
1

Collusion-Tolerable Privacy-Preserving Sum and
Product Calculation without Secure Channel

Taeho Jung†, Xiang-Yang Li†§, Meng Wan‡
†Department of Computer Science, Illinois Institute of Technology, Chicago, IL

§Department of Computer Science and Technology and TNLIST, Tsinghua University, Beijing
‡Center for Science and Technology Development, Ministry of Education, Beijing

F

Abstract—Much research has been conducted to securely outsource
multiple parties’ data aggregation to an untrusted aggregator without
disclosing each individual’s privately owned data, or to enable multiple
parties to jointly aggregate their data while preserving privacy. However,
those works either require secure pair-wise communication channels or
suffer from high complexity. In this paper, we consider how an external
aggregator or multiple parties can learn some algebraic statistics (e.g.,
sum, product) over participants’ privately owned data while preserving
the data privacy. We assume all channels are subject to eavesdropping
attacks, and all the communications throughout the aggregation are
open to others. We first propose several protocols that successfully
guarantee data privacy under semi-honest model, and then present
advanced protocols which tolerate up to k passive adversaries who do
not try to tamper the computation. Under this weak assumption, we limit
both the communication and computation complexity of each participant
to a small constant. At the end, we present applications which solve
several interesting problems via our protocols.

Keywords: Privacy, data aggregation, secure channels,
SMC, homomorphic.

1 INTRODUCTION

The Privacy-preserving data aggregation problem has
long been a hot research issue in the field of applied
cryptography. In numerous real life applications such as
crowd sourcing or mobile cloud computing, individuals
need to provide their sensitive data (location-related or
personal-information-related) to receive specific services
from the system (e.g., location based services or mobile
based social networking services). There are usually
two different models in this problem: 1) an external
aggregator collects the data and wants to conduct an
aggregation function on participants’ data (e.g., crowd
sourcing); 2) participants themselves are willing to jointly

*Dr. Xiang-Yang Li is the contact author of this paper.
1. The research of Li is partially supported by NSF CNS-1035894,

NSF ECCS-1247944, NSF ECCS-1343306, National Natural Science
Foundation of China under Grant No. 61170216, No. 61228202. Any
opinions, findings, conclusions, or recommendations expressed in this
paper are those of author(s) and do not necessarily reflect the views of
the funding agencies (NSF, and NSFC).

compute a specific aggregation function whose input
data is co-provided by themselves (e.g., social network-
ing services). However, the individuals’ data should be
kept secret, and the aggregator or other participants are
not supposed to learn any useful information about it.
Secure Multi-party Computation (SMC), Homomorphic
Encryption (HE) and other cryptographic methodologies
can be partially or fully exploited to solve this problem,
but they are subject to some restrictions in such prob-
lems.

Secure Multi-party Computation (SMC) was first for-
mally introduced by Yao [1] in 1982 as Secure Two-Party
Computation. Generally, it enables n parties who want
to jointly and privately compute a function

f(x1, x2, · · · , xn) = {y1, y2, · · · , yn}
where xi is the input of the participant i, and the result
yi is returned to the participant i only. Each result can be
relevant to all input xi’s, and each participant i knows
nothing but his own result yi. One could let the function
in SMC output only one uniform result to all or parts of
participants, which is the algebraic aggregation of their
input data. Then the privacy-preserving data aggregation
problem seems to be solved by SMC. However this
actually does not completely solve it because interactive
invocation is required for participants in synchronous
SMC (e.g., [2]) , which leads to high communication
and computation complexity (compared in the Section
7). Even in the asynchronous SMC, the computation
complexity is still too high for practical applications.

Homomorphic Encryption (HE) allows direct addition
and multiplication of ciphertexts while preserving de-
cryptability. That is, Enc(m1)⊗Enc(m2) = Enc(m1×m2),
where Enc(m) stands for the ciphertext of m, and ⊗, ×
refer to the homomorphic operations on the ciphertext
and plaintexts respectively. One could also try to solve
our problem using this technique, but HE uses the same
decryption key for original data and the aggregated data.
This forbids aggregator from decrypting the aggregated
result, because if the aggregator were allowed to decrypt
the final result, he could also decrypt the individual

2

Secure Multi-party Computation
Pros different outputs for different participants
Cons high complexity due to the computation based on garbled circuit

frequent interactions required for synchronous SMC
Homomorphic Encryption

Pros efficient if # of multiplcations is restricted
Cons decrypter can decrypt both aggregated data and individual data

trade-off between # of multiplications and complexity exists

ciphertext, which contradicts our motivation. Also, be-
cause the size of the plaintext space is limited, the num-
ber of addition and multiplication operations executed
on ciphertexts was limited until Gentry et al. proposed
a fully homomorphic encryption scheme [3] and imple-
mented it in [4]. However, Naehrig et al. pointed out
in [5] that the complexity of such fully homomorphic
encryption is too high to use in real applications. Naehrig
et al. also proposed a HE scheme which sacrificed the
number of multiplications for speed, but it still needs
too much time to execute homomorphic operations on
ciphertexts (also compared in Section 7).

Besides the aforementioned drawbacks, both SMC and
HE require an initialization phase during which partici-
pants request keys from key issuers via secure channel.
This could be a security bottleneck since the security of
those schemes relies on the assumption that keys are
delivered to authorized participants only.

In this paper, we revisit the classic privacy preserving
data aggregation problem. Our goal is to design efficient
protocols without relying on a trusted authority or secure
pair-wise communication channels. The main contribu-
tions of this paper are:

1) Formulation of a model without secure channel or trusted
center: Different from many other models in privacy-
preserving data aggregation problem, our model
does not require a secure communication channel
nor a trusted central key issuer.

2) Efficient protocol in linear time: The total communi-
cation and computation complexity of our work is
proportional to the number of participants n, while
the complexities of many similar works are propor-
tional to n2. We do not use complicated encryption
protocols, which makes our system much faster than
other proposed systems.

3) Secure sum and product calculation: We generalize the
privacy-preserving data aggregation to multivari-
ate sum and product calculation whose inputs are
jointly provided by multiple parties. That is, our
scheme enables multiple parties to securely compute∑

i

xi or
∏
i

xi

where xi is a privately known data by user i.
4) Tolerate up to k collusive adversaries: Our protocol is

robust against up to k colluding passive adversaries
who do not try to tamper the computation.

The rest of the paper is organized as follows. We
present the system model and necessary background in

Section 3. In Section 4, we analyze the needed number
of communications with secure communication channels
when users communicate randomly. We address the pri-
vacy preserving sum and product calculation in Section
5 by presenting two types of efficient protocols. Then,
we present detailed security analysis of our protocols in
Section 6, and the performance evaluation is reported in
Section 7. Finally, solutions to various problems based
on our protocols are presented in Section 8 and finally
conclude the paper with the discussion of some future
work in Section 9.

2 RELATED WORK
Many novel protocols have been proposed for privacy-
preserving data aggregation or in general secure multi-
party computation. Castelluccia et al. [6] presented a
provable secure and efficient aggregation of encrypted
data in WSN, which is extended from [7]. They designed
a symmetric key homomorphic encryption scheme which
is additively homomorphic to conduct the aggregation
operations on the ciphertexts. Their scheme uses modu-
lar addition, so the scheme is good for CPU-bounded
devices such as sensor nodes in WSN. Their scheme
can also efficiently compute various statistical values
such as mean, variance and deviation. However, since
they used the symmetric homomorphic encryption, their
aggregator can decrypt each individual sensor’s data,
and they assumed the trusted aggregator in their model.

Sheikh et al. [8] proposed a k-secure sum protocol,
which is motivated by the work of Clifton et al. [9]. They
significantly reduced the probability of data leakage in
[9] by segmenting the data block of individual party, and
distributing segments to other parties. Here, sum of each
party’s segments is his data, therefore the final sum of
all segments are sum of all parties’ data. This scheme
can be easily converted to k-secure product protocol
by converting each addition to multiplication. However,
pair-wise unique secure communication channels should
be given between each pair of users such that only the
receiver and the sender know the transmitted segment.
Otherwise, each party’s secret data can be calculated by
performing O(k) computations. In this paper, we remove
the limitation of using secure communication channels.

