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摘要 Numerous indoor localization techniques have been proposed recently to meet the intensive demand for
location based service (LBS). Among them, Wi-Fi fingerprint-based approaches are the most popular solutions,
and the core challenge of that is to lower the cost of fingerprint site-survey. One of the trends is to collect the
piecewise data from clients and establish the radio map in crowdsourcing manner, however the low participation
rate blocks the practical use.

In this work, we propose a passive crowdsourcing CSI-based indoor localization scheme, C2IL. Despite a
crowdsourcing based approach, our scheme is totally transparent to client except the only requirement is to connect
to our 802.11n APs. C2IL is built upon an innovative method to accurately estimate the moving speed solely
based on 802.11n Channel State Information (CSI). Knowing the walking speed of a client and its surrounding
APs, a graph matching algorithm is employed to extract the RSS fingerprints and establish the fingerprint map.
In localization phase, we design a trajectory clustering-based localization algorithm to provide precise real- time
indoor localization and tracking. We developed and deployed a practical working system of C2IL in a large office
environment. Extensive evaluations indicate that the error of speed estimation is within 3%, and the localization
error is within 2m at 80% time in very complex indoor environment.
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1 Introduction

With the prosperity of mobile devices, espe-
cially smartphones, location based services (LBS),
which use the geographic position to provide tar-
geted services, have become pervasive to provide
added value of existing services. A critical chal-
lenge of LBS is to find the accurate location of
mobile devices. GPS has successfully dominated
the outdoor localization. Unfortunately in indoor
environment, the most facile wireless received sig-
nal strength (RSS) is neither accurate nor consis-
tent due to the highly dynamic and complex en-
vironment. As the flourishing of smartphones and
crowdsourcing computation models, numerous in-
door localization techniques have been proposed to
collect fractional environment features and collab-
oratively provide precise indoor localization.

The relatively good accuracy and simplicity
of fingerprint based localization schemes has at-
tracted massive of effort in the community. Wi-
Fi fingerprint- based schemes can provide meter-
level indoor localization accuracy at the expense
of explicit site-survey. Its high deployment cost
and low adaptiveness to environment change hin-
ders the practical effectiveness. Recently several
novel techniques, e.g., [1–5], have been proposed
to raise the usability and accuracy. Among these
approaches, a hot research trend is to incorpo-
rate crowdsourcing model and built-in sensors in
today’s smartphone. LiFS [5] reduces the site-
survey by using the moving distance, estimated
from counting the number of steps by accelerome-
ter, as constraints for matching between the map
and trace-graph, achieving average accuracy of
5.8m Zee [2] achieves a mean accuracy 3m by
estimating the moving direction and moving dis-
tance by similarly leveraging the sensors in smart-
phone. Centuar [3] and PAL [4] both calibrate the

Wi-Fi fingerprints database using acoustic rang-
ing and they achieve 1∼3m accuracy. All these
approaches significantly improved the practicabil-
ity of Wi-Fi based indoor localization, however, we
believe there are plenty of room for improving the
localization accuracy while reducing or even elimi-
nating the dependence of site-survey and noisy in-
ertial sensors.

In this work, we design and develop an indoor
localization system C2IL with even lower cost and
hindrance. Our scheme exploits the Channel State
Information (CSI) introduced in 802.11n Spec., for
better speed estimation which in turn results in a
better fingerprints matching and localization. Ad-
ditionally, C2IL, as in most recent techniques, col-
lects the WiFi RSS fingerprints during communi-
cation between the user and WiFi APs, and pop-
ulates the fingerprints database by crowdsourcing.
C2IL has good performance in complex environ-
ment with rich multipath effect, while several re-
cently developed schemes suffer from lower local-
ization accuracy in such a complex environment.

The accurate moving speed estimation is
based on the readily available CSI in IEEE 802.11n
system that uses OFDM and Multi-Input & Multi-
Output (MIMO) technologies. CSI measures the
inherent channel propagation decay for each sub-
carrier of the underlying OFDM system. Since CSI
focuses more on small- scale wireless fading, it has
advantages on capturing the mobile channel char-
acteristics. In our preliminary testes carried in dif-
ferent scenarios, we found the CSI amplitude ex-
hibits ripples- like Rayleigh deep fadings [6] with
some periodicity across all subcarriers when the
transceiver devices were moving. Fig. 1 (a) and (b)
show the CSI ripples in different 802.11n Modula-
tion and Coding Scheme (MCS)∗ configurations.
A natural question raised in our mind is “Are these

802.11n uses MCS value to represent different transmission variables combinations. Higher MCS value often denotes
higher rate. you may refer www.mcsindex.com for details.



