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Abstract. Human-machine identification is an important problem in cryptography that has applications in network access,
electronic commerce, and smart-card design. It is a hard problem largely because human users have a very limited capacity in
memorizing secrets and in performing protocols. Therefore, in addition to the requirement that a human-machine identification
scheme must be provably secure, the scheme has to be practical in the sense that it must be feasible for a human user to
participate. In this paper, we develop a new scheme for this problem. Our scheme improves upon some of the previously
proposed human-machine identification schemes. We present a vigorous security analysis of our scheme. We also present some
attacks to show previously proposed schemes could be vulnerable.
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1. Introduction

In several practical applications, it is necessary to “prove” one’s identity. There are two interesting cases.
(1) a computer, with a given access from a user, electronically proves its identity to another computer. (2) a
human user identifies himself/herself to a computer in scenarios such as network access, electronic commerce,
and transactions over telephones. The development of zero-knowledge-based identification protocols [1, 4,
2, 3, 6, 8, 9, 10] makes it possible to solve the identification problem among computers with a reasonable
complexity. However, most of these protocols do not apply to the second case for the identification between
a human user and a machine, largely because a human user has a very limited capacity in memorizing secrets
and in performing protocols. Most zero-knowledge protocols require a human user to remember too much;
these protocols are too complex for a human user to be involved. A human-machine identification scheme
must be practical in the sense that it must be simple enough for a human user to participate.

Several human-machine identification protocols have been proposed. Some use biometrics such as the
fingerprint of a user, the voice of a user, and the retinal blood-vessel pattern of human eyes. In these
approaches, special physical devices are designed for obtaining and for checking the related biometric infor-
mation. The rate of recognition is main block to use them in human-machine identification.

Most password-based identification and authentication schemes that do not use any auxiliary device are
often vulnerable to peeping attack, replay attack, and several other forms of attacks. Some enhancements are
made for password-based schemes. For example, Security Dynamics proposed a human-machine identification
scheme. A user and a verifier agree upon a secret seed number in advance, which is used to generate a pseudo-
random number sequence. The user receives a SecurID card from the verifier. The card generates a new
pseudo-random number every minute starting from the agreed seed number. The generated random number
is called a token. It is computationally impossible to predict the token of the user by observing the history
token sequence, provided that the seed number is unknown. When the user needs to prove his/her identity
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to the verifier, he/she should send his/her password and the number showed on the card at that time. From
the user’s name and password, the verifier finds the seed number in the password database. The verifier uses
the seed number and the current time to generate the correct token. When the token is received, the verifier
compares it with the token computed. The verifier accepts the identification if they are equal.

In 1991, Matsumoto and Imai [7] presented a human-machine identification scheme over insecure chan-
nels. It is designed to accommodate human user’s ability of memorizing secrets and of processing protocols.
They use a challenge-and-response scheme. Each challenge is a permutation of a predetermined alphabet
of letters. Among these letters, some are used to define a window in the challenge. The response should
contain the secret word as a subsequence string at the location as specified by the window. Details of this
scheme will be given in Section 2.

However, this identification scheme could be vulnerable to some attacks. We will present some of these
attacks in Section 2. Based on our security analysis, we propose a new identification scheme in Section 3,
which is an improvement of the scheme of Matsumoto and Imai. Our scheme will retain the simplicity of
their original scheme so that it is still suitable for practical use; but the level of security of our scheme is

much improved.

2. The Scheme of Matsumoto and Imai

The object of the scheme of Matsumoto and Imai [7] is to accommodate human user’s ability of memorizing
secrets and of processing protocols, and to prevent an adversary from recovering the password transmitted
from a user to a machine. In this section we review this identification scheme and present some attacks to
show that this scheme could be vulnerable.

2.1. The Details of the Scheme

The identification scheme defines two finite sets: the gquestion alphabet Q@ = {qo, 41, --.,qr—1} and the answer
alphabet A = {ag,a1,...,a14—1}. There are two players in the scheme, a user U and a machine M. U and
M agree upon some secrets in advance: the first secret is a word 8 = (sg05;...08,_1) € A* of length k
and the second secret is a subset W C (@) that has k elements; s is called the password and W is called the
window alphabet. To be secure, |Q| should be reasonably larger than k.

