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Abstract. Topology control in wireless ad hoc networks is to select a subgraph of the com-
munication graph (when all nodes use their maximum transmission range) with some proper-
ties for energy conservation. In this paper, we propose two novel localized topology control
methods for homogeneous wireless ad hoc networks.

Our first method constructs a structure with the following attractive properties: power
efficient, bounded node degree, and planar. Its power stretch factor is at mostρ = 1

1−(2 sin π
k

)β ,

and each node only has to maintain at mostk + 5 neighbors where the integerk > 6 is an
adjustable parameter, andβ is a real constant between2 and5 depending on the wireless
transmission environment. It can be constructed and maintained locally and dynamically.
Moreover, by assuming that the node ID and its position can berepresented inO(log n) bits
each for a wireless network ofn nodes, we show that the structure can be constructed using at
most24n messages, where each message isO(log n) bits.

Our second method improves the degree bound tok, relaxes the theoretical power span-

ning ratio toρ =
√

2
β
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√

2 sin π
k

)β
, wherek > 8 is an adjustable parameter, and keeps all other

properties. We show that the second structure can be constructed using at most3n messages,
where each message has size ofO(log n) bits.

We also experimentally evaluate the performance of these new energy efficient network
topologies. The theoretical results are corroborated by the simulations: these structures are
more efficient in practice, compared with other known structures used in wireless ad hoc
networks and are easier to construct. In addition, the powerassignment based on our new
structures shows low energy cost and small interference at each wireless node.

Keywords: Wireless ad hoc networks, topology control, bounded degree, planar, spanner,
efficient localized algorithm, power assignment.

1. Introduction

Wirelessad hocnetworks have been undergoing a revolution that promises
to have a significant impact throughout society. Unlike traditional fixed in-
frastructure networks, there is no centralized control over ad hoc wireless
networks, which consist of an arbitrary distribution of radios in certain ge-
ographical area. In ad hoc networks, mobile devices can communicate via
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multi-hop wireless channels; a node can reach all nodes in its transmission
region, while two far-away nodes communicate through the message relay-
ing by intermediate nodes. Wireless ad hoc networks triggermany challeng-
ing research problems, as it intrinsically has many specialcharacteristics
and some unavoidable limitations, compared with other wired or wireless
network. An important requirement of these networks is thatthey should
be self-organizing, i.e., transmission ranges and data paths are dynamically
restructured with changing topology. Energy conservationand network per-
formance are probably the most critical issues in ad hoc wireless networks,
because wireless devices are usually powered by batteries only and have
limited computing capability and memory.

The topology controltechnique is to let each wireless device adjust its
transmission range and select certain neighbors for communication, while
maintaining a structure that can support energy efficient routing and improve
the overall network performance. By enabling each wirelessnode shrink-
ing its transmission power (which is usually much smaller than its maximal
transmission power) to sufficiently cover the farthest selected neighbor, topol-
ogy control can not only save energy and prolong network life, but also can
improve network throughput through mitigating the MAC-level medium con-
tention. Unlike traditional wired networks and cellular wireless networks, the
wireless devices are often moving during the communication, which could
change the network topology in some extent. Hence it is more challenging
to design a topology control algorithm for ad hoc wireless networks: the
topology should be locally and self-adaptively maintainedwithout affecting
the whole network, and the communication cost during maintaining should
not be too high.

Topology control has drawn significant research interest (Grünewald et al.,
2002; Li et al., 2001a; Li et al., 2001b; Li et al., 2002b; Rajaraman, 2002; Ra-
manathan and Rosales-Hain, 2000; Wang et al., 2002; Wattenhofer et al.,
2001) in last few years. Different topologies have different properties, how-
ever, none of them can achieve all three preferred properties for unicast appli-
cations on wireless ad hoc networks: power spanner, planar,degree-bounded.
Until recently, Wang and Li (Wang and Li, 2003) proposed a localized al-
gorithm to build a degree-bounded planar spanner both in centralized and
distributed way, which is based on the combination oflocalized Delaunay
triangulations(LDel) (Li et al., 2002a) andY ao structure (Yao, 1982). It is
the first localized algorithm that can achieve all the three desirable features.
However, the node degree of their structure can reach25 in the worst case; and
the communication cost of their method can be large, although it is shown that
the total number of messages isO(n), the hidden constant could be as high
as several hundreds since the method needs to collect the2-hop information
for every node.
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In this paper, we propose two novel methods to build a power efficient
planar structures with much less communication costs and lower node degree
bounds. Our first structure has the following attractive properties:

1. It is power efficient: given any two nodesu andv, there is a path con-
necting them in the structure with a total power cost no more thanρ =

1
1−(2 sin π

k
)β times of the power cost of any path connecting them in the

original homogeneous network;

2. Its node degree is bounded from above by a positive constant k+5 where
integerk > 6 is an adjustable parameter;

3. It is a planar structure, which enables several localizedrouting algo-
rithms;

4. It can be constructed and maintained in a localized and dynamic way.

Moreover, by assuming that the node ID and its position can berepresented
in O(log n) bits each for a wireless network ofn nodes, we show that the
structure can be constructed using at most24n messages, where each message
isO(log n) bits. Our second method reduces the degree bound tok, and keeps
all other properties, except that the theoretical power spanning ratio is relaxed

to ρ =
√

2
β

1−(2
√

2 sin π
k
)β

, wherek > 8 is an adjustable parameter. We show that

the second structure can be constructed using at most3n messages, where
each message has size ofO(log n) bits.

We also experimentally evaluate the performance of these new energy
efficient network topologies. The theoretical results are corroborated in the
simulations: our new structures are more efficient in practice and easier to
construct, compared to other known structures used in wireless ad hoc net-
works. By shrinking the transmission range of each node to reach the farthest
neighbors in our new structures, the experiment shows that each node indeed
costs low energy and has a small number ofphysical neighbors. Thephysical
neighborsare those nodes within its transmission region, and smallernumber
of physical neighborsmeans less interference.

