Simultaneous Refinement and Coarsening for Adaptive Meshing *

Xiang-Yang Li Shang-Hua Teng Alper Ungbr

Abstract. In numerical simulation of the combustion process and microstructural evolution,
we need to consider the adaptive meshing problem for a domain that has a moving boundary.
During the simulation, the region ahead of the moving boundary needs to be refined (to satisfy
stronger numerical conditions), and the submesh in the region behind the moving boundary should
be coarsened (to reduce the mesh size). We present a unified scheme for simultaneously refining
and coarsening o mesh. Our method uses sphere packings and guarantees that the resulting
mesh is well-shaped and is within a constant factor of the optimal possible in the number of
mesh elements. We also present several practical variations of our provably good algorithm.

keywords. adaptive meshing, coarsening, refinement, moving boundary, sphere packing, Delaunay
triangulation.

1 Introduction

In numerical simulation of many problems, we need to handle an evolving mesh which changes its
size and topology as a function of time or the number of iterations of a numerical procedure. There
are two basic scenarios:

e Adaptive refinement (based on a posterior error analysis): In numerical simulation of
time-independent problems, an iterative procedure is often used. It first generates a mesh
based on a priori estimates of the local mesh density, solves the numerical equations defined
on the initial mesh, and then, based on the a posterior error analysis, adaptively refines the
mesh and solves the new numerical equations. It could repeats these steps until an accurate
solution is obtained.

e Dynamic meshing with a moving boundary: In numerical simulation of time-dependent
problems such as the combustion process and microstructural evolution, we need to consider
the adaptive meshing problem for a domain that has a moving boundary, in which, the mesh
should be dynamically changed to be effective for the next time-step simulation.

In both cases, submeshes in some parts of the domain need to be refined, while in some other
parts need to be coarsened. For example, the moving boundary of a time-dependent problem could

*Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801. Supported in
part by an NSF CAREER award (CCR-9502540), an Alfred P. Sloan Research Fellowship, and the U.S. Department
of Energy through the University of California under Subcontract number B341494 (DOE ASCI).

Back Region

Figure 1: Domain with a moving boundary.

divide the domain into two regions: the front region and the back region. See Fig. 1. During the
simulation, numerical conditions in the front region become stronger, requiring its submesh to be
refined. In contrast, the submesh in the back region should be coarsened in order to reduce the
mesh size. Therefore, it is desirable to have an efficient algorithm which can simultaneously refine
and coarsen a mesh.

We present a unified framework for this problem. It is built upon previous works in mesh
generation and coarsening [2, 10, 7, 11]. It has a mesh density estimation procedure which computes
the desirable mesh spacing using the structure of the current mesh. It then uses a sphere packing
based meshing algorithm to generate a mesh that satisfies the estimated mesh density. At a high
level, given a mesh M and an updated numerical condition, it applies the following steps to construct
a new mesh M’.

1. Estimate the density of M’ based on M and the updated numerical condition.

2. Based on the information of the mesh density, compute the new spacing at each mesh point
in M;

3. Determine the coarsening factor of each mesh point, referred as a C-point, whose new spacing
is larger than the previous one (such as for mesh points in the back region), and the refining
factor of each mesh point, referred as an R-point, whose new spacing is smaller than the
previous one (such as for mesh points in the front region);

4. Properly scale up the spheres of all C-points and scale down the spheres of all R-points, and
fill in the gaps among the shrunk spheres with new spheres of proper sizes;

5. From the sphere system, construct the point set of the new mesh;

6. Use Delaunay triangulation to generate the new mesh M’

We will show that our method guarantees that the resulting mesh is well-shaped and is of a
size that is within a constant factor of the optimal possible. In addition, our algorithm minimizes
the number of new spheres needed for the sphere packing, and hence retains the structure of the
original mesh as much as possible. We also present some practical variations of our algorithm.

Section 2 introduces the Evolving Mesh Problem, which provides a general framework for
studying mesh refinement and coarsening. Some useful notation and basic definitions are also

reviewed. Section 3 describes our method for simultaneous coarsening and refinement. We show
that the time complexity of our algorithm for the Evolving Mesh Problem is O(nlogn). Section
4 gives a proof of the size and quality bound of our algorithm. Several more practical versions of
our algorithms are presented in Section 5. In Sections 6 and 7, we conclude the paper with some
experimental results.

2 The Evolving Mesh Problem

The Evolving Mesh Problem (EMP) is more general than the dynamic meshing problem that has
a moving boundary. To introduce EMP, we first review some basic definitions of unstructured
meshes.

2.1 Well-Shaped Meshes

A mesh M is a discretization of a domain €2 into a collection of simple elements. We consider
unstructured meshes which have varying local topology and spacing, and in which each element is
a simplex, i.e., a triangle in 2D or a tetrahedron in 3D. The use of unstructured meshes is necessary
for simulating irregular engineering problems with fewer mesh elements [2, 8, 10].

Numerical approximation errors depend on the gquality of the mesh, while the time and the
space required by numerical algorithms are a function of the number of mesh elements. To properly
approximate a continuous function, in addition to the conditions that a mesh must conform to the
boundaries of the region and be fine enough, each individual element of the mesh must be well-
shaped. A common shape criterion for the mesh elements is the condition that the angles of each
element are not too small, or the aspect ratio of each element is bounded [1, 2, 13]. In this paper,
we measure the quality of a triangular element by the radius-edge ratio as defined in [8, 9].

Definition 2.1 (radius-edge ratio) The radius-edge ratio of a simplex is the ratio of the circum-
radius to the length of the shortest edge of the simplez.

In two dimensions, the radius-edge ratio is closely related with the smallest angle; the radius-edge
ratio is bounded from above by a constant if and only if the smallest angle is bounded below by a
constant. Based on this quality measure, we can define well-shaped meshes as the following.