The work of He et al. [10] is similar to Sheikh et
al.’s work. They proposed two privacy-preserving data
aggregation schemes for wireless sensor networks: the
Cluster-Based Private Data Aggregation (CPDA) and the
Slice-Mix-AggRegaTe (SMART). In CPDA, sensor nodes
form clusters randomly and collectively compute the
aggregate result within each cluster. In the improved
SMART, each node segments its data into n slices and
distributes n− 1 slices to nearest nodes via secure chan-
nel. However, they only supports additions, and since
each data is segmented, communication overhead per
node is linear to the number of slices n.

Shi et al. [11] proposed a construction that n partic-
ipants periodically upload encrypted values to an ag-
gregator, and the aggregator computes the sum of those

3

values without learning anything else. This scheme is
close to our solution, but they assumed a trusted key
dealer in their model. The key dealer distributes random
key ki to participant i and key k0 to the aggregator,
where Πn

i=0ki = 1, and the ciphertext is in the format
of Ci = ki ·gxi . Here, g is a generator, ki is a participant’s
key and xi is his data (for i = 1, 2, · · ·n). Then, the
aggregator can recover the sum

∑n
i=1 xi iff he received

ciphertexts from all of the participants. He computes
k0Πn

i=1Ci to get g
∑n
i=1 xi , and uses brute-force search to

find the
∑n
i=1 xi or uses Pollard’s lambda method [12]

to calculate it. This kind of brute-force decryption limits
the space of plaintext due to the hardness of the discrete
logarithm problem, otherwise no deterministic algorithm
can decrypt their ciphertext in polynomial time. The
security of their scheme relies on the security of keys ki.
Later, Joye et al. [13] proposed binomial property based
solution to efficiently decrypt the sum, but they also rely
on a trusted key dealer who distributes the keys.

In our scheme, the trusted aggregator in [6][7] is
removed since data privacy against the aggregator is
also a top concern these days. Unlike [10][8], we as-
sumed insecure channels, which enabled us to get rid
of expensive and vulnerable key pre-distribution. We
did not segment each individual’s data, our protocols
only incur constant communication overhead for each
participant. Our scheme is also based on the hardness
of the discrete logarithm problem like [11], but we do
not trivially employ brute-force manner in decryption,
instead, we employ our novel efficient protocols for sum
and product calculation.

Besides, there are also several works ([14], [15], [16],
[17]) which have similar goals as ours. They are pre-
sented to achieve collusion-resistant or fault-tolerable
data aggregation with privacy preservation. However,
they leverage the differential privacy [18], [19], [20], [21]
in various ways to achieve privacy as well as collusion
(or fault) tolerance. The results given by their solutions
contain asymptotically bounded error, and those works
may not be applicable when exact results are desired.

3 SYSTEM MODEL
3.1 Problem Definition and Threat Model
Assume that there are n participants {p1,p2, · · · ,pn},
and each participant pi has a privately known data
xi from Zp. The privacy-preserving data aggregation
problem is to compute sum or product of xi jointly or
by an aggregator while preserving the data privacy. That
is, the objective of the aggregator or the participants is
to compute the following polynomial without knowing
any individual xi:

f(x) =

n∑
i=1

xi or f(x) =

n∏
i=1

xi (1)

Here vector x = (x1, x2, · · · , xn). For simplicity, we
assume that the final result f(x) is positive and bounded
from above by a large prime number P .

We employ two different models in this paper: One
Aggregator Model and Participants Only Model. These two
models are general cases we are faced with in real
applications.

One Aggregator Model: In the first model, we have
one aggregator A who wants to compute the function
f(x). We assume the aggregator is untrustful and curi-
ous. That is, he always eavesdrops the communications
between participants and tries to harvest their input data,
but he will follow the protocol specification. We also
assume participants do not trust each other and that
they are curious as well, i.e., they also eavesdrop all the
communications and follow the protocol specification.
We could also consider having multiple aggregators,
but this is a simple extension which can be trivially
achieved from our first model. We call this model the
One Aggregator Model. Note that in this model, any single
participant pi is not allowed to compute the final result
f(x).

Participants Only Model: The second model is similar
to the first one except that there are n participants
only and there is no aggregator. In this model, all the
participants are equal and they all will calculate the final
aggregation result f(x).

We further assume the participants and aggregator
may be passively adversarial. That is, they will not
tamper the computation, but they may try to manipulate
their calculation to infer others’ private values.

3.2 Security Model
Firstly, we assume that all the communication channels
in our protocol are insecure. Anyone can eavesdrop
them to intercept the data being transferred. To address
the challenges of insecure communication channel, we
assume that the following CDH problem is computation-
ally intractable, i.e., any probabilistic polynomial time
adversary has negligible chance to solve the following
problem:

Definition 1 (CDH Problem in G). The Computational
Diffie-Hellman problem in a multiplicative group G with
generator g is defined as follows: given only g, ga, gb ∈ G
where a, b ∈ Z, compute gab without knowing a or b.

Additionally, similar Decisional Deffie-Hellman
(DDH) problem is defined as follows:

Definition 2 (DDH Problem in G). The Decisional Diffie-
Hellman problem in a multiplicative group G with generator
g is defined as follows: given only g, ga, gb, gc ∈ G where
a, b, c ∈ Z, decide if gab = gc.

Obviously, anyone who solves the CDH problem can
solve the DDH problem by computing gab based on
ga, gb, but not vice versa. That is, the DDH problem is
easier than the CDH one, and if a problem is as hard as
a DDH problem, it is harder than a CDH problem. Our
protocol is based on the assumption that it is computa-
tional expensive to solve the CDH problem as in other

4

similar research works ([22], [23], [24], [25], [26], [27]).
Then, we define the security of our privacy-preserving
sum and product calculation as follows.

Definition 3 (CDH-Security in G). We say our privacy-
preserving (sum or product) calculation is CDH-secure in G
if any Probabilistic Polynomial Time Adversary (PPTA) who
cannot solve the CDH problem with non-negligible chance has
negligible chance to infer any honest participant’s private value
in G, i.e., any PPTA’s probability to solve the CDH problem
ε satisfies ε < | 1

p(κ) | for any polynomial p(·) where κ is the
order of the group G defined in the CDH problem.

Informally, we say our calculation is CDH-secure in G
if illegally inferring an honest participant’s private value
during our calculation is at least as hard as CDH problem
in G.

4 ACHIEVING SUM & PRODUCT UNDER SE-
CURE CHANNEL

Before introducing our aggregation scheme without se-
cure communication channel, we first describe the basic
idea of randomized secure sum calculation under se-
cured communication channel (It can be trivially con-
verted to secure product calculation). The basic idea
came from Clifton et al. [9], which is also reviewed
in [28], but we found their setting imposed unneces-
sary communication overhead, and we reduced it while
maintaining the same security level. Assume participants
p1,p2, · · · ,pn are arranged in a ring for computation
purpose. Each participant pi itself breaks its privately
owned data block xi into k segments si,j such that the
sum of all k segments is equal to the value of the data
block. The value of each segment is randomly decided.
For sum, we can simply assign random values to seg-
ments si,j (1 ≤ j ≤ k − 1) and let si,k = xi −

∑k−1
j=1 si,j .

Similar method can be used for product. In this scheme,
each participant randomly selects k− 1 participants and
transmit each of those participants a distinctive seg-
ment si,j . Thus at the end of this redistribution each
of participants holds several segments within which one
segment belongs to itself and the rest belongs to some
other participants. The receiving participant adds all its
received segments and transmits its result to the next
participant in the ring. This process is repeated until all
the segments of all the participants are added and the
sum is announced by the aggregator.

Recall that there are n participants and each participant
randomly selects k − 1 participants to distribute its seg-
ments. Clearly, a larger k provides better computation
privacy, however it also causes larger communication
overhead which is not desirable. In the rest of this
section, we are interested at finding an appropriate k in
order to reduce the communication cost while preserving
computation privacy.

In particular, we aim at selecting the smallest k to
ensure that each participant holds at least one segment

from the other participants after redistribution. We can
view this problem as placing identical and indistin-
guishable balls into n distinguishable (numbered) bins.
This problem has been extensively studied and well-
understood and the following lemma can be proved by
simple union bound:

Lemma 4.1. Let ε ∈ (0, 1) be a constant. If we randomly
place (1 + ε)n lnn balls into n bins, with probability at least
1− 1

nε , all the n bins are filled.

