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Abstract—In this paper, we focus on the asymptotic capacity and delay, and their tradeoffs in mobile ad hoc networks (MANETs).
As we all know, some fixed rate communication models such as the protocol model and the physical model have been studied in
the past. However, our work aims to investigate the impact of an adaptive rate communication model on capacity-delay tradeoffs in
MANETs under classical mobility models. Specifically, we adopt a well-known adaptive rate model called the generalized physical model
(GphyM). The mobility of nodes is characterized by two broad classes of practical mobility models and they are hybrid random walk
models and discrete random direction models. The two models generalize many mobility models studied in the literature, including the
random walk, i.i.d., Brownian, and random way point models. For each mobility model, we derive the optimal delay for the optimal per-
session unicast capacity (that of constant order Θ(1)) under the generalized physical model, depending on the individual parameters
of mobility models. In particular, we show that for the i.i.d. model, compared with those under the protocol and physical models, the
adaptive feature of link rate under the generalized physical model results in a significant decrease in the optimal delay for the optimal
capacity; more precisely, both the optimal capacity and optimal delay can be simultaneously achieved, while there is no improvement
for the random way-point model.

Index Terms—Capacity-Delay Tradeoffs; Mobile Ad Hoc Networks; Generalized Physical Model; Rate Adaptation
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1 INTRODUCTION

The issue of capacity scaling laws for large scale wireless
networks was pioneered by Gupta and Kumar [1]. Depend-
ing on the physical layer assumptions, the study of capac-
ity scaling laws can be generally divided into two level-
s: information-theoretic level and networking-theoretic level.
The information-theoretic bounds are usually addressed from
an information-theoretic point of view, that is, without any
particular assumption made on the way that communications
take place [2]. Such studies fall into the scope of network
information theory, and mainly characterize the fundamental
limits of performance in multi-user communication problems.
Those problems usually don’t take account of the constraints
imposed by state-of-the-art technology [3]. The networking-
theoretic bounds are usually derived under the assumption
that the physical layer is restricted to perform simple point-to-
point encoding and decoding, and the signals received from
nodes other than one particular transmitter/sender are simply
regarded as noise degrading the communication link [1], [4].
Such studies usually concentrate on the networking challenges
involved. Therefore, the networking-theoretic capacity bounds
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are usually not larger than the information-theoretic ones
for the same network deployment. Most studies investigate
the capacities for different types of traffic, such as unicast,
broadcast, multicast, anycast, many-to-one session, etc., under
the frame of these two levels. In this paper, we study the
networking-theoretic capacity and delay for unicast traffic in
mobile ad hoc networks (MANETs).

In MANETs, the frequent changes of the topology due to
the motion of nodes usually have a negative impact on system
performance metrics, such as network delay [5] and data
delivery ratio [6]. And those changes also bring fundamental
challenges to both protocol design and performance analysis
[7]. On the other hand, it was proved if the mobility is
properly exploited, the node mobility can also improve certain
performance metrics of system, e.g., network capacity [8] and
connectivity [9]. The milestone work done by Grossglauser
and Tse [8] showed that MANETs are scalable in terms of
unicast capacity with assistance of mobility. However, the
capacity in static ad hoc networks is not scalable without the
help of advanced physical-layer techniques, e.g., cooperative
MIMO communications [1], [4], [10]. In fact, such significant
gain is obtained at the cost of a very large delay. Since capacity
and delay are both paramount metrics in some applications of
MANETs, it is necessary to examine relationships between
them and they are the capacity-delay tradeoffs.

The delay and capacity in MANETs depend on the proper-
ties of the mobility models assumed. The mostly studied mod-
els include the i.i.d. model [11]–[13], the random walk model
[14], the Brownian model [14]–[16], and the random way-
point model [15], [17]. Focusing on these models, extensive
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research has been devoted to improving capacity-delay trade-
offs for the data transport in MANETs by diverse techniques,
such as packet redundancy scheme [11] and physical-layer or
network-layer cooperative schemes [18].

In the literature, almost all relay policies are designed
based on the fixed-rate communication model. In this scenario,
if the value of a given conditional expression is beyond the
threshold, the transmitter can send data successfully to the
receiver at a specific constant data rate; otherwise, it cannot
send data at any rate, i.e., the transmission rate is assumed to
be a binary function. Both the protocol model and the physical
model defined in [1] belong to this type of models [19].

In this paper, we aim to investigate the impact of the adap-
tion of link rate on the delay-throughput tradeoffs in MANETs
under the classical mobility models. Specifically, we adopt
the generalized physical model [10], [20], a typical adaptive-
rate communication model, under which a link, say vi → vj ,
achieves a continuous rate R(vi, vj) = B log (1 + SINR(vj)),
where B is the channel bandwidth and SINR(vj) is the signal
to interference plus noise ratio at receiver vj , see [21], [22].
Regarding mobility, we consider two broad classes of mobility
models proposed in [17], called the hybrid random walk model
(HRWMM) and the discrete random direction model (DRD-
MM) that involve a parameter called the degree of freedom.
Other widely-used mobility models in the literature, such as
the i.i.d., random walk, random way-point, and Brownian
mobility models, can be regarded as the special cases of these
two classes [17], [23] in terms of the degrees of freedom of
nodes, denoted by γ ∈ [0, 1] for HRWMM and δ ∈ [0, 1] for
DRDMM, respectively.

Main Results: To the best of our knowledge, our work
is the first one to study networking-theoretic scaling laws for
MANETs under the adaptive-rate communication model. We
focus on a random extended MANET, where n mobile nodes
are distributed randomly and uniformly on a square region
[0,

√
n] × [0,

√
n] at the beginning. We mainly investigate

the capacity and delay for MANETs under the well-known
two-hop carry-and-forward communication paradigm without
data replications [8] that has been extensively studied under
the protocol and physical models. Those schemes follow a
simple threshold-based principle: when the distance between
two nodes is at most a threshold dS, these two nodes are
requested to communicate directly; otherwise, they will com-
municate via the two-hop relay strategy. Depending on the
critical parameter dS : [1,

√
n]1 of a given two-hop strategy,

say S, under the generalized physical model with a power
attenuation exponent α > 2, we derive the asymptotic per-
session capacity λ (S, n) and the corresponding average delay
bounds E (D (S, n)) under both HRWMM and DRDMM. We
highlight some selected interesting and insightful results as
follows (The detailed summarization of results is provided in

1. For conciseness, we use f(n) : [ϕ1(n), ϕ2(n)] to represent that f(n) =
Ω(ϕ1(n)) and f(n) = O(ϕ2(n)); let f(n) : (ϕ1(n), ϕ2(n)) represent that
f(n) = ω(ϕ1(n)) and f(n) = o(ϕ2(n)).

Section 4).
For HRWMM with the degree of freedom γ ∈ [0, 1]:
I We prove that under the generalized physical model, the

feasible range of dS to derive the optimal capacity, i.e., that
of order Θ(1), for random extended MANETs is

dS :
[
1,min

{
n

γ
2

√
log n,

√
n
}]

,

while under the protocol model and physical model the only
feasible value of such dS is Θ(1).

I For any γ ∈ [0, 1], under the premise of ensuring
the optimal capacity, the network delay is nonincreasing with
respect to the parameter dS; particularly, when dS = Θ(

√
n),

a transition of delay occurs. We indicate that this significant
gain is obtained by the advantage of adaptive rate under the
generalized physical model.