Definition 2.2 (a-well-shaped mesh) A mesh M is a-well-shaped for a constant o > 1 if the
minimum radius-edge ratio over all of its elements is bounded from above by a.

2.2 Spacing Functions

A spacing function specifies how fine a mesh should be at a particular region. This function can be
derived from the previous numerical results and or from the local geometry feature. In the case of
a surface mesh, the spacing function could be determined by local curvatures. Given a well-shaped
mesh M over a domain €2, there are several ways to describe its spacing function.

Definition 2.3 (Edge-length function, el;;) For each point x € Q, el (z) is equal to the length
of the longest edge of all mesh elements that contain x. Note that points on the lower dimensional
faces of a simplex are contained in more than one element.

Definition 2.4 (Nearest-neighbor function, nnys) Let z be a point in Q. Then nnp(z) is
equal to the distance to the second closest mesh point including x in the case that x is also a mesh
point.

Lemma 2.1 ([8]) If M is a-well-shaped, then there exist constants c¢1 and co depending only on
a such that for each point x € €,

crely(z) < nnpy(z) < coelpy(x). (1)

As shown in [8, 11], the spacing function for a well-shaped mesh should be smooth in the sense
that it changes slowly as a function of distance. The following property specifies the smoothness of
a function.

Definition 2.5 (a-Lipschitz function) A function f is Lipschitz with a constant a if for any
two points x,y in the domain, |f(z) — f(y)| < of|lz — y|.

2.3 The Evolving Mesh Problem

Definition 2.6 (The Evolving Mesh Problem (EMP)) The input to the problem has two parts:
(1) a well-shaped mesh M and (2) a list of positive reals 6, one for each mesh point, i.e., associated
with each mesh point p is a real number 6(p), such that I < §(p) < L for constants 0 <1 < 1 and
L>1.1

We would like to construct a new mesh M' with the following properties:

e For each mesh point p in M, nnyp(p) < 6(p)nnar(p);
e M’ is well-shaped; and

e the size of M' is as small as possible.

For each mesh point p € M, if §(p) > 1, then it is a C-point (where C stands for coarsening);
if 6(p) < 1, then it is a R-point (where R stands for refinement). Our definition of the Evolving
Mesh Problem allows some parts of the mesh to be coarsened while some others to be refined.

To model the dynamic meshing problem with a moving boundary by EMP, we can define § as
a function of the moving boundary. For example, we can define the new spacing of a mesh point
by applying a proper monotonic function to the distance from it to the closest point on the moving
boundary. EMP is more general in the sense that it does not require any correlation in the change
of § among mesh points.

EMP is closely related with adaptive mesh generation. In the literature, adaptive mesh gen-
eration is rather a general term. It has been used, in the context of mesh generation, as to adapt
the mesh to the domain geometry or to the a priori error estimates. Most often, it has been used
to refer to the problem for adaptively refining a mesh based on a newly derived error bound. Here
we would like to use EMP to emphasize the problem of simultaneously refining and coarsening a
mesh.

'The constant I defines the maximum degree of the refinement. The smaller the value [, the more the mesh can
be refined. In practice, ! is a reasonably large constant, such as 1/10.

3 An Adaptive Scheme for Evolving Meshes

In this section, we present our basic algorithm for EMP. Our approach extends the spacing-function-
based coarsening technique of Miller, Talmor, and Teng [7] to simultaneously refine and coarsen a
mesh. Notice, however, the algorithm of [7] does not directly apply to EMP. See the end of Section
4 for a detailed discussion.

In our algorithm, we would like to use the structure of the current mesh M as much as possible
and as efficiently as possible.

3.1 A New Spacing Function

For each mesh point p in M, we define a local spacing function f,(z) as

fo(z) = 6(p)nma (p) + ||z — pl|. (2)

This spacing function increases with the distance, and has a Lipschitz constant 1. The global
spacing f(z) is then given as

f(z) = min f,(z). (3)

pEM
In other words, f is the lower envelope of all local spacing functions. It is easy to show that f is
1-Lipschitz [7].
The following lemma states the relationship between the new spacing function and the nnjys
derived from the previous mesh M.

Lemma 3.1 For any mesh point p, if §(p) < 1, then f(p) = d(p)nnyp(p); if 6(p) > 1, then
nny(p) < f(p) < d(p)nna(p).

Proof: By definition, f(p) = min(ming,fq(p), fp(p)), and fp(p) = d(p)nnu(p). We first prove
that mingzpfq(p) > nnar(p). For all ¢ # p,

falp) = d(@)nnu(q) + |lg —pl|
llg — pl|
nna(p).

AVARYS

The last inequality follows from the definition of nny;. Hence, ming.pfy(p) > nny (p).

If 6(p) < 1, then f(p) = min(mingzpfq(p), fo(p)) = 6(p)nnr(p). Otherwise, f(p) < fp(p) =
§(p)nnm(p), and fp(p) = é(p)nnm(p) > nnu(p) implying f(p) > nna(p). O

Hence, the new spacing function satisfies that f(p) > [- nny(p), i-e., nnp(p) < f(p)/l, where
[is the lower bound of the § value for all mesh points. Note that f(p) < dé(p)nna(p) implies
f(p) < Lxnny(p) for every mesh point p. In addition to the fact that the new spacing function f
is 1-Lipschitz, it also has the local similarity property given in the following lemma.

Lemma 3.2 (Local Similarity in a Mesh Element) For each edge (p,q) € M, there ezists a
constant c3 which depends only on the radius-edge ratio o of M and the lower bound [of §, such
that

f(p) <esflq)- (4)

Ry

Figure 2: The distance ratio ||p — z||/mini<i<3|[p — ¢|| is at least tan(@), where 6 is the lower
bound on the angle of mesh elements.