The identification scheme uses the challenge-and-response method. Each challenge from M is a per-
mutation IT of Q. Let S(Q) denote the set of all permutations of ). When receiving a challenge (II(go) o
II(g1)...oI(gr—1)), U provides a reply which is also a word (ag o a1 o...0ar_1) of L characters, where a;
is chosen according to the following procedure: if II{g;) & W, a; is a random element, chosen uniformly from
A; if TI(g;) is the (j 4+ 1)th element of the challenge in W from left to right, a; is s;. This kind of reply is
called correct answer for II. Let reply(II) be the set of all correct answers for challenge II.

Scheme Matsumoto-Imai-Identification(m,n)

1. Machine M generates m permutations IIy,...II,, € S(Q) and sends them to user U (a simple
way to generate these challenges is to select permutations uniformly at random from S(Q)).

2. U generates m answers a1, @z, ..., a, and sends them back to M.
M generates a “correct set”, C' = {i|a; € reply(II;)}.
M accepts U if |C| > n, and denies U if |C| < n.



2.2. A Simple Example

A simplified example with . = n = 1 is described here to illustrate the scheme. In this example, the question
alphabet is Q = {1,2,3,4,5,6,7,8}, the window alphabet is W = {1,2,4,6}, and the answer alphabet is
A=1{1,2,3,4}. User U has a secret word s = 3124 shared with machine M. Figure 1 shows a challenge and
a response between M and U. The bars in the positions of ¢ show the window positions of the challenge.

The question II proposed by M is
|28 |5[1[7]3][6][4]
and, a possible answer generated by U is
311 ]2]1[3]4]2]4]
Figure 1: A simplified example.

M verifies whether answer a € reply(II). In this example, M accepts user U.

If an intruder wants to get the secret word of the user, he/she must guess the window alphabet correctly.
Since the window size is 4 and the challenge size is 8, the probability that an intruder guesses the window
W correctly is 1/(“3,"):1/(2).

2.83. Possible Attacks

The identification scheme of Matsumoto and Imai is attractive for practical use. However, if the parameter
of the scheme is not selected properly, this scheme could be weak against attacks. To a certain extent, some
of the weaknesses are inevitable.

The goal of attacks to this identification scheme is to reveal the window alphabet W and the corre-
sponding secret word s. There are two possible ways to achieve this: one is to obtain the window position
for a specific permutation, the other is to get the window alphabet and the secret word statistically from
the challenges and the responses. We call the first one the replay challenge attack, and the second one the
statistical attack.

Recall that the question alphabet @@ of the scheme is divided into two subsets: the window subset, and
the subset for generating random part of the permutation, which is used to hide the information of the
window subset. The challenge is the permutation of the question alphabet. The response given by user U is
determined by the challenge proposed by machine M. Therefore it is possible to execute the replay challenge
attack.

We illustrate some potential attacks to this scheme. Some of these attacks have been studied before.
We mention them here to motivate the analysis of our new scheme.

2.3.1. Known-A Random Attack This attack was presented by Matsumoto and Imai [7]. An attacker
knows the protocol and also knows the concrete value of @), A, and |W| = k, but does not know the concrete
value of W nor s. In reply to a permutation II, the attacker transfers a random answer which is uniformly
selected from AL,

The success probability of the known-A attack is given by

m
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where p = 1/(JA/*1 — A7 (lé‘l)(ﬁ)L)), the probability of successfully guessing a correct reply to a
permutation.
Therefore, if the answer alphabet and the window size are sufficiently large, it is difficult to execute this

attack.

2.3.2. A-guessing Random Attack This attack was also given by Matsumoto and Imai [7]. An attacker
obtains a subset of the answer alphabet by only observing one reply given by the user, which makes it easier
to execute the guess answer attack. In fact, after getting this subset, the known- A random attack is possible.