Assume that each participant will randomly select k−1
participants (including itself) for redistribution. By treat-
ing each round of redistribution as one trial in coupon’s
collector problem, we are able to prove that each par-
ticipant only needs to redistribute ((1 + ε)n lnn)/n =
(1 + ε) lnn segments to other participants to ensure that
every participant receives at least one segment with
high probability. However, different from previous as-
sumption, each participant will select k − 1 participants
except itself to redistribute its segments in our scheme.
Therefore, we need one more round redistribution for
each participant to ensure that every participant will
receive at least one copy from other participants with
high probability.

Theorem 4.2. Let ε ∈ (0, 1) be a constant. If each participant
randomly selects (1 + ε) lnn + 1 participants to redistribute
its segments, with probability at least 1− 1

nε , each participant
receives at least one segment from the other participants.

This theorem reveals that by setting k to the order of
lnn, we are able to preserve the computation privacy.
Compared with traditional secure sum protocol, our
scheme dramatically reduce the communication com-
plexity. However, we assume that the communication
channel among participants are secure in above scheme.
In the rest of this paper, we try to tackle the secure
aggregation problem under unsecured channels.

5 SUM AND PRODUCT CALCULATION WITH-
OUT SECURE CHANNEL

In this section, we first present two novel calculation
protocols for each model which calculate sum and prod-
uct while preserving each participant’s data privacy
against semi-honest adversaries who follow the protocol
specification and do not collude with anyone. Then, we
show how to defend against passive adversaries who
may adaptively choose their secret parameters based on
others’ public parameters and collude with each other.

5.1 Definitions
Table 1 summarizes the notations frequently used in this
paper.

The groups G1,G2 are selected as follows. Two large
same-length prime numbers p, q are chosen such that
q divides p − 1. Then, the q-order cyclic multiplicative

5

TABLE 1
Frequently used notations

pi i-th participant in data aggregation
A Aggregator
Zq The ring Z/qZ
G1, g1 Multiplicative group for product protocol, and its generator
G2, g2 Multiplicative group for sum protocol, and its generator

group G1 is defined as 〈g1〉 where the generator g1, with
a random number h ∈ Zp, is selected as:

g1 = h(p−1)/q mod p s.t. g1 6= 1 mod p

Similarly, the q-order multiplicative group G2 is defined
as 〈g2〉 where the generator g2 = gp1 mod p2.

5.2 Product Protocol - Participants Only Model
In this model, the participants want to jointly compute
the value f(x) =

∏
i xi with their privately known values

xi ∈ Zp, where p is a large prime. The basic idea of
our protocol is to find some random integers Ri ∈ G1

such that
∏
iRi = 1 mod p and the user pi can compute

the random number Ri easily while it is computationally
expensive for other participants to compute the value Ri.

Our protocol for privacy preserving product calcula-
tion

∏
i xi is composed of the following three algorithms:

Setup, Encrypt, Product.

Setup → ri ∈ Zq, Ri = (g
ri+1

1 /g
ri−1

1)ri ∈ G1

We assume all participants are arranged in a circle for
computation purpose. The circle can be formed accord-
ing to any order (e.g., lexicographical order of the MAC
address or the geographical location). This is irrelevant
to the security of our calculation and omit further dis-
cussions about it.

Every pi(i ∈ {1, · · · , n}) randomly chooses a secret in-
teger ri ∈ Zq , and calculates a public parameter gri1 ∈ G1.
Then, each pi shares Yi = gri1 ∈ G1 with pi−1 and pi+1
(where pn+1 = p1 and p0 = pn).

After a round of exchanges, the participant pi com-
putes the number Ri = (Yi+1/Yi−1)ri = (g

ri+1

1 /g
ri−1

1)ri ∈
G1, and keeps the number Ri as a secret randomizer.
Note that p1 calculates (gr21 /g

rn
1)r1 and pn calculates

(gr11 /g
r(n−1)

1)rn .

g
rn−1

1

grn1

gr11gr11
gr21

pn−1

pi+1

gri1

p1

grn1

g
r(i+1)

1

p2

pi

pi−1

gri1 g
r(i−1)

1

gr21

pn

1

grn1

grA1

gr11gr11
gr21

pn

pi+1

gri1

A p1

g
r(i+1)

1

p2

pi

pi−1

gri1 g
r(i−1)

1

grA1

gr21

grn1

1

(a)Participants Only (b) One Aggregator

Fig. 1. Communications in Setup

Encrypt(xi) → Ci ∈ Z∗p
Every pi creates the ciphertext:

Ci = xi ·Ri = xi · (gri+1

1 /g
ri−1

1)ri mod p

where xi ∈ Zp is his private input data. Then, he
broadcasts this ciphertext.

Ci

Cn

C1
C(n−1)

C(i+1)

pn

C2

C(i−1)

p2

p1

p(n−1)

p(i+1)

pi

p(i−1)

1

p2
p(n−1)

p1

p(i+1) p(i−1)

pi

A

Ci

C1

C2

pn
Cn

C(n−1)

C(i−1)

C(i+1)

1

(a)Participants Only (b) One Aggregator

Fig. 2. Communications in Encrypt

Product({C1, C2, · · · , Cn}) →
∏n
i=1 xi ∈ Z∗p

Any pi, after receiving n − 1 ciphertexts from other
pi’s, calculates the following product:

n∏
i=1

Ci =

n∏
i=1

(xi(g
ri+1

1 /g
ri−1

1)ri) mod p

= (

n∏
i=1

xi)

n∏
i=1

((g
ri+1

1 /g
ri−1

1)ri) mod p

= (

n∏
i=1

xi)g
∑n
i=1 (ri+1ri−riri−1)

1 mod p

=

n∏
i=1

xi mod p

where rn+1 = r1, r0 = rn. To make sure that we can
get a correct result

∏n
i=1 xi without modular, we need to

choose p to be large enough, say p ≥Mn, where M is a
known upper bound on xi.

5.3 Product Protocol - One Aggregator Model
The product calculation in the One Aggregater Model is
similar to the protocol above, except that the aggregator
A acts as the (n + 1)-th participant pn+1. The second
difference is that, each participant pi will send the ci-
phertext Ci to the aggregator, instead of broadcasting
to all participants. However, since our communication
channel is insecure, this is essentially the broadcast from
the adversary’s perspective. The last difference is that
the aggregator A will not announce its random number
Rn+1 = (gr11 /g

rn
1)rn+1 to any other participant.

Each participant pi∈[1,n] sends the ciphertext Ci = Ri ·
xi to the aggregator A. The aggregator A then calculates

Rn+1

n∏
i=1

Ci =

n∏
i=1

xi mod p

6

to achieve the final product, where Rn+1 is kept secret
to any participant.

5.4 Sum Protocol - Participants Only Model
Now, we present how to let n participants jointly com-
pute f(x) =

∑n
i=1 xi given their privately known values

xi ∈ G1. It seems we can exploit the aforementioned
method in product calculation by finding random num-
bers Ri such that

∑n
i=1Ri = 0 mod p, but we found it

is challenging to let participants independently achieve
such numbers. The previous method was secure because
of the hardness of the discrete logarithm, but the same
analogue does not exist in the additions.

The basic idea of this protocol is to convert the sum
of numbers into product of numbers. Previous solution
[11] essentially applied this approach also by computing
the product of

∏n
i=1 g

xi = g
∑n
i=1 xi and finding

∑n
i=1 xi

by computing the discrete logarithm of the product. As
discrete logarithm is computationally expensive, we will
not adopt this method. Instead, we propose a computa-
tionally efficient method here.

In a nutshell, we exploit the modular property below
to achieve the privacy preserving sum protocol.

(1 + p)m =

m∑
i=0

(
m

i

)
pi = 1 +mp mod p2 (2)

From the Equation (2), we conclude that
n∏
i=1

(1 + p)xi =

n∏
i=1

(1 + p · xi) = (1 + p
∑
i

xi) mod p2.

Our protocol for privacy preserving sum calculation∑
i xi has the following steps: Setup, Encrypt, Sum.

Setup → ri ∈ Zq, Ri = (g
ri+1

2 /g
ri−1

2)ri ∈ G2

Every pi randomly picks a secret number ri ∈ Zq ,
and calculates a public parameter gri2 mod p2. Then, he
shares Yi = gri2 ∈ G2 with pi+1 and pi−1. Similar to
the product calculation protocol, pn shares his public
parameter with his p(n−1) and p1, and p1 shares his
public parameter with p2 and pn.

After a round of exchanges, each pi calculates Ri =
(g
ri+1

2 /g
ri−1

2)ri mod p2 and keeps this as a secret ran-
domizer.