Proof: The fact that f is 1-Lipschitz function implies:

f(p) f(g) +[lp —4l|

@) +nnm(g)/ca
f(@) + f(9)/(erl)
(1 +1/(erd)) f(q)-

The second inequality follows from Lemma 2.1: ||p—ql|| < el(q) < nnas(q)/c1. The third inequality
is from Lemma 3.1. Hence f(p) < c3f(g), where ¢3 = 14+1/(c1l). Note that the constant ¢; depends
only on a. a

Similarly, for any point z in a triangle Aqi1g2q3, we have f(x) < ¢3f(g;), for 1 = 1,2,3. Note
that the above lemma also implies that f(p) > 1/c3f(q), for any edge (p,q) of the mesh.

IANIN TN

Lemma 3.3 (Bounded Distance Ratio) Let Aqi1q2gs be a triangle of M. Let p be a mesh point
other than q1,qo,q3. Let x be a point inside the triangle. Then there exists a constant cs, depending
only on the smallest angle 6 of M, such that

llp — || /mini<i<s||p — gil| > ca- (5)

Proof: First of all, the nearest point in the triangle to p must be on the boundary of the triangle.
There are two cases:

e The nearest point is one of {q1,q2,g3}; We have ||p — z|| > mini<;<s||p — gil|, i-e.,
|lp — «ll/mini<i<s|lp — ¢l = 1.

e The nearest point is a boundary point other than q1, g2 or g3. Without loss of generality,
assume q1qe separates p from gs. Let zy be the closest point on the segment gigo to p. See
Figure 2. If p is directly connected to ¢; and go in the mesh, then ||p—zo||/||p — ¢i|| > tan(6),
where 1 = 1,2, and 0 is the lower bound on the element angle. Otherwise, assume that pg
is the mesh point other than ¢3 that is directly connected to ¢; and g2 in the mesh. Either

pogq1 separates p from ¢ or poge separates p from ¢; or both. Without loss of generality,
assume that pogo separates p from ¢;. We have ||p — zo||/||p — g2|| > tan(f), which implies
that ||p —xo||/mini<i<s||p—¢i|| is at least tan(#). The lemma then follows from the fact that
lp = z[[> [lp — 2ol|-

In both cases, we have

|lp — z|| /mini<i<s||p — ¢]| > min(1, tan(0)).

Usually, 6 is less than 7/4, which implies that ¢4 = tan(#).

Lemma 3.4 (Local Similarity in the Domain) Let x be a point in a triangle Aq1q2q3 of M.
Then there exists a constant cs, depending only on the smallest angle 6 of M, and the lower bound
l on d, such that

cs < f(z)/mini<i<af(g) < c3. (6)

Proof: From the definition of f, there exists a mesh point p such that f(z) = d(p)nn (p)+||z—p||-
If p is one of {q1,42,¢3}, say p is q1, then

f(z)

dqr)nna(qr) + ||z — qu|
d(q1)nnar(qr)
flq)

mini<i<3f(g:)-

(AVARAVARLV]

Otherwise, let ¢ be the ¢; with the minimum distance to p. We have f(q) < §(p)nna(p) + |lg — pl|-
If ||z — p|| > |lg — pl|, then f(z) = (p)nnrm(p) + ||z — p|| = f(g). Otherwise,

f@)/fl@) > (6(p)nnum(p) + [z —pl|)/(6(p)nna(p) + [lg — plI)
>z —pll/llq - pl|
> 4

The last inequality is given in Lemma 3.3. In both cases, we have f(z)/f(q) > min(l,c4). From
Lemma 3.2, we have f(q)/mini<i<3f(¢;) > 1/c3. Hence,

f(.’E)/minlSngf(qi) Z min(l, C4)/C3.

In other words, ¢5 = c4/c3.
The proof of f(z)/mini<i<3f(¢;) < cs is same as the proof of Lemma 3.1. O

3.2 Functional-Refining-Functional-Coarsening Algorithm

The basic idea of Functional-Refining-Functional-Coarsening FRF(C is to first compute a
maximum spacing function that satisfies the new spacing requirement of the Evolving Mesh Prob-
lem. We then make use of the point set of M to construct a sphere packing with respect to the
spacing function. Then the new mesh M’ is obtained by using Delaunay triangulation.

Let B(z,r) be the sphere of radius r centered at point . We will use the following notion of
sphere packing [7, 14] in our algorithm.

Definition 3.1 (S-Packing) Let 8 a positive real constant. Let S be a set of spheres and P C ()
be the centers of these spheres. Then S is a B-packing with respect to a spacing function f if

e For each point p of P, B(p, f(p)/2) € S;
e The interiors of any two spheres s1 and sy in S do not overlap; and
e For each point g € Q, there is a sphere in S that overlaps with B(q, 5f(q)/2).

To construct the mesh points for M’, we first use the following procedures to generate a -
packing of Q with respect to f by using as many mesh points from M as possible. Here § is a
constant to be given later. M’ is then the Delaunay triangulation of the centers of the S-packing.