The success probability of the A-guessing random attack is given by

P
()

where py is the success probability of the known-A attack and w is the possible answer alphabet subset

Dy =

guessed by the attacker, assuming A C w.

2.3.3. Passive Attack This attack was given by Wang, Hwang and Tsai [11]. It is based on the
following observation: according to the scheme of Matsumoto and Imai, the password s contains every
element of the answer alphabet at least once. The attacker can reduce the number of trials to reveal the
secret password by this observation. According to their analysis, the number of trials needed in this attack
will be less than (||VCI2/‘\)'

For simplicity, they [11] consider the case where m =n = 1. Let :

° A={a0,a1,a2,...,a|A|_1},
. Al-1
e t; denotes the number of occurrence of a; in the answer, hence |Q| = ZL:L, ti,
. Al-1
e s; denotes the number of occurrence of a; in the secret password s, hence [W| = EL:'O S;-

Wang, Hwang and Tsai [11] show that the secret word would be revealed in at most

> (G)-Cn)

s0+s1+.-.+5) 4 —1=|W|

trials. They have proved that the number of trials of passive attack is less than the number (Igl‘)

2.83.4. Common Answer Subsequence Statistical Attack To the best of our knowledge, this attack
is new. It is based on the following observation: every reply given by U contains the secret word s as a
subsequence string. If a string is a subsequence string in all of the r replied answers, we call it a common
subsequence string of the r answers. Any common subsequence string is a candidate of the secret word. An
attacker maintains all k-length common subsequence strings in all answers given by user U.

Let M,,(s) be the set of all strings of m characters that contain a string s of k characters as a subse-
quence. We will show that for s; and s» of k characters, |My,(s1)| = |Mm(82)|- Let py(m, k) denote the
probability that a string s of length k occurs as a subsequence in a random string of length m. This is well



defined because the size of M,,(s) is independent of the choice of s, i.e., pg(m, k) = |Mp(s)|/¢™ for any
k-character string s. We will show that the concrete value of p,(m, k) is

Sizo (D@=1m)

qm

pg(m, k) =1—

?

where ¢ is the size of the answer alphabet. The number of common subsequence strings in all r replies is
q"p,(m, k)". To prevent the common answer subsequence statistical attack, the probability p,(m, k) should
be close to 1. Otherwise, the attacker can get only one common subsequence string by observing a few
replies. This common subsequence string should be the secret word because the secret word s is one of the
common subsequence strings.

As proposed in [7], the practical value of m is 36, the size of the window alphabet is about 10, and the
size of the answer alphabet is about 4. In this case, ps(m, k) is very close to 0. We can use common answer
subsequence attack to get the common secret word by observing about 27 replies. This is far more efficient
than the attack of guessing the position of the window in the challenge.

2.3.5. Replay Challenge Attack This attack is also proposed by Wang, Hwang and Tsai [11]. An
attacker impersonates the host to replay an intercepted challenge to the user to obtain the answers from
the user. By collecting a few answers of the same challenge, the attacker can figure out the secret word of
the user with a high probability. If the attacker discovers that some corresponding positions in the reply
answers a and a’ whose contents are distinct, these positions can not be the positions of the window W,
corresponding to the permutation II. They prove the following two theorems about the efficiency of the
replay attack.

Theorem 1 The window W of the scheme of Matsumoto and Imai with m = n =1 can be found in

[QI-IW] (|Q|—|W| t
(“TTNAI =D QI -t
2 iAo ( Wi )

expected trials, if the attacker replays the same permutation once.

Theorem 2 The window W of the scheme of Matsumoto and Imai with m = n =1 can be found in

Q|- W| —|w
(@"h A -1y (IQl - t)
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expected trials, if the attacker replays the same permutation r times.

Corollary 3 If the number of times that the attacker replays the same permutation tends to infinity, the
ezxpected number of trials to find the window W will degrade to 1.

