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Abstract. A key step in the finite element method is to generate a high quality mesh that is as
small as possible for an input domain. Several meshing methods and heuristics have been developed
and implemented. Methods based on advancing front, Delaunay triangulations, and quadtrees/octrees are
among the most popular ones. Advancing front uses simple data structures and is efficient. Unfortunately,
in general, it does not provide any guarantee on the size and quality of the mesh it produces. On the
other hand, the circle-packing based Delaunay methods generate a well-shaped mesh whose size is within
a constant factor of the optimal. In this paper, we present a new meshing algorithm, the biting method,
which combines the strengths of advancing front and circle packing. We prove that it generates a high
quality 2D mesh, and the size of the mesh is within a constant factor of the optimal.
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1 Introduction

An essential step in numerical simulation of physical and engineering problems is to find a proper discretiza-
tion of a continuous domain. This is the problem of mesh generation [4, 22, 11, 12, 24, 25]. For problems
with complex geometry boundaries and with solutions that change rapidly, we need to use an unstructured
mesh with a varying local topology and spacing in order to reduce the problem size. A good unstructured
meshing algorithm uses elements of properly chosen size and shape that adapt to the complex geometry and
solution accuracy. In doing so, it generates meshes that are numerically sound and that are also as small as
possible. Several meshing methods and heuristics have been developed, implemented, and applied to various
applications such as steady state and transient compressible inviscid flow simulations.

Over the years, several meshing methods such as those based on advancing front, Delaunay trian-
gulations, and quadtrees/octrees have become popular due to their effectiveness in practical applications.
However, these methods do not come with equal strengths. For example, advancing front [6, 14, 15] uses
simple data structures and is efficient and relatively easy to implement. It offers a high quality of point
placement strategy and the integrity of the boundary. Unfortunately, it does not provide any general guar-
antee on the size and quality of the mesh it produces. On the other hand, more sophisticate methods such
as quadtree/octree refinement [4, 22, 32] and Delaunay methods [7, 8, 9, 19, 24, 25] generate a well-shaped
mesh whose size is within a constant factor of the optimal. Our objective is to develop a new 2D meshing
algorithm that combines the strengths of advancing front and these provably good meshing methods.

The particular type of Delaunay method that we will use in conjunction with advancing front is the circle
packing method. It first constructs a well-spaced point set by computing a circle packing of the domain and
then uses the Delaunay triangulation of this point set as the final mesh. Two methods have been developed
to generate the well-spaced point set. The first one applies particle simulation [26, 27, 28] to find a stable
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configuration of a set of energetic circles. The second one uses quadtree/octree refinement to obtain an
oversample of the input domain, and then applies a properly defined maximal independent set to create the
circle packing [3, 5, 12, 21, 30]. Both in theory and in practice, the second approach is faster.

In this paper, we show that the advancing front method can be used to efficiently construct a quality
circle-packing. At a high level, this new advancing front based packing algorithm first finds a circle packing
of the boundary of the domain and then grows the packing towards the interior of the domain. Each time
when a new circle is added to the interior, a larger protection circle is removed (bitten away) from the domain
so that no future circle will overlap with this one. By doing this, it builds the circle packing by adding circles
one at a time, or a layer at a time, in the same spirit as the standard advancing method; our new method
uses advancing front to construct a circle packing instead of the mesh elements themselves. We show that
this advancing front based method does generate a well-spaced point set, whose Delaunay triangulation is
well-shaped. We will refer this new method as the biting method and show that it can be made as practical
as the standard advancing front meshing methods.

The paper is organized as follows. Section 2 discusses the control space which specifies the element sizes
and point densities of a mesh. Section 3 reviews the standard advancing front methods. Section 4 covers
the circle packing method and introduces definitions that will be used in this paper and related theorems
concerning the connection between the quality of the Delaunay triangulation and the quality of the circle
packing. Section 5 presents the the biting method and proofs about the quality of the circle packing that it
generates. Section 6 gives the details of boundary protection to complete the proof of our main theorem.

2 Control Space

Fach domain Q and a differential equation u defines a desired local spacing within a domain to specify, for
example, the expected element size in a given neighborhood or point densities near a point. In this section,
we discuss how to determine the local spacing from the geometry of 2 and the numerical condition of w.

2.1 Geometric Features

The geometry of the boundary of Q also contributes to the local spacing of a well-shaped mesh. In two
dimensions, we assume that  is given as a planar-straight-line graph (PSLG), which is a collection of line
segments and points in the plane, closed under intersection. Suppose (2 is described by a PSLG S. Ruppert
[24] introduced the following concept called local feature size.

Definition 2.1 Given a PSLG S, the local feature size at a point , [ fss(x), or simply l fs(x), is the radius
of the smallest disk centered at x that intersects two non-incident vertices or segments of S. !

Note that adding new Steiner vertices does not change the value of [ fs() function, since it is determined
by the input. Ruppert has observed that [fs() changes slowly within the domain. Formally, a function f()
is Lipschitz with a coefficiency o if for any two points &, y in the domain, |f(x) — f(y)| < a||z — y||. Then
the Lipschitz coefficiency of I fs() is bounded from above by 1 [24]. In addition, [ fs() is the maximum in the
following sense.

Lemma 2.1 If f is a 1-Lipschitz function over a domain 2 such that for each point  on 0 f(x) < lfsq(x),
then for every x € Q, f(x) <lIfsq(x).

A common shape criterion for the mesh elements is the condition that the angles of each element are
not too small, or the aspect ratio of each element is bounded [1, 4, 29]. In this paper, we measure the quality
of a triangular element by the radius-edge ratio as defined in [19, 20]. Based on this quality measure, we can
define well-shaped meshes as the following.

1 Ruppert also gave a modified definition by using the geodesic distance to the 2 nearest non-incident portions of the input
to handle the two arms situation [24]. The geodesic distance is measured along the shortest path that stays within the domain
to be triangulated.