Algorithm Functional-Refining-Functional-Coarsening

1. Let Sy ={B(p, f(p)/2)lp € M};

2. For each element ¢t = Agigaqs in M, let ¢ be the mesh point ¢; with the smallest
f(g;) for i =1,2 or 3. Let b; be the smallest box that contains ¢. We divide b; into
a set of uniform cells with the side length cs5f(g)/(2v/2), where cs is a constant
given in Lemma 3.4. See Figure 3. Choose a random point in every cell that
intersects ¢t for a nonempty area, and for each such a point z, define a sphere with
center z and radius f(z)/2. Let Sy be the set of these spheres.
In practice, we can use (f(q) + ||z —q||)/2 to approximate the radius f(z)/2. Note
that csf(@) < f(z) < f(a) + lo — all < esf(a) < cs/esf(w). In other words,
(f(g)+ ||z —ql|])/f(z) is bounded both from above and below by constants. Hence,
it is reasonable to use f(g) + ||z — ¢|| to approximate f(z);

3. Let SI = 51 U 52;

4. Order the spheres in S’ as the following: first, all spheres whose centers are on the
boundary followed by all other spheres in S in the order of increasing radii, and
then followed by all spheres in S in the order of increasing radii;

5. We say two spheres s; and sy in S’ are conflicting if their interiors overlap. The
conflicting relation defines a Conflict Graph (CG) over S'. Let S be the set of
spheres which form the Lezical-First Mazimal Independent Set (LFMIS) of CG;

6. Let M' be the mesh defined by the constraint Delaunay Triangulation of centers
of S.

The lexical-first maxiaml independent set is defined as the following. The initial LFMIS is
empty. Then we add a sphere with the smallest index that does not conflict with any spheres of the
current LFMIS until no sphere can be added. The intuition is that we try to conform the boundary,
and to use as many spheres from as possible. In addition, the smaller sphere has higher priority to
be chosen, which will intuitively improve the quality of the new mesh M'. If we choose the larger
spheres first, it is more likely that it will generate some big gaps among the selected spheres, which
will deteriorate the quality of the new mesh.

Figure 3: Sampling points in a triangle element.

3.3 Complexity of FRFC

To analyze the complexity of the FRFC algorithm, we first show that the number of the mesh
points in the new mesh is linearly related to that of the original mesh.

Lemma 3.5 (Number of Sample Points) The number of sampled points in an element Aq1q2q3
is bounded by 2v/2/(csl).

Proof: The number of cells generated in the triangle is no more than 2v/2nnar(g;)/(csf(g;)). The
lemma follows from Lemma 3.1, i.e., nna(g;) < f(g:)/l. O

The most time consuming part of F RFC will be the steps for computing the conflict graph and
for computing the LFMIS of the conflict graph. The sphere-separator based divide-and-conquer
algorithm [6] constructs the conflict graph in O(|M|log|M]|) time if the spheres S; U S satisfy the
constant ply property. Let I’ be a collection of spheres. The ply of a point z, denoted by ply(z,T'),
is the number of the spheres in I' that contains .

Lemma 3.6 (Constant Ply) For S’ = 51U Sy, there exists a constant cg such that for any point
T €€,

ply(.’B,S’) S Cg- (7)

Proof: Let C(z) be the set of the centers of the spheres in S’ that contain z. For any point
¢ € C(z), we have 2||z — ¢|| < f(c). Note that f(c) < f(z) + ||z — ¢|| because f is 1-Lipschitz.
Hence, ||z — ¢|| < f(z), i.e., point ¢ is in B(z, f(x)).

Let T'(z) be a set of triangles that contain a point ¢ € C(z). It is sufficient to show that the
size of T'(z) is bounded by a constant due to that the number of sampled points in each triangle
is bounded by a constant (See lemma 3.5). Note that the number of triangles is linearly related to
the number of the mesh points because the mesh is a planar graph. Hence, we need only to prove
that the number of mesh points of triangles 7'(z) is bounded by a constant.

We first prove that, for any point ¢ € C(z), f(c) > 2/3f(z). Note that ||c — z|| < f(z). There
are two cases for the location of point c. If ||[c—z|| < 1/3f(z), then the fact that f(z)—f(c) < ||c—=z||

implies f(c) > 2/3f(z). If ||c — z|| > 1/3f(x), then the fact that ||c — z|| < 1/2f(c) implies that
f(e) >2/3f(z). Hence, in both cases we have

fe) >2/3f(x). (8)

Let Aqigags be the element in T'(z) containing c¢. Let ¢ be the point among gi,92,93 that has
the smallest spacing value. Lemmas 3.1 and 3.2 imply that nnas(g;) > f(q;)/L > f(c)/(c3L). We
have

nnM(qZ) > 2f(.’13)/(3C3L), fori=1,2,3. (9)
From Lemmas 3.1, 3.2, and 3.4 we have nna(g;) < f(gi)/l <e3f(q)/! < csf(c)/(csl). Hence,
nna(g) < 2c3f(x)/(3esl), for1=1,2,3. (10)

It follows from Lemma 2.1 that ||c—g;|| < elamr(gi) < nnar(gi)/c1, which implies that, for every
mesh point ¢; of T'(z), ||z — ql| < ||z — || + ||c — || < f(z) + nna(g;)/c1- Hence, for each mesh
point ¢; of T'(x),

Iz — qll < (Besl + 2¢3) f(x)/(3esl), (11)

implying that the sphere B(z, (3¢c5+2c3) f(z)/(3c5!)) contains all the triangles from T'(z). Note that
the spheres B(gi,nnas(g;i)/2) are pairwise non-overlapping, and they are contained in the sphere
B(z, (csl + ¢3)f(z)/(c5l)), because nnpr(q;) < 2c3f(z)/(3csl), and ¢; is contained by B(z, (3¢5l +
2¢3) f(z)/(3esl)).

By a volume argument, the number of mesh points in 7'(x) is bounded by a constant R?/r?,
where R = 1+ c3/(csl), r = 2/(3csL). The lemma then follows from the fact that the number
of points in each triangle is bounded by a constant 2v/2/(csl). Note that the constant cg satisfies
c6 < (2v2/(c51)) (3R? /1 — 6). O

We now analyze the time complexity of the algorithm. Because M is well-shaped, it has a
linear number of elements and edges in terms of the number of mesh points |M| [8]. Therefore,
nnpr can be evaluated in O(|M|) time. The time to compute the global spacing function f is
O(|M|log(|M])). Notice that the mesh point p; that defines f(p) has the property that for each
mesh point p; € M:

§(pj)nnar(py) + llp; — pll < d(px)nna(pr) + [Pk — pll- (12)

That is, p is contained in the additively weighted Voronoi cell of p;. Fortune [3] shows how to apply
the sweep-line technique to compute the additively weighted Voronoi diagram in O(|M|log(|M]))
time.