Jizhong Zhao et al.: Indoor Localization with CSI-speed estimation 3

ripples correlated with distance or speed?”.
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(a) Ripples in SISO (b) Ripples in MIMO

Fig. 1. (a) Ripples across nearly all subcarriers in 1× 1

SISO with MCS=0. (b) The ripples in 3 × 3 MIMO
configuration with MCS=16.

The answer is beyond an intuitive yes. In this
work, we first exhibit a simple yet precise relation-
ship between moving speed v and the frequency of
ripples-like fadings fr.

Based on this important discovery, we pro-
pose a simple method to precisely estimate a wire-
less device’s moving speed (or moving distance)
purely based on wireless traffic. Since in Wi-Fi
environment both AP and clients can measure the
CSI and RSS, the client’s moving speed and RSS
can be measured remotely at AP-end passively and
non-intrusively. In such case, all connected devices
become the participants of the crowdsourcing sys-
tem without any effort.

Based on the precise speed and moving dis-
tance estimation, our localization scheme C2IL ap-
plies the graph matching (GM) for several core
tasks: Wi-Fi fingerprints extraction, automatic
mapping between fingerprints and floor plan, and
users localization/tracking. It has been widely
known that the RSS value is affected by many fac-
tors, e.g., the RSS values collected at the same
location using same devices with same WiFi APs
could fluctuate to a few db depending on how users
hold and block the signal [1]. Such fluctuation
will significantly impact the fingerprint matching
quality and thus impact the localization/tracking
accuracy. We first identify and successfully ad-

dress the directional shadowing problem for con-
ventional threshold-based fingerprints extraction,
and we propose a trajectory matching-based solu-
tion to eliminate the shadowing problem. For fin-
gerprints mapping task, C2IL supports unsuper-
vised floor plan mapping for large scale complex in-
door environment. For localization/tracking task,
a combination of trajectories matching and particle
filter is proposed to achieve precise indoor local-
ization/tracking. In summary, the contributions
of C2IL are as follows.

• Compared with the previous approaches
with good accuracy, our scheme C2IL does not
require the localization devices to be smartphones
with various inertial sensors (which are required
in [2, 5]). As it only requires 802.11n connection,
C2IL has the lowest barrier on client, thus, we
expect it to have better contribution from users,
which is of vital importance for practical and
continuously-functioning crowdsourcing system.

• C2IL is a practical localization system that
really benefits from the multipath effect, instead
of suffering from this notoriously challenging ef-
fect. Theoretical analysis showed that it is exactly
the multipath effect that enables the accurate dis-
tance estimation by CSI. Our extensive experimen-
tal evaluation indicated that in typical indoor sce-
narios, the distance estimation error is often within
3% regardless of moving speeds, which is much
more accurate than Dead-Reckoning or pedometer
based approaches.

• The adoption of graph matching and other
techniques in our core design guarantees the accu-
racy and scalability of RSS radio map and localiza-
tion in very large and complex environment. We
design and develop a prototype of C2IL in a large
office environment of about 2000m2 with complex
structure. In our tests, the localization error with-
out any historical data is within 5m; while in track-
ing mode, the tracking error could be within 1m.
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The rest of the paper is organized as follows.
We review related techniques in Section 2, present
C2IL system overview in Section 3 and our innova-
tive distance estimation in Section 4. Fingerprint
extraction and the complete crowdsourcing based
localization scheme are introduced in Section 5 and
Section 6 respectively. We present the fine-grained
indoor tracking solution in Section 7, and report
our extensive performance evaluation of C2IL in
Section 8. We conclude the paper in Section 9.

2 Related Work
2.1 Indoor Localization Schemes

The great success of GPS [7] doesn’t lead to
a finish line for the localization problem. In bat-
tery constraint wireless ad-hoc network, great ef-
forts [8, 9] have been made to bring better accu-
racy, and in indoor environment, the signal shad-
owing and multipath effect also block the GPS or
similar ideas.

fall into two categories: Fingerprint-based and
Modeling-based. Fingerprints are utilized in many
literatures to assist positioning, and the most
widely used one is WiFi signal. In indoor environ-
ment, fingerprint based methods (e.g., Radar [10],
Horus [11]„ SurroundSense [12], PinLoc [13], ) first
collect fingerprint of WiFi signal (or cellular, or
FM, or other sensors such as light) in advance at
known locations inside a building, and then iden-
tify the user’s location by matching the fingerprint
of this user with the fingerprint stored in database.
Dead-Reckoning is another stream of techniques
(e.g., [2, 14, 15]) proposed in the literature for lo-
calization.

