to ERNG. In other words, structure ERNG(MG) has at most 6n links.

Similar to Lemma 2, we can prove the following lemma.

Lemma 3. Structure RNG(MG) has at most 6n links.

Proof. Imagine that each link uv ∈ RNG(MG) has a direction as follows:−→uv if ru ≤ rv. Then similar to Lemma 2, we can prove that each node u only
keeps at most 6 such imagined direct links. Thus, there are at most 6n links in
RNG(MG).

5. HETEROGENEOUS POWER SPANNER

In the previous section, we defined two structures based on the relative neighbor-
hood graph. These structures are sparse, however, theoretically they could have
arbitrary large power spanning ratio. In this section, we give a strategy for all
ACM Transactions on Sensor Networks, Vol. 2, No. 3, 04 2005.
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nodes to self-form a power spanner structure, called GG(MG), based on the Gabriel
graph.

Definition 3 Structure GG(MG). A link uv ∈ MG is kept in GG(MG) if
and only if there is no another node w inside disk(u, v) and both links uw and wv
are in MG.

Our localized construction method works as follows.

Algorithm 2 Constructing-GG
1: Let EMG(u) and EGG(u) be the set of links known to u so far from MG and

GG respectively. Each node u initiates both EMG(u) and EGG(u) as empty.
2: Then, each node u locally broadcasts a Hello message with IDu, ru and its

position (xu, yu) to all nodes within its transmission range.
3: while node u receives a Hello message from some node v do
4: If ‖vu‖ ≤ min{ru, rv}, then node u adds a link uv to EMG(u).
5: Node u checks if there is another link uw ∈ EMG(u) with the following two

additional properties: 1) w ∈ disk(u, v), and 2) ‖wv‖ ≤ min{rw, rv}. If there
is no such link uw, add uv to EGG(u).

6: For any link uw ∈ EGG(u), node u checks if the following two properties
hold: 1) v ∈ disk(u, w), and 2) ‖wv‖ ≤ min{rw, rv}. If they hold, remove
link uw from EGG(u).

7: end while
8: The final topology is the undirected graph formed by the union of all links in

EGG(u) for each node u (ignoring the direction), and is called GG(MG) .

We first show that Algorithm 2 builds the structure GG(MG) correctly. For any
link uv ∈ GG(MG), clearly, we cannot remove them in Algorithm 2. For a link
uv 6∈ GG(MG), assume that a node w is inside disk(u, v) and both links uw and
wv belong to MG. If node u gets the message from w first, and then gets message
from v, clearly, uv cannot be added to EGG(u). If node u gets the message from v
first, then u will remove uv from EGG(u) (if it is there) when u gets the information
of w.

It is not difficult to prove by induction that structure GG(MG) is connected if
original network is connected. In addition, since we remove a link uv only if there
are two links uw and wv with w inside disk(u, v), it is easy to show that the power
stretch factor of GG(MG) is 1. In other words, the minimum power consumption
path for any two nodes vi and vj in MG is still kept in GG(MG). Remember that
here we assume the power needed to support a link uv is ‖uv‖β , for β ∈ [2, 5].

Similar as the structure ERNG(MG), we can define a structure called EGG(MG):

Definition 4 Structure EGG(MG). A link uv ∈ MG is kept in EGG(MG)
if and only if there is no another node w inside disk(u, v) such that ru ≤ rw.

On the other hand, same as the case in homogeneous networks (i.e., UDG mode),
GG(MG) and EGG(MG) are not length spanners, and do not have bounded node
degree. Furthermore, it is unknown whether they are sparse graphs. Recently, it
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was proven in [Kapoor and Li 2003] that GG(MG) has at most O(n8/5 log γ) edges
where γ = max ru/rv.

Notice that, the extension from Gabriel graph is non-trivial. In [Kapoor and
Li 2003], two structures defined as follows even cannot guarantee the connectivity.
In the first structure, called LGG0(MG), they remove a link uv ∈ MG if there is
another node w inside disk(u, v). In the second structure, called LGG1(MG), they
remove a link uv ∈ MG if there is another node w inside disk(u, v), and either link
uw or link wv is in MG.

6. HETEROGENEOUS DEGREE-BOUNDED SPANNER

Undoubtedly, as described in preliminaries, we always prefer a structure has more
nice properties, such as degree-bounded (stronger than sparse), power spanner etc.
Naturally, we could extend the previous known degree-bounded spanner, such as
the Yao related structures, from homogeneous networks to heterogeneous networks.
Unfortunately, a simple extension of the Yao structure from UDG to MG even
does not guarantee the connectivity. Figure 2 illustrates such an example. Here
ru = rv = ‖uv‖, rw = ‖uw‖, rx = ‖vx‖, and ‖uw‖ < ‖uv‖, ‖uw‖ < ‖vw‖,
‖vx‖ < ‖uv‖, and ‖vx‖ < ‖ux‖. In addition, v and w are in the same cone of node
u, and nodes x and u are in the same cone of node v. Thus, the original MG graph
contains links uv, uw and vx only and is connected. However, when applying Yao
structure on all nodes, node u will only have information of node v and w and it
will keep link uw. Similarly, node w keeps link uw; node v keeps link vx; and node
x keeps link xv. In other words, only link xv and uw are kept by Yao method.
Thus applying Yao structure disconnects node v, x from the other two nodes u and
w. Consequently, we need more sophisticated extensions of the Yao structure to
MG to guarantee the connectivity of the structure.

x

u
w

v

Fig. 2. Simple extension of Yao structure does not guarantee the connectivity.