The time complexity of step 1 of the algorithm FRFC is O(|M|log(|M]|)). During step 2, the
number of the points sampled at any element Aqyg2q3 is bounded by 2v/2nn(¢;)/(csf(g;)). Lemma
3.1 implies that the number of sampled points is at most 2v/2/(csl). Hence, the time complexity of
step 2 is also O(|M|log(|M])). Note that the time complexity is O(|M|), if we use (f(q)+||z—q||)/2
to approximate f(z). The time to sort all the spheres during step 4 is O(|M|log(|M])). Because
the ply of S1 U Sy is bounded by a constant (Lemma 3.6), we can apply the sphere-separator
based divide-and-conquer algorithm [6] to construct the conflict graph in O(|M|log|M|) time. In
addition, we know that the conflict graph has at most O(]M|) number of edges. Computing the

10

lexical first maximal-independent-set of the conflict graph then takes Q(|M|) time. The Delaunay
triangulation takes O(|M'|log(|M'|)) time, where |[M'| is linear in |M|, because the total number
of the sampled points is linear in |M|. Thus, we have the following theorem.

Theorem 3.7 (Complexity) The time complezity of FRFC is O(|M|log(|M])).

4 Quality and Size

We now show that FRFC returns a mesh M’ that is well-shaped, and is of a size that is within a
constant factor of the optimal possible.

4.1 Quality of the Mesh

We will use the following structure theorem of Miller, Talmor, and Teng [7] which states an equiv-
alence relationship between (-sphere packing and well-shaped meshes to prove the quality of the
generated mesh.

Theorem 4.1 (Sphere Packing and Well-Shaped Meshes) 1. For any positive constant
0B, there exists a constant o depending only on B such that if f is a spacing function of
Lipschitz constant 1 over a domain 2 and S is a B-sphere packing with respect to f, then the
Delaunay triangulation M of the centers of S is an a well-shaped mesh; in addition, for each
point p in Q, nnp(p) = O(f(p)), where the constant in © depends only on 3.

2. For any positive constant «, there exists a constant B depending only on « such that if M is
an a well-shaped mesh, then the set of spheres

S = {B(p,nnan(p)/2) : for all mesh point p € M},
is a B-packing with respect to nnps/2.

We use the following lemma from Miller et al [5] to prove that FRFC generates a (§-packing
sphere set.

Lemma 4.2 Let P be a set of points in domain . Let g be an ~y-Lipschitz function defined on (2.
Let S = {B(p,g(p))|p € P}. If for any point x € Q, B(z,g(z)) contains at least one point from P,
then a LFMIS of the conflict graph of S is (3 +)/(1 — v)-packing.

Hence, we only need to prove that the sampling method of FRFC guarantees that for any
point z € Q, B(z, f(x)/2) contains at least one point from S; U Ss.

Lemma 4.3 (Dense Sample) For any point x in the domain, the sphere B(x, f(x)/2) contains
at least one point from S1 U Ss.

Proof: It is sufficient to show that B(z, f(z)/2) contains at least one cell generated during the
sampling procedure. Let t = Agiqoqs be the element that contains z. Let ¢ be a mesh point
g; with the smallest f(g;), # = 1,2,3. The side length of the cell generated during the sampling
procedure is c5f(q)/(2v/2), where c5 is given in Lemma 3.4. If the radius of the sphere is at least

11

the diagonal of the cell, i.e., f(z)/2 > ¢5f(q)/2, then the sphere will contain a cell. By Lemma 3.4
that f(z) > c5 f(q). O

Noting that the spacing function f/2 used for spheres is 1/2-Lipschitz, we have the following
theorem.

Theorem 4.4 The S returned by the FRFC algorithm is a T-packing with respect to f.

Therefore, there exists a constant o such that the mesh M returned by the algorithm is a-
well-shaped.

4.2 Size of the Mesh

We show that the new pacing function is good in the sense that it is the maximum function that
satisfies the evolving meshing problem.

Lemma 4.5 (Maximality) Let h be any spacing function of Lipschitz constant 1 over the domain
Q that satisfies the condition h(p) < 6(p)nny(p) for each mesh point p in M. Then for any point
x in Q, not necessarily a mesh point of M, h(z) < f(x).

Let h'(z) = minpearhp(z). Note that f(r) = minyen fp(z), and hence b'(z) < f(z), for all
Now assume p, is the point that drives = to get the smallest value for b', i.e., h'(z) = hp, ()
h(pz) + ||pz — || Note that h(z) < h(ps) + ||ps — z|| because h is 1-Lipschitz function. Then,
Vz,h(z) < h'(z) < f(z). O

Therefore, let M" be any mesh that satisfies the condition of the Evolving Mesh Problem. We
have for any point g in Q, nnaw(q) < f(q), because nny» is 1-Lipschitz function, and nnamw (p) <
d(p)nnas(p). The size optimality follows from the fact that f is a maximum spacing function that
satisfies the condition of the Evolving Mesh Problem, (see Lemma 4.5), and the following lemma
of [7].

Proof: Let h,(z) = h(p) + ||z —p||- The fact that h(p) < é(p)nnu(p) implies that hy(z) < fp(z).
z.

Lemma 4.6 (Size of a Well-shaped Mesh [11]) If M is an a-well-shaped mesh of n elements,
then

dA

n = 6(5)-
anM

(13)

First, by a simple volume argument, the number of the spheres in § is bounded by

dA
o f?
Because f is point-wise larger than the nn function of any well-shaped mesh that satisfies the
Evolving Mesh Problem. It follows that size of M’ is within a constant factor of the best possible.