The mostly used fingerprint is the RSS value.
LiFS [5] proposed a crowdsourcing based indoor
localization, which exploits the possibility of au-
tomatically establishing the mapping between fin-
gerprint set F and position set P In our previ-
ous work [16], graph matching algorithm is used

to achieve the automatic mapping in complex en-
vironment. Acoustic ranging (AR) assisted Wi-Fi
positioning was recently developed to provide dis-
tance estimation between two users (e.g., [3, 4]).
These schemes leverage the accurate AR and are
able to provide high localization accuracy using
the mapping of fingerprints with some additional
distance constraint.

CSI has potential for accurate indoor local-
ization since the CSI tool [17] has been released to
public on off-the-shelf hardware. CSI is not a sim-
ple extension of RSS on physical subcarriers but it
reveals totally different information on frequency
selective fading process [18]. SpinLoc [1] proposed
a rotation based indoor localization system that
leveraged the human bodies’ strong fading to Line-
of-Sight (LoS) components. PinLoc [13] proposed
a CSI fingerprint-based localization system which
can achieve meter-level precise indoor point lo-
calization. Based on the strong position distinc-
tion property of CSI, CSITE [19] proposed an Wi-
Fi Management Frame Authentication framework.
Besides the above device-based localization, Frog-
Eye [20] proposed an CSI-based device-free crowd
density estimation system. Twins [21] proposed
an critical state based device-free tracking system.
Compared with these schemes, our scheme provide
an accurate moving speed estimation of a single
user in a complex indoor environment.

Recently, the popularity of Software Defined
Radio (SDR) system brings more powerful ap-
proaches. ArrayTrack [22] use an antenna ar-
ray driven by SDR to provide accurate Angle-Of-
Arrival (AoA) based indoor localization. On the
other hand, Wi-See [23] and PinIt [24] simulate
the antenna array by a moving antenna. The
latest work WiTrack [25] implements Frequency-
modulated continuous-wave (FMCW) radar tech-
nology on SDR platform, and it achieves 3D
device-free human tracking. Although SDR plat-
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form exhibits strong potential, the deployment
cost and computation requirement are still too
high for wide range deployment.

2.2 Estimate Moving Speed by Wireless
Signal

There is a long history of estimating mov-
ing velocity of a mobile station according to wire-
less signal [26, 27]. Most of them focused on fast
moving stations, i.e., a mobile station in cars or
trains. However, the algorithm for estimating the
maximum Doppler frequency fd, on which most
of these methods based, is not suitable for es-
timating human walking speed. The maximum
Doppler frequency in 2.4G or 5G Wi-Fi environ-
ment could be almost totally ignored, i.e., for
a moving station with a velocity 1.5m/s, fd is
merely 12Hz/25Hz compared to the carrier fre-
quency 2.4Ghz or 5.2Ghz.

To the best of our knowledge, [28] is the only
previous work that implemented an indoor speed
estimation system, which is based on DVB-T sig-
nal working at 746Mhz. This work used the rela-
tionship v = ξ λ

Tc
to estimate velocity, where ξ =

0.423 a pre-defined constant, λ the wavelength,
and Tc is the channel coherent time. However,
for Wi-Fi signal with small covering range, which
causes non-uniformly Rayleigh fading, a constant
ξ is not appropriated, and it is very difficult and
challenging to precisely estimate the ξ in a dy-
namic indoor environment.

2.3 Graph Matching via Relaxation

Graph matching (GM) is a widely used tech-
nique to find the best correspondence between two
graphs, documents, or images. In C2IL, we use
GM to extract RSS fingerprints and automatically
establish the mapping between RSS fingerprints
and floor plan.

GM is essentially an integer quadratic pro-
gramming (IQP) problem,and it is NP-hard [29].
Given two graphs GP = (VP , εP ) and GQ =

(VQ, εQ), the goal of GM is to find the best cor-
respondence between two graphs. Let CP×Q rep-
resent the possible matching candidates set, the
affinities between all candidates are recorded in
an adjacency matrix MCP×Q based on applica-
tions. Let X ∈ {0, 1}nMCP×Q be a column-wise bi-
nary vector which indicates the selected correspon-
dences, the graph matching problem can be ex-
pressed as finding the best indicator vector X ∗ that
maximizes a score function S(X ) = X TMCP×QX ,
i.e., X ∗ = argmaxS(X ).