The rest of the paper is organized as follows. In Section 2, wedescribe
some most preferred properties of topology control protocol in wireless ad
hoc networks and review the related works in this area. We then present
our two localized methods, in Section 3, to construct degree-bounded pla-
nar power spanners forUDG(V ) with total communication costO(n) under
the broadcasting communication model. In Section 4, we conduct extensive
simulations to validate our theoretical results. Finally,we conclude the paper
in Section 5.
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2. Preliminaries

2.1. NETWORK MODEL

A wireless ad hoc network (or sensor network) consists of a set V of n
wireless nodes distributed in a two-dimensional plane. Each node has the
samemaximumtransmission rangeR. 1 By a proper scaling, we assume that
all nodes have the maximum transmission range equal to one unit. These
wireless nodes define aunit disk graphUDG(V ) in which there is an edge
between two nodes iff their Euclidean distance is at most one. In other words,
we assume that two nodes can always receive the signal from each other
directly if the Euclidean distance between them is no more than one unit.
Hereafter,UDG(V ) is always assumed to be connected. We also assume that
all wireless nodes have distinctive identities and each wireless node knows
its position information either through a low-power GlobalPosition System
(GPS) receiver or some other ways. More specifically, in our protocol, it
would be enough if each node knows the relative position of its one-hop
neighbors. The relative position of neighbors can be estimated by thedi-
rection of signal arrivaland thestrength of signal. By one-hop broadcast-
ing, each nodeu can gather the location information of all nodes within its
transmission region.

In the most common power-attenuation model, the power to support a link
uv is assumed to be‖uv‖β, where‖uv‖ is the Euclidean distance between
u and v, β is a real constant between2 and 5 depending on the wireless
transmission environment.

2.2. PREFERREDPROPERTIES

Wireless ad hoc network topology control schemes are to maintain a structure
that can be used for efficient routing (Bose et al., 2001; Karpand Kung, 2000)
or improve the overall networking performance (Grünewaldet al., 2002; Li
et al., 2001a; Ramanathan and Rosales-Hain, 2000), by selecting a subset of
links or nodes used for communication. In the literature, the following desir-
able features are well-regarded and preferred in wireless ad hoc networks:

Power Spanner: In ad hoc wireless networks, two far-apart nodes can
communicate with each other through the relay of intermediate nodes; hence,
each node only need set small transmission ranges. This has two advantages:
(1) reducing the signal interference, (2) saving transmission power. To guar-
antee the advantage, a good network topology should be energy efficient,
that is to say, the total power consumption of the shortest path (most power
efficient path) between any two nodes in the final topology should not exceed

1 In practice,R can be defined as the minimum of all the maximum node transmission
ranges.

SYaoGG-MONET-final.tex; 14/07/2004; 17:42; p.4



Localized Algorithms for Energy Efficient Topology in Wireless Ad Hoc Networks 5

a constant factor of the power consumption of the shortest path in original
network. Given a pathv1v2 · · · vh connecting two nodesv1 andvh, the energy
cost of this path is

∑h−1
j=1 ‖vjvj+1‖β. The path with the least energy cost is

called theshortest pathin a graph. Formally speaking, a subgraphH is called
a power spannerof a graphG if there is a positive real constantρ such that
for any two nodes, the power consumption of the shortest pathin H is at most
ρ times of the power consumption of the shortest path inG. The constantρ is
called thepower stretch factor. A power spanneris usually energy efficient
for routing.

Obviously, for any weighted graphG and a subgraphH ⊆ G, we have the
following lemma.

LEMMA 1. (Li et al., 2001b) SubgraphH of a graphG has stretch factor
ρ if and only if for any linkuv ∈ G, dH(u, v) ≤ ρ · dG(u, v), wheredG(u, v)
is the total power consumption of the shortest path betweenu andv in G.

Lemma 1 implies that, to generate a power efficient structure, we only need
to guarantee that any two adjacent nodesu andv in G are connected by a
path inH with energy cost no more than a constant factor of the cost of link
uv.

Degree Bounded: It is also desirable that the node degree in the con-
structed topology is small and bounded from above by a constant. A small
node degree reduces the MAC-level contention and interference, also may
help to mitigate the well known hidden and exposed terminal problems. A
common believe in the literature is that small node degree will imply small
interference. Although this is recently disproved in (Burkhart et al., 2004),
we found that in practice our structures with small node degree indeed have
small interferences (it is because that our structures often select short links).
Structures with a small node degree also have applications in Bluetooth wire-
less networks. In Bluetooth based wireless ad hoc networks,themasternode
degree is preferred to be less than7, according to Bluetooth specifications,
to maximize the efficiency. In addition, a structure with small degree will
improve the overall network throughout (Kleinrock and Silvester, 1978).

Planar: Many routing algorithms require the planar topology to guarantee
the message delivery, such as right hand routing,Greedy Perimeter Stateless
Routing(GPSR) (Karp and Kung, 2000),Greedy Face Routing(GFR) (Bose
et al., 2001),Adaptive Face Routing(AFR) (Kuhn et al., 2002), andGreedy
Other Adaptive Face Routing(GOAFR) (Kuhn et al., 2003).

Efficient Localized Construction: Due to the limited resources and high
mobility of the wireless nodes, it is preferred that the underlying network
topology can be constructed and maintained in a localized manner. Here a
distributed algorithm constructing a graphG is a localized algorithmif every
nodeu can exactly decide all edges incident on it based only on the informa-
tion of all nodes within a constant hops ofu. More importantly, we expect
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that the total communication cost of the algorithm isO(n) messages, where
each message isO(log n) bits; the time complexity of each node running the
algorithm is at mostO(d log d), whered is the number of 1-hop or 2-hop
neighbors.

2.3. RELATED WORKS

Several structures (such as relative neighborhood graph RNG, Gabriel graph
GG, Yao structure, etc) have been proposed for topology control in wireless
ad hoc networks. Therelative neighborhood graph, denoted byRNG(V )
(Toussaint, 1980), consists of all edgesuv such that the intersection of two
circles centered atu andv and with radius‖uv‖ do not contain any node
w from the setV . See Figure 1(a). TheGabriel graph(Gabriel and Sokal,
1969)GG(V ) contains edgeuv if and only if disk(u, v) contains no other
points ofV , wheredisk(u, v) is the disk with edgeuv as a diameter. See
Figure 1(b). DenoteGG(UDG) and RNG(UDG) as the intersection of
UDG(V ) with GG(V ) and RNG(V ) respectively. BothGG(UDG) and
RNG(UDG) are connected, planar, and contain the Euclideanminimum
spanning treeMST of V if UDG is connected. Delaunay triangulation,
denoted byDel, is also used as an underlying structure by several routing
protocols. Here a triangle△uvw belongs to Delaunay triangulationDel if
its circumcircle does not contain any node inside. LetDel(UDG) be the
set of edges in Delaunay, which are also in UDG. It is well known that
RNG(UDG) ⊆ GG(UDG) ⊆ Del(UDG). The structureDel(UDG) has
a bounded length spanning ratio (Li et al., 2002a); bothRNG(UDG) and
GG(UDG) are not length spanners;GG(UDG) is power efficient.