O); (14)

Theorem 4.7 (Main) FRFC constructs a well-shaped mesh that satisfies the spacing condition
given by §. In addition, its size is optimal within a constant factor.

12

The key to our algorithms in maintaining the well-shaped condition is to make sure that the
shape condition does not deteriorate from M to M’'. This is why we add new sampling points to
regions near C-points to ensure the constant § in f-packing is maintained. Miller et al [7] showed
that in their coarsening algorithm that no new point is needed for coarsening. However, to do so,
they need to use the original finest mesh directly to generate the coarsening mesh at each level. In
other words, if the original mesh is My, then mesh point of My are used to build the conflict graph
to generate the mesh points for M;. If they simply use mesh points of M; 1, then mathematically,
they can not guarantee that the mesh points of M;_; are dense enough for the well-shaped condition
through the quality of the packing for M;. In EMP, because of the mixed refinement, the original
mesh does no longer provide fine enough sample points to guarantee the packing condition. Hence,
new points has to be added. One of our objectives here is to add as small number of new points
as possible, and meanwhile, by using as simple procedures as possible. In practice, for the moving
boundary problem, there is no need to add new sample points to the back region of the moving
boundary. We can use the algorithm of Miller et al [7] to coarsen the back region.

5 Practical Variations

The § values decompose the mesh M into a collection of components of maximal submeshes where
the § values of all mesh points in each submesh are either larger than 1 (type C-submeshes), or
smaller than 1 (type R-submeshes). In practice the number of such submeshes is bounded by a
small constant. For example, this number in most problems with a moving boundary is 2 (one for
the front-end of the moving boundary and one for the back-end). As observed in Section 3, we
need to insert Steiner points in the submeshes that are required for refinement. From submeshes
to be coarsened, we often need to remove some original mesh points. A practical variation of our
scheme is to first refine the R-submesh by any adaptive refinement algorithm, such as quad/octree
refinement and Delaunay refinement. Then we apply the one-level coarsening algorithm of Miller,
Talmor, and Teng [7]. We now present a detailed procedure for the case where Delaunay refinement
is used. Recall that the standard Delaunay refinement procedure contains three rules [11, 12]:

1. splitting boundary subsegment whose diametral sphere contains a mesh point other than its
end-points in its interior by adding a Steiner point at its midpoint;

2. splitting a boundary subfacet whose equatorial sphere contains a non-coplanar mesh point
by adding a Steiner point at its circum-center. However, if the new point would cause any
subsegment of the subfacets to split, apply rule 1 to these subsegments instead.

3. splitting any simplex that does not satisfies the well-shape condition by adding a Steiner
point at its circum-center. However, if the addition of this circum-center would cause any
subsegment or subfacet to split, then apply rules 1 and/or 2 instead.

We add a fourth rule, which states as: splitting any simplex in which the current nn-spacing
of any one of its mesh points is more than its J-value times its initial nn-spacing by adding a
Steiner point at its circum-center. However, if the addition of this circum-center would cause any
subsegment or subfacet to split, then apply rules 1 and/or 2 instead.

Algorithm Delaunay-Refining-Functional-Coarsening
Input: A well-shaped mesh M and a list of positive reals d.

13

1. Apply rules 1, 2, 3, 4 until all constraints on the spacing and shape at each mesh
point are satisfied. Call the resulting mesh Mj.

2. Apply the one-level coarsening method of Miller, Talmor, and Teng [7] to M with
coarsening factors given in § to M; to construct M'.

The following theorem follows directly from the main theorem of Ruppert [11] for 2D and of
Shewchuk [12] for 3D and the coarsening result of Miller et al [7].

Theorem 5.1 Delaunay-Refining-Function-Coarsening (DRFC) constructs a well-shaped mesh
that satisfies the spacing condition given by J.

One of the shortcomings of DRFC is that it may construct a mesh that is larger than necessary.
The reason is that in the refinement, we did not remove any original mesh point. In FRFC, we may
replace some original mesh points in the R-submeshes by new Steiner points, which potentially
reduce the mesh size. However, DRFC in general is more efficient.

When the lower bound [on § is very small, the number of points introduced in each triangle
could be very large, although it is a constant. This is undesirable, especially in the coarsening
regions, (e.g., back-end of a moving boundary). In practice, we have a few alternatives:

e Do not add any points to triangles all of whose mesh points are C-points.

e Add only the barrycenter and/or midpoints of the edges rather than generating random
quasi-uniform points based on the local grid.

Talmor [14] showed in her thesis that in practice no new point is needed for the region to be
coarsened repeatly. We conduct experiments to verify this point in the context of EMP.

6 Experimental Results

The proposed algorithm is implemented and tested on a dynamic moving boundary problem. This
section discusses the implementation of the algorithm and the performance of it.

We perform our program on a simple moving boundary problem, in which a circle, that stands
as the moving boundary, is growing from almost the center of a box-shaped domain. See Figure 4.
The motion of the circle is discretized so that it will reach the boundary of the domain in certain
number of steps, that is related with the speed of the moving boundary. As the accuracy of the
numerical simulation depends on it , it is crucial to have smaller mesh elements at the regions closer
to the boundary. On the other hand to speed up the simulation one can use a coarser decomposition
of the domain at the regions further away from the boundary. Hence, as the circle grows, regions
outside the circle (the front end of the boundary) should be refined and the interior of the circle
(the back end of the moving boundary) should be coarsened. At this point, we should note the
use of an important parameter which specifies the width of the moving boundary i.e., the thickness
of the moving circle. So the points that are on the boundary are assigned the lowest ¢ values.
The refinement and the coarsening factors (§ values) for the other mesh points are computed as a
function based on the distance to the moving boundary. For the experiment shown in Figure 4, ¢
values are linearly related with the distance to the boundary.