6.1 Sparse Spanner

In our first sparse spanner structure EY Gk(MG), unlike traditional Yao structure,
each node u keeps a node v as communication neighbor if and only if uv is the
shortest link among links between u and all nodes vi in the same cone of u, and
rvi ≥ ru. Formally speaking, it is defined as follows.
ACM Transactions on Sensor Networks, Vol. 2, No. 3, 04 2005.
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Definition 5 Structure EY Gk(MG). Each node u partitions its transmis-
sion region into k equal-sized cones. In each cone, it keeps a communication neigh-
bor v if v is the closest neighbor among all nodes vi such that rvi ≥ ru in the cone.
Let

−−−→
EY Gk(MG) be the union of all chosen links. The undirected graph by ignoring

the direction of each link in
−−−→
EY Gk(MG) is called EY Gk(MG).

Notice that, since node u chooses a node v ∈ disk(u, ru) with rv ≥ ru, link uv is
indeed a bidirectional link, i.e., u and v are within the transmission range of each
other. Additionally, as will see later, this strategy avoids the possible disconnection
by simple Yao extension we mentioned before. The localized construction algorithm
is as follows:

Algorithm 3 Constructing-EYG
1: Initially, each node u divides the disk disk(u, ru) centered at u with radius ru

by k equal-sized cones centered at u. We generally assume that the cone is half
open and half-close. Let Ci(u), 1 ≤ i ≤ k, be the k cones partitioned. Let
Ci(u), 1 ≤ i ≤ k, be the set of nodes v inside the ith cone Ci(u) with a larger
or equal radius than u. In other words,

Ci(u) = {v | v ∈ Ci(u), and rv ≥ ru}.
Initially, Ci(u) is empty.

2: Each node u broadcasts a Hello message with IDu, ru and its position (xu, yu)
to all nodes in its transmission range.

3: while node u receives a Hello message from some node v do
4: Node u sets Ci(u) = Ci(u)

⋃{v}, if node v is inside the ith cone Ci(u) of
node u and rv ≥ ru.

5: Node u chooses a node v from each cone Ci(u) such that the link uv has the
smallest ID(uv) among all links uvj with vj in Ci(u), if there is any.

6: end while
7: Finally, each node u informs all 1-hop neighbors of its chosen links through

a broadcast message. Let
−−−→
EY Gk(MG) be the union of all chosen links. The

final topology is the undirected graph by ignoring the direction of each link in−−−→
EY Gk(MG), and is called EY Gk(MG).

In the algorithm, each node only broadcasts twice: one for broadcasting its ID,
radius and position; and the other for broadcasting the selected neighbors. Re-
member that it selects at most k neighbors. Thus, each node sends messages at
most O((k + 1) · log n) bits. Here, we assume that the node ID and its position can
be represented using O(log n) bits for a network with n wireless nodes. Obviously,
we also have the following lemma:

Lemma 4. Structure EY Gk(MG) has at most kn links where k > 6 is a con-
stant.

5This is the main difference between this algorithm and the simple extension of Yao structure
discussed before, in which it considers all nodes v that u can get signal from.
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Before we study other properties of this structure, we have to define some terms

first. Assume that each node vi of MG has a unique identification number IDvi
= i.

The identity of a bidirectional link uv is defined as ID(uv) = (‖uv‖, IDu, IDv)
where IDu > IDv. Note that we use the bidirectional links instead of the directional
links in the final topology to guarantee connectivity. In other words, we require that
both node u and node v can communicate with each other through this link. In this
paper, all proofs about connectivity or stretch factors take the notation uv and vu
as same, which is meaningful. Only in the topology construction algorithm or proofs
about bounded-degree, uv is different from vu: the former is initiated and built by
u, whereas the latter is by node v. Sometimes we denote a directional link from v
to u as −→vu if necessary. Then we can order all bidirectional links (at most n(n− 1)
such links) in an increasing order of their identities. Here the identities of two links
are ordered based on the following rule: ID(uv) > ID(pq) if (1) ‖uv‖ > ‖pq‖ or
(2) ‖uv‖ = ‖pq‖ and IDu > IDp or (3) ‖uv‖ = ‖pq‖, u = p and IDv > IDq.

Correspondingly, the rank of each link uv, denoted by rank(uv), is its order in
sorted bidirectional links. Notice that, we actually only have to consider the links in
MG. We then show that the constructed network topology EY Gk(MG) is a length
and power spanner.

Theorem 5. The length stretch factor of EY Gk(MG), k > 6, is at most ` =
1

1−2 sin( π
k ) .

Proof. Notice it is sufficient to show that for any nodes u and v with ‖uv‖ ≤
min(ru, rv), i.e., uv ∈ MG, there is a path connecting u and v in EY Gk(MG)
with length at most `‖uv‖. We construct a path u ! v connecting u and v in
EY Gk(MG) as follows.