They also give examples to show the validity of their replay attack. For |Q| = 50, |W| =10, |A| = 3,m =
1, and n = 1, it only needs about 9 replays to determine the secret word with very high probability.

The replay attack is efficient only when it is feasible for the attacker to replay the challenge many times.
When it is difficult for the attacker to perform replay attack, the common answer subsequence statistical
attack is among one of the most efficient forms of attacks.



3. A New Human-Machine Identification Scheme

We present a new scheme for the human-machine identification problem. Our scheme is more robust than
the original scheme of Matsumoto and Imai and some of its improvements. We give a high-level description
of our scheme.

Let @ be a finite set of letters. Unlike the scheme of Matsumoto and Imai in which () must have a
reasonable size, our scheme is working even for ) = {0,1}. User U and machine M share three pieces of
secrets, a shift pattern shift, a key pattern key, and a secret word 8 = (s1 055 ...0sy), all are words of Q.
In addition, the length of key is equal to that of s.

The challenge from M is a word ¢ = (go 0 g2 ... © ¢ —1) from Q™ for some positive integer m. It is in
fact more convenient to think that ¢ is embedded on a ring, i.e., we will use i + 1 for (i + 1) mod m for the
subscript variables. For example ¢,, = qo-

When receiving a challenge g, U finds the subsequence of g which is the lexical-first occurrence of shi ft
in g. Notice that a subsequence may not be consecutive. We will formally define lexical-first occurrence
later. Assume the last letter of this subsequence is ¢;. U finds the subsequence of key in @ starting from
location i. Keep in mind that the subscript arithmetic is mod m. U then generates a response word by
replacing this subsequence by s and by replacing each other letter by a random letter from Q).

We shall show that the combination of shift, key and s is important to the security of our scheme.

3.1. The New Scheme over {0,1}

In this scheme @ = {0,1}. We assume that shift, key and s are from {0,1}*, where k is the key length.
To be secure, the value k£ should be reasonably large. For example, the probability that an attacker could
guess these secret words correctly should be small (i.e., 1/2% should be small enough).

This is a challenge-and-response-based identification scheme. The machine generates challenges which
are strings selected uniformly at random from Q™.

We describe the procedure for finding the lexical-first subsequence of a string D in a source string S:
starting from the first character of S, we find the first character in S that is same as the first character in D.
This gives the location of the first character of the lexical-first subsequence. Then, we find the first character
following the last found location in S that is same as the second character in D. This gives the location of
the second character of the lexical-first subsequence. Repeating these steps, we are able to find all locations
of the lexical-first subsequence of D in S, provided that such a subsequence exists. Let SS(S,D) =1 if D
is contained in S as a subsequence and SS(S, D) = 0 otherwise.

Let g = (gopo¢q1-.-0@n-1) be a challenge from the machine. In our scheme, let lex(q, shift) denote
the set of sorted positions of the lexical-first subsequence of shift in q. For each integer r, let q(r) =
GrQr+1 - - -Qm—14041 - - -¢r—1- A challenge q is valid if it satisfies: SS(q, shift) =1, and SS(q(r), key) =1,
where r = maz(lex(q, shift)).

When receiving a challenge g, the user generates a response @ = (ag0caj o...0a,_1) € Q™, where q;
is chosen according to the following procedure: if i is not in lex(q(r), key), a; is a random element chosen
uniformly from Q) if ¢ is the (j + 1)th location in lex(q(r), key), a; = s;.

Let reply(q) denote all correct responses to challenge g. Here are details of our identification scheme.

Scheme Binary-Identification(m,n)



1. Machine M randomly selects n strings by, ..., b, from Q™ and sends them to user U.

2. After receiving by,...,b,, U uniformly selects a random string r = (rgors...or, 1) € Q™,
and sends it to M.

3. M checks whether one of the challenge question strings q; = b; XOR = is valid. If it is not, it
goes back to 1; otherwise, suppose gq; is the first valid string. Let ¢ = q;. M sends g and ¢ to U.

4. U checks whether ¢ = b; XOR r. If it is correct, U continues; otherwise, U quits.
5. U generates a response a to q, and sends it to M.