Encrypt(xi, Ri) → Ci ∈ Zp2
Every pi first calculates (1+xi ·p). Then, he multiplies

the secret parameter Ri = (g
ri+1

2 /g
ri−1

2)ri to it to get the
ciphertext:

Ci = (1 + xi · p) ·Ri mod p2

After all, each participant broadcasts his ciphertext to
each other.

Sum({C1, C2, · · · , Cn}) →
∑n
k=1 xi ∈ Zp.

Each participant pi, after receiving the ciphertexts from
all of other participants, calculates the following C ∈ Zp2 :

C =

n∏
i=1

Ci mod p2

=

n∏
i=1

(1 + xip)(g
ri+1

2 /g
ri−1

2)ri mod p2

= (1 + p

n∑
i=1

xi)g
∑n
i=1 ri+1ri−riri−1

2 mod p2

= (1 + p

n∑
i=1

xi) mod p2

Then, he calculates (C−1)/p =
∑n
i=1 xi mod p to recover

the final sum, where the division is not the (C−1) times
p−1 mod p but the quotient of (C − 1)/p.

5.5 Sum Protocol - One Aggregator Model
Similar to the product protocol for One Aggregator
Model, everything is same except that A acts as (n+ 1)-
th participant in this model. The participants send their
ciphertexts to A, and A calculates

C = Rn+1

n∏
i=1

Ci = (1 + p

n∑
i=1

xi) mod p2

Then, he can compute the final sum result
∑n
i=1 xi.

5.6 Advanced Protocols – Defence Against k Adver-
sarial Participants
Our protocol is based on the circle-wise exchanges
among the participants arranged in a circle, in which
pi exchanges his secret with pi−1 and pi+1 (equivalent
to a broadcast due to the insecure channel). Since pi’s
randomizer Ri is g(ri+1−ri−1)ri , this construction is vul-
nerable to well known passive rushing adversaries, who
have access to the message sent from reliable players
before they choose their messages ([29]).

During the circle-wise exchanges, an adversarial par-
ticipant pi may send out gri+2−a to pi+1 (a ∈ Z) after re-
ceiving gri+2 from pi+2. Then, pi+1’s randomizer is equal
to g(ri+2−(ri+2−a))ri+1 = gari+1 , which can be efficiently
solved with pi+1’s public parameter gri+1 . This attack
does not tamper the final computation and cannot be
detected.

In a word, the rushing adversary can manipulate the
value ri+1 − ri−1. Therefore, we present an advanced
product protocol which is secure against such attackers.
For simplicity, we only show the advanced construc-
tion of product calculation protocol in Participants Only
model, but the analogues in the other settings are easy
to derive.

Setup → ri ∈ Zq, Ri =
(
g
ri+2

1 /g
ri−1

1

)ri+1ri .
Every pi randomly picks a secret number ri ∈ Zq , and

calculates a public parameter gri1 ∈ G1. Then, each pi

7

shares Yi = gri1 ∈ G1 with pi−1,pi+1 and pi+2 (where
pn+1 = p1, p0 = pn and pn+2 = p2).

After a round of exchanges, the participant pi+1 com-
putes the number

Y ′i+1 = (Yi+2/Yi−1)ri+1 =
(
g
ri+2

1 /g
ri−1

1

)ri+1

and sends Y ′i+1 to pi. After the second round of ex-
changes, the participant pi computes

Ri = Y ′rii+1 =
(
g
ri+2

1 /g
ri−1

1

)ri+1ri

and keeps it as a secret randomizer.

Encrypt(xi, Ri) → Ci ∈ Zp
Every pi calculates

Ci = xi ·Ri = xi
(
g
ri+2

1 /g
ri−1

1

)ri+1ri
mod p

Then, he broadcasts Ci as his ciphertext.

Product({C1, C2, · · · , Cn}) →
∏n
i=1 xi ∈ Zp

Any pi, after receiving n − 1 ciphertexts from other
participants, calculates the following product:

n∏
i=1

Ci =

n∏
i=1

(
xi
(
g
ri+2

1 /g
ri−1

1

)ri+1ri)
mod p

=

(
n∏
i=1

xi

)(
n∏
i=1

(
g
ri+1

1 /g
ri−1

1

)ri+1ri

)
mod p

=

(
n∏
i=1

xi

)
g
∑n
i=1 (ri+2ri+1ri−ri+1riri−1)

1 mod p

=

n∏
i=1

xi mod p

where rn+1 = r1, r0 = rn and rn+2 = r2.

With this construction, a passive adversary pi−1 cannot
compute Ri even if he launches a passive rushing attack
and get the value of ri+2 − ri−1 because ri+1 remains
unknown to him. If pi−1 colludes with pi+1, we can add
another round of exchanges such that pi’s randomizer
Ri is equal to

Ri =
(
g
ri+3

1 /g
ri−1

1

)ri+2ri+1ri
mod p

Then, two colluding rushing adversaries cannot calculate
the randomizer. In general, when there are k colluding
adversaries, we can have k+1 rounds of exchanges such
that pi’s randomizer is equal to

Ri =
(
g
ri+k+1

1 /g
ri−1

1

)ri+kri+k−1···ri+2ri+1ri
mod p

5.7 Further Improvement
In fact, the Setup algorithm must be repeated every
time a new sum or product is desired, in which two
communications per participant are required. Otherwise,
the random number Ri remains same, which leaks much
information. Each participant needs to communicate
with two other participants in every calculation, but we
can remove this process in One Aggregator Model by
leveraging the Joye et al’s work [13].

Briefly, Joye et al let a trusted key dealer distribute
a set of random numbers si’s to the participants and
s0 = −∑ si to the aggregator. Then, it satisfies that∏
H(t)si = 1, where t is the timestamp and H(·) is any

hash function, and this property can be used to conduct
sum or product calculation with privacy preservation,
where the encryption is very similar to the one in this
paper. Since H(t) changes along the time, participants get
fresh random numbers without communication. There-
fore, we can achieve a more communication efficient sum
calculation protocol, and also remove the necessity of a
trusted key dealer in [13] as follows.

Firstly, every participant picks a random number si ∈
Zp. Then, all participants and the aggregator engage in
our privacy-preserving sum calculation (Section 5.5) to
let the aggregator calculate

∑
si. After the aggregator

sets s0 = −∑ si, he can compute
∑
xi without knowing

individual xi using the data aggregation scheme in [13].
By doing so, participants do not need to repeat the

exchanges to get new random numbers, and this allows
them to get rid of the communications with other partic-
ipants. This may be greatly reduce the communication
overhead when the aggregator is a large server with
whom the communication is cheap, but the P2P commu-
nications with other participants are expensive. Since the
participants and the aggregator have s0, · · · , sn such that∏
H(t)si = 1, the privacy-preserving product calculation

can also be achieved as in Section 5.3.

6 SECURITY ANALYSIS

6.1 Restriction of the Product and Sum Protocol
In both protocols, we require that the number of par-
ticipants is at least 3 in Participants Only Model and at
least 2 in One Aggregator Model. In Participants Only
Model, if there are only 2 participants, privacy is not
preservable since it is impossible to let p1 know x1+x2 or
x1x2 without knowing x2. However, in One Aggregator
Model, since only the aggregator A knows the final
result, as long as there are two participants, A is not
able to infer any individual’s input data.

6.2 Security of Product Protocol
Since our communication channel is insecure, any ad-
versary has same view in both Participants Only Model
and One Aggregator Model. Thus, we only analyze the
security of Participants Only Model in this section.

8

Theorem 6.1. Our product protocol in Participants Only
Model is CDH-secure in G1.

Proof: In a nutshell, we show that any PPTA who has
significant chance to infer private values in our prod-
uct protocol has non-negligible advantage to solve the
CDH problem, which is a contradiction to our security
assumption that CDH problem is intractable.

For any ciphertext in a product protocol, we have

Ci = xi(g
ri+1

1 /gri−1)ri = xig
(ri+1−ri−1)ri
1 mod p

To infer xi given Ci = xiRi, any adversary has
to solve the secret randomizer Ri = g

(ri+1−ri−1)ri
1 to

infer xi correctly. Note that any PPTA is only given
Yi1 = g

ri−1

1 , Yi = gri1 and Yi+1 = g
ri+1

1 from the in-
secure communication channel, then a PPTA can have
Yi+1/Yi−1 = g

ri+1−ri−1

1 and Yi = gri1 . Assume there exists
a PPTA who can solve g(ri+1−ri−1)ri

1 , then he also solves
the CDH problem defined in our group G1 and the
easier DDH problem too. However, even the easier DDH
problem is believed to be intractable in a k-th residues
modulo a prime number ([30]), therefore any PPTA has
a negligible advantage to solve g(ri+1−ri−1)ri

1 in G1.
That is, inferring private values during our product

protocol in Participants Only Model is at least as hard as
a CDH problem in G1 for any Probabilistic Polynomial
Time Adversary (PPTA), and thus the protocol is CDH-
secure in G1.