TheYao graph(Yao, 1982) with an integer parameterk > 6, denoted by−−→
Y Gk(UDG), is defined as follows. At each nodeu, anyk equally-separated
rays originating atu definek cones. In each cone, choose the shortest edge
uv ∈ UDG(V ) among all edges emanated fromu, if there is any, and add
a directed link−→uv. Ties are broken arbitrarily or by ID. See Figure 1(c).
The resulting directed graph is called theYao graph. Let Y Gk(UDG) be
the undirected graph by ignoring the direction of each link in

−−→
Y Gk(UDG).

Some researchers used a similar construction namedθ-graph (Lukovszki,
1999; Keil and Gutwin, 1992). The difference is that it chooses the edge
which has the shortest projection on the axis of each cone instead of the
shortest edge in each cone.

In (Bose et al., 2001; Karp and Kung, 2000), relative neighborhood graph
and Gabriel graph are used as underlying network topologies. However, Bose,
et al. (Bose et al., 2002a) proved that the length stretch factors of these two
graphs areΘ(n) andΘ(

√
n) respectively. Actually, they are at mostn − 1

and
√

n − 1 (Wang et al., 2003). Moreover, in (Li et al., 2001b), Li,et al.
showed that the power stretch factor of RNG isn− 1 while the power stretch
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(a) RNG (b) GG (c) YG

Figure 1. The definitions ofRNG, GG, andY G. The shaded area is empty of nodes inside.

factor of GG is1. Recently, some researchers (Li et al., 2001b; Wattenhofer
et al., 2001) proposed to construct the wireless network topology based on
Yao graph. It is known that the length/power stretch factor and the node out-
degree of Yao graph are bounded by some positive constants. But as Li et
al. mentioned in (Li et al., 2001b), all these three graphs can not guarantee
node degree bounded (for Yao graph, the node in-degree couldbe as large
asΘ(n)). In (Li et al., 2001b; Li et al., 2002b), Li,et al. further proposed to
use another sparse topology,Yao and Sink, that has both a constant bounded
node degree and a constant bounded length/power stretch factor. However, all
these graphs (Li et al., 2001b; Li et al., 2002b; Wattenhoferet al., 2001) are
not guaranteed to be planar. In (Li et al., 2002a) Li,et al. proposed a planar
spannerlocalized Delaunay triangulations(LDel), and in (Gao et al., 2001)
Gaoet al.proposed a planar spannerRestricted Delaunay Graphfor wireless
ad hoc networks. Unfortunately, both of them might result inan unbounded
node degree.

Boseet al.(Bose et al., 2002b) proposed a centralized method with run-
ning timeO(n log n) to build a degree-bounded planar spanner for a two-
dimensional point set. They construct a planart-spanner for a given nodes
setV , for t = (1 + π) · Cdel ≃ 10.02, such that the node degree is bounded
from above by27. Hereafter, we useCdel to denote the spanning ratio of the
Delaunay triangulation (Dobkin et al., 1990; Keil and Gutwin, 1989; Keil and
Gutwin, 1992). However the distributed implementation of this centralized
method takesO(n2) communications in the worst case for a setV of n nodes.

Recently, Wang and Li (Wang and Li, 2003) proposed the first efficient lo-
calized algorithm to build a degree-bounded planar spannerBPS(UDG) for
wireless ad hoc networks. It has a length spanning ratiot = max{π

2 , π sin α
2 +

1} · Cdel(1 + ǫ), and each node has degree at most19 + ⌈2π
α
⌉. Here0 <

α ≤ π/3 is an adjustable parameter, andCdel ≤ 4
√

3
9 π is the spanning

ratio of the Delaunay triangulation. Though their method can achieve all
these three desirable features: planar, degree-bounded, and power efficient,
the theoretical bound on the node degree of their structure is a large constant.
For example, whenα = π/6, the theoretical bound on node degree is25. In
addition, the communication cost of their method can be veryhigh, although
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it is O(n) theoretically, because it needs to collect the2-hop information for
every wireless node. Even as mentioned in (Wang and Li, 2003), the method
by Calinescu (Cǎlinescu, 2003) to collect2-hop neighbors information takes
O(n) messages, however the hidden constant can be as high as several hun-
dreds. Concerning this large communication cost and the possible large node
degree, we propose two communication efficient methods to construct small
degree-bounded planar power efficient structures, which are more practical
in wireless ad hoc networks. The construction of our second structure only
needs at most3n messages, the tradeoff is that theoretically our structures do
not have constant length spanning ratio.

3. Proposed Approaches

We propose two novel methods to build power efficient planar structures with
much less communication costs and lower node degree bounds compared
with previously best known planar power efficient structures (Wang and Li,
2003) calledBPS, see Figure 2(b). Before presenting our methods, we first
present a localized construction of Gabriel graph structure for homogeneous
wireless ad hoc networks.

(a) UDG (b) BPS (c) GG and YaoGG

(d) OrdYaoGG (e) SYaoGG

Figure 2. Several planar power spanners on the UDG shown in (a). Herek = 9 for Yao related
construction.

ALGORITHM 1. CONSTRUCTGABRIEL GRAPH

1. In the beginning, each nodeu locally broadcasts a message withIDu,
and its position(xu, yu) to all nodes in its transmission region. Each node
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u initiates setsEUDG(u) andEGG(u) to be empty. HereEUDG(u) and
EGG(u) are the set of links known byu in UDG and GG respectively.

2. At the same time, each nodeu processes the incoming messages. Assume
that nodeu gets a message from some new nodev, then it adds a linkuv
to EUDG(u).

Node u checks whether there is another linkuw ∈ EUDG(u) where
w ∈ disk(u, v). If no such linkuw exists, then it addsuv to EGG(u).
On the other hand, for any linkuw ∈ EGG(u), nodeu checks whether
v ∈ disk(u,w), if the condition holds, thenu removes linkuw from
EGG(u).

Nodeu repeats this step until no new messages are received.

3. All links uv in EGG(u) are the final links inGG(UDG) incident onu.

We first show that Algorithm 1 builds the structureGG(UDG) correctly.
For any linkuv ∈ GG(UDG), clearly, we cannot remove them in Algorithm
1. For a linkuv 6∈ GG(UDG), assume that a nodew is insidedisk (u, v)
and both linksuw andwv belong to UDG. If nodeu gets the message from
w first, and then gets the message fromv, clearly, uv cannot be added to
EGG(u). If nodeu gets the message fromv first, then nodeu will remove
link uv from EGG(u) (if it is there) whenu gets the information of nodew.