I For γ = 1, i.e., the i.i.d. model, there is a transition for
the optimal delay: the capacity and delay can be simultane-
ously achieved to the optimal order, i.e., Θ(1), by the simple
two-hop strategy. It shows that this result breaks the limitations
of capacity-delay tradeoffs derived under the protocol model
or physical model in the literature, [24]–[31]. We point out that
this “utopian” result comes from the extreme high freedom of
nodes under the i.i.d. model (γ = 1) and the advantages of
rate adaption; the transition is the result of the particularity of
the i.i.d. model. More specifically, recall that under the i.i.d.
mobility model the position of any node is independent of that
in the adjacent time slots. This means that in the extended
network the velocity of each node under the i.i.d. model (of
order Θ(

√
n)) is increasing to infinity, as the network size

n → ∞. This feature of the i.i.d. model just contributes to
this surprising improvement. To some extent, this result also
gives a theoretical evidence that the i.i.d. model, a very special
one, is not an appropriate model in analyzing the performance
of practical mobile networks.

For DRDMM with the degree of freedom δ ∈ [0, 1]:
I For the case of 0 < δ ≤ 1, which includes the random

way-point model, it is necessary for achieving the optimal
capacity of order Θ(1) to let dS = Θ(1).

I For the case of δ = 0, i.e., the discrete Brownian model,
the optimal capacity is achievable when

dS :
[
1,
√

log n
]
.

For both HRWMM and DRDMM:
I The capacity is independent of the power attenuation

exponent of the generalized physical model, denoted by α, as
long as α > 2, while it decreases with dS for some regimes.
We indicate that the reason for this phenomenon lies in the
fact that the data transmitted via long-distance links are indeed
infinitesimal relative to those via short links when the link rate
changes with the link length under the generalized physical
model. The derivation can be found in the proofs of the main
results: Theorem 1 and Theorem 2.

I The rate adaption can result in possible improvement
of the capacity-delay tradeoffs for extended MANETs under
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some classical mobility models. Fig. 1 and Table. 1 show the
comparison between the optimal delay corresponding to the
optimal capacity for extended networks under the generalized
physical model and that under the protocol model (or the
physical model).

The rest of the paper is organized as follows. We formulate
the system model in Section 2. In Section 3, we introduce
the relay strategy, and propose the properties of mobile ad
hoc extended networks, which will be used in the analysis of
delay and capacity. In Section 4, we derive the main results,
and propose some theoretical implications. In Section 5, we
give an intuitive explanation of the impacts of rate adaptation
and mobility models on the capacity-delay tradeoffs. Finally,
we draw the conclusions and future perspectives in Section 6.

2 SYSTEM MODEL

2.1 Network Model

In this paper, we focus on an ad hoc network with the random
extended network model [4], [10], [19], [32], where n mobile
nodes are distributed randomly and uniformly on a square
region R(n) = [0,

√
n] × [0,

√
n] at time t = 0. After that

time, all mobile nodes move in accordance with the specific
mobility model defined in Section 2.2. Assume there are K

unicast sessions, denoted by K(n,K), in the network. Each
session, denoted by k : ⟨Ok,Dk⟩ ∈ K(n,K), contains one
source node Ok and the corresponding destination node Dk.
Each source node, say Ok, generates traffic for its destination,
say node Dk, and the mapping Ok 7→ Dk is bijective. It is
possible for a source node to send packets to its destination
node via multiple relays. That is to say, a source node can
send a packet to its destination node directly; or, the source
node can transfer the packet to some relay nodes and let those
relay nodes carry the packet to its destination. We focus on
addressing unicast sessions in this work, and reserve for future
work the analysis of other types of sessions, e.g., multicast and
broadcast sessions.

2.2 Random Mobility Model

The i.i.d model, random walk model, random way-point model
and Brownian model are widely studied classical models, but
all of them can be regarded as special cases of HRWMM
(hybrid random walk mobility model) or DRDMM (discrete
random direction mobility model). So we study the two
mobility models HRWMM and GRGMM in this paper.

We slightly modify the HRWMM and DRDMM proposed
in [17] to make them applicable for the extended network.

Partition a square of area a into a
c square cells of area

c each, and let L(a, c) denote the resulted lattice for the
convenience of presentation. To avoid some trivialities, we
assume that

√
a
c is always an integer.

2.2.1 Hybrid Random Walk Mobility Model
We divide the deployment region R(n) = [0,

√
n]2 into n

squares of area 1 (henceforth referred to as cells) and that

TABLE 2
Notation used in this paper

Notation Meaning

L(a, c) lattice (partition a square of area a into cells of area c)

Lh
p duration of one phase under HRWMM

Ld
p duration of one phase under DRDMM

Ls duration of one static slot

Lt
s duration of one scheduling slot

it link i presented at static slot t

tti and rti the transmitter and receiver of link i at static slot t

Pk,z a complete relay path for packet z from session k

i
ti
k,z the link used at slot ti for packet z from session k

St set of scheduled link at static slot t

dS critical distance

results in a lattice L(n, 1). We next divide the region R(n)

into n1−γ squares of area nγ (henceforth referred to as super
cells) and that results in a lattice L (n, nγ), where γ ∈ [0, 1]

is defined as the degree of freedom under the hybrid random
walk mobility model. Clearly, there are nγ cells in each super
cell. Each cell (or super cell) is located by the two-dimensional
index (x, y) if it is in the (x+1)th column and (y+1)th row
of lattice L(n, 1) (or of lattice L (n, nγ)), in the order from the
left to the right and from the bottom to the top, i.e., the cell in
the bottom left corner has index (0, 0). To deal with the edge
effects [1], we treat the deployment region R(n) as a two-
dimensional torus. The cells (or super cells) adjacent to cell
(or super cell) (i, j) are the cells (or super cells) (i + 1, j),
(i − 1, j), (i, j + 1), and (i, j − 1), where the addition and
subtraction operations are performed modulo n (or n1−γ).

Time can be divided into phases of equal unit duration.
Without loss of generality, we assume that the duration of
each phase under the HRWMM is Lh

p = 1. Initially, each
node is equally likely to be in any of the cells and it is
independent from the other nodes. At the beginning of each
phase, a node uniformly chooses one cell at random from
a randomly selected adjacent super cell, and jumps to the
new cell from its current cell. Subsequently, the node will be
presumed to be immobile in the new cell during this phase.
An illustration is provided in Fig. 2(a).

In the special case γ = 1, the HRWMM is essentially the
i.i.d. mobility model (Fig. 2(b)); and for γ = 0, it degenerates
into the random walk model (Fig. 2(c)).

2.2.2 Discrete Random Direction Mobility Model
We divide the deployment region R(n) into a lattice L

(
n, nδ

)
,

where δ ∈ [0, 1] is defined as the degree of freedom under
the DRDMM. Moreover, time is divided into phases of equal
duration Ld

p = Θ
(
n

δ
2

)
. Initially, each node is equally likely

to be in any of the cells and it is independent from the other
nodes. The motion of a node during this phase is as follows: at
the beginning of each phase, a node uniformly chooses an end



4

Maximum Improvement

Optimal Delay under ProM (or PhyM)

Optimal Delay under ProM (or PhyM)
Optimal Delay under ProM (or PhyM)

Θ
(√

nγ
)

Θ
(
√

nγ log n
)

Θ(n)

Θ
(

n
1−γ

logn

)

Θ
(

logn

nγ−1

)

(b) 0 < γ < 1: General HRWMM

D, Optimal delay for optimal capacity

dSΘ(1)

Θ(n)

(c) γ = 1: I.I.D.Model

Θ(
√

n)

D, Optimal delay for optimal capacity

(a) γ = 0: Random Walk Model

Θ
(
√

log n
)

dSΘ(1) Θ(1) dS

Θ
(

n

logn

)

Θ(n log n)

Θ(1)

D, Optimal delay for optimal capacity

Optimal Delay

under GphyM
under GphyM

Optimal Delay under GphyM

Optimal Delay

Lower Bound on Optimal Delay under GphyM

Upper Bound on Optimal Delay under GphyM

Lower Bound on Optimal Delay under GphyM

Upper Bound on Optimal Delay under GphyM

No Improvement No Improvement

Optimal Delay under ProM (or PhyM)

Optimal Delay under ProM (or PhyM)

Optimal Delay under ProM (or PhyM)Θ(n)

dSΘ(1)

D, Optimal delay for optimal capacity

Θ(1) dS

D, Optimal delay for optimal capacity

Θ
(

n

logn

)

Θ(n log n)

Θ(
√

log n)

(e) 0 < δ < 1: General DRDMM(d) δ = 0: Brownian Model (f) δ = 1: Random Way-Point Model

dS

D, Optimal delay for optimal capacity

Θ(1)

Θ(n)
Optimal Delay under GphyM

under GphyM

Optimal Delay under GphyMOptimal Delay

Lower Bound on Optimal Delay under GphyM

Upper Bound on Optimal Delay under GphyM

Fig. 1. Optimal delay for the optimal capacity (of order Θ(1)) and the corresponding critical parameter dS under the
protocol model (ProM)/physical model (PhyM) and generalized physical model (GphyM).