Definition 2.2 (a-well-shaped mesh) A mesh M is a-well-shaped for a constant a > 1 if the minimum
radius-edge ratio over all of its elements is bounded from above by a.

There are several ways to describe the spacing function of a well-shaped mesh M over a domain :

o [Edge-length function, eljs] for each point z € Q, elp(z) is equal to the length of the longest
edges of all mesh simplex elements that contain x (note that points on the lower dimensional faces of
a simplex are contained in more than one element).

e [Nearest-neighbor function, nnys] Let z be a point in (2, there are two cases. (1) if z is a mesh
point, then nns(x) is equal to the distance of x to the nearest mesh point in M. (2) if  is not a mesh
point, then nn () is equal to the distance to the second closest mesh point in M.

Lemma 2.2 ([19]) If M is an a-well-shaped, then there exists constants ¢; and cp depending only on «
such that for all point x € Q,
crely(z) < nnp(z) < cgelp(z).

2.2 Numerical Spacing

The numerical condition is usually obtained from an a priori error analysis, or an a posteriori error analysis
based on an initial numerical simulation. It defines a numerical spacing functions, denoted by nsf(x), for
each point x in the domain Q. The value of nsf(x), from the interpolation viewpoint, is determined by
the eigenvalues of the Hessian matrix of u [29]. Locally at point @, u can be approximated by a quadratic
function

u(x +dx) = %(meHdw) +dz v u(z) + u(x),

where H is the Hessian matriz of u, the matrix of the second partial derivatives. The spacing of the mesh
points, required by the accuracy of the discretization near & should depend on the reciprocal of the square
root of the largest eigenvalues of H at x.

For example, in adaptive numerical simulation, we estimate the eigenvalue of the Hessian matrix at
a certain set of points in {2 based on the solution of the previous iteration, and then expand the spacing
requirement from these points to the entire domain. From the new spacing and the old spacing function
deduced from the previous mesh, we can get the refinement or coarsening factor for mesh points. We can
then use the simultaneous refinement and coarsening method of Li et al. [12] to generate the mesh that
satisfies the new control space requirement.

2.3 Control Spacing Function

The local feature size [fs() and the numerical condition nsf together defines the global control spacing
function. Notice however, that the Lipschitz coefficiency of nsf may not be bounded by a constant. Using
the technique of Miller, Talmor, and Teng [16], we can define a new numerical spacing function nsf() as the
following: for each point x, -

nsf(x) = min(nsf(x), minyea(nsf(y) + [z — yl))).

The Lipschitz coefficiency of nsf() is at most 1. In addition, nsf() is the best possible in the sense that
for any 1-Lipschitz function g over the domain €, if g(z) < nsf(x) point-wise in 2, then g(z) < nsf(x)
point-wise.

The global control spacing function gns() can then be defined as

gns(@) = min(lfs(@),ns/ («)).

Where gns stands for Geometric and Numerical Spacing[31]. The function gns() captures both the numerical
and the geometric requirements for a well-shaped adaptive mesh.



Lemma 2.3 If f() and g() are a1 and as-Lipschitz respectively over Q, then f() + g() is a1 + aa-Lipschitz,
and min(f(),g()) and max(f(),g()) are mazx(ay,as)-Lipschitz.

Therefore, gns is 1-Lipschitz.

For mesh generation, we do not need to compute these spacing functions exactly. A common approach to
approximate gns() is to store discrete values on the vertices of a background mesh such as a quadtree/octree
decomposition of the domain. When we need to evaluate the function at an arbitrary point in the domain,
we simply interpolate these discrete values.

3 Advancing Front Methods

Advancing front methods construct a mesh of a domain by moving a front from its boundary towards its
interior. It first generates an initial front typically by constructing a surface mesh for the boundary of the
domain. It then creates new elements one at a time or a layer at a time and updates the front with these
created faces [23, 10, 6, 14, 15]: In the one element-at-a-time model, it chooses a face of the current front
and introduces a new mesh element with it as the base face. It can use another vertex on the front or insert
a new Steiner point in the interior as the additional vertex of the new element. The base face and potentially
some other faces on the front (if the additional vertex is an existing one) are removed from the front, and
some faces of the new element are added to the front. This process is repeated until the front is empty, i.e.,
all fronts have merged upon each other and the domain is fully meshed.

Note that initial front does not have to be a single component. For example, for a domain with holes,
the initial front can be built for the boundary of each hole as well.

The selection of the base face and the placement of the new mesh vertex are the two key steps of any
advancing front method. These two steps must ensure that the new mesh element is valid and well-shaped
and keep the front in good condition to allow the creation of graceful future elements. The faces of the clefts
and the small faces are given priority to be picked as the base faces to satisfy these requirements.

Hence, once the base face is chosen, we need to decide where to place the new vertex. Recall that in a
well-shaped triangular mesh, points must be well-spaced [30, 17], which implies that for each base face, we
can only place the Steiner point in a particular region near the base face so that the new element is well-
shaped. Call this region the feasible region. Some points in the feasible region will make the new element
slightly larger (by a constant factor) than some other points do. This is where the control spacing function
can be used. It helps us to decide whether we should go for a larger new element or a smaller one.

Paving [6] is one of the popular advancing front methods. It uses a number of operations to tightly
controll the moving front to ensure the mesh validity and quality. These operations include row choice,
closure check, row generation, smooth, seam, row adjustment, intersection, and cleanup [6]. The size of the
elements in the mesh is determined by the spacing of the nodes on the paving boundary as it propagates.
The spacing on the paving boundary is initially defined by the fixed node spacing on the corresponding
exterior boundary.

Advancing front methods can be combined with Delaunay or quadtree/octree refinements. For instance,
these refinement techniques can be used to generate a pretty-good domain decomposition of the input domain
and then advancing front can be applied to get a mesh for each subdomain. We can also use quadtree/octree
refinement to generate the set of points for the creation of the new elements.