6.3 Security of Sum Protocol

Again, we only analyze the security in Participants
Model Only. Analogously, we have the following the-
orem.

Theorem 6.2. Our sum protocol in Participants Only Model
is CDH-secure in G2.

Proof: Similar to the aforementioned proof, in order
to infer xi given Ci = (1+xip)Ri, any PPTA has to solve
the secret randomizer Ri = g

ri+1−ri−1ri
2 first. Note that

any PPTA is only given Yi1 = g
ri−1

2 , Yi = gri1 and Yi+1 =
g
ri+1

2 from the insecure communication channel, then a
PPTA can have Yi+1/Yi−1 = g

ri+1−ri−1

2 and Yi = gri2 .
Assume there exists a PPTA who can solve g(ri+1−ri−1)ri

1 ,
then he also solves the CDH problem defined in our
group G2. However, the CDH problem is proved to be
hard in the finite field Fp2 = Z/p2Z ([31]), therefore any
PPTA has a negligible advantage to solve g

(ri+1−ri−1)ri
2

in G2.
That is, inferring private values during our sum pro-

tocol in Participants Only Model is at least as hard as
a CDH problem in G2 for any Probabilistic Polynomial
Time Adversary (PPTA), and thus the protocol is CDH-
secure in G2.

6.4 Security of Advanced Protocols
For the sake of simplicity, we only analyze the security of
the advanced product protocol tolerant to k adversaries
in Participants Only Model, but the same-level security
is achieved in other settings, and the similar proofs holds
for every setting.

Theorem 6.3. The advanced product protocol tolerant to k
adversaries in Participants Only Model is CDH-secure in G1.

Proof: In order to infer xi given Ci = xiRi, any
adversary has to solve the secret randomizer

Ri =
(
g
ri+k+1

1 /g
ri−1

1

)ri+kri+k−1···ri+2ri+1ri
mod p

In the worst case, a rushing adversary can manipulate
the value ri+k+1 − ri−1, and he can collude with k − 1
adversarial participants to get k − 1 random numbers
ri’s in the exponent. However, there are k + 1 random
numbers ri’s in the exponent, and thus at least two
random numbers remain unknown to the adversarial
participants. Therefore, the exponent

(ri+k+1 − ri−1)ri+kri+k−1 · · · ri+2ri+1

remains unknown. Therefore, the adversaries cannot
solve Ri with gri1 .

W.l.o.g., let pi−1 be the rushing adversary and let
pi+1, · · · ,pi+k−1 be k − 1 remaining adversarial partic-
ipants. Then, the adversarial participants are given(

g
ri+k+1

1 /g
ri−1

1

)ri+kri+k−1···ri+2ri+1

from the k+1-th round of the exchanges and the gri1 from
the first round of the exchanges, and they have to solve
Ri. However, this is exactly the CDH problem, which is
assumed to be intractable.

That is, inferring private values during the advanced
product protocol tolerant to k adversaries in Participants
Only Model is at least as hard as a CDH problem in G1

for any Probabilistic Polynomial Time Adversary (PPTA),
and thus the protocol is CDH-secure in G1.

7 PERFORMANCE EVALUATION

7.1 Complexity
We discuss the computation and communication com-
plexities of sum and product protocols in each model in
this section.

7.1.1 One Aggregator Model
It is easy to see that the computation complexities of
Setup, Encrypt and Product of the product protocol
are O(1), O(1) and O(n) respectively. Also, Encrypt is
executed for m times by each participant and Product is
executed for m times by the aggregator in the Advanced
Scheme.

Every participant and the aggregator exchanges gri ’s
with each adjacent neighbor in the ring, which incurs

9

communication of O(|p|) bits in Setup, where |p| rep-
resents the bit length of p. In Encrypt, each participant
sends m ciphertexts ck

∏n
i=1 x

di,k
i ’s to the aggregator, so

the communication overhead of Encrypt is O(m|p|) bits.
Since n participants are sending the ciphertexts to the
aggregator, the aggregator’s communication overhead is
O(mn|p|).

Similarly, the computation complexities of Setup, En-
crypt and Sum in the sum protocol are O(1), O(1) and
O(m) respectively, and they are executed for only once
in the scheme. Hence, the communication overhead of
Setup, Encrypt and Sum are O(|p2|) bits, O(|p2|) bits and
O(m|p2|) bits respectively (|p2| is the big length of p2).

Note that |p2| = 2|p|. Then, the total complexity of
aggregator and participants are as follows:

TABLE 2
One Aggregator Model

Aggregator Computation Communication (bits)
Product (Product) O(mn) O(mn|p|)

Sum (sum) O(m) O(m|p|)
Per Participant Computation Communication (bits)

Setup (Product) O(1) O(|p|)
Encrypt (Product) O(m) O(m|p|)

Setup (sum) O(1) O(|p|)
Encrypt (sum) O(1) O(|p|)

7.1.2 Participants Only Model

In the Participants Only Model, participants broadcast
ciphertexts to others, and calculates the products and
sums themselves, therefore the complexities are shown
as below:

TABLE 3
Participants Only Model

Per Participant Computation Communication (bits)
Setup (Product) O(1) O(|p|)

Encrypt (Product) O(m) O(mn|p|)
Product (Product) O(mn) O(mn|p|)

Setup (sum) O(1) O(|p|)
Encrypt (sum) O(1) O(m|p|)

Sum (sum) O(m) O(m|p|)

Note that the communication overhead is balanced in
the Participants Only Model, but the system-wide com-
munication overhead is increased a lot. In the One Aggre-
gator Model, the system-wide communication overhead
is:

O(mn|p|) +O(m|p|) + n ·O(|p|) = O(mn|p|) (bits)

However, in the Participants Only Model, the system-
wide communication complexity is:

n ·O(|p|) +n ·O(m|p|) +n ·O(mn|p|) = O(mn2|p|) (bits)

7.2 Evaluation by Implementation
We conduct extensive evaluations of our protocols. Our
simulation result shows that the computation complex-
ity of our protocol is indeed linear to the number of
participants. To simulate and measure the computation
overhead, we used GMP library to implement large
number operations in our protocol in a computer with
Intel i7-2620M @ 2.70GHz CPU and 2GB of RAM, and
each result is the average time measured in the 100,000
times of executions. Also, the input data xi is of 20-bit
length, the q is of 256-bit length, and p is roughly of 270-
bit length. That is, xi is a number from [0, 220 − 1] and q
is a uniform random number chosen from [0, 2256 − 1].

In this simulation, we measured the total overhead
of our novel product protocol and sum protocol (the
second sum protocol) proposed in the Section 5). Here,
we measured the total computation time spent in cal-
culating the final result of n data (including encryption
by n participants and the decryption by the aggregator).
Since we only measure the computation overhead, there
is no difference between One Aggregator Model and
Participants Only Model.

(a) product (b) sum

Fig. 3. Running time for product and sum calculation.

First of all, the computation overhead of each protocol
is indeed proportional to the number of participants.
Also, the sum protocol needs much more time. This is
natural because parameters in the sum protocol are in
Zp2 , which are twice of the parameters in the product
protocol in big length (they are in Zp).

Multivariate polynomial evaluation is composed of
m products and one sum, so its computation overhead
is barely the combination of the above two protocols’
overhead.

We further compare the performance of our proto-
col with other existing multi party computation sys-
tem implemented by Ben et al. [32] (FairplayMP). They
implemented the BMR protocol [33], which requires
constant number of communication rounds regardless
of the function being computed. Their system provides
a platform for general secure multi-party computation
(SMC), where one can program their secure computa-
tion with Secure Function Definition Language (SFDL).
The programs wrote in SFDL enable multiple parties to
jointly evaluate an arbitrary sized boolean circuit. This
boolean circuit is same as the garbled circuit proposed
by Yao’s 2 Party Computation (2PC) [1][34].