Assume that ru ≤ rv. If link uv ∈ EY Gk(MG), then set the path u ! v as
the link uv. Otherwise, consider the disk(u, ru) of node u. Clearly, node u will get
information of v from v and node v will be selected to some Ci(u) since rv ≥ ru.
Thus, from uv 6∈ EY Gk(MG), there must exist another node w in the same cone as
v, which is a neighbor of u in EY Gk(MG). Then set u ! v as the concatenation of
the link uw and the path w ! v. Here the existence of path w ! v can be easily
proved by induction on the distance of two nodes. Notice that the angle θ of each
cone section is 2π

k . When k > 6, then θ < π
3 . It is easy to show that ‖wv‖ < ‖uv‖.

Consequently, the path u ! v is a simple path, i.e., each node appears at most
once.

We then prove by induction that the path u ! v has total length at most `‖uv‖.
Obviously, if there is only one edge in u ! v, d(u ! v) = ‖uv‖ < `‖uv‖.

Assume that the claim is true for any path with l edges. Then consider a path
u ! v with l + 1 edges, which is the concatenation of edge uw and the path6

w ! v with l edges, as shown in Figure 3 where ‖wv‖ = ‖xv‖.

6In the procedure of induction, if rw ≤ rv then we induct on path w ! v, otherwise we induct
on path v ! w. In fact, here w ! v is same as v ! w since the path is bidirectional for
communication. Directional link is only considered in building process and is meaningless when
we talk about the path. This induction rule is applied throughout the remainder of the paper.
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ϕ

w

xu vα

Fig. 3. The length stretch factor of EY Gk(MG) is at most 1
1−2 sin( π

k
)
.

By induction, d(w ! v) ≤ `‖wv‖. Let ϕ = ∠wuv and α = ∠uvw, then

‖uw‖
‖ux‖ =

sin(∠uxw)
sin(∠xwu)

=
sin(π − ∠wxv)
sin(ϕ + ∠uxw)

=
sin(π − π−α

2 )
sin(ϕ + π − π−α

2 )
=

sin(π
2 + α

2 )
sin(π

2 + α
2 + ϕ)

=
1

cos ϕ− sin ϕ tan α
2

≤ cos(π
4 − ϕ

4 )
cos(π

4 + 3
4ϕ)

≤ 1
1− 2 sin(π

k )

The first inequality is due to 0 ≤ α ≤ π
2 − ϕ

2 and the second inequality is due to 0 ≤
ϕ ≤ 2π

k . Consequently, d(u ! v) = ‖uw‖+ d(w ! v) < `‖ux‖+ `‖wv‖ = `‖uv‖,
where ` = 1

1−2 sin( π
k ) . That is to say, the claim is also true for the path u ! v with

l + 1 edges.
Thus, the length stretch factor of EY Gk(MG) is at most ` = 1

1−2 sin( π
k ) .

Theorem 6. The power stretch factor of structure EY Gk(MG), k > 6, is at
most ρ = 1

1−(2 sin π
k )β .

Proof. The proof is similar to that in UDG [Li et al. 2001; Li et al. 2002] except
the induction procedure. We show by induction, on the number of its edges, that
the path u ! v constructed in Theorem 5 has power cost, denoted by p(u ! v),
at most ρ‖uv‖β .

6.2 Novel Space Partition

Partitioning the space surrounding a node into k equal-sized cones enables us to
bound the node out-degree using the Yao structure. Using the same space partition,
Yao-Yao structure [Li et al. 2001; Li et al. 2002] produces a topology with bounded
in-degree when the networks are modelled by UDG. Yao-Yao structure (for UDG)
is generated as follows: a node u collects all its incoming neighbors v (i.e., −→vu ∈−−→
Y Gk(V )), and then selects the closest neighbor v in each cone Ci(u). Clearly,
Yao-Yao has bounded degree at most k. They also showed that another structure
YaoSink [Li et al. 2001; Li et al. 2002] has not only the bounded node degree but also
a constant bounded stretch factor. The network topology with a bounded degree
can increase the communication efficiency. However, these methods [Li et al. 2001;
Li et al. 2002] may fail when the networks are modelled by MG: they cannot even
guarantee the connectivity, which is verified by following discussions.

Assume that we already construct a connected directed structure
−−−→
EY Gk(MG).

Let I(v) = {w | −→wv ∈ −−−→EY Gk(MG)}. In other words, I(v) is the set of nodes that
have directed links to v in

−−−→
EY Gk(MG). Let Ii(v) = I(v)∩Ci(u), i.e., the nodes in
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I(v) located inside the ith cone Ci(v). Yao-Yao structures will pick the closest node
w in Ii(v) and add undirected link wv to Yao-Yao structure. Previous example in
Figure 1 (b) also illustrates the situation that Yao-Yao structure is not connected.
In the example, a node v has p + 1 incoming neighbors wi, 0 ≤ i ≤ p. Assume that
each node wi has a transmission radius rwi

= rv/3p−i and ‖vwi‖ = rwi
. Obviously,

‖wiwj‖ > min(rwi , rwj ), i.e., any two nodes wi, wj are not directly connected in
MG. It is easy to show that the Yao structure

−−−→
EY Gk(MG) only has directed links−−→wiv. Obviously, node v will only select the closest neighbor w0 to the Yao-Yao

structure, which disconnects the network. This same example can also show that
the structure based on Yao-Sink [Li et al. 2001; Li et al. 2002] is also not connected
for heterogeneous wireless ad hoc networks.