Various relaxation based methods have been
proposed. Most of them relax the integer con-
straint of X . After obtaining the optimal X ∗ in
real number domain with different insights of M,
the discretization of X ∗ will make the best approx-
imated solution to the underlined IQP problem. In
C2IL, two major graph matching algorithms, spec-
tral matching (SM) [30] and Reweighted Random
Walks Matching (RRWM) algorithms [29] are used
in different stages. SM is used in extracting RSS
fingerprints graph; while RRWM is used in map-
ping between RSS fingerprints and floor plan.

3 Architecture Overview

Since CSI and RSS can be estimated by both
APs and clients, C2IL can be deployed in either
AP-end or client-end. Whenever it is deployed at
either end, the core of the system remains same. In
the rest of the paper, for simplicity of presentation,
we assume that WiFi APs will collect the signal
and conduct the needed computation. The posi-
tions of WiFi APs are not required to be known in
either case.
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Fig. 2. C2IL System Architecture.

Fig. 2 demonstrates our system architecture.
When a user enters the building, we assume that
the device held by the user will build wireless con-
nections with the APs inside the building. The
IEEE 802.11n WiFi APs will record the RSS val-
ues and the CSI values of the received signal from
the client device and send the data to a localization
server. Based on the sequence of the CSI values
taken during a time-window, the server will then
quickly estimate the moving distance of the client
in this time-window. The RSS values will be used
to build a matching with the fingerprint RSS val-
ues stored in the fingerprint database, which itself
is populated using crowdsourcing techniques. The
estimated moving distance, together with the es-
timated geodesic distance of different fingerprint
locations in the map, will be used to further im-
prove the quality of the matching, and thus, the
accuracy of the localization. In the rest we discuss
in detail each of the components in C2IL.

4 Estimating Moving Speed by CSI

In this section, we mainly focus on the tech-
niques of estimating moving speed and thus mov-
ing distance by CSI. Theoretical basis is presented
first, and then we present our algorithm implemen-
tation.

4.1 The Electromagnetic Standing Wave
Field

Wireless radio propagation in compact envi-
ronment could be modelled as a superposition of

large-scale path-loss, middle-scale shadowing, and
small-scale multipath fading [6]. For the multipath
fading, it is usually fitted to a statistical model
called Rayleigh or Rician (Rayleigh fading plus
strong LoS components) distribution. The ripples-
like deep fading shown in Fig.1 (b) and (c) are
typical Rayleigh fading pattern.

Previous speed estimation methods, are based
on some statistical properties of Rayleigh distribu-
tion, e.g. level crossing rate (LCR) or coherent
time Tc. Although it has been experimentally val-
idated that the distance between two adjacent rip-
ples (deep fadings) is about λ/2 (λ is the carrier
wavelength) even in large-scale multipath environ-
ment (like Manhattan city) [31], no previous works
explicitly exploit such λ/2 fluctuation, since such
fluctuation is encapsulated and blurred in a too
general model.

However, some detailed studies of radio prop-
agation [32, 33] have indicated that, in a com-
plex multipath environment the constructive or de-
structive interferences of the large sum of reflected
and scattered waves will generate a standing waves
field, and the environment becomes a weak Elec-
tromagnetic Cavity Resonator (ECR) [34] which
hold standing waves in a very short time. Ac-
cording to basic physics of wave propagation, the
distance between two adjacent antinodes (position
with maximum amplitude), towards any direction,
is λ/2, thereby the experimentally observed λ/2

fluctuation. Therefore, when an antenna traverses
the indoor space with a speed v, a periodically
ripples-like pattern with a frequency fo = 2 v

λ ap-
pears. Such simple relationship inspires us that
the moving speed v could be precisely estimated
purely from the CSI, if we could precisely estimate
the fo.
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4.2 Speed Estimation Algorithm

As previously described, the speed estimation
problem now becomes a specific frequency estima-
tion problem. We design a reasonable and effec-
tive processing flow. It includes Data Preprocess-
ing, Noise Cancellation, Fading Enhancement, and
Frequency Estimation.

Data Preprocessing: Every frame sent in
802.11n MCS rate at time t has an CSI Ht. It is a
complex-number vector with a length of Nss×Lss,
where Nss and Lss are the number of MIMO spa-
tial streams and number of measured subcarriers
across the Wi-Fi bandwidth. Every complex value
hit ∈ Ht describes the instantaneous amplitude
ait and phase θit of the underlying i-th subcarrier.
In order to enable all 802.11n compatible devices
to be ready for speed estimation, we only use the
first spatial stream (first Lss values in Ht) to es-
timate speed. Moreover, the computation space
is greatly reduced. Since in multipath environ-
ment the phase θi is uniformly distributed between
[0, 2π] [6], which provides no discriminative infor-
mation. Thus we drop the phase θit and only use
amplitude A = |H| to estimate speed.