10

In Ben’s setting, where they used a grid of computers,
each with two Intel Xeon 3GHz CPU and 4GB of RAM,
they achieved the computation time as following tables
when they have 5 participants:

TABLE 4
Run time (milliseconds) of FairplayMP[32]

Gates 32 64 128 256 512 1024
Per Participant 64 130 234 440 770 1394

One addition of two k-bit numbers can be expressed
with k + 1 XOR gates and k AND gates. Therefore, if
we set the length of input data as 20 bits (which is
approximately 1 million), we need 41 gates per addition
in FairplayMP system. When we conduct 26 additions
(which is equivalent to 1066 gates) in our system, the
total computation time is 72.2 microseconds, which is
2 × 104 times faster than the FairplayMP, which needs
1.394 seconds to evaluate a boolean circuit of 1024 gates.
Even if we did not consider the aggregator’s computa-
tion time in FairplayMP because they did not provide
pure computation time (they provided the total run time
including communication delay for the aggregator), our
addition is already faster than their system. Obviously,
the multiplication is much faster since it is roughly 8
times faster than the addition in our system.

We also compare our system with an efficient homo-
morphic encryption implementation [5]. Naehrig et al.
proposed an efficient homomorphic encryption scheme
which limits the total number of multiplications to a
small number less than 100. If only one multiplication is
allowed in their scheme (the fastest setting) and length
of the modulus q is 1024, it takes 1 millisecond to
conduct an addition and 41 milliseconds to conduct a
multiplication. In our system, under the same condition,
it takes 16.2 microseconds to conduct an addition and
0.7 microseconds to conduct a multiplication, which are
approximately 100 times and 6 × 104 times faster re-
spectively. They implemented the system in a computer
with two Intel 2.1GHz CPU and 2GB of RAM. Even if
considering our computer has a higher clock CPU, their
scheme is still much slower than ours.

TABLE 5
Comparison between [5] and our system

Addition Multiplication
Lauter [5] 1 millisecond 41 milliseconds

Ours 16.2 microseconds 0.7 microseconds

The purpose of above two systems are quite different
from ours, the first FairplayMP is for general multi-party
computation and the second homomorphic encryption
system is for general homomorphic encryption. They
also provide a much higher level of security than ours
since they achieve differential privacy, however, the com-
parison above does show the high speed of our system
while our security level is still acceptable in real life

applications, and this is one of the main contributions
of this paper.

8 APPLICATIONS
There are numerous interesting applications that can be
achieved by our protocols. In this section, we propose so-
lutions to several interesting problems using our privacy-
preserving sum and product calculation protocols.

8.1 Polynomial Evaluation
Our protocols can be used to evaluate some polynomials
of private values from participants x = (x1, x2, · · · , xn)
(Eq. 3) as in our conference version [35].

f(x) =

m∑
k=1

(ck

n∏
i=1

x
di,k
i) (3)

Here the coefficients and powers are publicly known.
However, we are not able to extend our protocols to
obliviously evaluate any form of multivariate polynomi-
als yet because directly using our protocols will reveal
the value of every product term

∏
x
di,k
i ([35]).

8.2 Statistics Calculation
Privacy-preserving statistics calculation is desired in var-
ious applications [36], [37], [38]

Our protocols can be directly used to express vari-
ous statistical values. For example,

∑n
i=1 xi is directly

computed by our sum protocol, and thus the mean µ =∑n
i=1 xi/n can be computed with privacy preservation.

Given the mean µ, the following can be achieved as well:

nµ2 +

n∑
i=1

(x2i − 2xiµ)

This divided by n is the population variance. Similarly,
other statistical values can also me computed with pri-
vacy preservation (e.g., sample skewness,k-th moment, mean
square weighted deviation, regression, or randomness test)
based on our sum and product protocols.

8.3 General Boolean Formula Evaluation
A boolean formula consists of True or False variables and
logical operators (AND, OR, XOR etc.). It is important to
securely evaluation a boolean formula in many problems
(Multi-party Millionaire problem, Anonymous voting
problem), and we show how to achieve a general boolean
formula evaluation without disclosing individuals’ input
values. In our protocol, xi’s are numeric values, so we
define pi’s True-False variable Xi = T if xi = 1 and
Xi = F if xi = 0, and we consider all other values as in-
valid input. Then, we construct the following conversion
table:

Note that it is extensively discussed in previous works
about the transformation from the polynomial formula

11

TABLE 6
Conversion Table from boolean formula to polynomial

formula

Boolean Formula Polynomial Formula
¬Xi 1− xi

Xi ∨Xj 1− (xi − 1)2(xj − 1)2

Xi ∧Xj xixj
Xi ⊕Xj (xi − xj)2

to the boolean formula or vice versa (e.g., [39], [40],
[41]), and ours is just one of the feasible solutions. With
Table 6, we can convert arbitrary boolean formula to the
polynomial having equivalent value (T → 1, F → 0). For
example, Xi → Xj can be converted to ¬Xi ∨ Xj first
and then be converted to the polynomial:

1− ((1− xi)− 1)2(xj − 1)2

=1− x2i (xj − 1)2

=− x2ix2j + x2i · 2xj − x2i + 1

Then, the multivariate polynomial evaluation (Section
8.1) can be run once for each boolean formula to evaluate
the final value securely. However, note that the number
of participants should be at least three in participants
only model and two in aggregator only model due to
the issue mentioned in Section 6.1.

8.4 Veto Protocol
A privacy-preserving veto protocol requires that only the
final outcome (whether there exists any veto) is pub-
lished without disclosing any individual vote. This can
be easily implemented by employing the above boolean
formula evaluation as a building block.

Firstly, we let Xi = T when pi vetoes and Xi = F
otherwise. Then, the following boolean formula tells
whether there is any veto:

n∨
i=1

Xi

which can be evaluated by the following product:

V =

n∏
i=1

xi

where xi = gki1 if pi vetoes (g1 is the generator of G1

and ki is pi’s random number) and xi = g01 otherwise.
Then, the outcome of the polynomial formula V = 1 if no
one vetoes, but v is a random element in G1 if anyone
vetoes. This product can be directly evaluated via our
privacy-preserving product calculation.

8.5 Millionaire Problem
The traditional millionaire problem requires to tell who
is the richer between two millionaire while neither party

knows the exact amount of money the other party pos-
sesses. This problem seems impossible to solve using our
protocol since we require at least 3 participants in our
participants only model, but we can solve this with a
simple trick.

First, we represent two millionaires’ money (assumed
to be integer for simplicity) b1, b2 in a binary format
{0, 1}k. That is, bi =

∑k
j=1 2ibij . Then, if we convert the

bij = 1 to Bij = T and bij = 0 to Bij = F , we have
the following boolean formula to compute the millionaire
problem as in [42]:

M =

k∨
j=1

(B1j ∧ ¬B2j ∧
k∧

l=j+1

(¬(B1d ⊕B2d)))

where M = T indicates b1 > b2 and M = F indicates
b1 ≤ b2.

This can be converted to the polynomial formula as
mentioned above, and our polynomial evaluation (Sec-
tion 8.1) can be executed only once to evaluate the final
result.

Although we only have two participants, but each
one’s input is divided into k binary inputs, therefore our
protocol can be used.

8.6 Maximum (Minimum) Function
Finding the maximum or minimum value without know-
ing its data provider is important in many data min-
ing applications. This function can be implemented
using our protocol with some special conversion. Let
{1, 2, · · · , v} be the set of possible input values, and we
present two approaches to find the max(x1, x2, · · · , xn)
or min(x1, x2, · · · , xn).
Linear Solution

If we compute the following term for every i ∈
{1, 2, · · · , v}:

Mi =

n∏
j=1

(xj − i)2

Then, Mi = 0 if and only if there exists at least one xj = i.
Therefore, the largest (smallest) i makes Mi = 0 is the
largest (smallest) value among {x1, · · · , xn}. Then, one
needs to request and evaluate the Mi starting from i = v
to i = 1 (i = 1 to i = v) until he finds the first i makes
Mi = 0 to find the maximum (minimum) value. All the
brackets in Mi are first expanded to achieve the general
format (Eq. 3), and the polynomial evaluation is used to
securely evaluate it. However, the evaluation should be
run v times in the worst case (i.e., the communication
complexity is O(v)).
Sublinear Solution

We further improve the complexity by using the Veto
Protocol above as a building block. One guesses a num-
ber x as the maximum value and asks every participant
whether someone has a larger (smaller) value, any par-
ticipant having a larger (smaller) value vetoes to the

12

request. No one vetoes at x does not mean x is the
maximum (minimum). We need to find an x until we
are sure that someone vetoes at x− 1 (x+ 1) but no one
vetoes at x.