Figure 4 presents a six step simulation of the growing circle. Each row in the figure presents
one iteration of the simulation. The first column shows the new spacing function represented by the

14

iteration | # of points | # of original points | % of original points | # of triangles | minangle
T 1416 1084 76.55 2702 17.29
2 1836 1328 72.33 3542 14.31
3 2183 1487 68.12 4236 14.86
4 2068 1469 71.03 4006 16.30
) 1625 1198 73.72 3117 10.23
6 1220 878 71.97 2308 14.36

Table 1: The performance numbers of the simulation shown in Figure 4

spheres, i.e., the spacing function value at a point is the diameter of the spehere centered at that
point. The second column illustrates the spehere packing computed as the maximal independent
set of the collection of the spheres in the first column. Finally, the third column shows the mesh
as the Delaunay Triangulation of the centers of the spheres in the second column.

The Table 1 summarizes the performance of the implementation for the corresponding steps.
Before the existence of the moving boundary there is an initial mesh of 1096 points. As soon as we
introduce the growing circle, the number of points increases as expected since we refine the mesh
around the moving boundary. However, the increase is at a reasonable level. As the circle meets the
boundary of the domain, the number of mesh points decreases as expected. It is observed that the
size of the mesh stays at an acceptable level throughout the simulation. Another equally important
observation is that the percentage of the number of original mesh points is considerably high. This
can be crucial for most simulation problems and can be achieved simply by giving the priority to
the original points in the computation of the lexical first maximal independent set. In fact, we
order the spheres by the type of the sphere and the size of the sphere. There are five different
types of spheres with the following preference order: corner spheres, boundary spheres, original
spheres, Steiner spheres, and sampled spheres. The corner spheres are those that must be selected
to conform the mesh to the boundary of the domain. The boundary spheres are those spheres
centered at the boundary of the domain. These spheres differ from the corner spheres in that they
are not required to be selected to obtain a boundary conformal mesh. They are introduced for
quality purpose. The original spheres are those centered at the points from the original mesh. The
spheres centered at the sampled points of a previous iteration are called Steiner spheres. Those
spheres centered at the sampled points of the current iteration are called sampled spheres.

We also observed that mesh quality does not deteriorate much during the simulation. In the
worst case, the minimum angle of the mesh decreases to a level of 10.23 degrees. We observe that
the smallest angle often comes from the region around the boundary. To improve the quality of
the new mesh, we can borrow some ideas from the Delaunay refinement: when some points to be
selected are too close to the boundary, we can split the boundary segment instead.

Notice that the growing circle example is a simplified scenario. Real-world numerical problems
with a moving boundary are usually much more complicated. For these problems, one can use a set
of points to approximate the boundary and move the points accordingly to simulate the motion.
The refinement /coarsening factor of a point in the domain depends on its distance to the closest
point in the set that approximates the moving boundary. Notice that the set of points used to
simulate the moving boundary are changed also because of the density of the simulated points.
Intuitively, the simulated points are distributed evenly on the simulated boundary.

15

7 Conclusion

In this paper, we present a unified approach for coarsening and refining evolving meshes We present
some experimental results to show the effectiveness of our algorithm and its practical variations..
One application and motivation of our work is for solving time-dependent problems with a moving
boundary. In our future work, we will explore the structure of the moving boundary and level sets to
speed up the coarsening and refinement procedure. We will also work on incorporate our algorithm
into some standard mesh generation software. In addition, all of the lemmas and theorems are
applied to three dimensions if the radius-edge ratio is used as shape criterion of the well-shaped
mesh. However, this does not prohibit the existence of slivers.

In the context of parallel implementation of the Evolving Mesh Problem, the need of mesh
evolution could introduce load imbalance among processors, where the load measures the amount
of work required by solving the Evolving Mesh Problem itself as well as by numerical calculations
thereafter. We need to develop a mesh distribution estimation algorithm to incorporate with the
dynamic load balancing scheme developed in [4].

References

[1] Babuska, I.; Aziz, A.K. (1976) On the angle condition in the finite element method. SIAM J.
Numer. Anal., 13(2):214-226.

[2] Bern, M.; Eppstein, D.; Gilbert, J. R. (1990) Provably good mesh generation. In 315 Annual
Symposium on Foundations of Computer Science, IEEE, 231-241.

[3] Fortune, S. (1987) A sweep line algorithm for Voronoi diagrams. Algorithmica, 2:153-174.

[4] Li, X.Y.; Teng, S. H. (1998) Dynamic load balancing for parallel adaptive mesh refinement. In
5" International Symposium on Solving Irregularly Structured Problems in Parallel, Berkeley,
144-155.

[6] Miller, G. L.; Talmor, D.; Teng, S. H. (1998) Data Generation for Geometric Algorithms on
Non-Uniform Distributions. International Journal of Computational Geometry and Applica-
tions, accepted and to appear.

[6] Miller, G. L.; Teng, S. H.; Thurston, W.; Vavasis, S. A. (1993) Automatic mesh partitioning.
In George, A.; Gilbert, J.; Liu, J., editors, Sparse Matrix Computations: Graph Theory Issues
and Algorithms, IMA Volumes in Mathematics and its Applications. Springer-Verlag, 57-84.

[7] Miller, G. L.; Talmor, D.; Teng, S. H. (1997) Optimal Good Aspect Ratio Coarsening for
Unstructured Meshes. In 8" Annual ACM-SIAM Symposium on Discrete Algorithms, 538-
547.

[8] Miller, G. L.; Talmor, D.; Teng, S. H.; Walkington, N. (1995) A Delaunay based numerical
method for three dimensions: generation, formulation, and partition. In Proc. 27" Annu.
ACM Sympos. Theory Comput., 683-692.