In Section 5, we show how to use advancing front methods to help Delaunay based mesh generation. In
particular, we present a method to construct a high quality circle-packing using the advancing front methods.
We will prove that a well-shaped mesh can then be generated by the Delaunay triangulation of the centers
of the packing circles.



4 Circle Packing Methods

At a high level, the circle-packing method fills an input domain with a set of circles whose centers provide a
good vertex set for a quality Delaunay mesh. It can be used to generate meshes for various quality conditions.

For example, Bern, Mitchell, and Ruppert [5] use circle packing to triangulate a n-vertex polygonal
region (potentially with holes) so that no element has angle larger than 7 /2. They show that one can do so
with O(n) triangles, improving a previous result that uses O(n?) triangles [2].

The algorithm first packs a set of circles within the domain such that the gaps between them are
surrounded by at most four tangent circles. It then defines the mesh points as the union of centers of these
circles, the tangency points, and one point within each gap, and locally triangulates these points. Notice
that for nonobtuse triangulation, one does not need to consider the control spacing function. Therefore,
their mesh may have elements with very bad aspect ratio. A similar circle-packing based method has been
developed by Bern and Eppstein [3] for quadrilateral meshes.

Shimada and Gossard [27] have developed a circle-packing method called bubble mesh to generate trian-
gular meshes for two and three dimensions. Their packing scheme is based on the simulation of the particles
that interact each other with repulsive/attractive forces. They first define a proximity based force among
the circles, and then find a stable configuration by moving or deleting circles. However, their method does
not provide a theoretical bound on the time of the algorithm nor the quality of the mesh that they generate.

Miller et al. [19, 20] have designed a circle-packing based meshing method which combines two well-
known methods, quadtree and Delaunay refinements. First, they apply a balanced quadtree refinement to
approximate the spacing function f(). Second, they oversample a set of points in the domain to define a set
of overlapping circles. Then, they compute a maximal set of non-overlapping circles from this set to obtain
a circle packing. Finally, they compute the Delaunay triangulation of the centers of these circles.

Suppose f() is the desired edge-length or nearest-neighbor function of a well-shaped mesh for a domain
Q. We now introduce some definitions to capture the quality of circle packing. Let B(x,r) denote the circle
centered at point  with radius r.

Definition 4.1 (5-Packing) Let 8 be a positive real constant. A set S of circles is o B-packing with centers
P of Q with respect to a spacing function f() if

e For each point p of P, B(p, f(p)/2) € S;
o The interiors of any two circles s1 and s3 in S do not overlap; and

e For each point q € Q, there is a circle in S that overlaps with B(q,8f(q)/2).

The following structure theorem of Miller, Talmor, and Teng [18] states an equivalence relationship
between [-circle packing and well-shaped meshes.

Theorem 4.1 (Circle Packing and Well-Shaped Meshes) 1. For any positive constant 3, there ex-
ists a constant a depending only on B such that if f() is a spacing function of Lipschitz constant 1
over a domain  and S is a S-packing with respect to f(), then the Delaunay triangulation M of the
centers of S is an o well-shaped mesh; in addition, for each point p in 2, nny(p) = O(f(p)), where
the constant in © depends only on (.

2. For any positive constant «, there ezists a constant 8 depending only on a such that if M is an o
well-shaped mesh, then the set of circles

S = {B(p,nnp(p)/2) : for all mesh point p € M},

is a B-packing with respect to nnpr/2.



5 Biting: Advancing Front Meets Circle Packing

Advancing front is known to be a practical mesh generation method. Unfortunately, in general, it does not
provide any guarantee on the size and quality of the mesh it produces. On the other hand, the circle-packing
based methods can generate a well-shaped mesh whose size is within a constant factor of the optimal. The
cost of packing the circles using particle simulation or MIS of oversampled circles might be large. In this
section, we present a new scheme, called the biting method, that combines the strengths of advancing front
and circle packing. It uses advancing front to generate a quality circle packing rather than the mesh itself.
The Delaunay triangulation of the centers of the circles is then used to define the final mesh. Using the
equivalence between the well-shaped meshes and circle packings, we show that the biting method construct
a well-shaped Delaunay mesh whose size is optimal up to a constant factor.

5.1 Biting Scheme

1 thefirst bite

(¢)

(d) (e) (f)

Figure 1: A snapshot of the biting scheme: (a) initial PSLG domain; (b) bites only on the vertices of the
polygon; (c¢) first bite of a non-original vertex; (d) biting a layer of the boundary; (e) the first biting in the
interior of the domain; (f) biting a layer in the interior of the domain.

The basic idea of the biting method is to first compute the control spacing function f of the mesh. We
then try to find a point set by constructing a circle packing with respect to the spacing function. The circle
packing is constructed using the advancing front method. The input domain boundary is set as the initial
advancing front. The biting method moves a front from the boundary of the domain to the interior and
adds new mesh points in the process. These mesh points are chosen such that we can define a circle packing
with them as the centers. At each step, we place a new point on the current front rather than place it in
the interior of the remain domain. Each time we add a point, we remove a circle, the biting circle, from
the remaining interior domain. The boundary between the union of biting circles and the remaining interior
domain defines the new front. This process is called biting.

A Dbiting circle at a point @ is B(x,cyh(x)), where ¢ is a constant which will be decided later. Here
the subscribe b of constant ¢, denotes biting. Note that the biting circles are different from the packing
circles due to some technical reasons that will be discussed in section 5.2. For making sure that the biting
process results in a circle packing, we use the following simple idea: at every step, we choose a center on the



advancing front and remove its biting circle. The removal of its biting circle ensures that the future packing
circles will not intersect with the packing circle of this center. The Delaunay triangulation is then used to
generate the mesh from the resulting circle packing.