6. M checks whether a € reply(q). If it is, M accepts the identification of U; otherwise, M denies
the identification of U.

We will prove that the probability that g is valid is high, provided that the ratio a = k/m is
small. Hence, the probability that the machine needs to go back to step 1 in step 3 is very small.

3.2. An Ezample

The following is an example when m = 12, n = 1, and k = 4. Let shi ft = 0101, key = 1101, and s = 1010.
Figure 2 shows a challenge and a response between M and U. The bars in the positions of g show the
location of the lexical-first subsequence of shift followed by that of key.

The challenge question proposed by the machine is:

[ OJo|T|1]OfT[O[T[O[T[O]T]|

and, a possible response generated by the user is:
[T T]0[0 (10T [0[0]1][1]0]

Figure 2: A simplified example of the scheme based on {0,1}.

3.8.  Security Analysis

Notice that our scheme is robust against the replay attack because a challenge string is XOR-ed with a
random string generated by the user. Therefore, the machine has no complete control on its challenge. We
will show that our scheme can prevent common subsequence statistical attack.

Let p(m, k) denote the probability that a binary string s of length k occurs as a subsequence in a random
binary string of length m. This is well defined because the size of M,,(s) is independent of the choice of s,
i.e., p(m,k) = |[Mpy(8)|/2™, for any k-character string s.

With notation p(m, k), the expected number of k-length subsequence strings in a randomly chosen m-
length string is Efk p(m, k) = 2¥p(m, k). Consequently, the expected number of the k-length strings that are
common subsequence to a set of n random m-length strings is ka p(m, k)" = 2Fp(m, k)™. The probability
that a random m-length string contains both shift and key is p(m, k)2. Recall both shift and key have
k characters.

We now prove some lemmas that will be needed in the security analysis of our scheme.



Lemma 1 For any k-character string s over {0,1}, for any positive integer m > k,

Mol =27 = 3 (1) =2 (%)

i=0 i=k

Proof: We prove that |M,,(s)| is independent of the choice of s by an induction on m. If s has length zero,
then clearly My, (s) = {0,1}™. Moreover,when m = k, M, (s) = {s}.
Inductively, we assume for each substring 81, |M,,_1(s1)| is independent of the choice of s;.

Let ¢ be a string of m characters. There are two cases:
1. the first character of ¢ is equal to the first character of s.
2. the first character of ¢ is different from the first character of s.

We can thus divide M,,(s) into two subsets M; and M,, where M; contains all strings from M,,(s)
whose first character is same as that of s and M, contains all other strings in M,,(s).

Assume 8 = (sg081...08 1), let 8 = (s1...058,_1). We have |[M;| = |My,_1(s1)] and |My| =
|Myp—1(8)|- It thus follows from the induction hypothesis, that |M,,(s)| = |M1|+ |M>| is independent of the
choice of s.

Let s(m, k) = |Mm(s)| for any k-length string s. We have s(m,k) = s(m — 1,k —1) + s(m — 1, k). We
can then use induction on m and k to show

s(m, k) = 2™ —ki (’f)

=0

Consequently, we obtain the following lemma.

Lemma 2 For all k and m > k,

Yoo (7).

Suppose s is a binary string of length k£ and ¢ is binary string of length m — k. For each choice of k
indices 0 < i1 < iz < ... < i < m, we can generate a string y(s, ¢) from s and ¢ such that s is a subsequence
string of y(s, ¢) with locations given by (i1,42,...,ir) and ¢ is a subsequence string of y(s, ¢) with locations
given by other indices. Let T'bg ¢ be the table of all (’,’:) m-length strings that can be generated this way. Let
Tbg be the table of all (7,’;) 2m—k m-length strings that can be generated from s and all (m — k)-length strings
from {0,1}™~*. Notice that some m-length strings may have multiple copies in the table. Let k be a binary
string of length k. Let Tbg(k) be the table of all strings from Tbg that contain k as a subsequence. Let T'b
be the table of all strings collection of T'bg for all s. Then T'b is the table of (’k”) copies of {0,1}™. Recall
that, in {0,1}™, there are M,,(k) strings containing k as a subsequence string. We obtain the following
lemma.