It is not difficult to prove that structureGG(UDG) is connected by induc-
tion if UDG is connected. In addition, since we remove a linkuv only if there
are two linksuw andwv with w insidedisk(u, v), it is easy to show that the
power stretch factor of structureGG(UDG) is exactly1 (Li et al., 2002b).
In other words, the minimum power consumption path for any two nodesu
andv in UDG is still kept inGG(UDG). Remember that here we assume the
power needed to support a linkuv is ‖uv‖β , for β ∈ [2, 5]. Notice that, as
mentioned in the literature,GG(UDG) is not degree bounded. For example,
when alln − 1 nodes are uniformly distributed on a unit circle with thenth
nodeu as center, the node degree ofu is n − 1. Figure 2(a) shows another
example, where(n − 1)/2 nodes are uniformly distributed on a unit circle,
another(n − 1)/2 nodes are on a half unit circle, and both circles have the
nth nodeu as center. The node degree of center is(n− 1)/2 = O(n) in GG,
as shown in Figure 2(c).

The following result is folklore.

THEOREM 2. (Li et al., 2001b) GG(UDG) is a planar power spanner,
whose power stretch factor is1.

Hereafter, if it is clear that these structures are constructed onUDG(V ),
we omit the(UDG) in the representation of all structures. For instance, we
will useGG to denote Gabriel Graph instead ofGG(UDG).
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3.1. DEGREE-(K+5) PLANAR POWER SPANNER (ORDYAOGG)

One natural way to construct a degree-bounded planar power spanner is to
apply the Yao structure on Gabriel graph. In (Li et al., 2002b), Li, et. al
showed that the final structure by directly applying the Yao structure on GG
is a planar power spanner, calledY aoGG, however its in-degree can be as
large asO(n), as in the example shown in Figure 2(c). In this paper, we
present a new method by applying the ordered Yao structures on Gabriel
graph to bound node degree. The idea is similar with the method in (Wang
and Li, 2003) where they apply Yao structures on the localized Delaunay
triangulations to build a degree-bounded planar length spanner based on a
locally computed ordering of nodes. The major differences are 1) here we
only use 1-hop information instead of two hop information, which reduces
communication cost significantly; 2) we use Gabriel graph instead of the
localized Delaunay triangulation, which makes the localized method much
simpler and more efficient; 3) the method used to bound the degree is also
different.

Since Gabriel graph is power efficient, we will then bound thenode degree
of the Gabriel graph by removing some edges without destroying the power
spanner property. We will process the nodes in a special order. When we
process a nodeu, we use the Yao structure to decide which unprocessed
neighbors will be selected, while keeping already processed neighbors. Our
special order makes sure that when processing a node, it onlyhas at most5
processed neighbors. The algorithm detail is as follows.

ALGORITHM 2. CONSTRUCT DEGREE-(K+5) PLANAR POWER SPAN-
NER OrdY aoGG

1. First, each node self-constructs the Gabriel graphGG locally based on
the strategy described in Algorithm 1. LetNGG(u) be the neighbors set
of nodeu in GG.

2. Second, each nodeu decides its orderπ locally as follows.

Two data structures at each nodeu are used in this algorithm:

(1) π[ ]: the list of the local orders of all neighbors ofu (including itself)
in GG, where each element is initially set as0, i.e., unordered. Hence
π[v] denotes the order of nodev, which is a neighbor of nodeu or node
u itself.

(2) d(u): the number of its unordered neighbors known by nodeu so far,
which is initially set as its degree inGG.

(3) DOQUERY: a flag indicating whether this node need perform a query
to its neighbors now. Initially, the flag is set as FALSE if its degreed(u) >
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5 and TRUE otherwise. Notice that when the node is ordered (i.e.,π[u] >
0), this flagDOQUERY is always set to FALSE.

The strategy of finding a local ordering is as follows:

a) If DOQUERY is true, then nodeu queries all its unordered neighbor-
ing nodes by sending a message QUERY. The query message QUERY

contains only the ID of nodeu.

b) When an unordered nodev receives a message QUERY from a neigh-
boring nodeu in GG, it checks whetherd(v) ≤ 5 and ID(v) <
ID(u). If so, nodev replies nodeu a message FAILED QUERY with
the IDs of itself andu. Otherwise, nodev replies nodeu a message
PASSEDQUERY with the IDs of itself andu.

c) If nodeu received a message FAILED QUERY, nodeu setsDOQUERY

to FALSE. Nodeu will not perform such query until its degree is
decreased later, so there are at most5 rounds of queries.

d) If nodeu receives message PASSEDQUERY from all its unordered
neighbors, nodeu sets

π[u] = max{π[v] | v ∈ NGG(u)} + 1,

setsDOQUERY to FALSE, and broadcastsπ[u] to its neighborsNGG(u)
through message MYORDER.

e) If nodev receives a MYORDER message from its neighboru in GG
saying thatπ[u] = k, it recordsπ[u] locally, and updates itsd(v) =
d(v) − 1. If π[v] = 0 andd(v) ≤ 5, then nodev setsDOQUERY to
TRUE.

f) When nodeu finds thatd(u) = 0 andπ[u] > 0, it can go to next step
to bound its degree in the final structure.

3. All nodes self-form the final topology based on the local orderingπ as
follows. Initially, all nodes are marked with WHITE color, i.e., unpro-
cessed. LetNOY GG(u) be the set of neighbors ofu in the final topology,
which is initialized asNGG(u).

a) If nodeu is unprocessed (marked WHITE) and has the largest or-
der π[u] among all its WHITE neighbors inNGG(u), it divides its
transmission region (which is a unit disk centered at the node u)
into k equal-sized cones, keeps one nearest WHITE neighborv ∈
NOY GG(u) (if available) in each cone and deletes others. Nodeu
marks itself BLACK , i.e., processed, and notifies all nodes inNGG(u)
of the deleted edges through a broadcast message UPDATEN. The
message UPDATEN includes all unselected neighbors.
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b) Once the nodeu receives the message UPDATEN for deleting edge
vu from its neighborv, it deletes the nodev from its local listNOY GG(u).