The actual algorithm is described as follows:

Algorithm 1 Binary Maximum (Minimum) Search
1: Set the boundaries: l := 1, r := v, and set the initial

guess
2: x is guessed as the maximum (minimum) value, and

the Veto Protocol is initiated.
3: Any participant vetoes if his value is larger (smaller)

than x.
4: If l = r − 1, return x as the maximum (minimum)

value.
If someone vetoes at x, l := x (r := x) and let x :=
d l+r2 e (x := b l+r2 c). Then, re-start from 2.
If no one vetoes at x, r := x (l := x) and let x := b l+r2 c
(x := d l+r2 e). Then, re-start from 2.

The algorithm ends always after dlog ve rounds of the
searches because the algorithm returns the value only
when l = r. Therefore, our protocol should be run dlog ve
times.

According to the actual application, either participants
only model or one aggregator model can be used in the
secure polynomial evaluation (Section 8.1). However, if
we use the one aggregator model and we do not want
to let participants know which number is the maximum
(minimum) value, we have to use the Linear Solution.
In the Linear Solution, the aggregator can send dummy
requests after finding the maximum (minimum) value
to hide the value, but in the Sublinear Solution, par-
ticipants immediately know the maximum (minimum)
value after the dlog ve rounds of the requests. Unlike the
Linear Solution, no further dummy requests are possible
since the search space is already narrowed down such
that only one candidate is left.

Yet, it is still possible to have a safer sublinear solution.
Essentially, finding the maximum (minimum) value from
{1, · · · , v} via binary search is finding a path leading
to the maximum value in a balanced binary search tree
having v leaf nodes. Then, the aggregator may randomly
find C−1 numbers and launch the fake binary search to
find those C − 1 random numbers. Then, participants
only infer that the true maximum number is one of
the C numbers, i.e., the probability to infer the correct
maximum number is 1

C . Then, the number of rounds that
our polynomial evaluation (Section 8.1) should be run is
C · dlog ve = O(log v), which is still sublinear.

8.7 Sealed-Bid First-Price Auction
We consider a sealed-bid 1st-price auction with single
object. In such an auction, multiple bidders place their
bids for an object and the bidder with the highest bid gets
the object, and the amount of cost he pays is his bid. We

employ the above privacy-preserving maximum function
as a building block to implement a privacy preserving
1st-price auction.

In general, the bid information is confidential and kept
secret to the bidders, so we employ the one aggregator
model here and let the auctioneer act as the aggregator
in the polynomial evaluation protocol (who is the only
party that collects the final result).

First, we use the above function max(x1, x2, · · · , xn) to
find the maximum value (say max). Since we employ the
one aggregator model in the protocol, only the auctioneer
knows the maximum value max. Then, we design a
simple Anonymous Exchange Protocol which informs
the auctioneer whether xi = max for each pi while max
is kept secret to all pi’s and the auctioneer do not know
participants’ input data except the one belong to those
who possess the maximum value. Note that we do not
require a secure channel in the following protocol either.

Algorithm 2 Anonymous Exchange Protocol
1: The auctioneer finds the bit-size of max, namely k

and publishes it. Then, he represents max in a binary
format {0, 1}k such that max =

∑k−1
j=0 mj2

j .
2: Each pi represents his bid xi in a binary format
{0, 1}k such that xi =

∑k−1
j=0 xij2

j .
3: Each pi generates k boolean values {Xi1,··· ,Xik}

where Xij =T if xij = 1 and Xij =F otherwise.
Similarly, the auctioneer converts his binary repre-
sentation to k boolean values {M1, · · · ,Mk} as well.

4: Then, each pi and the auctioneer evaluates the fol-
lowing boolean formula similar to the millionaire
problem (Section 8.5) such that only the auctioneer
receives the result.

Vi =

k−1∧
j=0

(
¬Mj ⊕Xij)

)
Vi =T if and only if xi = max.

8.8 Sealed-Bid Second-Price Auction
In the 2nd-price auction, the highest bidder’s cost is not
his bid. Instead, his payment is same as the next highest
bid. This type of auction is widely used because bidders
achieves maximum benefit if and only if they bid truth-
fully [43]. After finding the maximum value using the
maximum function above, we can set r := max−1 to find
the next largest value. Then, it seems trivial to implement
the 2nd-price auction by running the maximum function
twice to get the 2nd-highest bid. This is feasible only
when there is no tie in the auction. If multiple bidders
place the same highest bid, the next largest value found
by the maximum function above is not the next highest
bid. The next highest bid, instead, should be same as
the highest bid (due to duplicate bids). Therefore, we

13

need another method to find the next highest bid. Since
the payment of the winner is not his bid, the auction
should be composed of two parts: winner determination
& payment determination.
Winner Determination

The winner of the 2nd-price auction is the person
whose bid is the highest among the participants. There-
fore, we use the aforementioned Maximum Function to
find the value of the highest bid. Then, we run the afore-
mentioned Anonymous Exchange Protocol to determine
the highest bidder(s). By this protocol, the auctioneer not
only knows who are the highest bidders, but also know
the number of highest bidders.
Payment Determination

After the winner determination, if there are multi-
ple winners, the auctioneer introduces any mechanism
(depending on the auction type) to determine the final
winner, and the payment of the winner is just the highest
value found during the winner determination. If there
is only one winner, we can find the 2nd highest bid in
the same way as we mentioned at the beginning of this
section, which is the winner’s payment. In both cases,
the number of times we need to evaluate the polynomial
(Section 8.1) is O(log v).

In conclusion, the number of times we need to execute
polynomial evaluation for each application is summa-
rized in the following table:

TABLE 7
Communication Complexity Comparison

Application Number of times
Boolean Formula Evaluation O(1)

Veto Protocol O(1)
Millionaire Problem O(1)

Maximum (Minimum) Function O(log v) (Sublinear Solution)
Sealed-Bid First-Price Auction O(log v) (Sublinear Solution)

Sealed-Bid Second-Price Auction O(log v) (Sublinear Solution)

9 CONCLUSION
In this paper, we successfully achieve privacy-preserving
sum and product calculation protocols without secure
communication channels or trusted key issuers. We allow
up to k (adjustable parameter) collusive participants who
will not tamper the computation but try to manipulate
their parameters to infer others’ private values. We for-
mally analyzed the security of our protocols and showed
that the protocols are secure if the CDH problem is
assumed to be intractable, and we also showed with
implementation that the protocols are efficient to be
applicable in real life. At the end, we propose numerous
applications that are achieved from our protocols.

One of our future works is to design privacy preserv-
ing data releasing protocols such that general function
of data can be evaluated correctly while preserving
individuals’ data privacy.

ACKNOWLEDGEMENT
This paper would have not existed without the insight-
ful reviews and constructive suggestions. The precious
comments greatly inspired us, and they also brought
considerable improvements and corrections to this paper.
We sincerely appreciate all of the reviews and all the
reviewers who were very responsible and professional.

REFERENCES

[1] A. C.-C. Yao, “Protocols for secure computations,” in FOCS,
vol. 82, 1982, pp. 160–164.

[2] O. Goldreich, “Secure multi-party computation,” Manuscript. Pre-
liminary version, 1998.

[3] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
in STOC. ACM Press, 2009, pp. 169–169.

[4] C. Gentry and S. Halevi, “Implementing gentrys fully-
homomorphic encryption scheme,” in EUROCRYPT. Springer,
2011, pp. 129–148.

[5] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homomor-
phic encryption be practical?” in Proceedings of the 3rd ACM
workshop on Cloud computing security workshop. ACM, 2011, pp.
113–124.

[6] C. Castelluccia, A. C. Chan, E. Mykletun, and G. Tsudik, “Ef-
ficient and provably secure aggregation of encrypted data in
wireless sensor networks,” TOSN, vol. 5, no. 3, p. 20, 2009.

[7] C. Castelluccia, E. Mykletun, and G. Tsudik, “Efficient aggrega-
tion of encrypted data in wireless sensor networks,” in MobiQui-
tous. IEEE, 2005, pp. 109–117.

[8] R. Sheikh, B. Kumar, and D. Mishra, “Privacy preserving k secure
sum protocol,” Arxiv preprint arXiv:0912.0956, 2009.

[9] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu,
“Tools for privacy preserving distributed data mining,” SIGKDD
Explorations Newsletter, vol. 4, no. 2, pp. 28–34, 2002.