TABLE 1
Optimal delay for the optimal capacity of order (Θ(1)).

Delay under ProM (or PhyM) Delay under GphyM

I.I.D Model, γ = 1 D = Θ(n) by dS = Θ(1) D = Θ(1) by dS = Θ
(√

n
)

Random Walk Model, γ = 0 D = Θ(n logn) by dS = Θ(1) D = Ω
(

n
logn

)
by dS : (1,

√
logn]; D = Θ(n logn) by dS = Θ(1)

General HRWMM, 0 < γ < 1 D = Θ(n) by dS = Θ(1) D = Ω
(

n1−γ

logn

)
by dS :

(
n

γ
2 , n

γ
2
√
logn

]
; D = Θ

(
logn
nγ−1

)
by dS = Θ

(
n

γ
2

)
Random Way-Point Model, δ = 1 D = Θ(n) by dS = Θ(1) D = Θ(n) by dS = Θ(1)

Brownian Model, δ = 0 D = Θ(n logn) by dS = Θ(1) D = Ω
(

n
logn

)
by dS : (1,

√
logn]; D = Θ(n logn) by dS = Θ(1)

General DRDMM, 0 < δ < 1 D = Θ(n) by dS = Θ(1) D = Θ(n) by dS = Θ(1)

point at random within a randomly selected adjacent cell, and
moves to the end point at a velocity of constant order Θ(1),
as in [17]. To keep the duration of all phases the same, the
speed of the node is set in proportion to the distance between
the start point and the end point.

In the special case δ = 1, the DRDMM is essentially
similar to the random way-point mobility model (Fig. 2(e));
and for δ = 0, it degenerates into the discrete time version of
the Brownian motion model (Fig. 2(f)).

2.3 Communication Model

When time is divided into slots of sufficiently small duration,
it is reasonable to view each node as (approximately) in
static status during a slot. We call such time slots static slots.
Under the HRWMM, since the motion of every node happens
instantaneously at the beginning of each phase, it follows that
the position of each node remains invariable during a whole

phase. Hence, for the HRWMM, we can set the duration
of static slots to be Lh

s := Lh
p = 1. Under the DRDMM,

each node moves with a velocity of constant order, which is
infinitesimal relative to the extended scaling during a phase.
Thus, it is acceptable to set the duration of static slots, denoted
by Ld

s , to be a constant number. Without loss of generality, for
the DRDMM, we also set Ld

s = 1. Hence, we use Ls = 1 to
denote the common duration of static slots under the HRWMM
and DRDMM.

We remark that among n mobile nodes, there are n(n−1)

possible directed communication links and each of them is
associated with a unique transmitter-receiver pair. For any
directed link i, we use ti and ri to denote its transmitter
and receiver, respectively. Different from static networks, the
position of each node may vary significantly as time goes on.
For convenience, let it, tti and rti denote i, ti and ri that are
presented during a static slot t, respectively.
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n

γ
2

1

n

δ
2

(a) General HRWMM (d) General DRDMM

n
1/2

n
1/2

(b) I.I.D MM (e) RWPMM

n
0

n
0

(c) RWMM (f) DBMM

Fig. 2. Illustrations of mobility models. (a)-(c) The motion
of a node under the HRWMM. Each directed dashed
segment along the motion track denotes a hop (jump)
happening instantaneously at the beginning of a phase.
(d)-(f) The motion of a node under the DRDMM. Each
directed line segment along the motion track denotes a
trip completed by the node throughout a whole phase. In
order to keep the duration of all phases the same, the
speed is set in proportion to the distance of every trip.

To address the feature of rate adaption, we adopt the
generalized physical model (GphyM) [10], [32]. Assume that
the bandwidth is B = Θ(1), and let ∥ · ∥ denote the Euclidean
distance between two nodes.

Definition 1: Under the GphyM, for any scheduled set of
links, say St, the rate of a link, say it, is

Rgau,t
i = B × 1 ·

{
it ∈ St

}
× log

(
1 + SINRt

i

)
, (1)

where SINRt
i =

P ·ℓ(tti,r
t
i)

N0+
∑

j∈St−{i} P ·ℓ(ttj ,rti)
, and ℓ(·) is the power

attenuation function.

Under the GphyM, we assume that the channel gain
depends only on the distance between the transmitter and re-
ceiver, and ignore other fading effects, such as shadowing, [1],
[10], [32]. For extended networks studied here, we follow the
setting in [4], [10] and let ℓ(tti, r

t
i) = min {1, ∥tti − rti∥−α},

where α > 2 is the power attenuation exponent.

2.4 Capacity and Delay

We briefly introduce the concepts of capacity and delay in
mobile ad hoc networks. Please refer to [8], [17], [33] for the
detailed definitions.

2.4.1 Network Capacity
The network capacity is defined based on the stability of
network. Data packets are assumed to arrive at node vi with
probability λi during each slot, i.e., in a Bernoulli process
of arrival rate λi. The network is stable if there exists a
scheduling scheme under which the queue at each node does
not expand to infinity as time goes to infinity. Thus, the per-
session capacity of the network is the maximum rate that the
network can stably support.

2.4.2 Network Delay
The delay for a packet is defined as the time it takes the packet
to reach its destination after it arrives at the source. The total
network delay is the expectation of the average delay over all
packets in the long term.

3 COMMUNICATION STRATEGY

Under a communication strategy, say S, a key parameter is the
so-called critical distance, denoted by dS, within which two
nodes communicate directly with each other. It follows that
dS : [1,

√
n]. For a specific mobility model, depending on a

critical distance dS, we can define the contact interval during
which data can be transmitted continually between the nodes
with a distance of order O (dS); and we can define the waiting
interval as it takes a packet to wait for the next transmission
at a relay node. We design the communication strategies in
this paper based on the lattice L(a, c) defined in Section 2.2.
Then, under the strategy S, we always insist that two nodes
can communicate directly if they are located in the same cell
in L(n, (dS)2).

Under any communication strategy S, a successful trans-
mission (from the source to destination) of packet z for session
k involves with a set of available links Rk,z that contains a
complete relay path, denoted by

Pk,z =
{
1t1k,z, 2

t2
k,z, . . . , d

td
k,z

}
⊆ Rk,z. (2)

To the best of our knowledge, this is the first work to study
the capacity and delay scaling laws for MANETs under the
adaptive-rate communication model. To concentrate on provid-
ing new insights of the impact of rate adaptation, we consider
simple communication strategies without using the replication
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Time Slot t1 Time Slot t2

D: r2,k,z

r
t1
1,k,z

S: t1,k,z

1
t1
k,z r1,k,z

r
t2
1,k,z

2
t2
k,z

r1,k,z

Fig. 3. Illustration of the routing path of packet z for
session k, Pk,z =

{
1t1k,z, 2

t2
k,z

}
. t1,k,z is the source node,

r2,k,z is the destination node; r1,k,z is the receiver of link
1t1k,z and the transmitter of link 2t2k,z. rt11,k,z and rt21,k,z denote
the positions of node r1,k,z in the static slot t1 and t2,
respectively.

policy2 [11] and reserve for future work the analysis of other
advanced techniques, such as packet redundancy scheme [11]
and physical-layer or network-layer cooperative schemes [18].
Hence, it holds that Rk,z = Pk,z in this work.