Lemma 3 Let s be a random binary string of length k. Let ¢ be a random binary string from Tbsg. Then

the expected number of k-length strings that are subsequence strings of ¢ is p(m, k) x 2F.



Proof: Let E[x] denote the expected value of a random variable z.

E(|{k|k is a subsequence string of c}|)
_ s 2k | Ths(k)|
2.5 [Ths|
_ 2k 2s|Tbs(k)|
(W
()M (k)2
(¥)2m
= p(m,k)2*

Lemma 4 Ifa=Fk/m <0.1, (})/2m <2-™/2,

Proof: Using Stirling formula, we have (") ~ (em/k)*. When a < 0.1, we also have (e/a)® < 1.392 < 2%/2.
The lemma then follows. |

We now estimate p(m, k).
Theorem 5 Ifa =k/m <0.1, p(m, k) > 1— k2-7/2,

Proof: It follows directly from Lemma 4. m|

We now analyze the expected number of replies that are needed to reduce the number of common
subsequence strings to a constant. Recall that if a set of replies induce a unique common subsequence string,
we can recover the key pattern key and secret word s. Therefore, this expected number is directly related
to the level of security of the identification scheme.

Theorem 6 If o = k/m < 0.1, the expected number of replies that are needed to generate a constant-sized

set of k-length common subsequence strings is about 2™/2.

Proof: By Theorem 5, if @ = k/m < 0.1, we have p(m, k) > 1 — k/(2™/?). In addition, for n replies, the
expected number of the common subsequence strings they generate is 2% * p(m, k)". Thus, 2% * p(m, k)" ~
implies that n & 2™/2, O

With these theorems, we can estimate the size of m and k needed in a practical implementation of our
scheme. We would like to choose m and k such that the probability of a random string of length m that
contains shift and key as subsequence strings is close to 1. This probability is p(m, k)2. So we would like
to find m and k such that p(m, k) is sufficiently near 1 and m is not too large. Note that a = k/m < 0.1.
For example, one choice is that k¥ = 30 and m = 300. In this case, the success probability of guessing
attack on shift, key, and s is about 27%°. The expected number of replies that are needed to generate a
constant-sized common subsequence string is about 2150,

To avoid attack on guessing shift, key, and s, we need k to be reasonably large which will also make
m large. In the next subsection, we will show that we can reduce m and k by using a larger alphabet Q).

3.4. The Scheme Based on Alphabet Q

If the alphabet for generating the question is ), we can get the scheme similar to the proposed scheme based
on {0,1}. In this scheme, the question alphabet @ is a letter set, and the answer alphabet A is a subset of
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the letter set. We assign an integer index to every letter in @) according to the lexical order. We define the
addition operation on @ as adding two indices mod |@|, then getting the corresponding letter as the result.
We can prove similar lemmas for the general alphabet @ as for {0,1}. Let ¢ = |Q| and a = |A|. Usually, @
and A are same alphabet.

In this scheme, a user U and a machine M agree upon the secrets shift, key € Q¥, and s € AX in
advance. This is a challenge-and-response-based identification scheme. M generates challenges which are
strings selected uniformly from Q™.

Scheme Q-Identification(m,mn,r)
1. Machine M randomly selects n strings by, ..., b, from Q™ and sends them to user U.

2. After receiving by,...,b,, U uniformly selects a random string r = (rgora...0r,_1) € Q™,
and sends it to M.

3. M counts the number v of the valid challenges in strings q; = b; + r. If v > r, M sends the n
challenge questions g, to U; otherwise, it goes bask to step 1.

4. U checks whether the received challenges g; = b; + r. If it is correct, U continues; otherwise, U
quits.

5. For all g;, U generates response a; to q;, and sends them to M.

6. M generates a “correct set” d = {ila; € reply(q;)} for all valid challenges q;. If |d| > r, M

accepts the identification of U; otherwise, M denies the identification of U.