[10] W. He, X. Liu, H. Nguyen, K. Nahrstedt, and T. Abdelzaher,
“Pda: Privacy-preserving data aggregation in wireless sensor
networks,” in INFOCOM. IEEE, 2007, pp. 2045–2053.

[11] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song,
“Privacy-preserving aggregation of time-series data.” in NDSS,
vol. 2, 2011, p. 4.

[12] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook
of applied cryptography. CRC press, 1996.

[13] M. Joye and B. Libert, “A scalable scheme for privacy-preserving
aggregation of time-series data,” in Financial Cryptography and
Data Security. Springer, 2013, pp. 111–125.

[14] T.-H. H. Chan, E. Shi, and D. Song, “Privacy-preserving stream
aggregation with fault tolerance,” in Financial Cryptography and
Data Security. Springer, 2012, pp. 200–214.

[15] M. Jawurek and F. Kerschbaum, “Fault-tolerant privacy-
preserving statistics,” in Privacy Enhancing Technologies. Springer,
2012, pp. 221–238.

[16] S. Goryczka, L. Xiong, and V. Sunderam, “Secure multiparty
aggregation with differential privacy: A comparative study,” in
Proceedings of the Joint EDBT/ICDT 2013 Workshops. ACM, 2013,
pp. 155–163.

[17] Q. Li and G. Cao, “Efficient privacy-preserving stream aggrega-
tion in mobile sensing with low aggregation error,” in Privacy
Enhancing Technologies. Springer, 2013, pp. 60–81.

[18] C. Dwork, “Differential privacy,” in Automata, languages and
programming. Springer, 2006, pp. 1–12.

[19] J. Zhao, T. Jung, Y. Wang, and X.-Y. Li, “Achieving differential
privacy of data disclosure in the smart grid,” in INFOCOM.
IEEE, 2014.

14

[20] A. Friedman and A. Schuster, “Data mining with differential
privacy,” in SIGKDD. ACM, 2010, pp. 493–502.

[21] C. Dwork and J. Lei, “Differential privacy and robust statistics,”
in STOC. ACM, 2009, pp. 371–380.

[22] L. Zhang, X.-Y. Li, and Y. Liu, “Message in a sealed bottle: Privacy
preserving friending in social networks,” in ICDCS. IEEE, 2013,
pp. 327–336.

[23] T. Jung, X.-Y. Li, and L. Zhang, “A general framework for
privacy-preserving distributed greedy algorithm,” arXiv preprint
arXiv:1307.2294, 2013.

[24] T. Jung and X.-Y. Li, “Infinite choices of data aggregations with
linear number of keys,” arXiv preprint arXiv:1308.6198, 2013.

[25] T. Jung, X.-Y. Li, Z. Wan, and M. Wan, “Privacy preserving cloud
data access with multi-authorities,” in INFOCOM. IEEE, 2013,
pp. 2625–2633.

[26] X.-Y. Li and T. Jung, “Search me if you can: privacy-preserving
location query service,” in INFOCOM. IEEE, 2013, pp. 2760–
2768.

[27] L. Zhang, X.-Y. Li, Y. Liu, and T. Jung, “Verifiable private multi-
party computation: ranging and ranking,” in INFOCOM. IEEE,
2013, pp. 605–609.

[28] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin,
and Y. Theodoridis, “State-of-the-art in privacy preserving data
mining,” SIGMOD, vol. 33, no. 1, pp. 50–57, 2004.

[29] J. Feigenbaum and M. Merritt, Distributed computing and cryp-
tography: proceedings of a DIMACS Workshop, October 4-6, 1989.
American Mathematical Soc., 1991, vol. 2.

[30] D. Boneh, “The decision diffie-hellman problem,” in Algorithmic
number theory. Springer, 1998, pp. 48–63.

[31] N. Fazio, R. Gennaro, I. M. Perera, and W. E. Skeith III, “Hard-
core predicates for a diffie-hellman problem over finite fields,”
in CRYPTO. Springer, 2013, pp. 148–165.

[32] A. Ben-David, N. Nisan, and B. Pinkas, “Fairplaymp: a system
for secure multi-party computation,” in CCS. ACM, 2008, pp.
257–266.

[33] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of
secure protocols,” in STOC. ACM, 1990, pp. 503–513.

[34] A. C.-C. Yao, “How to generate and exchange secrets,” in FOCS.
IEEE, 1986, pp. 162–167.

[35] T. Jung, X. Mao, X.-Y. Li, S.-J. Tang, W. Gong, and L. Zhang,
“Privacy-preserving data aggregation without secure channel:
multivariate polynomial evaluation,” in INFOCOM. IEEE, 2013,
pp. 2634–2642.

[36] X. Chen, X. Wu, X.-Y. Li, Y. He, and Y. Liu, “Privacy-preserving
high-quality map generation with participatory sensing,” in IN-
FOCOM. IEEE, 2014.

[37] B. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-preserving data
publishing: A survey of recent developments,” ACM Computing
Surveys (CSUR), vol. 42, no. 4, p. 14, 2010.

[38] C. C. Aggarwal and S. Y. Philip, A general survey of privacy-
preserving data mining models and algorithms. Springer, 2008.

[39] J. Katz, A. Sahai, and B. Waters, “Predicate encryption support-
ing disjunctions, polynomial equations, and inner products,” in
EUROCRYPT. Springer, 2008, pp. 146–162.

[40] W. G. Schneeweiss, “On the polynomial form of boolean func-
tions: derivations and applications,” IEEE Transactions on Com-
puters, vol. 47, no. 2, pp. 217–221, 1998.

[41] B. J. Falkowski, “A note on the polynomial form of boolean
functions and related topics,” Transactions on Computers, vol. 48,
no. 8, pp. 860–864, 1999.

[42] M. Fischlin, “A cost-effective pay-per-multiplication comparison
method for millionaires,” in Topics in CryptologyCT-RSA 2001.
Springer, 2001, pp. 457–471.

[43] B. Edelman, M. Ostrovsky, and M. Schwarz, “Internet advertising
and the generalized second price auction: Selling billions of dol-
lars worth of keywords,” National Bureau of Economic Research,
Tech. Rep., 2005.

Taeho Jung received the B.E degree in Com-
puter Software from Tsinghua University,
Beijing, in 2007, and he is working toward
the Ph.D degree in Computer Science at Illi-
nois Institute of Technology while supervised
by Dr. Xiang-Yang Li. His research area, in
general, includes privacy & security issues
in mobile network and social network anal-
ysis. Specifically, he is currently working on
the privacy-preserving computation in vari-
ous applications and scenarios.

Dr. Xiang-Yang Li is a professor at the Illi-
nois Institute of Technology, and an EMC En-
dowed Visiting Chair Professor (2013-2016),
Tsinghua University. He is a recipient of
China NSF Outstanding Overseas Young Re-
searcher (B). Dr. Li received MS (2000) and
PhD (2001) degree at Department of Com-
puter Science from University of Illinois at
Urbana-Champaign, a Bachelor degree at De-
partment of Computer Science and a Bach-
elor degree at Department of Business Man-

agement from Tsinghua University, P.R. China, both in 1995. His
research interests include mobile computing, cyber physical sys-
tems, wireless networks, security and privacy, and algorithms. He
published a monograph ”Wireless Ad Hoc and Sensor Networks:
Theory and Applications”. He co-edited several books, including,
“Encyclopedia of Algorithms”. Dr. Li is an editor of several journals,
including IEEE Transaction on Parallel and Distributed Systems,
IEEE Transaction on Mobile Computing. He has served many in-
ternational conferences in various capacities, including ACM Mo-
biCom, ACM MobiHoc, ACM STOC, IEEE MASS, and so on. He is
a senior member of IEEE and a member of ACM. The research of
Xiang-Yang Li is partially supported by USA NSF, National Natural
Science Foundation of China, and RGC of HongKong.

Meng Wan is a professor at Center for Sci-
ence and Technology Development at Min-
istry of Education. He received his Ph. D.
from Wuhan University in 2008, and his M.S.
from Central University of Finance and Eco-
nomics in 2000. His research interests in-
clude computer network architecture, net-
work and systems management, science and
technology management, system engineer-
ing etc. He is currently serving as the divi-
sion director of Department of Network and

Information in Center for Science and Technology Development
at Ministry of Education and the associate editor of Sciencepaper
Online. He is a member of the IEEE,ACM.