3.1 Two-Hop Relay Strategy

The two-hop strategy was first proposed by Grossglauser and
Tse [8]. Under the two-hop strategy, for each packet z for
session k, the complete relay path can be denoted by Pk,z ={
1t1k,z, 2

t2
k,z

}
. As illustrated in Fig. 3, there are generally three

phases under the two-hop strategy: (1) S→R phase, during
which the source node t1,k,z transmits the packet z to a relay
node r1,k,z , i.e., t2,k,z; (2) waiting phase, during which r1,k,z
holds the packet z until it meets the destination node r2,k,z
within a distance of dS, and (3) R→D phase, during which
r1,k,z transmits the packet z to r2,k,z .

Note that the durations of S→R and R→D phases are of
the same order as the contact time with the parameter dS
(Definition B.3 in Appendix B); the duration of the waiting
phase can be derived based on the first hitting time (Definition
B.1, Corollary B.1 in Appendix B). The S→R and R→D
phases are the contact intervals, while the waiting phase is
the waiting interval. We provide an illustration in Fig. 4, and
will determine those durations in Sections 3.2.2 and 3.2.3.

3.2 Properties of Mobile Networks

The following to be examined properties of networks depend
on the value of dS that denotes the critical distance of a given
communication strategy S.

3.2.1 Spatial Multiplexing in Extended MANETs
Intuitively, there is a tradeoff between the network throughput
and delay according to the critical distance dS. We carry out
our analysis based on lattice L(n, c(n)), where c(n) > 2.
Denote the cell in the (i + 1)th row and j + 1th column by
Ci,j , and denote the number of mobile nodes in Ci,j as ni,j .

2. Under the replication policy, the source node can send duplicate copies
of the packet to new relay nodes.

Motion Phases

DRDMM

HRWMM

Motion Phases

Static Slots

R→DWaitingS→R

L
h
p

L
d
p = Θ

(

n
δ

2

)

LwLc Lc

Ls

Fig. 4. Decomposition of two-hop communication. Lc

and Lw are the average durations of the contact intervals
and waiting intervals, respectively. Ls is the duration of
static slots. Lh

p and Ld
p are the durations of phases under

the HRWMM and DRDMM, respectively; Lh
p = Ls = 1

and Ld
p = Θ

(
n

δ
2

)
, 0 ≤ δ ≤ 1. Note that the contact

intervals and waiting intervals can always be divided into
static slots; under the HRWMM, they can also be divided
into motion phases; while, under the DRDMM, they are
not necessarily divided into motion phases due to the
continuous motion of nodes.

Furthermore, we define a sequence of sets of cells. For h =

0, 1, . . . , µ, v = 0, 1, . . . , µ, and 0 ≤ i, j ≤
√

n
c(n) − 1, we

define a set of cells as

Ch,v(µ) := {Ci,j |i mod (µ+ 1) = h, j mod (µ+ 1) = v},

where µ ≥ 1 is an integer. Then,

|Ch,v(µ)| =
1

(µ+ 1)2
· n

c(n)
,

where | · | denotes the cardinality of a discrete set.
Lemma 1: Under any stationary and ergodic mobility

model, at any time t, the following holds:

1) When c(n) = O(log n), define the number of cells in
Ch,v(µ) that contain at least 2 nodes as a random variable
ξ, then there is a constant θ1 > 0 with high probability
such that

ξ ≥ θ1 ·
n

c(n)
.

2) When c(n) = Ω(log n), for all cells in lattice L(n, c(n)),
the number of nodes is uniformly of order Θ(c(n)) with
high probability.

Proof: The first result can be easily proven by Cheby-
chev’s inequality (Lemma A.1 in Appendix A). The second
result can be proven by a similar method to that of Lemma 18
in [34] based on VC Theorem in [35]. All proofs are based on
the fact that under any stationary and ergodic mobility model,
the distribution of nodes at all times remains uniform. Due to
the similarity, we omit this proof.
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Next, we present an important result of the spatial multi-
plexing in the extended MANETs of interest, i.e., Lemma 2.
We give an illustration of Lemma 2 in Fig. 5.

Lemma 2: Under the generalized physical model (G-
phyM) with α > 2, when dS = Ω(1), there exists a strategy
S under which there is a scheduling set St such that:

1) |St| ≥ κ0 ·n, with high probability, where |St| represents
the total number of links contained in St, and κ0 > 0 is
a constant;

2) for any link it ∈ St, it holds that Rt
i = Ω((dS)

−α
).

Proof: We prove this lemma according to different values
of the critical distance dS.

(1) When dS = Θ(1), i.e., c(n) = Θ(1)

At a static slot t, for any Ch,v(µ), according to the first
result of Lemma 1, there are at least θ1 · n

c(n) cells containing 2
nodes. Since all links are limited within the same cells, we can
choose a link from each cell to construct the set St. Obviously,
it holds that |St| ≥ θ1 · n/c(n). For any link it ∈ St, the
strength of signal at the receiver rti is

Sti ≥ P ·min

{
1,
(√

2 · c(n)
)−α

}
= Θ(1).

The total interference at rti is bounded by

Iti ≤ 8P · (c(n))−α
2 ·

∞∑
k=0

1

((µ+ 1) · k + µ)
α . (3)

Thus, it follows that Iti = O(1) for α > 2. According to
Equation (1), it holds that Rt

i = Θ(1). Furthermore, since
c(n) = Θ(1), we get that Rt

i = Ω((c(n))−
α
2 ).

(2) When dS = Ω(
√
log n), i.e., c(n) = Ω(log n)

By the second result of Lemma 1, there is a constant θ3 > 0

such that ni,j ≥ θ3 · c(n) for all cells in L(n, c(n)). Next, we
construct the set St. From any cell Ci,j ∈ Ch,v(3), choose
θ3 · c(n) nodes, and correspondingly choose θ3 · c(n) nodes
from the cell Ci,j+2 (or Ci+2,j). We make these θ3 ·c(n) pairs
communicate directly to build θ3 ·c(n) links, and finally obtain
the set St that consists of |Ch,v(3)| · 2θ3 · c(n) links. Then,
|St| ≥ θ2 · n, where θ2 ≤ 1

8 · θ3.
For any link it ∈ St, the signal strength at rti is

Sti ≥ P ·
(√

10 · c(n)
)−α

= Ω
(
(c(n))

−α
2

)
.

The total interference at rti is bounded by

Iti ≤ P · (θ3 · c(n)− 1) · (c(n))−α
2

+8P · θ3 · c(n) · (c(n))−
α
2

∞∑
k=0

1

(4k + 1)α

≤ P · (1 + 8θ4) · (c(n))1−
α
2 ,

where θ4 >
∑∞

k=0
1

(4k+1)α is a constant with α > 2, then
Iti = O

(
(c(n))1−

α
2

)
. That is, Iti = o(1). According to (1), it

holds that Rt
i = Ω((c(n))−

α
2 ).

(3) When dS = Ω(1) and dS = O(
√
log n), i.e., c(n) = Ω(1)

and c(n) = O(log n)

By applying the first result of Lemma 1 and a similar
procedure of the case when dS = Ω(

√
log n), we can prove

the result of this case.
From Lemma 2, the following result obviously holds.
Lemma 3: During any static slot t, the total throughput of

order Ω(n · (dS)−α
) is achievable with high probability under

the strategy with a critical distance dS.

3.2.2 Duration of Contact Intervals
Now, we derive the duration of contact intervals in a given
strategy S under the HRWMM and DRDMM, denoted by
τhC (dS) and τdC (dS), respectively.