Thus, selecting the closest incoming neighbor in each cone Ci is too aggressive
to guarantee the connectivity. Observe that, in Figure 1 (b), to guarantee the
connectivity, when we delete a directed link −−→wiv, we need to keep some link, say
wjv, such that wiwj is a link in MG. Thus, we further partition the cone into a
limited number of smaller regions and we will keep only one node in each region,
e.g., the closest node. Clearly, to guarantee that other nodes in the same region
are still connected to v, we need make sure that any two nodes wi, wj ∈ I(v) that
co-exist in a same small region are directly connected in MG. Consequently, if the
number of regions is bounded by a constant, a degree-bounded structure could be
generated. In the remainder of this subsection, we will introduce a novel space
partition strategy satisfying the above requirement.

For each node v, let γv = maxw∈I(v)
rv

rw
. Remember that all nodes in I(v) have

transmission radius at most rv, so γv ≥ 1. Let h be the positive integer satisfying
2h−2 < γv ≤ 2h−1. Our proposed partition method works as follows.

Method 1. Partition Transmission Disks

1: Each node v divides each cone centered at v into a limited number of triangles
and caps, as illustrated by Figure 4, where ‖vai‖ = ‖vbi‖ = 1

2h−i rv and ci is
the mid-point of the segment aibi, for 1 ≤ i ≤ h.

2: The triangles 4va1b1, 4aibici+1, 4aiai+1ci+1, 4bibi+1ci+1, for 1 ≤ i ≤ h−1,
and the cap ânbn form the final space partition of each cone. For simplicity, we
call such a triangle or the cap as a region.

hb

b
b

v a a a a

c
c

c1

2 31

2

1

3

3

2

h

hb

c

Fig. 4. Extend Yao structure on heterogeneous networks: Further space partition in each cone to
bound in-degree.
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We then prove that this partition indeed guarantees that any two nodes in any
same region are connected in MG.

h

v

u
w

a a

cb

h
1

h

b

1

c1 c

a

b

b

v

c
u

w

a i+1
i

i i+1

i+1

i

(a) (b)

w

bi+1

b c

c

ai+1

i+1

av

i

i

i u

h

u

w

z

v a

ch+1bh

hc

(c) (d)

Fig. 5. (a) Two nodes are in triangle 4va1b1. (b) Two nodes are in triangle 4aibici+1. (c) Two

nodes are in triangle 4aiai+1ci+1. (d) Two nodes are inside cap âhbh.

Lemma 7. Assume that k ≥ 6. Any two nodes u,w ∈ I(v) that co-exist in any
one of the generated regions are directly connected in MG, i.e., ‖uw‖ < min(ru, rw).

Proof. We prove this lemma based on the region where these two nodes are
located. There are four different cases.

(1) Two nodes are in 4va1b1, as shown in Figure 5 (a).
Remember that all nodes in I(v) have transmission radius at least ‖va1‖ =

1
2(h−1) rv. We have min(ru, rw) ≥ ‖va1‖ = ‖vb1‖ and ‖a1b1‖ ≤ ‖va1‖. In addi-
tion, since uw is a segment inside4va1b1, we have ‖uw‖ ≤ max(‖a1b1‖, ‖va1‖, ‖vb1‖).
Consequently, ‖uw‖ < min(ru, rw), i.e. uw ∈ MG.

(2) Two nodes are in 4aibici+1, as shown in Figure 5 (b).
In this case, we have
(a) ‖vu‖ > ‖uci+1‖, since aibi is the perpendicular bisector of vci+1 and u is

at the same side of line aibi as ci+1.
(b) ‖vu‖ > ‖uai‖, because ∠vaiu > π

3 > ∠uvai.
(c) ‖vu‖ > ‖ubi‖, because ∠vbiu > π

3 > ∠uvbi.
(d) ‖uw‖ < max(‖uci+1‖, ‖uai‖, ‖ubi‖), because node w must be inside one of

the triangles 4aibiu, 4aici+1u and 4bici+1u.
Thus, ‖uw‖ < ‖uv‖. Similarly, ‖uw‖ < ‖wv‖. Consequently, uw ∈ MG from

‖uw‖ < min(‖uv‖, ‖wv‖) < min(ru, rw).
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(3) Two nodes are in4aiai+1ci+1, as shown in Figure 5 (c). We have min(ru, rw) ≥

‖vai‖ = ‖aiai+1‖ = ‖aici+1‖ > ‖ai+1ci+1‖. Since uw is a segment inside
4aiai+1ci+1, ‖uw‖ < max(‖aiai+1‖, ‖aici+1‖, ‖ai+1ci+1‖) ≤ min(ru, rw), i.e.,
uw ∈ MG. Triangle4bibi+1ci+1 is the symmetric case with triangle4aiai+1ci+1,
so the claim holds similarly.

(4) Two nodes are inside the cap âhbh, as shown in Figure 5 (d), where ahz and
bhz is the tangent of arc âhbh at point ah and bh respectively.
Since ∠ahvbh < 2π

k , k ≥ 6, we have

∠vbhz =
π

2
< π − ∠ahvbh = ∠vbhch+1.