4. When all nodes are processed, all the remaining edges{uv|v ∈ NOY GG(u),∀v ∈GG}
form the final network topologyOrdY aoGG. Each node then can shrink
its transmission range as long as it sufficiently reaches itsfarthest neigh-
bor in the final topology.

LEMMA 3. The final topologyOrdY aoGG is a planar graph, whose node
degree is bounded byk + 5 wherek > 6 is an adjustable parameter.

PROOF. The Yao graph construction does not add any edges to original
graphs, on the contrast, it only deletes edges. Hence the planar property is
inherited fromGG graph.

We then show that each node degree is bounded byk + 5 in OrdY aoGG.
To prove this, we first review one important property for planar graph: there
always exists a node with degree at most5. Clearly, our local ordering is
able to start, since there is at least one node with degree at most5 initially.
Once a node is ordered, the neighboring nodes will update their node degree
accordingly. We clearly can repeat this procedure until allnodes are ordered,
since the Gabriel graph induced on all unordered nodes is always planar. Let
Pu be the neighbors of nodeu in GG that are orderedafter u. From our
processing order of nodes, these nodes will be marked BLACK before node
u, i.e., being processed beforeu. We will then callPu predecessors of node
u. Clearly, in the local orderingπ, every nodeu has at most5 edges to its
predecessorsPu in GG, that is to say, before it is marked with BLACK , it has
at most5 processed neighbors.

When nodeu is processed, it could select at mostk other unprocessed
neighbors into final structure, thus, its degree is bounded by k + 5. Once a
node is marked with BLACK color, its degree will be kept unchanged accord-
ing to our algorithm. This finishes our proof.

In Figure 2, we show thatGG andY aoGG cannot bound the node degree,
while our structureOrdY aoGG is indeed degree-bounded byk + 5 = 14,
herek is set as9 in our experiment. We then prove that the final structure is
also power efficient.

LEMMA 4. OrdY aoGG is a power spanner ofUDG, and its power span-
ning ratio isρ = 1

1−(2 sin π
k
)β , wherek > 6 is an adjustable parameter and

β ∈ [2, 5] is a constant depending on the transmission environment.

PROOF. Since theGG is a power spanner with spanning ratio1, we only
need prove thatOrdY aoGG is a power spanner ofGG with spanning ratio
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ρ = 1
1−(2 sin π

k
)β . The proof is similar to the proof for Yao on UDG (Li et al.,

2001b) and the later proof of Theorem 7. Due to space limitation, we omit
the details here.

We then analyze the total communication cost of Algorithm 2.(1) Clearly,
the first step of buildingGG can be done using onlyn messages: each mes-
sage contains the ID and geometry position of a node. (2) The second step of
computing local ordering can be done in21n messages: First, an unordered
nodeu sends out at most5 query messages containing its ID. Each such
query message is replied byd(u) neighbors. Since we perform a new query
only if d(u) decreases from last failed query, the total messages used for
queries is at mostn ·∑5

i=1(i + 1) = 20n messages. Second, an ordered node
u sends a message containing its ID and the local orderingπu computed.
The second step can thus be done in at most21n messages. (3) In the third
step, a processed nodeu will inform all its WHITE neighborsv about the
deletion of the edgeuv from Gabriel Graph (which has at most3n edges).
In the final topology OrdYaoGG, at leastn − 1 edges were kept to guarantee
the connectivity, thus, the total number of such messages isat most2n. In
summary, the following lemma directly follows.

LEMMA 5. Assuming that both the ID and the geometry position can be
represented bylog n bits each, the total number of messages of Algorithm 2
is then at most24n, where each message has at most2 log n bits.

Additional communication and computation cost can be saved, if the de-
gree is expected to be bounded byk + 5 only. The modification is to let all
nodes with degree at mostk + 5 be initially marked as BLACK , that is to say,
they do not participate in the third step in Algorithm 2.

Remember that the total messages of our Algorithm 2 is bounded byO(n).
This implies that the average number of messages per node is aconstant,
which is verified in our simulations presented later. However, in the worst
case, the number of messages sent by some node could be as large asO(n).
Algorithm 2 can be modified to further bound the communication cost of
each node. During the Yao construction in the third step, instead of using
message UPDATEN to delete the unselected links, each node will notify its
neighbors of the kept edges. In other words, the message UPDATEN contains
the selected neighbor IDs instead of the deleted neighbor IDs. The communi-
cation cost of each node can be bounded since at mostk neighbors are kept
during Yao construction. It is easy to show that each node sends at most31
messages during constructing GG and computing the local order: at most5
QUERY messages are sent, and at most25 PASSEDQUERY or FAILED QUERY

messages are sent. The tradeoff is that the total communication cost could be
higher than that used in Algorithm 2 if the final topology is denser.
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3.2. DEGREE-K PLANAR POWER SPANNER (SYAOGG)

Algorithm 2 constructs a planar power efficient structure using at mostO(n log n)
bits communications, and the final structure has a theoretical degree bound
k+5, wherek > 6 is a parameter. In this section, we propose a more efficient
method with much less communication cost during construction. Notice that,
the majority communication cost of Algorithm 2 is spent on computing a local
ordering of nodes so a bounded node degree is achieved. Our second method
will eliminate this step while still achieving a bounded node degree. We still
process the nodes in a local order, which can be obtained easily. Each nodeu
uses the Yao structure to decide which neighbors will be kept: always keep the
closest processed neighbor if exists, otherwise keep the closest unprocessed
neighbor. Clearly, this will bound the node degree, but, as will see later, it is
much tricky to prove the final structure is power efficient. The second method
works as follows.

ALGORITHM 3. CONSTRUCT DEGREE-K PLANAR POWER SPANNER

SY aoGG

1. First, each node self-constructs the Gabriel graphGG locally based on
the strategy described in Algorithm 1.

2. All nodes together self-form the final topology as follows. Initially, each
nodeu is marked with WHITE color, i.e., unprocessed, and initializes
NSY GG(u) as the set of all the neighbor nodes inGG.

a) If a WHITE nodeu has the smallest ID among its WHITE neighbors
in GG, it divides its transmission region intok equal-sized cones
wherek > 8 is an adjustable parameter. In each cone, nodeu checks
whether there are some BLACK nodes inNSY GG(u) within same
cone:

i) Yes. Nodeu keeps the closest BLACK neighborv ∈ NSY GG(u)
among them and deletes all the other links in the cone;

ii) No. Nodeu keeps a closest WHITE neighborv ∈ NSY GG(u) (if
available) among them and deletes all the other links in the cone.