Lemma 4: Under the HRWMM and the strategy S with
a critical distance dS, with high probability, E

(
τhC (dS)

)
is of

order{
Ω
(

(dS)
2

logn·nγ

)
when dS :

[
n

γ
2 ·

√
log n,

√
n
]
,

Ω(1) when dS :
[
1, n

γ
2 ·

√
log n

]
.

(4)

Proof: Based on Lemma B.2 in Appendix B, we directly
study the first exit time to derive the order of contact time.
Let τhE (dS) denote the first exit time under the HRWMM.

Consider a node, say i, and denote the cells containing it
at time 0 and t by (x0, y0) and (xt, yt), respectively; denote
its positions at time 0 and t by i0 and it, respectively.

(1) When dS = Ω
(
n

γ
2 ·

√
log n

)
Define two random variables as follows:

τh,xE (h) := inf {t ≥ 0 : |xt − x0| ≥ h} ,
τh,yE (v) := inf {t ≥ 0 : |yt − y0| ≥ v} .

By a geometric argument (Pythagoras’ Theorem), we have
that if ∥it− i0∥ ≥ dS holds, then at least one of |xt−x0| and
|yt − y0| is not less than

⌊
dS√
2·n

γ
2

⌋
. Combining Definition B.2

in Appendix B and the fact that

dS

2n
γ
2

≤
⌊

dS√
2 · n γ

2

⌋
,

we get that for any integer L ≥ 0, if τhE (dS) ≤ L, then

τh,xE

(
dS

2n
γ
2

)
≤ L or τh,yE

(
dS

2n
γ
2

)
≤ L,

where we assume that dS

2n
γ
2

is always an integer to simplify
the description. Therefore, it follows that

P
(
τhE (dS) ≤ L

)
≤ P

(
τh,xE

(
dS

2n
γ
2

)
≤ L ∨ τh,yE

(
dS

2n
γ
2

)
≤ L

)
.

Using union bounds and the symmetry of node motion, we
can obtain that

P
(
τhE (dS) ≤ L

)
≤ 2 ·P

(
τh,xE

(
dS

2n
γ
2

)
≤ L

)
.

Before the phase τhE (dS), it holds that xt = x0+
∑t

i=0 si,
where si, i = 1, 2, . . . , t, are i.i.d. random variables taking
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(a) Phase 1 under Fixed-Rate Model

source

relay

lS = Θ(1)

Link Rate R = B

(b) Phase 2 under Fixed-Rate Model

destination

relay

Link Rate R = B

lS = Θ(1)

(c) Phase 1 under GphyM

source

relay Link Rate R = Ω(l−α
S

)

lS

(d) Phase 2 under GphyM

Link Rate R = Ω(l−α
S

)

destination

lS

relay

Fig. 5. Under the fixed-rate model (F-R model, Figures (a) and (b)), e.g., the protocol model and physical model, the
only feasible setting of dS for achieving the optimal capacity of Θ(1) for random extended networks is of dS = Θ(1),
which potentially causes large delays. During each time slot, there are Θ(n) feasible links (sender-receiver pairs)
of length O(1) along which a fixed constant rate can be sustained. Under the generalized physical model (GphyM,
Figures (c) and (d)), the link rate is adjustable according to SINR at the receiver. It is possible to achieve a constant
capacity with dS = ω(1), which possibly decreases the network delay. In each slot, Θ(n) links of length O (dS) can
simultaneously achieve the rate of order Ω

(
d−α
S

)
, where α > 2 is the power attenuation exponent.

values in {−1, 0, 1} with probabilities {1
4 ,

1
2 ,

1
4}, respectively.

Due to the symmetry of xt, it is clear that the reflection
principle for 1-D random walk also holds in case of xt. Thus,
we have

P

(
τh,xE

(
dS

2n
γ
2

)
≤ L

)
≤ 2 ·P

(
x⌊L⌋ − x0 ≥ dS

2n
γ
2

)
,

where ⌊·⌋ denotes the greatest integer function. Since each si
has mean 0 and variance 1

2 , Var(xt − x0) = t
2 . By using

Lemma A.2 in Appendix A, we have, for t ≥ dS

2n
γ
2

,

P

(
xt − x0 ≥ dS

2n
γ
2

)
= P

(
xt − x0 ≥

√
t

2
· dS√

2t · n γ
2

)

≤ exp

(
−(dS/n

γ
2 )2 · 1

8t

)
.

Let L = (dS)
2

16 logn·nγ , we have

P

(
τhE (dS) ≤

(dS)
2

16 log n · nγ

)
≤ 4

n2
.

Then, E
(
τhE (dS)

)
= Ω

(
(dS)

2

logn·nγ

)
.

(2) When dS = O
(
n

γ
2 ·

√
log n

)
It is straightforward that τhE (dS) ≥ Lh

p. Since Lh
p = Θ(1),

we have that E
(
τhE (dS)

)
= Ω(1).

Lemma 5: Under the DRDMM and the strategy S with
a critical distance dS, with high probability, E(τdC (dS)) is of
order

Ω

(
(dS)

2

logn·n
δ
2

)
when dS :

[
n

δ
2 ·

√
log n,

√
n
]
,

Ω
(
n

δ
2

)
when dS :

[
n

δ
2 , n

δ
2

√
log n

]
∩ [1,

√
n],

Ω(dS) when dS :
[
1, n

δ
2

]
.

Proof: In a similar way of the proof of Lemma 4, we
derive the order of contact time by computing the first exit
time under the DRDMM denoted by τdE (dS).

(1) When dS = Ω
(
n

δ
2 ·

√
log n

)
Without loss of generality, we consider a node i that is

located at the position (0, 0) at time 0. Let (xt, yt) denote the
position of node i after t trips. Define

τd,xE (h) := inf {t ≥ 0 : |xt| ≥ h} ,
τd,yE (v) := inf {t ≥ 0 : |yt| ≥ v} .

Then, it holds that

P
(
τdE (dS) ≤ L

)
≤ P

(
τd,xE

(
dS√
2

)
≤ L ∨ τd,yE

(
dS√
2

)
≤ L

)
.

By the union bounds and the symmetry of node motion, we
get

P
(
τdE (dS) ≤ L

)
≤ 2 ·P

(
τd,xE

(
dS√
2

)
≤ L

)
. (5)

Define the x-coordinate of the position of a node after finishing
the kth trip. Then, before time τdE (dS), it holds for sk: sk =∑k

i=1 zi, where zi, i = 1, 2, . . . , k, are i.i.d. random variables
taking values in

[
−n

δ
2 , n

δ
2

]
. Since

E(zi) = 0, Var(zi) =
nδ

3 , and Var(sk) = k · nδ

3 ,

according to Lemma A.2, we have, for k ≥
√
6
2 · dS

n
δ
2

,

P

(
sk ≥ dS√

2

)
= P

(
sk ≥ n

δ
2 ·
√

k

3
·
√
3 · dS

n
δ
2 ·

√
2k

)

≤ exp

(
−
(
dS/n

δ
2

)2
· 3

8k

)
.
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By the symmetry of the node motion, we have

P

(
|sk| ≥

dS√
2

)
≤ 2 exp

(
−
(
dS/n

δ
2

)2
· 3

8k

)
.

Recall that the duration of the phases is Ld
p = Θ

(
n

δ
2

)
,

we assume that Ld
p = ρ · n δ

2 with a constant ρ > 0. Since

P

(
τd,xE

(
dS√
2

)
≤ k · ρ · n δ

2

)
= P

(∪k

i=1
|si| ≥

dS√
2

)
,

it holds that

P

(
τd,xE

(
dS√
2

)
≤ k · ρ · n δ

2

)
≤ 2k·exp

(
−
(
dS

n
δ
2

)2

· 3

8k

)
.

(6)
Then, combining Equations (5) and (6), we obtain

P
(
τdE (dS) ≤ k · ρ · n δ

2

)
≤ 4k · exp

(
−
(
dS

n
δ
2

)2

· 3

8k

)
.