If the input domain has a small angle, we can cut off that small angle first to approximate the domain.
From now on, we assume that the input domain does not have an acute input angle. The following is a
formal description of the biting method:

Algorithm Biting

1. Compute the control spacing function h() of Q by combining the local feature size and the
numerical condition;

2. Let the boundary of the domain be the initial front, see Figure 1 (a);

3. [Vertex Protection]: Bite all the input vertices by removing their biting circles from the
interior of the domain, see Figure 1 (b);
Modify the front which becomes a set of segments and arcs. Segments are represented by
the endpoints and arcs are represented by the center of the biting circle.

4. [Edge Protection]: Bite circles centered on the input boundary: choose a vertex & on the
front and remove its biting circle. Whenever possible, we choose = on the intersection of
some bitten circles with the initial boundary, see Figure 1 (c) and (d).

Assume that x is on the bitten circle of p,. If the biting circle B(x, cph(x)) intersects with
a bitten circle B(p,, cyh(p,)), for a point p, # p; on the same boundary, then let ¢,, g, be
the closest intersection points of B(p,, cph(p;)) with the boundary and B(p,, cyh(p,)) with
the boundary, respectively. Note that g; = x. Let g be the middle point of segment g, q,.
Check whether B(q,,cph(q,)) intersects with B(py,cph(py)). If it does not, we remove
B(q,,cph(g,)) from the interior, otherwise we remove B(q, cyh(q)). see Figure 2.

Modify the front by introducing the arc of the new biting circles and removing the intersec-
tion of it with the front.

Repeat until all initial input boundaries are bitten;

5. [Interior Biting]: Choose a vertex x on the front and remove its biting circle, see Figure
1 (e) and (f);
Modify the front by introducing the arc of the new biting circle and removing the intersection
of it with the front.
Repeat until the advancing front is empty, i.e., the input domain is all covered by the biting
circles.

6. Construct the Delaunay triangulation of the centers of the biting circles as the final mesh.

boundary middle point

Figure 2: Edge Protection: the center of the biting circle is the intersection of the previous biting circle
with the boundary, as the point p; of the example: it is the intersection of circle B(py,csf(py)) with the
boundary; or it is the middle point of the segment formed by the intersection of the two other bitten circles,
as the point g of the Figure: it is the middle point of segment q,q, ( because B(qy,cyf(q,)) intersects with

B(ps,cvf(p2)), and B(gs,crf(g2)) intersects with B(py,co f(p1)) )-



Usually, the advancing front is represented as a circular list of already placed points. In our method, it
is represented as a set of arcs and boundary segments. We always choose the next Steiner point on the front
itself. In other words, the front itself is a subset of the feasible region for the selection of new mesh vertices,
making it easier to choose the next point.

The intersection of two arcs or an arc and a boundary segment provides a good candidate for a new
Steiner point, whose biting circle will reduce the interior. Isn’t this the way we take a bite on a biscuit or
an apple? We center our bite more or less around o sharpest nose. Then bite after bite, we eat away the
boundary of the food and mowve to its interior.

Also noting that the packing circle is never appeared in our biting method. We will prove that the
centers of all biting circles define a circle packing by carefully choose the size of the packing circle.

5.2 Quality Guarantee of the Biting Scheme

In this section we show that the biting method generates a well-shaped mesh. Moreover, the size of this
mesh is within a constant factor of the optimal. For the first statement we prove that the points placed by
the biting method is well-spaced, i.e., they are centers of a S-packing with respect to a 1-Lipschitz spacing
function. The size optimality then follows from the fact that the spacing function is maximal.

For each point that the biting scheme generates, we would like to define a packing circle. Because the
biting circles defined by our scheme overlap among themselves, the packing circle of a point is chosen to
be smaller than its biting circle. Let us focus on a particular point . From the specification of the biting
scheme, the biting circle at x is B(z, cyh(x)), where ¢, < 1 is a positive constant. We now choose another
positive constant ¢, < ¢, and define the packing circle at @ to be B(z,cph(x)). Where the subscribe p of
constant ¢, denotes packing. See Figure 3 (a).

In principle, in the biting scheme, ¢ is the largest constant that satisfies the constraint of the control
spacing function so that the resulting mesh has an optimal size. Similarly, ¢, is the largest constant to ensure
no two packing circles overlap so that the gaps among the packing circles are minimized. The following lemma,
of Ruppert [24] suggests that ¢, should be smaller than 1/2.

Lemma 5.1 For each input vertex x of an input PSLG Q, nn(x), the distance to its nearest input verter,
is at least 1 fs(x).

Proof: The circle centered at  with radius nn(z) contains at least two non-incident input features of the
PSLG, and hence nn(x) > [ fs(x). O
As defined in the biting scheme h(z) < Ifs(x) and thus h(z) < nn(z). If ¢, < I, then Lemma 5.1
ensures that the packing circles of any two input vertices of {2 do not intersect.
The fact that f() is an a-Lipschitz spacing function implies the following local similarity among the
close neighborhood of point .

Lemma 5.2 Let f() be an a-Lipschitz spacing function over a domain Q. For any two points x,y € Q and
Co Z 07 lf ||:B - y” S COf(m): then

(1 —aco)f(z) < f(y) < (1+ ac)f(x). 1)

The following lemma specifies the relation between the biting constant ¢, and the packing constant c,.

Lemma 5.3 If a spacing function f() is a-Lipschitz, and ||z —y|| > 13?17 min(f(x), f(y)), where 1—ay > 0,

then the interior of the two circles B(x,vf(x)) and B(y,vf(y)) do not intersect.

Proof: Without loss of generality, we assume that f(y) = min(f(z), f(y)). Because f() is a-Lipschitz,
f(@) < f(y) +aflz—y[|. Then vf(z)+7vf(y) <27f(y) +arllz—y|l < (1-ay)||lz—y|[+ay|[z—yl||. The
lemma follows from v f(x) + vf(y) < ||z — y]|. O

The biting scheme works for any control spacing function f() with Lipschitz condition. Assume that
the spacing function h() used in the biting scheme is a-Lipschitz over the domain 2. Let S, be the set of



biting circles generated by the biting scheme, and S}, be the set of corresponding packing circles defined by
2¢cp

a constant ¢,. Lemma 5.3 implies that if ¢, > T—ac,

and 1 — ac, > 0, then no two packing circles overlap.