We will prove that the probability that there are r valid challenges in n random strings is high,
if the ratio a = k/m is small, and r, n are properly chosen. Hence, the probability that the machine
needs to go back to step 1 in step 3 is very small.

3.5. An Ezample

A simplified example with m = 12, n = 1 and k¥ = 4 is described here to illustrate the scheme. In this
example, the question alphabet is Q@ = {a — 2,0 — 9}, the answer alphabet is A = {a — e,0 — 4}, and the
shift pattern is shift = wxyz, the key pattern is key = bcde, the secret key is s = 1a2b.

Figure 3 shows a challenge and a response between a machine and a user. The bars in the positions of
challenge g show the location of the lexical-first subsequence of shi ft followed by that of key.

The challenge question proposed by the machine is
|w|alz|blyglzlglblk|ec][d]|e]|

and, a possible answer generated by the user is

[tll|wlaf2]|bfu|pfs|v]c]|z]

Figure 3: A simplified example of the scheme based on Q.

3.6.  Security Analysis

Notice that our scheme is robust against the replay attack for the same reason described before for the {0,1}
scheme. We now show that our scheme can prevent statistical attack.
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Similar to binary strings, we can show that for any s; and s, of k characters, |Mp,(s1)| = |Mn(s2)|.
Let p,(m, k) denote the probability of that a string s of length k occurs as a subsequence in a random string
selected from Q™. This is well defined because the size of M,,(s) is independent of the choice of s, i.e.,
py(m, k) = |Mp,(8)|/¢™ for any k-character string s.

With notation pq’gm,k), the expected number of k-length subsequence strings in a randomly chosen
m-length string is Y7 p,(m, k) = ¢*p,(m, k). Consequently, the expected number of k-length strings that
are common subsequence strings to a set of n random m-length strings is E‘{k pa(m, k)™ = ¢*p,(m, k)". The
probability that a random m-length string contains both shi ft and key is p,(m, k)?. The expected number
of valid challenges in n challenges is np,(m, k)?. Recall both shift and key have k characters.

The proof of the following lemma is similar to that of lemma 1.

Lemma 7 For any k-character string s over Q, for any positive integer m > k,

M) = 3 (m) (q— 1),

i=0

Suppose s is a string selected from Q* and c is a string selected from (™~ *. Then similar to the binary
scheme, let T'bg ¢ be the table of all (T,':) m-length strings that can be generated; let T'bg be the table of all

(W)g™* m-length strings that can be generated from s and all (m — k)-length strings from Q™~*. Notice

that some m-length strings may have multiple copies in the table. Let k be a string selected from Q*. Let
Tbg(k) be the table of all strings from Tbs that contain k as a subsequence. Similarly, we can define the
table T'b, and get the following lemmas.

Lemma 8 Let s be a random string selected from Q. Let ¢ be a random string from Tbs. Then the expected
number of k-length strings that are subsequence strings of c is py(m, k) * g*.

Proof: The proof is similar to the proof of lemma 3. O

Lemma 9 Ifk <m/q, then

Zk: (T) (-1 < k(f) (¢—1)™ k.

=0

Proof: For any 1 < <k, and k < m/q, we have

(?) (¢- D)™ < (ZL) (¢= D™,

We must note that the value of (') (g —1)™* is very close to ¢¥, if k = m/q and ¢ is sufficiently large.
We now estimate p,(m, k).

Lemma 10 _
Sy (D=1 _ k(g )m*




12

where p=1/q,a=k/m,t =p/a,0 < a <p.