Let k = (dS)
2

8 logn·nδ , we get

P

(
τdE (dS) ≤

ρ · (dS)2

8 log n · n δ
2

)
≤ 4

n2
.

Then, it holds that E
(
τdE (dS)

)
= Ω

(
(dS)

2

logn·n
δ
2

)
.

(2) When dS = O
(
n

δ
2

)
Recall that the velocity of nodes under the DRDMM,

say v(n), is of order Θ(1). When dS = O
(
n

δ
2

)
, it holds

that E
(
τdE (dS)

)
= Ω

(
dS

v(n)

)
, which directly proves that

E
(
τdE (dS)

)
= Ω(dS).

(3) When dS = Ω
(
n

δ
2

)
and dS = O

(
n

δ
2 ·

√
log n

)
It is clear that τdE (dS) = Ω

(
Ld
p

)
when dS = Ω

(
n

δ
2

)
. By

Ld
p = Θ

(
n

δ
2

)
, we get that E

(
τdE (dS)

)
= Ω

(
n

δ
2

)
.

3.2.3 Duration of Waiting Intervals
Let τhW (dS) and τdW (dS) denote the durations of waiting
intervals under a given communication strategy S for the
HRWMM and DRDMM, respectively. Then, we have

Lemma 6: Under the HRWMM and the strategy S with a
critical distance dS, with high probability, E

(
τhW (dS)

)
is of

order
Ω
(

n1−γ

logn

)
when dS : [1,

√
n),

Θ
(

n
(dS)

2 + logn
nγ−1

)
when dS : [1,

√
n) ∩

[
1, n

γ
2

]
,

Θ(1) when dS = Θ(
√
n) .

Proof: For the HRWMM, let τhH denote the time required
by nodes to enter the same cell from their initial random and
uniformly distributed positions, i.e., the first hitting time (Defi-
nition B.1 in Appendix B); and let τhR denote the time between
successive hitting states, i.e., the return time (Definition B.1
in Appendix B). Now, we analyze the order of τhW (dS), i.e.,

the duration of waiting intervals in a two-hop strategy S under
the HRWMM.

In the following analysis, φh
i , i ≥ 1, denote some proper

constants whose specific values have no impact on the order
of our results.

Note that the HRWMM is based on the lattice (torus)
L (n, nγ). According to Corollary B.1 in Appendix B, it holds
with high probability that

E
(
τhH
)
= Θ

(
n1−γ · log n

)
; E

(
τhR
)
= Θ

(
n1−γ

)
. (7)

(1) When dS : [1,
√
n) ∩

[
1, n

γ
2

]

τhW (dS) =
∞∑
k=0

(
τhH + k · τhR

)
·

(
1− φh

2

(dS)
2

nγ

)k

·φh
1 ·

(dS)
2

nγ
,

where 00 := 1. Then,

E
(
τhW (dS)

)
=

φh
1(dS)

2

nγ ·
(
E
(
τhH
)
· nγ

(dS)
2 +E

(
τhR
)
· n4

γ
2 −(dS)

2·nγ+(dS)
4

(dS)
4

)
= Θ

(
E
(
τhH
))

+Θ
(
E
(
τhR
)
· nγ

(dS)
2

)
.

Hence, we get that

E
(
τhW (dS)

)
= Θ

(
n

(dS)
2 + n1−γ · log n

)
.

(2) When dS = Θ(
√
n)

E
(
τhW (dS)

)
= Θ(1).

(3) A general lower bound for the regime dS : [1,
√
n)

Since the deployment region is assumed to be a two-
dimensional torus, it follows that

E
(
τhW (dS)

)
= Θ

(
E
(
τhC(φ

h
3

√
n− dS)

))
.

Then, according to Lemma 4, we obtain that for dS : [1,
√
n)

E
(
τhW (dS)

)
= Ω

(
n1−γ

log n

)
,

which completes the proof.
Lemma 7: Under the DRDMM and the strategy S with a

critical distance dS, with high probability, E
(
τdW (dS)

)
is of

order
Ω

(
n1− δ

2

logn

)
when dS : [1,

√
n),

Θ
(
n1− δ

2 logn+ n
dS

)
when dS : [1,

√
n) ∩

[
1, n

δ
2

]
,

Θ(1) when dS = Θ(
√
n) .

Proof: For the DRDMM, let τdH denote the time required
by nodes to enter the same cell from their initial random and
uniformly distributed positions, i.e., the first hitting time (Defi-
nition B.1 in Appendix B); and let τdR denote the time between
successive hitting states, i.e., the return time (Definition B.1
in Appendix B). Now, we analyze the order of τdW (dS), i.e.,
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the duration of waiting intervals in a given two-hop strategy
S under the DRDMM according to the value of L

(
n, (dS)

2
)

.

In the following analysis, φd
i , i ≥ 1, denote some proper

constants whose specific values do not change our results in
the sense of order.

Recall that the DRDMM is based on a lattice (torus)
L
(
n, nδ

)
, and the duration of each motion phase is φd

1 · n δ
2

(Fig. 4). According to Corollary B.1 in Appendix B, with high
probability, it holds that

E
(
τdH
)
= Θ

(
n1−δ · log n

)
; E

(
τdR
)
= Θ

(
n1−δ

)
(8)

(1) When dS : [1,
√
n) ∩

[
1, n

δ
2

]
Similar to Case 1 in the proof of Lemma 6, it follows that

E
(
τdW (dS)

)
= φd

1 ·n
δ
2 ·

(
Θ
(
E
(
τdH
))

+Θ

(
n

δ
2

dS

)
·Θ
(
E
(
τdR
)))

,

where Θ
(
dS/n

δ
2

)
is the probability that two nodes located

in the same cell can meet within a distance of dS during a
motion phase. We remark that it is different from the case in
the HRWMM, due to the continuous motion of nodes. Then,

E
(
τdW (dS)

)
= Θ

(
n1− δ

2 log n+
n

dS

)
.

(2) When dS = Θ(
√
n)

E
(
τdW (dS)

)
= Θ(1).

(3) A general lower bound in the regime dS : [1,
√
n)

Similar to Case 3 in the proof of Lemma 6, it follows that

E
(
τdW (dS)

)
= Θ

(
E
(
τdC
(
φd
1

√
n− dS

)))
.

Then, according to Lemma 5, we get that

E
(
τdW (dS)

)
= Ω

(
n1− δ

2

logn

)
for dS : [1,

√
n).

Combining the three cases above, we get this lemma.

4 CAPACITY AND DELAY ANALYSIS

Depending on the critical distance dS : [1,
√
n] of a given

two-hop strategy S under the generalized physical model
with a power attenuation exponent α > 2, we derive the
asymptotic per-session capacity λ (S, n) and the average delay
E (D (S, n)) under both the HRWMM and DRDMM. As
commonly done in the literature, we set the number of sessions
to K = n, although all definitions, strategies and analysis
proposed above are applicable for general values of K.

4.1 Capacity and Delay under the HRWMM

Theorem 1: Under the generalized physical model and
HRWMM, by using the two-hop strategy S with a critical
distance dS, the achievable average throughput, denoted by
λh(S, n), is of order{

Ω
(

logn·nγ

(dS)
2

)
when dS :

[
n

γ
2

√
logn,

√
n
]
,

Θ(1) when dS :
[
1, n

γ
2

√
log n

]
∩ [1,

√
n].

(9)
The average delay, denoted by E

(
Dh (S, n)

)
, is of the order

Θ
(

n
(dS)

2 + logn
nγ−1

)
when dS :

[
1, n

γ
2

]
∩ [1,

√
n),

Ω
(

n1−γ

logn

)
when dS :

[
n

γ
2 ,
√
n
)
,

O
(

n1−γ

logn + 1
)

when dS = Θ(
√
n) .

(10)
Proof: Please refer to Appendix C.1.