Lemma 5.4 If the packing constant ¢, =
defined by cp.

2:—;%, then there is no overlap between the packing circles Sp
Proof: Let B(x,c,f(x)) and B(y,cpf(y)) be any two of the packing circles defined by the biting vertices.
Then from the biting scheme, we know that either x is bitten before y, or y is bitten before x. It implies
that ||z — y|| > ¢ min(f(z), f(y)). From ¢, = 57%—, we have ¢, = lf%cp and 1 —ac, = 2/(2+ ac) > 0.
The lemma follows from Lemma 5.3. O

Thus the biting circle B(z, cyh(x)) is like a protecting circle of @: it prevent any point that potentially
conflicts with & from being chosen. The following theorem shows that the biting method generates a good
circle packing.

14acsy
1—acy

-packing with respect to the spacing function 2% f().

Theorem 5.5 The circle packing S, is a = Tracs

Proof: The biting scheme guarantees that each point y in the domain 2 is covered by at least one biting
circle of Sy. Let B(x,cpf(x)) be the biting circle that covers y. Then ||y — x|| < ¢pf(x). Because f() is
o-Lipschitz, f(y) > (1 — ac)f(x). Noting ¢, = 2¢3/(2 + acp), we have

Bt W)+ uf(@) = ot () +cuf (@)
_ Cp 1+ ac
= (e i)+ f(a))
> (1 - ae)f(@) + f2)
= srae ((+ea)i@) + (@)
= of(z)
> e -yl

Hence, for point y there is a circle in S, that overlaps with B(y, 8¢, f(y)), i-e., there is no large gap at y.
From the f-packing definition 4.1, S, is B-packing with respect to spacing function 2¢, f(). O

The control spacing h() used in the biting scheme is a 1-Lipschitz function. Hence 2¢,h() is a 2¢,-
Lipschitz function. Because ¢, < %, 2c,h() is also a 1-Lipschitz function. Then it follows from Theorems 4.1
and 5.5 that the Delaunay triangulation of the centers of S}, is a well-shaped mesh.

Theorem 5.6 The biting method generates a well-shaped mesh.

5.3 The Spacing Conformation and the Size Guarantee

In this section, we show that the nearest neighbor value of any point in the domain is related to the control
spacing function f() by a constant factor. This relation enables us to show that the biting scheme generates
a mesh whose size is optimal with a constant factor.

Assume that the required spacing function f() is a-Lipschitz. Let ¢, = 2¢3/(1 — acp), where the
subscribe e denotes the extension of the biting circle. From Lemma, 5.3, we know that the two biting circles
B(z,cpf(x)) and B(y, cpf(y)) do not intersect if || — y|| > cef(x) and acy < 1. In other words, there is at
least one other mesh vertex generated in B(x, c. f(x)) other than x. We obtain the following lemma about
the nearest neighbor of the mesh vertices.

Lemma 5.7 For each vertex x of the mesh generated by the biting method, nn(x) satisfies
201)
&(1 - a) f(w) < nn(e) < T [ (@) @

— QCp
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Figure 3: The biting circles and packing circles: (a) the biting circle and the packing circle centered at point
x; (b) a point y is covered by at least two biting circles, for example, B(x, ¢, f(x)) and B(z,c,f(2)); (c)
for any biting circle B(x, ¢, f(x)), there must exist a biting circle centered at z, such that z is contained in
B(z,c.f(x)), where ¢, = 2¢p/(1 — acy).

Proof: First, if there is no other mesh vertex other than x that lies in the interior of the biting circle
B(z,cpf(x)). Then, ¢, f(x) < nn(x). If there is at least one mesh vertex y inside B(zx,c,f(x)), then
vertex g must be bitten before 2. Then we have ¢, f(y) < ||y — || < ¢, f(). Because f() is a-Lipschitz,
f(y) > (1 — acp) f(x). Hence, ||y — || > (1 — acy) f(x). By Lemma 5.3, for any point y in the exterior
of the circle B(x, c. f(x)), the biting circle of y does not overlap with that of . Hence, if nn(x) > c. f(x),
then the boundary of B(x, ¢, f(x)) is not covered by any other biting circles. See Figure 3 (¢). The lemma
then follows from property that every point in the domain is covered by at least one biting circle. a

We now show that the nearest neighbor function of each non-mesh point in the domain is linearly related
to the control spacing function.

Lemma 5.8 Assume point y € Q is not a mesh verter. Then nn(y) defined by the mesh generated by the
biting method satisfies

be(y) < nn(y) <

2 4+ 2acy

(3 —acy)en f(y)
(1—-ac)? -

3)

Proof: First, there is at least one biting circle, say B(x, ¢; f(x)), that covers point y. There must be at least
one mesh vertex z other than x in B(z,c.f(x)). See Figure 3 (c). Then ||z —y|| < ||z —z|| + ||z — y|| <
cef(x) +epf(x) = (cp + ce) f(x). So nn(y) < maz(||lz —yl|, ||z — yl]) < (b + ce)f(x). Then the inequality
Fw) > £(@) — allz — yl| > (1 — acy) f() implies that

nn(y) < (o + ) f(y) /(1 — acs).

We have two cases: (1) only one biting circle contains y, and (2) two or more biting circles contain y.

In the first case, let us assume that y € B(x,cpf(x)). Thus ||y — z|| > ¢ f(z) holds for any other mesh
vertex z, i.e., y & B(z,cyf(2)). Because f() is a-Lipschitz, f(y) < f(2) + ally — 2|| < (a + 1/a) ||y — 2|]-
Then for any mesh vertex z, if y ¢ B(z,cyf(2)), then [ly — z|[ > 72 f(y). Therefore, by the definition of
the nearest neighbor function, nn(y) > minz,z(||y — z||), which implies that

().