Similarly, ∠vahz < ∠vahch+1. This means âhbh is inside 4ahbhch+1. The
remaining of the proof directly follows from the proof for the case of 4aibici+1.

This finishes the proof.

6.3 Bounded Degree Sparse Structure

Using the space partition discussed in Section 6.2, we present our method to locally
build a sparse network topology with bounded degree for heterogeneous wireless
sensor network. Here we assume that γ = maxv∈V γv is bounded by some constant,
where γv = maxw∈I(v)

rv

rw
, and I(v) = {w | −→wv ∈ −−−→EY Gk(MG)}.

Definition 6 Structure EY Yk(MG). A link −→uv is kept by a node v if u is
the closest neighbor in the corresponding region of

−−−→
EY Gk(MG) that u locates at.

The union of all chosen links is the final network topology, denoted by
−−−→
EY Y k(MG).

We call it Extended Yao-Yao graph. The structure EY Yk(MG) is the undirected
graph by ignoring the direction of each link in

−−−→
EY Y k(MG).

Algorithm 4 illustrates our method constructing the structure EY Yk(MG) in a
localized way.

Algorithm 4 Constructing-EYY

1: Each node finds the incident edges in the structure
−−−→
EY Gk(MG), as described

in Algorithm 3.
2: Each node v partitions the k cones centered at v using the partitioning method

described in Method 1. Notice that for partitioning, node v uses parameter γv

in Method 1, which can be easily calculated from local information. Figure 6
(a) illustrates such a partition.

3: Each node v chooses a node u from each generated region so that the link −→uv
has the smallest ID(uv) among all directed links toward to v computed in the
first step in the partition. Figure 6 (b) illustrates such a selection of incoming
links.

4: Finally, for each link uv selected by v, node v informs node u of keeping link
uv. Let

−−−→
EY Y k(MG) be the union of all chosen links. The final topology is the

undirected graph by ignoring the direction of each link in
−−−→
EY Y k(MG), and is

called EY Yk(MG).
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Theorem 8. The out-degree of each node v in
−−−→
EY Y k(MG), k ≥ 6, is bounded

by k and the in-degree is bounded by (3dlog2 γve+ 2)k, where γv = maxw∈I(v)( rv

rw
).

Proof. It is obvious that the out-degree of a node v is bounded by k because the
out-degree bound of

−−−→
EY Gk(MG) is k and Algorithm 4 does not add any directed

link.
For the in-degree bound, as shown in Figure 4, obviously, the number of triangle

regions in each cone is 3h − 2. Remember that 2h−2 < γv ≤ 2h−1, which implies
h = 1 + dlog2 γve. Thus, considering the cap region also, the in-degree of node v is
at most (3dlog2 γve+ 2)k.

Let γ = maxv γv. Obviously, the maximum node degree in graph EY Yk(MG) is
bounded by (3dlog2 γe+ 3)k.

Notice that the structure EY Yk(MG) is a subgraph of the structure EY Gk(MG),
thus, there are at most k ·n edges in EY Yk(MG). Consequently, the total commu-
nications of Algorithm 4 is at most O(k ·n), where each message has O(log n) bits.
It is interesting to see that the communication complexity does not depend on γ at
all.

v

u

v

u u

v

(a) (b) (c)

Fig. 6. (a) In EY Gk(MG), star formed by links toward to v. (b) Node v chooses the shortest link
in EY Gk(MG) toward itself from each region to produce EY Y k(MG). (c) The sink structure at
v in EY Y ∗k(MG).

Theorem 9. The graph EY Y k(MG), k ≥ 6, is connected if MG is connected .

Proof. Notice that it is sufficient to show that there is a path from u to v for
any two nodes with uv ∈ MG. Remember the graph EY Gk(MG) is connected,
therefore, we only have to show that ∀uv ∈ EY Gk(MG), there is a path connecting
u and v in EY Y k(MG). We prove this claim by induction on the ranks of all links
in EY Gk(MG).

If the link uv has the smallest rank among all links of EY Gk(MG), then uv will
obviously survive after the second step. So the claim is true for the smallest rank.

Assume that the claim is true for all links in EY Gk(MG) with rank at most r.
Then consider a link uv in EY Gk(V ) with rank(uv) = r + 1 in EY Gk(MG). If
uv survives in Algorithm 4, then the claim holds. Otherwise, assume that ru < rv.
Then directed edge vu cannot belong to

−−−→
EY Gk(MG) from Algorithm 3. Thus,

directed edge uv is in
−−−→
EY Gk(MG). In Algorithm 4, directed edge uv can only be

removed by node v due to the existence of another directed link wv with a smaller
identity and w is in the same region as u. In addition, the angle ∠wvu is less than
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θ = 2π

k (k ≥ 6). Therefore we have ‖wu‖ < ‖uv‖. Notice that here wu is guaranteed
to be a link in MG, but it is not guaranteed to be in EY Gk(MG). We then prove
by induction that there is a path connecting w and u in EY Y k(MG). Assume
rw ≤ ru. The scenario rw > ru can be proved similarly. There are two cases here.