Specifically, we have:
(a) When γ = 0, as illustrated in Fig. 6(a),

λ (S, n) =

{
Θ(1) when dS :

[
1,

√
log n

]
,

Ω
(

logn
(dS)

2

)
when dS :

(√
log n,

√
n
]
.

E (D (S, n)) =


Θ(n logn) when dS = Θ(1),

Ω
(

n
logn

)
when dS : (1,

√
n),

O
(

n
logn

)
when dS = Θ(

√
n) .

(b) When 0 < γ < 1, as illustrated in Fig. 6(b),

λ (S, n) =

{
Θ(1) when dS :

[
1,

√
nγ log n

]
,

Ω
(

logn·nγ

(dS)
2

)
when dS :

(√
nγ log n,

√
n
]
.

E (D (S, n)) =



Θ
(

n
(dS)

2

)
when dS :

[
1,
√

nγ

logn

]
,

Θ
(

logn
nγ−1

)
when dS :

[√
nγ

logn , n
γ
2

]
,

Ω
(

n1−γ

logn

)
when dS :

(
n

γ
2 ,
√
n
)
,

O
(

n1−γ

logn

)
when dS = Θ(

√
n) .

(c) When γ = 1, λ (S, n) = Θ(1), as illustrated in Fig.
6(c),

E (D (S, n)) =


Θ
(

n
(dS)

2

)
when dS :

[
1,
√

n
logn

)
,

Θ(log n) when dS :
[√

n
logn ,

√
n
)
,

Θ(1) when dS = Θ(
√
n) .

Now, we examine the implications of the results for the
HRWMM.

I Under the classical two-hop strategy, to achieve the
capacity of order Θ(1) for dense networks, the critical distance
is dS = Θ

(
1√
n

)
[8]. Then, it is intuitive that by a simple

scaling extension from dense networks to extended networks,
i.e., by letting dS = Θ(1), the capacity of order Θ(1) is
achievable. Here we prove that the tight upper bound of
dS for the optimal capacity under the generalized physical
model is Θ

(
min

{
n

γ
2

√
log n,

√
n
})

(The feasible region is
dS :

[
1,min

{
n

γ
2

√
log n,

√
n
}]

).
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Transition

Transition

Transition

E(D) = n

(lS)
2

Θ(log n)

Θ

(

√

n

logn

)

Θ
(

n
1−γ

logn

)

Θ(1)

Θ
(

n
γ

2

)

Θ(
√

n)Θ(1) lS

(c) I.I.D. Model: γ = 1

Θ
(

logn
n

)

Θ(1)

Θ
(

logn
nγ−1

)

Θ(1)

lS

Θ(1)

Θ
(

logn
n1−γ

)

Θ(
√

n)Θ
(
√

nγ log n
)

(a) Random Walk Model: γ = 0

Θ
(
√

log n
)

Θ(n)

Θ(n log n)

Θ(1)

(b) GRWM: 0 < γ < 1

Θ(
√

n)

E(D) = n

(lS)2

Θ
(
√

nγ

logn

)

Θ(n)

Θ
(

n

logn

)

lS

E (D (S, n))Delay

λ = logn
(lS)2

λ(S, n)

Capacity

Capacity

E(D(S, n))

λ(S, n)

λ = logn·nγ

(lS)2

Delay

λ(S, n)Capacity

Delay E(D(S, n))

Fig. 6. Achievable capacity and delay depending on the
degree of freedom γ ∈ [0, 1]. The solid curves represent
the functions of the achievable capacities and delays
with respect to the parameter dS. The dashed curves
represent the functions of the achievable capacities and
delays whose lower and upper bounds can be derived but
the exact forms cannot be determined.

I For any γ ∈ [0, 1], when the optimal capacity of order
Θ(1) is sustained, the corresponding delay is non-increasing
with dS; when dS = Θ(

√
n), a transition of delay occurs. This

gain is obtained by the advantage of rate adaptation under the
generalized physical model. For γ = 1, i.e., the i.i.d. model,
there is a transition of the optimal delay: the capacity and
delay can be simultaneously achieved to the optimal order,
i.e., Θ(1), by the simple two-hop strategy. Please refer to Fig.
6(c) and Fig. 7 for the illustrations. This ideal result comes

Transition

D = Θ
(

logn

n
γ−1

)

Optimal delay

Θ
(

n

logn

)

1

Θ(1)

D = Θ
(

n
1−γ

logn

)

D, Optimal delay for capacity of optimal order (Θ(1)).

0

Θ(n log n)

γ

Θ(log n)

Fig. 7. Optimal delay depending on the degree of free-
dom γ. The solid curve (including the “singletons”, i.e.,
isolated nodes) denotes the function of optimal delay in
terms of γ; the dashed curves denote the upper and lower
bounds of this function.

from the extreme high freedom (γ = 1) of nodes under the
i.i.d. mobility model and the advantages of the general physical
model. As a matter of fact, this result breaks the limitations of
capacity-delay tradeoffs derived under the protocol model and
the physical model in the literature, [24]–[31]. We state that the
transition is the result of the particularity of the i.i.d. model.
Recall that for any node, its current position is independent of
its positions in the adjacent time slots under the i.i.d. mobility
model. This means that in the extended network the velocity
of each node under i.i.d. model is increasing to infinity (of
order Θ(

√
n), as the network size n → ∞. We emphasize

that this particularity of the i.i.d. mobility model contributes
to this surprising result. To some extent, it indicates that the
i.i.d. model which is a very special one, is not a proper model
in analyzing the performance of realistic mobile networks.

I Furthermore, for the delay, in the first regime of Equa-
tion (10), i.e., dS :

[
1, n

γ
2

]
∩[1,

√
n), by using the tight bound,

we get that the delay is inversely proportional to (dS)
2 when

dS :
[
1, n

γ
2√

logn

]
, and becomes invariable when dS is beyond

the threshold of order Θ
(

n
γ
2√

logn

)
. For the other two regimes,

it is an interesting future work to derive tight bounds if they
exist, which can possibly enhance the insights of the issue.

I Under the premise of ensuring the optimal capacity of
order Θ(1), when 0 < γ ≤ 1, the optimal delay under the
GphyM is smaller than that under the protocol model or the
physical model; and when γ = 0 (random walk model), it is no
larger than the delay under the protocol model or the physical
model. We give the corresponding illustrations in Figs. 1(a)-
1(c).

4.2 Capacity and Delay under the DRDMM
Theorem 2: Under the generalized physical model and

DRDMM, by applying the two-hop strategy S with a critical
distance dS, the achievable average throughput, denoted by
λd (S, n), is of order
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
Ω

(
logn·n

δ
2

(dS)
2

)
when dS :

[
n

δ
2

√
log n,

√
n
]
,

Ω
(

1

n
δ
2

)
when dS :

[
n

δ
2 , n

δ
2

√
log n

]
∩ [1,

√
n],

Ω
(

1
dS

)
when dS :

[
1, n

δ
2

]
.

(11)
The average delay, denoted by E

(
Dd (S, n)

)
, is of order

Θ
(

n
(dS)

2 + logn

n
δ
2
−1

)
when dS :

[
1, n

δ
2

]
∩ [1,

√
n),

Ω

(
n1− δ

2

logn

)
when dS :

[
n

δ
2 ,
√
n
)
,

O

(
n1− δ

2

logn

)
when dS = Θ(

√
n) .

(12)

Proof: Please refer to Appendix C.2.
Specifically, we have:
(a) When δ = 0, as illustrated in Fig. 8(a),

λ (S, n) =

{
Ω(1) when dS :

[
1,

√
log n

]
,

Ω
(

logn
(dS)

2

)
when dS :

[√
log n,

√
n
]
.

E (D (S, n)) =

{
Θ(n log n) when dS : [1,

√
n),

O
(

n
logn

)
when dS = Θ(

√
n) .