Cp

nn(y) 2 7 T aa

In the second case, assume that B(x, ¢ f(x)) and B(z,cpf(2)) are two of the biting circles that contain
y. See Figure 3 (b). Further assume that B(x,cyf(x)) is bitten before B(z,cpf(2)). Hence ||z — z|| >
cpf(x). Because f() is a-Lipschitz and y € B(x,cpf(x)), f(y) < (1 + acy) f(x). By the triangle inequality,
maz(|ly — ||, [ly — z[)) > 3llz = 2| > c/2f(x) > /(2 + 200,) f (y)-

Therefore, the second smallest distance from y to the set of mesh vertices whose biting circles contain
y is at least ¢, /(2 + 2acy) f(y). In addition, from the analysis of the first case, the smallest distance from y
to the set of mesh vertices whose biting circles do not contain y is at least ¢p/(1 + acp) f (y), Thus,

nn(y) 2 e/ (2 + 200) f(y)-

10



Consequently,

Cp Cp + Ce
_— < <
e 2acbf(y) <nn(y) < 17— ac()f(y),
and the lemma follows from ¢, = 2¢3/(1 — acy). O

We will use the following lemma of Miller et al. [18] to prove the size optimality of the generated mesh.

Lemma 5.9 (Size of a Well-shaped Mesh [18]) If M is an a-well-shaped mesh of n elements, then
dA
n=o(/ 7). ()
Q My

Lemma 5.10 (Size of Mesh Respect to the Space Control [31]) There ezists a constant ¢ such that
if M is a well-shaped mesh of n elements over a domain Q that satisfies the control spacing function f(),

then
A
n > c/ d—2 (5)
olf

The nn() function deduced from the mesh generated by the biting method is within a constant factor
of f() implies the following theorem.

Theorem 5.11 Size of the mesh generated by the biting method is within a constant factor of the optimal
possible.

6 The Minimal Angle of the Mesh and the Boundary Protection

Theorems 4.1 and 5.5 show that the biting scheme generates a well shaped mesh, see Theorem 5.6. However,
the constant bound on the minimal angle so derived may be too small. In this section, we provide a better
analysis of the lower bound of the minimal angle.

In our analysis, we divide the triangle elements into two subsets: the first subset contains all elements
that are visible from their circumcenters and the second subset contains all elements that are not completely
visible from their circumcenters, i.e., elements that are close to the boundary. See Figure 4 (a) (b) (c).

bounda‘\,}/'x— h

-

/

()

Figure 4: The triangles of the mesh: (a) a triangle Apgy of the first subset. (b) a triangle Agyz of the
second subset. (c) a triangle Apgr of the second subset, even the circumcenter ¢ is in the domain.

(a)

Assume that the spacing function f() used by the biting scheme is a-Lipschitz. Let ¢ = ac,. We use
t to control the quality and the size of the mesh generated by the biting scheme. In our proof, we assume
t < 1/3, although for a practical scheme, we can set ¢ to 1/2.
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6.1 The Minimal Angle of Elements of the First Subset
The following lemma bounds the minimal angle of the triangles in the first subset.

Lemma 6.1 Let Apgr be a triangle element of the first subset. Let | be the length of the shortest edge of
Apgr. Let R be the radius of the circumcircle C of Apgr. Then

R 1

l STo 2t ©)
Proof: Let ¢ be the circumcenter of Apgy. Assume ¢ € B(x,cy f(x)). See Figure 4 (a). Then ||c — z|| <
¢y f(x). Because the mesh is a Delaunay triangulation, x is not in the interior of circumcircle of Apgr,
ie, ||z —c|| > R. Thus f(z) > R/cy. Because f() is a-Lipschitz, f(c) > f(z) — a||c — z||- Also because
lle —z|| < cpf(z), f(e) > (1 —acy)f(xz) > (1 —acy)R/ce.

Without loss of generality, assume that ||p — ¢|| = [, and B(q,csf(p)) is bitten before B(q,cyvf(q)),
implying I > ¢, f(p). Because f() is a-Lipschitz, f(¢) < f(p) +aR <l/cy +aR. Using f(e) > (1—acp)R/cs,
we have (1 —t)R/cy < (I +tR)/cp. Then the lemma follows. |

Consequently, we have the following lemma.

Lemma 6.2 The minimal angle 8 of any triangle of the first subset satisfies

sin(f) = % > % —t. (7

6.2 Boundary Protection

We show that the mesh vertices generated by the biting scheme are not too close to the boundary with respect
to its control spacing. Note that our scheme first removes the biting circles centered at the input vertices of
the domain. It then progressively removes the biting circles centered at some points on the boundary of the
domain.

There are two cases for selecting the center g of the new biting circle for protecting the boundary. The
first type of the choices is the intersection point of a previously selected biting circle B(p,,cpf(p,)) with
the input boundary. In this case, ¢ is on the boundary of biting circle B(py, ¢y f(p,)). We label this point ¢
with B(p;). We call B(q,cyf(q)) the progressive circle. See Figure 5 (a).

The second type of choices is a vertex g that is the middle point of a segment q,q,, where q,, g, is
the intersection of B(py,cyf(py)) and B(ps, ¢y f(py)) with the boundary respectively. We label this point g
with M (p;,p,). We call B(q,cyf(q)) the middle circle. See Figure 5 (b).

Let p,,p, and p; be three consecutive mesh vertices on an input boundary generated by the biting
scheme. From above description, we know that p, is labeled by B(p,) or B(p3) or M (p;,p3)-

i i rogressive circle Middlecircle
prev\lous circle prog / : boundary
N
r :
\8} |
p ol g pz v
order % 9
(b)

Figure 5: The biting circles on the boundary: (a) the center g of the new biting circle is labeled by B(p,).
P, is chosen prior to qg. (b) the center ¢ of the new biting circle is labeled by M (p,,p,), i-e., it is the middle
point of segment q,q, formed by the intersection of B(p;,cyf(p;)) and B(p,,csf(p,)) with the boundary.