After processing allk cones, nodeu marks itself BLACK , i.e. pro-
cessed, then notifies each deleted neighboring nodev in GG by a
broadcasting message UPDATEN.

b) Once a WHITE nodev receives the message UPDATEN from a neigh-
boru in GG, it checks whether itself is in the nodes set for deleting: if
so, it deletes the sending nodeu from NSY GG(v), otherwise, marks
u as BLACK in its local listNSY GG(v).
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c) Once a BLACK nodev receives the message UPDATEN from a neigh-
bor belonging toNSY GG(v), it checks whether itself is in the nodes
set for deleting: if so, it deletes the sending nodeu from NSY GG(v),
otherwise, marksu as BLACK in its local listNSY GG(v).

3. When all nodes are processed, all selected edges{uv|v ∈ NSY GG(u),∀v ∈GG}
form the final network topology, denoted bySY aoGG. Each node then
can shrink its transmission range as long as it sufficiently reaches its
farthest neighbor in the final topology.

Algorithm 3 further reduces the communication cost during constructing
a degree-bounded planar power spanner, because we do not demand the local
ordering before construction.

Our analysis of the structureSY aoGG relies on the following simple
observation.

LEMMA 6. In GG graph, if two edgesuv anduw emanates from a single
nodeu, then both the angle\uwv and\uvw must be acute.

PROOF. We prove it by inducing contradiction. Suppose the angle\uvw is
an obtuse angle, then‖wv‖ < ‖uw‖, hence, all the three edgesuv, vw and
uw are in the UDG graph. Thus, the circle with diameteruw contains the
nodev inside. According to the property ofGG graph, edgeuw can not be
kept during GG construction. The contradiction is induced.This finishes the
proof.

THEOREM 7. The structureSY aoGG is k degree-bounded planar power

spanner, whose power stretch factor is at mostρ =
√

2
β

1−(2
√

2 sin π
k
)β

, wherek ≥
9 is an adjustable parameter andβ ∈ [2, 5] is a constant factor depending on
the communication environment.

PROOF. First, the node degree is obviously bounded byk because each
node only keeps one undirected edge in each cone. Figure 2(e)illustrates
the SY aoGG structure self-constructed on theUDG graph in Figure 2(a).
The node degree is indeed at mostk = 9.

Second, the graphSY aoGG is planar, because the Gabriel graphGG is
planar and Algorithm 3 does not add any more edges, thus, the planar property
is inherited.

In the following, we show that the structureSY aoGG is a power span-
ner. According to Theorem 2,GG has power spanning ratio1. Hence, from
Lemma 1, it is sufficient to show that for any nodesu andv with an edge
uv ∈ GG, there is a path connectingu andv in SY aoGG with power cost at
mostρ · ‖uv‖β.
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Given any edgeuv ∈ GG, we will construct a pathu ! v connecting
u andv in SY aoGG. If edgeuv is kept in the final structure, thenu ! v
is justuv. Otherwise, assume thatuv is removed2 when processing nodeu.
There must exist a linkuw selected by nodeu in the same cone. Thenu! v
is the concatenation ofuw with w! v, see Figure 3. Notice that nodeu is
marked as processed in this stage. It is possible that the link uw could then
be removed by nodew later on since nodew is not processed when process
nodeu. If so, we replace linkuw by u ! w, see Figure 4 for illustration,
details will be explained later.

We then prove by induction, on the number of its edges, that the path
u! v has power cost, denoted byp(u! v), at mostρ‖uv‖β.

Obviously, if there is only one edge inu ! v, p(u ! v) = ‖uv‖β <

ρ‖uv‖β. Assume that the claim is true for any path withl edges. Then con-
sider a pathu! v with l + 1 edges, which is the concatenation of edgeuw
(or pathu! w) and the pathw! v with at mostl edges.

Without loss of generality, we always assume that the linkuv is removed
after nodeu is processed and linkuw is selected in the cone. Notice that the
link uw could be removed later by nodew if w is processed afteru, so there
are two cases that need to be discussed carefully:

1. The first case is that linkuw is kept in the final structure. Remember
that, as described in the algorithm, we always select the nearest BLACK

neighbor in a cone if it exists; otherwise the nearest WHITE neighbor is
selected if it exists.

w

u v

w

u v

(a) Bothw andv are (b)w is BLACK

WHITE or BLACK andv is WHITE

Figure 3. The linkuw is kept in the final structure.

Figure 3 illustrates the situations that a WHITE nodeu starts Yao con-
struction in the cone. Suppose, we deleteuv in the cone and choose edge
uw, which is also kept in the final structure. Again, there are two subcases
that need to be analyzed:

Subcase 1:‖uw‖ ≤ ‖uv‖. This subcase happens only when both nodes
v andw are processed (or unprocessed), and nodeu deletes linkuv

2 Notice that an edgeuv ∈ GG can only be removed while processing itsendpoint node
u or nodev.
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since the existence of closer processed (or unprocessed) neighbor
w. Figure 3(a) illustrates the situation.

We bound the length‖wv‖ respecting to‖uv‖. Notice that‖uw‖ ≤
‖uv‖ and\wuv < θ = 2π

k
. The maximum length ofvw is achieved

when‖uw‖ = ‖uv‖ because the angle\uwv is acute according to
Lemma 6. Therefore

‖wv‖ ≤ 2 sin
θ

2
‖uv‖ = 2 sin

π

k
‖uv‖.

By induction, we have

p(u! v) = ‖uw‖β + p(w! v)

≤ ‖uw‖β + ρ‖wv‖β

≤ ‖uv‖β + ρ · (2 sin
π

k
)β‖uv‖β

≤ ρ‖uv‖β,

whenρ ≥ 1
1−(2 sin π

k
)β .

Subcase 2:‖uw‖ > ‖uv‖. This case happens only when nodew is pro-
cessed while nodev is not processed yet, and nodeu deletes linkuv
since any processed neighbor has higher priority in our algorithm.
Figure 3(b) illustrates the situation.

We bound the length‖wv‖ respecting to‖uw‖. Notice that‖uw‖ >
‖uv‖ and\wuv < θ = 2π

k
< π

4 according to Lemma 6. So we have
π
4 < \uwv < \uvw < π

2 . Consequently,‖uw‖ <
sin π

2
sin π

4
‖uv‖ =

√
2‖uv‖. The maximum length ofvw is achieved when‖uw‖ =

‖uv‖ because the angle\uwv is acute. Therefore

‖wv‖ ≤ 2 sin
π

k
‖uw‖ ≤ 2

√
2 sin

π

k
‖uv‖.