Proof: Using the Stirling formula () ~ (em/k)*, and the previous lemma, then we get the lemma. O
Let f(a,t) = (et)*(1 — at)'~®. Then we get p,(m, k) ~ 1 — f(a,t)™ = 1 — 2mlos2f(et)  If f(q,t) is
small, then p,(m, k) will be close to 1. Let g(a,t) = —1/log, f(a,t), then

pg(m, k) =1 — 27 ™/9(xt)

The expected number of valid challenges in n random strings is n(1 — 2-™/9(®1))2, The expected number
of k-length common subsequence strings in a set of r random m-length replies is ¢*(1 — 2=™/9(®t)" For
security need, g(a,t) should be a small constant by properly choosing a, t. For instance, g(1/16,4) ~ 6,
9(1/8,2) = 18, and ¢(1/20,2) = 47. Note that the corresponding ¢ = 1/(at) is 4, 4, 10 respectively.

We now analyze the expected number of replies that are needed to reduce the number of common
subsequence strings to a constant. If a set of replies induce a unique common subsequence string, then we

can recover the key pattern key and the secret word s.

Theorem 11 Ifp = 1/q,k = am,at = p,a < p, the expected number of replies that are needed to give a
constant sized set of common subsequence strings is about kln(q)2™/9(et)

Proof: By Lemma 10, and (1 — 27%)%" ~ 1/e, when x grows up to infinity. Thus ¢* * p(m, k)" ~ 1 implies
that n & kln(g)2m/9(>0) O

From above analysis, to prevent the common answer subsequence statistical attack, the same shift
pattern or the same secret word can not be used by the user for too many times. We suggest that the times
of the same pattern or the secret word be used no more than 2™/9(®%) times. We call 27/9(@:t) the life cycle
of the scheme. Because if these are not used more than 27/9(%%) times, the number of common subsequence
strings in all of the replies will be about ¢* /e, which is similar to the expected trials in attack by guessing
password pattern(i.e.,g¥).

For instance, let ¢ = 10, a = 4, m = 128, and k¥ = 8, then a = k/m = 1/16, tg = 1/(aq) = 1.6,
ta = 1/(aa) = 4, g(1/16,4) ~ 6, and ¢(1/16,1.6) ~ 45. Note that p,(m,k) ~ 1 — 2= ™/9(=t) Then the
probability that a challenge question contains the shift pattern and the password pattern is (1 — 2-128/45)2)
which is about 0.5. The expected number of valid challenges in n questions is about n/2. The times of the
secret word to be used is about 22!, which is the life cycle 2128/9(1/16:4) &~ 921 Thijs life cycle of this example
is acceptable for practical use.

4. Final Remarks and Open Questions

In this paper, we present a new scheme for human-machine identification. In our scheme, a user needs to
memorize three keys shift, key, and s, all with about 2040 binary bits. We have also considered the
tradeoff between the size of the alphabet () and the length of these keys. Our scheme is provably secure
against replay attacks and many statistical attacks. We have provided a tight bound on the number of
common subsequence strings and have shown that this number reduces slowly as the number of challenge
response pairs increases. Hence, the life-time of our scheme is reasonably long.

Our scheme can be used in the identification among computers in an intranet. It will be more efficient
than many existed schemes, due to the simplicity of our scheme. This scheme can also be used to enhance
the security of Kerberos system. If an attacker knows the password of a user, it is easy to get the session
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key. In a workstation environment, it is quite simple for an intruder to replace the login command with a
version that records users’ passwords before employing them in the Kerberos dialog. If the client crashes
down after receiving the password from a user, an attacker can get the password from the disk file. If our
scheme is used to identify a user to a server, the user’s password will never be showed up explicitly. The
client and the server compute the hash value of the challenge and response as the session key.

There are many interesting questions that we would like to have satisfiable answers. Our scheme requires
a user to remember three keys. We can combine shift and key into a single key of length 2k. But this
does not reduce the number of bits that a user should remember. In addition, our scheme is based on the
assumption that most human users have the ability to perform the lexical-first match between two strings.
We would like to know whether these requirements are close to the minimum that can be hoped on effective
human-machine identification protocols.

We would like to understand more about the tradeoff between the security level and human user’s ability
in memorizing secrets and in processing protocols. This tradeoff may provide an upper bound on the security
level of all identification schemes/applications that involve human users, because, most often, the human
user’s ability is the bottleneck in the interaction between human and machines.
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