(b) When 0 < δ < 1, as illustrated in Fig. 8(b),

λ (S, n) =


Ω
(

1
dS

)
when dS :

[
1, n

δ
2

]
,

Ω
(

1

n
δ
2

)
when dS :

[
n

δ
2 , n

δ
2

√
log n

]
,

Ω

(
logn·n

δ
2

(dS)
2

)
when dS :

[
n

δ
2

√
log n,

√
n
]
.

E (D (S, n)) =



Θ
(

n
(dS)

2

)
when dS :

[
1, n

δ
4√

logn

]
,

Θ
(

logn

n
δ
2
−1

)
when dS :

[
n

δ
4√

logn
, n

δ
2

]
,

Ω

(
n1− δ

2

logn

)
when dS :

[
n

δ
2 ,
√
n
)
,

O

(
n1− δ

2

logn

)
when dS = Θ(

√
n) .

(c) When δ = 1, as illustrated in Fig. 8(c), λ (S, n) =

Ω
(

1
dS

)
for dS : [1,

√
n],

E (D (S, n)) =


Θ
(

n
(dS)

2

)
when dS :

[
1,

4
√
n√

logn

]
,

Θ(
√
n · log n) when dS :

(
4
√
n√

logn
,
√
n
)
,

O
( √

n
logn

)
when dS = Θ(

√
n) .

Now, we examine the implications of the results for the
DRDMM.

I For the cases of 0 < δ ≤ 1, including the random way-
point model, one has to let dS = Θ(1) in order to achieve
the optimal capacity of order Θ(1). For the discrete Brownian
mobility model, i.e., the case of δ = 0, the optimal capacity
is achievable when dS :

[
1,
√
log n

]
, as shown in Table. 3.

I The bound on the delay is tight in the regime of dS :[
1, n

δ
2

]
∩ [1,

√
n). The delay is inversely proportional to (dS)

2

Transition

Transition

Transition

Θ(
√

n)Θ(
√

log n)

(a)Decrete Brownian Model: δ = 0

dS

E(D) = n

(dS)2

Θ(n log n)

E(D) = n

(dS)2

Θ(
√

n log n)

Θ
(

4
√
n

√
logn

)

Θ(
√

n)

Θ(1)

Θ
(

logn

n
1−

δ
2

)

Θ(
√

n)

Θ
(

n−
δ

2

)

dS

(c) Random Way-Point Model: δ = 1

Θ
(

logn
n

)

Θ
(

√

nδ log n
)

Θ

(

√

n
δ
2

logn

)

Θ(1)

λ = 1
dS

Θ(1)

Θ
(

n
δ

2

)

Θ(1)

Θ
( √

n

logn

)

Θ
(

n

logn

)

Θ
(

n
1−

δ
2

logn

)

Θ(n)

dS
Θ(1)

(b) GRDM: 0 < δ < 1

Θ(n)

Θ(1)

Θ
(

logn

n
δ
2
−1

)

λ = logn·n
δ
2

(dS)2

λ = logn
(dS)2

λ(S, n)Capacity

E(D(S, n))

Delay E(D(S, n))

Delay

λ(S, n)Capacity

Capacity

E(D(S, n))

λ = 1
dS

Delay

λ(S, n)

Fig. 8. Achievable capacity and delay depending on the
degree of freedom δ ∈ [0, 1]. The solid curves represent
the functions of the achievable capacities and delays with
respect to the parameter dS. The dashed curve repre-
sents the function of the achievable delay whose lower
and upper bounds can be derived but exact form cannot
be determined.

when dS :

[
1, n

δ
4√

logn

]
, and becomes invariable when dS is

beyond the threshold Θ

(
n

δ
4√

logn

)
.

I Under the premise of ensuring the optimal capacity of
order Θ(1), when 0 < δ ≤ 1, the optimal delay under the
GphyM is the same as that under the protocol model or the
physical model; and when δ = 0 (discrete Brownian model),
it is no larger than the delay under the protocol model or the
physical model. We provide the corresponding illustrations in
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TABLE 3
Range of dS for the optimal-order capacity.

Range of dS

HRWMM dS :
[
1,min

{
n

γ
2
√
logn,

√
n
}]

DRDMM dS :
[
1,

√
logn

]
if δ = 0; dS = Θ(1) if 0 < δ ≤ 1

Fig. 1(d)-(f).

5 INTUITIVE EXPLANATIONS OF THE RESULTS

In this section, we provide a nonrigorous but intuitive analysis
for the impacts of rate adaptation and mobility models on the
capacity-delay tradeoffs for MANETs.

5.1 Key Points for Improving Tradeoffs

In MANETs, there are generally two ways to send a packet
from the source to its destination(s), i.e., wireless transmission
and physical transportation on a carrier. Accordingly, the sum
of travel distances of packets, denoted by L, can be divided
into two parts: the sum of distances covered by wireless
transmissions and the sum of distances covered by carrier
movement, denoted by LT and LM , respectively. It holds that
L = LT + LM . Intuitively, for improving capacity, the dis-
tances by wireless transmissions should be reduced, while for
decreasing delay, the distances by carrier movements should
be reduced. However, as a general rule, both types of distances
cannot be simultaneously decreased, which potentially results
in a tradeoff between the network capacity and delay. For
instance, in the pioneering work [8], under the i.i.d. mobility
model, the optimal capacity of order Θ(1) is achieved by
minimizing the distances covered by wireless transmissions,
consequently maximizing the distances covered by carrier
movements, at the cost of a huge delay of order Θ(n).

In most strategies for improving the capacity-delay trade-
offs in MANETs, e.g., the packet redundancy scheme [11],
[18], there is a common argument, that is, “less loss” of
capacity in exchange for “more gain” of delay. Under this
argument, we aim to investigate whether the capacity-delay
tradeoffs in MANETs can be improved by permitting adaptive
rate wireless transmissions.

5.2 Intuitive Justification of the Gains of Rate Adap-
tation

When longer-distance wireless transmissions are permitted by
introducing adaptive-rate communication model, the distances
covered by the physical movement of the carriers can be
reduced with high probability, which results in the decrease
of waiting delay, with possible loss of capacity. Based on this
thought, we demonstrate whether relay schemes with longer
wireless links of an appropriate distance can improve capacity-
delay tradeoffs for MANETs. In other words, it indicates
whether we can get “more gain” of delay at the expense of

“less loss” of capacity. It shows that the answer depends on the
property of mobility models. For the mobility models under
which the movements of nodes are relatively “rapid”, e.g.,
the i.i.d. model, compared with strategies under the fixed-rate
communication model, there exist larger thresholds of critical
distances below which the capacity is not reduced heavily, and
even the optimal capacity can be still sustained. The reason
for such results lies in the fact that the data transmitted via
long-distance links are indeed infinitesimal relative to those
via short links when the link rate changes with the link
length under the adaptive-rate communication model, which
can explain why improvements on capacity-delay tradeoffs for
some mobility models can be achieved by the rate adaptation.

6 CONCLUSION

In this paper, we initiated an investigation of the impact of
adaptive-rate communication model on capacity-delay trade-
offs in MANETs under some classical mobility models. We
derived the optimal delay for the optimal unicast capacity
by using the well-known two-hop relay policy, and made
it clear how the capacity-delay tradeoffs in MANETs vary
under the different mobility models when the rate adaptation
is introduced.

There are some limitations of our work that are left for the
future research:

(1) There remain gaps between the lower and upper bounds
on capacity and delay for some regimes. It is necessary to
derive tight bounds in the whole regime and provide more
complete and conclusive results.

(2) In order to concentrate on stressing new insights of
the impact of rate adaptation, we constrained the strategies to
the type of simple threshold-based two-hop relaying schemes
in this work. An important work is to extend our results by
adopting some advanced relay techniques, such as replication
and network-layer cooperation policies.

(3) We only considered unicast sessions in this work. It
should be interesting to extend our results to other traffic
sessions, e.g., multicast, broadcast, convergecast, anycast and
manycast.
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