Case 1: the link wu is in EY Gk(MG). Notice that rank of wu is less than the
rank of uv. Then by induction, there is a path w ! u connecting w and u in
EY Yk(MG). Consequently, there is a path (concatenation of the undirected path
w ! u and the link wv) between u and v.

Case 2: the link wu is not in EY Gk(MG). Then, from proof of Theorem 5, we
know that there is a path ΠEY Gk

(w, u) = q1q2 · · · qm from w to u in EY Gk(MG),
where q1 = w and qm = u. Additionally, we can show that each link qiqi+1, 1 ≤
i < m, has a smaller rank than wu, which is at most r. Here rank(q1q2 = wq2) <
rank(w, u) because the selection method in Algorithm 3. And rank(qiqi+1) <
rank(w, u), 1 < i < m, because

‖qiqi+1‖ ≤ ‖qiu‖ < ‖qi−1u‖ < · · · < ‖q1u‖ = ‖wu‖.
Then, by induction, for each link qiqi+1, there is a path qi ! qi+1 survived in
EY Y k(MG) after Algorithm 4. The concatenation of all such paths qi ! qi+1,
1 ≤ i < m, and the link wv forms a path from u to v in EY Y k(MG).

Although EY Y k(MG) is a connected structure, it is unknown whether it is a
power or length spanner. We leave it as a future work.

6.4 Bounded Degree Sparse Spanner

In [Li et al. 2001; Li et al. 2002], the authors applied the technique in [Arya et al.
1995] to construct a sparse network topology in UDG, Yao and sink graph, which
has a bounded degree and a bounded stretch factor. The technique is to replace
the directed star in Yao graph consisting of all links toward a node v by a directed
tree T (v) with v as the sink. Tree T (v) is constructed recursively. To apply this
technique on MG, we need a more sophisticated way to guarantee the connectivity.
In the remainder of this section, we discuss how to locally construct a bounded de-
gree structure with bounded power stretch factor for heterogeneous wireless sensor
networks. Our method works as follows.

Notice that, sink node v, not u, constructs the tree T (u) and then informs the
end-nodes of the selected links to keep such links if already exist or add such links
otherwise.

Notice that Algorithm 6 is only performed by a node v where u is some in-
coming neighbor of v in

−−−→
EY Gk(MG). We then prove that the constructed structure−−−→

EY G
∗
k(MG) indeed has bounded degree (thus sparse), and is power efficient.

Theorem 10. The maximum node degree of the graph
−−−→
EY G

∗
k(MG) is at most

k2 + 3k + 3k · dlog2 γe.
Proof. Initially, each node has at most k out-degrees after constructing graph

EY Gk(MG). In the algorithm, each node v initiates only one sink structure, which
will introduce at most (3dlog2 γe+ 2) · k in-degrees. Additionally, each node x will
be involved in Algorithm 6 for at most k sink trees (once for each directed link
xy ∈ EY Gk(MG)). For each sink tree involvement, Algorithm 6 assigns at most k
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Algorithm 5 Constructing-EYG∗

1: Each node finds the incident edges in the structure
−−−→
EY Gk(MG), as described

in Algorithm 3. Each node v will have a set of incoming neighbors I(v) = {u |
−→uv ∈ −−−→EY Gk(MG)}.

2: Each node v partitions the k cones centered at v using the partitioning method
described in Method 1. Notice that for partitioning, node v uses parameter γv

in Method 1, which can be easily calculated from local information. Figure 6(a)
illustrates such a partition.

3: Each node v chooses a node u from each region Ω. Let Ωu(v) be the region Ω
partitioned by node v inside which node u locates. Node u is chosen such that
the link uv has the smallest ID(uv) among all links computed in the first step
in the region Ωu(v). In other words, in this step, it constructs

−−−−−−−−→
EY Yk(MG).

4: For each region Ωu(v) and the selected node u, let SΩ(u) = {w | w 6= u, w ∈
Ωu(v)∩I(v)}, i.e., the set of incoming neighbors of v (other than u) in the same
region as u. For each node u, node v uses the following function Tree(u,SΩ(u))
(described in Algorithm 6) to build a tree T (u) rooted at u. We call T (u) a
sink tree and call the union of all links chosen by node v the sink structure at
v. Figure 6(c) illustrates a sink structure at v, which is composed of all trees
T (u) for u selected in the previous step.

5: Finally, node v informs nodes x and y for each selected link xy in the sink
structure rooted at v.

6: Let
−−−→
EY G∗k(MG) be the union of all chosen links. The final topology is the

undirected graph by ignoring the direction of each link in
−−−→
EY G∗k(MG), and is

called EY G∗k(MG).

Algorithm 6 Construct Tree(u,SΩ(u))
1: If SΩ(u) is empty, then return.
2: Otherwise, partition the disk centered at u by k equal-sized cones: C1(u), C2(u),
· · · , Ck(u).

3: Find the node wi ∈ SΩ(u) ∩ Ci(u), 1 ≤ i ≤ k, with the smallest ID(wiu), if
there is any. Link wiu is added to T (u, SΩ(u)) and node wi is removed from
SΩ(u).

4: For each node wi, call Tree(wi, SΩ(u) ∩ Ci(u)) and add the created edges to
T (u, SΩ(u)).

links incident on x. Thus, at most k2 new degrees could be introduced here. Then
the theorem follows.