[9] Miller, G. L.; Talmor, D.; Teng, S. H.; Walkington, N. (1998) On the radius-edge condition
in the control volume method. SIAM J. on Numerical Analysis. 77 pages

16

[10]

[11]

[12]

[13]
[14]

Mitchell, S. A.; Vavasis, S. A. (1992) Quality mesh generation in three dimensions. Proc.
ACM Symposium on Computational Geometry, 212-221.

Ruppert, J. (1992) A new and simple algorithm for quality 2-dimensional mesh generation. In
Third Annual ACM-STAM Symposium on Discrete Algorithms, 83-92.

Shewchuk, J. R. (1998) Tetrahedral mesh generation by Delaunay refinement. In 14* Annual
ACM Symposium on Computational Geometry, 86-95.

Strang, G.; Fix, G. J. (1973) An Analysis of the Finite Element Method, Prentice-Hall.

Talmor, D. (1997) Well-Spaced Points for Numerical Methods. Ph.D thesis, Carnegie Mellon.

17

0000 OO0 0 ge 0O 00 069900 00 000 00 0000 OO0
1) oo

© 0000000000000 00000

o
o

00 00 0000 00 0000 O 000 000 OO0 0o 00 OO0 OO

8000 000000 oo
°

O000 0000 00O 0OO0O 00 000D OOOOCOO

(Spacing-1)

000 000 O ge Ooooo 0589609000 0 OO 00 0000 QOO
o

00000000 000000 00000 OQ
o

o

00 00 0000 00 0000 O 000 OO0 OO0 co 00000 OO

8000 000000 oo
°

OO0 0060 000 00000 00 00000 OCOOCOO

(Spacing-2)

8000 0000 g0 00 00 0,9050090 0 OO 00 0000 OO0

o

)

I o
o

o o)
o

(e}

o.f o
o

o O
o

o

[}

[}

S o
Sob \e

o 20

o

o

8000 000000 oo
®
00 00 0000 00 0000 O 000 000 OO0 0o 0o OO0 OO

O000 0000 00O 0OOOO 00 000D OOOOCOO
(Spacing-3)

Qe 00 0000 OO0

0

o
QO 0O 0000 00 OO0 O 00O OO0 OO0 00 00 00O OO

§000000000 +o
o

Q000 000 000 00000 0 OO O OCOOCOO

(Spacing-4)

8000 000 0o 00 00 0639000 9 00 00 0000 [e]ele]
o

Q

Qo
Co> Q
8 5
° Q
o 8
3 8
: :
o 5]
° Q
o [}
o (o]
5 :
S o
0 o]
o Q
o K 3
o ot PR8I o
R o L R R

s
0005 IFC ot & . s
O o°

g 20 o005 000
8 Q600,00 3
I} o
ot ; 8
86 0000306506 6 60000 & 0O6D VOO0

(MIS-1)

Q000 000 0 ge 0O 00 068960000 0 OO 00 0000 OO0Q
3 050 e)
) 39800 SO fe)
899 oo 0,298 Q (5 F.280% & 3
o O le}
° Q
(o} 000050 ©
S oJogf 8
o oy Q
o o o)
3% X o)
0 &P 0% °ong
a2
O oga%| o
@, O O
o y@o Q
o o S
o o
Sool0 0 Fo 000%% 50
o Qo I}
S Q
53 00 o
3 o S, 8
g 30008 2 o °
S O5® % OQ%OO 00
8 gesi s]
(@] o)
S o 8
80 00000666666 00006 6 00D VO30

MIS-2)

990 0 00 00 0000 OC0Q
o} < o]
g ° 8
8 £7508
° Q
o 005058
o 9
o5 ©
: ee08
0% ¢}
o 000 &
o
34 S
o i3 o
Q o]
g 008
o° 5 Q
0% 0 8
g 00 o
o] Q
o) ° ©
Q Q
g 020
9 8
o o
ot 5 8
G0 OO 00 0000 OO O OO 00O © OO00O 00000008

o
QO 0O 0000 00 OO0 O 00O OO0 OO0 00 00 00O OO

Q000 000 000 00000 0 OO O OCOOCOO

(MIS-4)

(VAN DN ZAVAVAVZVZDVAVINN
SRS AR
2 &amr}‘

N

2
s
e

X
ook

N
s
K

S
S
vy

s

<N
RSN

N AVZNAVAY Vv rara
O gg@AA %
TN

(Delaunay-1

0

SRS

N
ety

0

R
SRR
N

K
PN

N
2

(Delaunay-2

KRE
MRR
I/
7Y
1%
RER

V]
KO-
% AN

NN ARNAN

~—

7a}
N
R
17
™

KN
kR
Pay
RS N
SR
KRKRER

(|
DRk
N
!

W
s
&

hv
A
{ZAVAY
7
Ay
S/
AN,
N
(Vd

5
&

S
E’
ROD

2
é:

74

N/

N[
K

K

R
VAN
KIS

Yay;

=i
)
%)

0

NN

s
0,
)

~—

LR
e
a4

Yo

YAVAVA
g
2

V)

S

I~
SO

N

N N7

NURE

VArAVAY
N

N
VAR
KB
<)
%

N
"5

ROSER

AV

it
RELRE
QRERRY

=

ZR
y,un»fﬁ
s

2
D
e

SRR
Q)

X
i
¢

PXERXK
SRR
DSERE
B
V!"v
X

7

/
)
VN

Figure 4: Four iterations of the FCFR scheme.

18

N

RSB
;ggm»i‘imwﬁ

NEE

I

]
RARSK)

SRR

Nﬂg!‘

L

(Delaunay-4

S
R

X
RS
DRNR

XD
A
i)

s

A

0

8

W,
4

i
BTSN
=

N

BSOS

RN

KASSINIAT
OANSAVZAVAY

U

X

WAYAY,
N
SRR

7AN,

N

N

~—