Let the boundary biting circles be the circles centered on the input boundary generated by the biting

scheme. It contains either progressive biting circles or middle circles. The following lemma guarantees that
the progressive biting circles do not generate vertices that are too close to the input boundary.
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Lemma 6.3 Assume q is labeled by B(p,). Let r be one of the intersection points of B(py,cpf(py)) with
B(q,cpf(q)). Then the distance hy of point v to the boundary p,q satisfies

. J’}(’;, 5> (- 0V/E-DFB/2 (8)

Proof: Because g is on circle B(py, ¢, f(p,)), |la = p1]| = ¢/ (py), and ||g — 7/ = ¢, (). See Figure 5 (a).
Let 0 be the angle formed by segments p;r and p,q. From f(q) > (1 — ac) f(p,), we have

(
sin(6/2) llg =/ (2cs f(p1))
> (1l —acy)f(p1)/2erf(p1))
= (1-1¢)/2.

Hence 0/2 > sin™ *((1—t)/2). Similarly, from f(q) < (14 acp)f(p,), we have §/2 < sin™*((1+1t)/2). Hence,
sin(@) > min((1—¢)v/B—-t)1+8)/2,1+t)\/B+t)(1—-1)/2)
1-t)v/B-0t)(1+1)/2.

The lemma then follows from cb;b(—Tpl) = sin(6). O

The following lemma guarantees that the middle circles do not generate vertices that are too close to
the input boundary.

Lemma 6.4 Assume mesh vertex q is labeled with M (p,,p;). Let r be one of the intersection points of
B(py,cof(py)) with B(q,cof(q)). Then the distance hy of point r to the boundary p,p, satisfies

hy
ey f(p1)

Proof: By the assumption of the lemma, q is labeled with M (p,,p,), i.e., q is the middle point of segment
q,q,, where q,, g, are the intersection points of circle B(p;,cpf(p;)) and B(ps, ¢y f(p,)) with bound-
ary, respectively. See Figure 5 (b). From the biting scheme, we know that B(qy,cyf(q,)) intersects with
B(p,, e f(py)), and B(gs, e f(q,)) intersects with B(py, ¢y f(p,)). Otherwise, we will not select g as the mesh

vertex. See Figure 2. Hence, [|q, —ql| < ¢y f(q)/2. Let a = ¢y f(py), b= v f(q), ¢ = |Ip, —ql| = a+|lg. —4qll,
and d = ¢, f(qy)- In the analysis, we assume a and d are fixed.

Because f() is a-Lipschitz, f(q) > f(q,) — a||q; — q||- Hence,

be(CI)
cv f(qy) — acsllgy — 4|

cvf(qy) — acver f(qy)/2
(1-1t/2)d.

> (1—t)V/ (12— 4t +7)(1 —12) /4. (9)

b

A\VARAY

Similarly, b < (1+41t/2)d. Because B(q,cyf(q,)) intersects with B(p,y,cs f(ps)), B(qq,cpf(q,)) contains
segment q,q,. Thus, ||g; — q|| < d/2,ie,a<c<a+d/2.

It is easy to show that hy get the smallest distance value when setting b to the smallest possible value,
and setting c to the largest possible value. We would like to minimize b and maximize c, i.e., b = (1 —¢/2)d,
c=a+d/2. Let s = (a+b+c)/2. Let Sa be the area of the triangle Ap gr. Note that hy = 2Sa/c, and

Spn = +/s(s—a)(s—b)(s—c)

Let z = a/d. Because f() is a-Lipschitz, from Lemma 5.2, we have (1 —1t)f(p;) < f(q;) < (1 +1t)f(p1)-
In other words, the value of x satisfies 1/(1+1¢) <z <1/(1—1).
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Therefore,

> 2 o - o a2

VvB=t)(1- t)a\/(x + %)(x - %)/(23:2 + ).

Because 13 < z < 117, and g(z) = \/(m + 3t (z — 51)/(22% + ) is minimized when z = 1,

%’" > (1—t)/(12 — 4t +7)(1 —12)/4.
O
Similarly, the ratio hy /c achieves its minimum when b = (1 — ¢t/2)d and ¢ = a + d/2. Hence
h
7” > (1-t)(3—t)/(12—4t+7)(1—2)/8. (10)

6.3 The Minimal Angle of Elements of the Second Subset

We now consider elements in the second subset. Let Agyz be a mesh element from the second subset. Let C
be the circumcircle of Agyz. Let ¢ be the center of C. Let R be the radius of C. Assume p; and p, are the
two closest mesh vertices on the boundary that separates Agyz and c. Note that p; and p, may be one of
the vertices among {x,y, 2}. Let 7 be one of the intersection points of B(py, ¢y f(p;)) with B(p,, ¢y f(D3))-
Let hy be the distance of point r to boundary segment p;p,. Let ¢ = ||p; — ps||- Let L be the half of the
length of the chord on that boundary cut by the circumcircle. Then L < ¢/2. See Figure 4 (b) and Figure
5 (b). Then there exists an input boundary that separates Agyz from ¢. We only need to consider such a
boundary that is the closest to Agzyz.

First, p; and p, must be the two consecutive boundary mesh vertices generated by the biting scheme.
Otherwise, there would be at least one mesh vertex in the interior of the circumcircle of the triangle Agy 2,
which is a contradiction to the Delaunay property. Second, neither p, is on B(p,,cyf(ps)), nor p, is on
B(py,cpf(py)). Otherwise, assume that p; is on B(psy,cpf(py)), and @ is not on that boundary. Because
DD, separates the center ¢ from the element Agyz, the angle formed by p;z and xp, is obtuse. Then
[lpy — || < ||py — P3|l = eof(py). See Figure 4 (b). Hence « is in the biting circle B(p,, ¢ f(py)). It is a
contradiction to the assumption that B(py, ¢y f(p;)) is removed before B(x, ¢y f(x)). Hence, without loss of
generality, we only need to analyze the case that p, is labeled with M (p,,p;), where p; is the other neighbor
vertex of p, on the boundary.