Notice that, it is not difficult to show that the total number of links added by
a node v is at most |I(v)|, i.e., the number of its incoming neighbors. We already
showed that the total number of directed links in

−−−→
EY Gk(MG) is at most kn. Thus,

we have the following lemma:

Lemma 11. Total number of links in EY G∗k(MG) is at most kn.

It also implies that the total communication cost of Algorithm 5 is O(k ·n). Here
ACM Transactions on Sensor Networks, Vol. 2, No. 3, 04 2005.
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each message has O(log n) bits.

Theorem 12. The length stretch factor of EY G∗k(MG), k > 6, is at most
( 1
1−2 sin( π

k ) )
2.

Proof. We have proved that EY Gk(MG) has length stretch factor at most
1

1−2 sin( π
k ) . We thus have only to prove that, for each link vw ∈ EY Gk(MG), there

is a path connecting them in EY G∗k(MG) with length at most 1
1−2 sin( π

k )‖vw‖. If
link vw is kept in EY G∗k(MG), then this is obvious. Otherwise, assume rw ≤ rv,
then directed link wv belongs to

−−−→
EY Gk(MG). Then, there must exist a node u in

the same region (partitioned by node v) as node w. Using the same argument as
Theorem 5, we can prove that there is a path connecting v and w in T (u) with length
at most 1

1−2 sin( π
k )‖vw‖. It implies that the length stretch factor of EY G∗k(MG) is

at most ( 1
1−2 sin( π

k ) )
2.

Similarly, we have:

Theorem 13. The power stretch factor of the graph EY G∗k(MG), k > 6, is at
most ( 1

1−(2 sin π
k )β )2.

7. SIMULATIONS

In this section we measure the performance of the proposed heterogeneous network
topologies by conducting extensive simulations. In our simulations, we randomly
generate a set V of n wireless nodes with random transmission range for each
node. We then construct the mutual inclusion communication graph MG(V ), and
test the connectivity of MG(V ). If it is connected, we construct different local-
ized topologies: GG(MG), EGG(MG), RNG(MG), ERNG(MG), EY Gk(MG),
EY Yk(MG) and EY G∗k(MG). Then we measure the sparseness (the average node
degree), the power efficiency and the communication cost of building these topolo-
gies. In the simulation results presented here, the wireless nodes are distributed in
a 400m×400m square field. Each wireless node has a transmission radius randomly
selected from [60m, 260m]. The number of wireless nodes is 30i, where i is varied
from 1 to 10. For each 1 ≤ i ≤ 10, we randomly generate 100 sets of 30i nodes. All
structures proposed in this paper are generated for each set of nodes. The number
of cones is set to 7 for EY Gk(MG), EY Yk(MG) and EY G∗k(MG).

7.1 Node Degree

First of all, we test the sparseness of each network topology proposed in this paper.
Notice that, we have theoretically proved that RNG(MG) and ERNG(MG) have
at most 6n links; EY Gk(MG) has at most k · n links, where k ≥ 7 is the number
of cones divided; EY Yk(MG) also has at most k · n links since EY Yk(MG) ⊆
EY Gk(MG); EY G∗k(MG) also has at most k · n links since the sink structure for
each node u has exactly the number of links as the number of directed links toward
u in the directed structure

−−−−→
EY Gk(MG). We do not know how many links GG(MG)

and EGG(MG) could have.
Although almost all proposed structures are sparse theoretically, all of them could

have unbounded node degree. The node degree of the wireless networks should not
ACM Transactions on Sensor Networks, Vol. 2, No. 3, 04 2005.
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be too large. Otherwise a node with a large degree has to communicate with many
nodes directly. This potentially increases the signal interference and the overhead
at this node. Figure 7 (a) illustrates the average node degree of different topologies.
Notice that graph RNG(MG) always has the smallest average node degree in our
simulations and structure EY G∗k(MG) always has the largest average node degree.
We also found that the average node degree becomes almost stable when the number
of nodes increases, i.e., the network becomes denser.
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Fig. 7. (a) Average node degree of different topologies. (b) Maximum node degree
of Yao-based structures. (c) Average length spanning ratio of different topologies.
(d) Average power spanning ratio of different topologies.

Figure 7 (b), as proved in Theorem 10, confirms that the maximum node degree
of Yao-based structure EY G∗k(MG) is bounded by 3k · log2 γ + k2 + 3k, where
γ = maxuv∈MG

ru

rv
. This figure also shows that EY Gk(MG) generally will have a

maximum node degree larger than EY G∗k(MG) and EY Yk(MG). It is interesting
to see that the maximum degree of EY G∗k(MG) and EY Yk(MG) almost have
the same curve when network density changes. It also shows that GG(MG) and
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RNG(MG) has smallest max-degree among all of them, though they do not have
theoretical degree-bound. The reason is that the worst case example happens rare
in random networks. In addition, as expected, EGG(MG) and ERNG(MG) keep
more links then GG(MG) and RNG(MG), hence have bigger max-degree.

Given the size of the network n = 30i, we take the average of the maximums of
all 100 random networks with n nodes we generated as the final maximum value
for n plotted here.