By induction, we have

p(u! v) = ‖uw‖β + p(w! v)

≤ ‖uw‖β + ρ‖wv‖β

≤ (
√

2)β(1 + ρ(2 sin
π

k
)β)‖uv‖β

≤ ρ‖uv‖β,

whenρ ≥
√

2
β

1−(2
√

2 sin π
k
)β

.
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2. The second case is that linkuw is later removed by nodew. We show
that the spanning ratio is still kept. Notice that, this casecould only suc-
ceedSubcase 1. The linkuw in Subcase 2, see Figure 3(b), can never be
removed in our algorithm, since both nodeu andw have processed and
kept this edge. An edge can only be removed by its endpoints. This is the
tricky case in this algorithm.

v

x

w u

v

x

w u

(a) processingu (b) processingw

Figure 4. Link uv is removed when processing nodeu (illustrated in the left figure) and link
uw is then removed by nodew later (illustrated in the right figure).

Figure 4(a) shows the situation that a WHITE nodeu selects a linkuw
in a cone, where the neighbor nodew is not processed. Figure 4(b) il-
lustrates the scenario when nodew processes its neighbors: since it has
two processed3 neighborsu andx in the cone, it will select the nearest
processed neighbor in that cone, which is nodex. Observe that after node
w decided to keep linkwx and remove linkuw, the linkwx will be kept
in the final structure since both end nodesw andx are processed and only
an unprocessed node can remove its incident links later. Obviously, from
the selection procedure, we know that

‖uv‖ ≥ ‖uw‖ ≥ ‖wx‖.

Notice that, both nodesu andx select the nodew in one of their cones
when they are processed before nodew starts its processing. Nodew then
selectsx instead ofu becausewx is shorter. Consequently, nodeu does
not have any neighbors kept in the nodeu’s cone shown in Figure 4(b).
This is a sharp contrast to our first structureOrdY aoGG, in which every
node always keep an edge in each cone if it originally has one neighbor
from Gabriel graph. Then the pathv ! u connecting nodesu andv is
composed of pathv ! w, link wx and pathx ! u. The total power
cost of the pathv! u is

3 Nodex must also be a processed node, otherwisew will definitely selectu instead ofx
according to our rule.
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p(u! v) = ‖wx‖β + p(w! v) + p(u! x)

≤ ‖wx‖β + ρ‖wv‖β + ρ‖ux‖β

≤ ‖wx‖β + ρ(2 sin
π

k
)β(‖uv‖β + ‖uw‖β)

≤ ‖uv‖β(1 + 2ρ(2 sin
π

k
)β)

≤ ρ‖uv‖β,

whenρ ≥ 1
1−2(2 sin π

k
)β .

All conditions aboutρ are satisfied whenρ =
√

2
β

1−(2
√

2 sin π
k
)β

. This finishes

the proof.

We then analyze the communication cost of Algorithm 3. (1) Clearly, the
first step of buildingGG can be done using onlyn messages: each message
contains the ID and geometry position of a node. (2) In the second step of
the algorithm, initially, the number of edges in Gabriel Graph is less than3n
since it is a planar graph. Clearly, there are at most2n such removed edges
since we keep at leastn−1 edges from the connectivity of the final structure.
Thus the total messages used to inform the deleted edges fromGG is at most
2n. Then the following lemma directly follows.

LEMMA 8. Assuming that both the ID and the geometry position can be
represented bylog n bits each, the total number of messages by Algorithm 3
is at most3n, where each message has at most2 log n bits.

Similarly, if the message UPDATEN contains the selected neighbor IDs
instead of the deleted neighbor IDs, then the communicationcost of each
node also can be bounded byk + 1 since at mostk neighbors will be kept
during Yao construction.

Theoretically, compared withOrdY aoGG, the topologySY aoGG has
lower node degree bound while higher power spanning ratio bound. Worth
to mention that, our simulation later shows the power spanning ratios of
OrdY aoGG andSY aoGG are very close in practice.

4. Performance Evaluation on Random Networks

We evaluated the performance of our new degree-bounded and planar span-
ners by conducting simulations on randomly deployed wireless ad hoc net-
works. In our experiments, we randomly generated a setV of n wireless
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nodes andUDG(V ), then tested the connectivity ofUDG(V ). If it is con-
nected, we construct different localized topologies onUDG(V ), including
our new topologiesOrdY aoGG and SY aoGG, some well-known planar
spanner topologiesGG(Bose et al., 2001; Karp and Kung, 2000),Y aoGG(Li
et al., 2002b), andBPS(Wang and Li, 2003). Then we measure the sparse-
ness, the power efficiency and the communication cost duringconstruction of
these topologies.

In the experimental results presented here, we generatedn random wire-
less nodes in a20×20 square; the parameterk, i.e., the number of cones, is set
to 9 when we constructBPS, OrdY aoGG andSY aoGG; the transmission
range is set to8. We tested all preferred properties described in Section 2.2
of these planar structures by varying node number from30 to 300, where
100 node sets are generated for each case to smooth the possible peak effects
caused by some exception examples. The average and the maximum were
computed over all these100 node sets.

4.1. POWER EFFICIENCY

The most important design metric of wireless network topology is perhaps
the power efficiency, as it directly affects both the node andthe network life-
time. So while our new topologies increase the sparseness, how does it affect
the power efficiency of the constructed network? First, we test power stretch
factors of all structures. In our simulations, we set power attenuation constant
β = 2. Setting largerβ, from our proofs, we expect to see smaller spanning
ratios of our structures. In Figure 5, we summarize our experimental results of
power stretch factors of all these topologies. It shows all of the power stretch
factors are small in practice, just around1.002, exceptGG has power stretch
factor 1. In other words, the path remaining in the sparse planar structures
can estimate the shortest path in the original communication graph without
too higher power consumption. It is not surprising that the average/maximum
power stretch factors ofOrdY aoGG andSY aoGG are at the same level of
those ofGG while they are much sparser.

Another interesting thing to notice is thatOrdY aoGG has smaller power
spanning ratio thanY aoGG, even thoughOrdY aoGG is sparser thanY aoGG
theoretically and practically (Refer Figure 7). One reasonis thatOrdY aoGG
is more uniform thanY aoGG. Hence, the proper ordering scheme can con-
serve more energy.