The circumcircle C must contain 7. If it does not contain r, then points x, y and z will be in the biting
circle centered at p; or p,, which is a contradiction to the biting property. Thus we have the following
lemma about the radius R of C.

Lemma 6.5
R < (hy + L?)/(2hs).

Proof: Because C contains r, R — vVR2 — L2 > hp. Then R? > (v/R2 — L2 + hy)?2, which implies that

R < (hy + L)/ (2hr). O
The following lemma gives an upper bound on R/ec.

Lemma 6.6 Ift < 1/2, then

R< Ze (11)
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Proof: Let v = ¢/2. From lemma 6.5, and L < ¢/2, we have R < (h% + u?)/(2hy). Notice that R(z) =
(x? + u?)/(27) increases monotonically when z > u, and decreases monotonically when 0 < z < u. From
formula (10), we have

hyje> (1 —1)(3 =)/ (t2 — 4t + 7)(1 —t2)/8.
Let g.(t) = (1—t)(3—1)y/(t? — 4t + 7)(1 — t2) /8. Then 1/4 < 15v/7/128 < g.(t) < v63/8 < 1,if0 < ¢t < 1/2.
Hence hy > u/2. Because hy < ¢y f(py) < ¢, i.e., hy < 2u, we have

R < max(((u/2)* +u*)/u), (2u)* +u*)/(4u)) = 5¢/8.

O
We now give a bound on the radius-edge ratio for the triangles of the second subset.
Lemma 6.7 Let | be the length of the shortest edge of Axyz. Ift < (V17 — 3)/2, then
R 5(3+1)
- < 12
I — 8(2—3t—12) (12)

Proof: Assume that p, is labeled with M (p,,p;). Let a = ¢, f(p,), and further assume that the shortest
edge of Agyz is edge @y, and that x is bitten before y. Then | > ¢, f(x). Notice that x and y could be
either p; or p,.

If « is py, then !l = ||z — y|| = ||p; — y|| > e f(p;) = a, because the boundary circle B(p;,csf(p;))
is bitten before B(y,cyf(y)). Otherwise, notice that the angle formed by segment p,x and xp, is obtuse.
Hence [|p, — || < |[p; — py|. Because f() is a-Lipschitz, f(x) > f(p,) — allpy | > f(py) - allps — Byl
Then I > ¢y f(x) > a — t||p; — P»||- Combining both cases, we have

l>a—-txc.

From lemma 6.6, we have R/l < 5¢/(8(a —t=c)), if a—txc > 0.

Note that circle B(p,, ¢, f (p5)) is the middle biting circle. Let g, be the intersection point of B(py, ¢y f(py))
with the boundary, which is between p; and p,, Then we have ¢ = a + ||g; — ps|| < a+ e f(q,)/2 <
a+ (1 +1t)a/2. Hence, if 2 — 3t — 2 > 0, i.e., t < (v/17 — 3)/2, then

R 5(3+1)
i G L
I =82—3t—1)
O

From Lemmas 6.1 and 6.7, we have the following theorem to bound the minimal angle of the mesh
generated by the biting scheme.

Theorem 6.8 The minimal angle 8 of the mesh generated by the biting scheme satisfies

sin(g) > % —t. (13)

%) Then the theorem follows from the

1 4(2—3t—12)

If control spacing f() is 0-Lipschitz, then the minimal angle of the mesh is at least 30°. Given the
positive a-Lipschitz control spacing f(), there are two goals in generating the mesh. One goal is to bound
the value nn(x)/f(x) from upper and below, for every point « in the domain. The other goal is to bound
the minimal angle 6 of all mesh elements from below. Unfortunately, this two goals are at odds with each
other. Hence there must be a tradeoff. For example, if we set ¢t = 1/4, then the mesh generated by the biting

scheme has the following property: for any point y € Q, % < nn(y) < %; and the minimal angle 6

is at least asin(1/4) ~ 14.48°. If we set t = 1/3, then for any point y € Q, %aw <nn(y) < %y—); and the
minimal angle 6 is at least asin(1/6) ~ 9.59°.

Proof: From lemma 6.1 and 6.7, we have sin(f) > min(} —t,
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7 Conclusion

In this paper, we present a new mesh generation scheme which combines the merits of the advancing front
and the circle packing methods. Our scheme, the biting method, first applies some variations of an ad-
vancing front method to generate a quality circle packing; it then constructs the final mesh by Delaunay
triangulation. Therefore, it is as simple and as practical as the advancing front methods. It is different to the
previous approaches such as those that use the particle simulation [27] or maximal independent set (MIS)
of oversampled points [19].

The biting scheme is theoretically efficient than the paving method because it explicitly maintains the
set of candidates for new mesh points, and it does not have to handle the case when fronts meet each other
or itself. By using circle packings, the new scheme resolves this difficulty that occurs at the end of the
standard advancing front method. The standard advancing front methods, however, does not provide a
quality guarantee, especially in the region where the fronts meet. The biting method is also provably good
and the size of generated mesh is within a constant factor of the optimal.

Note that the biting method can be extended to generate 3D mesh: by replacing the biting circle as
the biting sphere. The main difficulty for 3D version of biting is how to protect the input boundary face,
such that there are no bad tetrehedra near the boundary face. One possible approach is to use the classic
advancing front method to generate one layer of elements incident to the boundary face, then use our biting
method to generate point set for the remaining interior domain. For other approaches to solve this problem
in 3D, the reader is refered to [13].
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