7.2 Spanning Ratio

We proved that GG(MG) and EGG(MG) have power spanning ratios exactly
one; EY Gk(MG) and EY G∗k(MG) both have bounded length and power spanning
ratios. Notice that RNG(MG) and ERNG(MG) could have power and length
spanning ratios as large as n− 1 for a network of n nodes; and the length spanning
ratios of GG(MG) and EGG(MG) could be

√
n− 1 even when all nodes have

the same transmission range. It is unknown whether EY Yk(MG) has a bounded
length or power spanning ratio even for wireless networks modelled by UDG. We
then conduct extensive simulations to study how good these structures are for
heterogeneous networks when the nodes’ transmission ranges are randomly set.

Figure 7 (c) illustrates the length spanning ratios of these structures. As the theo-
retical results suggest, we found that RNG(MG) has a much larger length spanning
ratio compared with other structures. It is surprising to see that ERNG(MG) also
has a much smaller spanning ratio than RNG(MG). We know that ERNG(MG)
has a smaller spanning ratio than RNG(MG) since ERNG(MG) ⊇ RNG(MG).
Also notice that EY Gk(MG), as the theoretical results suggest, has the smallest
spanning ratio among all structures proposed here.

For wireless ad hoc networks, we want to keep as fewer links as possible while
still keep relatively power efficient paths for every pair of nodes. Figure 7 (d)
illustrates the power spanning ratios of these structures. Here we assume that the
power needed to support a link uv is ‖uv‖2. As we expected, structures GG(MG)
and EGG(MG) keep the most power efficient path for every pair of nodes, i.e.,
their power spanning ratios are exactly one. In our simulations, we found that
RNG(MG) and ERNG(MG) indeed have the largest power spanning ratios among
all proposed structures.

7.3 Communication Cost of Construction

It is not difficult to see that GG(MG), RNG(MG) can be constructed using only
n messages by assuming that each node can tell its neighbors its maximum trans-
mission range, and its geometry position information in one single message. Each
node u can uniquely determine all the links uv in these three structures after know-
ing all its one hop neighbors in MG. Structures EY Gk(MG), EY Yk(MG) and
EY G∗k(MG) can be constructed using only k ·n + n messages since the final struc-
tures have at most kn links. Similarly, ERNG(MG) can be constructed using at
most 7n messages. We do not know any theoretical bound about the number of mes-
sages needed to construct EGG(MG) since each node u has to inform its neighbors
the links selected by u for EGG(MG). We measured the actual average number
of messages needed to construct these structures. We only measure the average
number of messages per wireless node for EGG(MG), ERNG(MG), EY Gk(MG),
ACM Transactions on Sensor Networks, Vol. 2, No. 3, 04 2005.
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and EY G∗k(MG) (since every node only has to spend one message for other three
structures GG(MG), RNG(MG, and EY Gk(MG)). Figure 8 illustrates the com-
munication cost. We found that structure EY G∗k(MG) is the most expensive one
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Fig. 8. Average communication cost of building different topologies.

to construct although it has the most favorable properties theoretically (bounded
length, power spanning ratio and bounded node degree). Constructing EY G∗k(MG)
is almost as expensive as constructing EY Gk(MG).

8. CONCLUSION

In this paper, we studied topology control for heterogeneous wireless sensor net-
works, where wireless sensors may have different maximum transmission powers
and two sensors are connected if and only if they are within the maximum trans-
mission range of each other. We presented several strategies for all wireless sen-
sor nodes self-maintaining sparse and power efficient topologies in heterogeneous
network environment with low communication cost. Table I summarizes the dif-
ferences of all those proposed structures. All structures GG(MG), RNG(MG),
EY Gk(MG), EY Y k(MG), and EY G∗k(MG) are connected if MG is connected,
while EY Gk(MG) and EY G∗k(MG) have constant bounded power and length
stretch factors. Additionally, we showed that EY Y k(MG) and EY G∗k(MG) have
bounded node degrees O(log2 γ), here γ = maxv∈V maxw∈I(v)( rv

rw
). In the worst

cast any connected graph will have degree at least O(log2 γ) for heterogeneous wire-
less sensor networks. In other words, the structures constructed by our methods
are almost optimum in terms of the minimum logical node degree. Our algorithms
are all localized and have communication cost at most O(n), where each message
has O(log n) bits.

It remains an open problem whether graph EY Y k(MG) is a length or power
spanner. It is also unknown how many links GG(MG) could have in the worst case
although we show that it is definitely less than O(n8/5 log2 γ)[Kapoor and Li 2003].
Some other future works are what are the conditions that we can build a structure
with some other properties for MG, such as planar or low weight. Notice that
we can not build a pseudo-planar topology for an arbitrary heterogeneous wireless
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Table I. The performances comparison of structures for heterogeneous networks.
Sparse Spanner Bounded Degree Communication Cost

RNG(MG) Yes No No O(n)

ERNG(MG) Yes No No O(n)

GG(MG) Unknown Power Spanner No O(n)

EGG(MG) Unknown Power Spanner No Unknown

EY Gk(MG) Yes Length and Power Spanner No O((k+1)n)

EY Yk(MG) Yes Unknown Yes O((k+1)n)

EY G∗k(MG) Yes Length and Power Spanner Yes O((k+1)n)

sensor network as showed in the paper, but it is unknown whether we can build
such planar structure if some reasonable constraints are applied.
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