Notice that after constructing the sparse structures, a node can shrink its
transmission energy as long as it is enough to cover the longest adjacent
link in the structure. By this way, we define the node transmission power
for each nodeu in a constructed structure as follows. Ifu has a longest link,
sayuv, in the structure, then the node transmission energy ofu is ‖uv‖β .
As expected, Figure 6 shows the average node transmission energy of each
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Figure 5. Average and maximum power spanning ratio of different topologies.

topology decreases as the network density increases. The power needed by
each node in our new structuresOrdY aoGG andSY aoGG is almost same
with that byGG, which is much less than its maximum transmission energy
(which is8β hereβ = 2 in our experiment). Each node inBPS need to set
higher transmission energy since it has more neighbors. Specifically, BPS is
a supergraph of the Gabriel graph and our new structures are subgraphs of the
Gabriel graph.

4.2. NODE DEGREE

The node degree is an important performance metric in wireless ad hoc net-
works, since the degree of each node directly relates to its power consumption
and the global network performance.
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Figure 6. Average node transmission power of different topologies.

The average and maximum node degrees of each topology are shown in
Figure 7. It shows thatOrdY aoGG andSY aoGG have less number of edges
(average node degrees) thanY aoGG, GG andBPS. In other words, these
graphs are sparser. Notice that the node degree ofBPS is much higher than
those of other graphs, sinceBPS uses many edges fromLDel which is a
supergraph (thus much denser than) ofGG, see Figures 2(b) and (c), while all
the other structures discussed here are subgraphs of the Gabriel graph. Recall
that theoretically, onlyBPS, OrdY aoGG andSY aoGG have bounded node
degree (both for in-degree and out-degree). In (Li et al., 2001b; Li et al.,
2002b), Liet al. gave an example to show thatRNG, GG, andLDel could
have large node degree (in-degree forY G andY aoGG). Notice that, in our
experiments, since the wireless nodes are randomly distributed in two dimen-
sional space, it is easy to understand that the maximum node degree ofGG
andY aoGG are not as big as the extreme example, however, it can happen.
Recall that we provedOrdY aoGG andSY aoGG have bounded node degree
k + 5 andk respectively. In Figure 2, we give a special example to show the
theoretical node degree bound forOrdY aoGG andSY ao, where two group
wireless nodes, with size17 each, are uniformly distributed on a unit disk
and a half-unit disk respectively. Both disks are centered at one nodeu with
ID = 0. Figure 2 shows the unit disk graph, which is a complete graph, and
other structures built on it. Notice thatGG andY aoGG keep all the links to
u in the inner cycle, whileBPS andOrdY aoGG can remove some links
to bound node degree, andSY aoGG has the best node degree boundk = 9.
Notice thatBPS is constructed based onLDel, and it also added some edges
to keep the length spanner property, so it is the densest among them.
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Figure 7. Average and maximum node degree of different topologies.

Beside the node degree of all these structures, we are also interested in
another kind of node degree, calledphysical node degree. For each nodeu,
it has a longest link, sayuv, in a constructed structure. Then the physical
degree ofu is defined as all nodesw such that‖uw‖ ≤ ‖uv‖. This is the
total number of nodes that can cause direct interference with u. The average
and maximum physical node degrees of each topology are shownin Figure
8. They are higher than the node degrees in Figure 7 as expected, however
they follow the same pattern of curves. Moreover, the possible interference
increases slightly while the number of wireless nodes grows. This is tolerable
because each node also decreases its transmission range as shown in Figure 6
and the average number of actual physical neighbors of a nodeis around6 in
our simulations.
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Figure 8. Average and maximum physical node degree of different topologies.

Notice that for randomly deployed wireless networks, the simulation re-
sults do not show big difference between the proposed structures and the
structures GG and YaoGG. The reason behind it is that, for randomly de-
ployed networks, the structures GG and YaoGG will have smallnode degrees
with a high probability. Then, the additional steps in our methods to bound
the node degree will do nothing in this case. However, our structures can
theoreticallybound theworst caseperformance with only a sufficiently small
communication overhead, e.g., the structure SYaoGG can be constructed with
at most3n messages.
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Figure 9. Communication cost during construction ofOrdY aoGG andSY aoGG.

4.3. COMMUNICATION COST DURING CONSTRUCTION

In Section 3 we proved that the localized algorithms constructingOrdY aoGG
andSY aoGG use at mostO(n) messages. We found that when the number
of wireless nodes increases the average messages used by each node for con-
structing them is still in the same level. Figure 9 summarizes our experimental
results of the communication costs in each node during the construction of
OrdY aoGG and SY aoGG. Here we do not compare our communication
costs with that ofBPS, since it uses2-hop neighbors information and needs
to buildLDel(2)(UDG) which costs much more messages for sure. It is clear
that the network becomes more and more dense while the numberof wireless
nodes increases. However, experiment shows that the localized method does
not cost more messages on each node even when the graph becomes denser.
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An interesting observation is that the average number of messages per node
for structuresOrdY aoGG is around8 though the theoretical bound is24. It
is reasonable because nodes do not always query5 times in local ordering in
practice. Notice thatSY aoGG costs much less messages thanOrdY aoGG
does, so it is indeed a very efficient topology construction method. This is
expected and consistent with our theoretical analysis.

Moreover, simulations results in all charts also show that the performances
of our new topologiesOrdY aoGG andSY aoGG are stable when number
of nodes changes.

5. Conclusion

We proposed several novel localized algorithms that construct energy ef-
ficient routing structures, where each node has a bounded degree and the
structures are planar, for wireless ad hoc networks modelled by unit disk
graph (UDG). Our first structure has a bounded node degreek + 5 where
integerk > 6 is an adjustable parameter; its power stretch factor is no more
thanρ = 1

1−(2 sin π
k
)β ; it is planar; and it can be constructed locally in24n

messages, where each message hasO(log n) bits for a wireless network ofn
nodes.

Our second method improves the degree bound tok, and keeps all other
properties, except that the theoretical power spanning ratio is relaxed toρ =

√
2

β

1−(2
√

2 sin π
k
)β

, wherek > 8 is an adjustable parameter. We showed that the

second structure can be constructed using at most3n messages, where each
message hasO(log n) bits.

We conducted extensive simulations to study these new sparse network
topologies and compared them with previously known efficient structures.
Theoretical results are corroborated by the simulations.

Notice that the bounded node degree of a structure cannot guarantee that
the structure has a small link interference. We would like tostudy how to con-
struct efficient topologies with small interferences whilebeing power efficient
and having a bounded node degee.
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