The amplitude matrix Aori = {A1, ...,An}T

is further defined, where Ai is the ith received
column-wise amplitude. Since the instantaneous
reception rate of frames is unstable due to the wire-
less traffic control, Aori is resampled to a stable
reception frequency fw with the even interval be-
tween each slot, and let Are denote the resampled
amplitude matrix.

Noise Cancellation: Convolution based noise
cancellation is applied on Are to filter out the high
frequency noise, that Anc = Are ∗ hb(r),

hb(r) = r · 1s

where 1s is a full-1 square matrix of size s. Cur-
rently in our system s = 6. This step is of great
importance according to the real data evaluation,

since the following fading enhancement and fre-
quency estimation is quite sensitive to noise.

Fading Enhancement: An intuitive idea of en-
hance the fading is first-order derivation of Anc,
however, first-order derivation is quite sensitive to
high frequency noise rather than low frequency rip-
ples. Another convolution is used to emphasize the
fading that Aen = Anc ∗hdf , where hdf is a Sobel-
style calculator that

hdf =


2 5 2

0 0 0

−2 −5 −2

 (1)

Fig. 3 shows the intermediate results After first
3 processing, and it is now suitable for frequency
estimation.

A
m

pl
itu

de

Samples

 

 

50 100 150 200 250 300
−20

0

20

40

60 Original Filtered Enhanced

Fig. 3. The effect of each step of processing.

Frequency Estimation: Due to the MIMO con-
figuration or other interference, deep fading(s) in
all subcarriers are not guaranteed to appear simul-
taneously, as shown in Fig. 1, therefore the final
decision of fo are based on the estimations of each
underlying subcarriers.

Extracting f i
o for i-th subcarrier is equiva-

lent to extracting the expected frequency E(f i
c)

in the spectral graph within a frequency interval
fmin < fc < fmax. According to Eq. (5), fmin

and fmax are set according to the speed interval of
human walking that

fmin = 2 · vmin/λ, fmax = 2 · vmax/λ (2)
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where the minimum speed vmin and the maximum
speed vmax in our system are set to 0.8m/s and
1.6m/s.

Short-Time Fourier Transformation (STFT)
with 50% overlapping window is applied to obtain
the Power Spectral Density (PSD) of i-th envelope
of Are. It reveals the spectral density of subcar-
rier i along with time. To reduce the jitter, the
estimated f i

o is set to the weighed expectation of
frequencies between fmin and fmax

f i
o =

∑
fmin<sj<fmax

sj · wj∑
wj

, (3)

where wj denotes the power of frequency fj .
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Fig. 4. STFT result for 15th subcarrier at 5.8Ghz
(Channel 161).

Figure 4 shows the STFT result for 15-th sub-
carrier. We can see very strong power around
50Hz. As 50× λ

2 = 1.29m/s, and it is quite close to
the real walking speed at about 1.3m/s. Two red
bars denote the fmin and fmax, and they are set
to 32 and 64 according the vmin and vmax settings.
The final estimation of fo is set to the median of
all estimated f i

o

fo = median(f1
o , f

2
o , ...f

n
o ), n = Nss (4)

Then the moving speed is estimated by

v =
λ · fo
2

(5)

It was worth to mention that although the
Doppler effect does exist, as discussed in Section
2, the Doppler frequency is small comparing to the

carrier frequency. Thus in current system design,
we did not consider the Doppler effect caused by
human walking.

4.3 Stop Detection

Precise Start and Stop detection of human
walking by wireless device is a challenging prob-
lem. Since instantaneous state shift of moving
or static mainly reflect on small-scale fading, we
still use CSI for stop detection. Fig. 5 (a) presents
an example when it starts moving at about 400th
sample. Observing the degree of disorder before
and after the start, an intuitive method is to
check for the deviation of amplitude, however, the
sliding-window required by deviation checking re-
duces the checking sensitivity to movement. Fig. 5
(b) shows the slow raising deviation values with
different length Lw of sliding window, and the de-
tected time obviously lags behind.

The spatial de-correlation property of CSI
gives us a hint. We find that the correlation coeffi-
cient ρ between consecutive CSI samples will drop
rapidly if the spatial distance ds between them is
larger than λ/2. Thus, there will be a rapid co-
efficiency raising or drop to check the “moving”
and “static” status. Fig. 5 (c) shows the sam-
ples’ correlation matrix. When device is static,
stable and high correlation co-efficiency holds the
entire upper-left area, while it disappears immedi-
ately when the device starts moving. Figure 5 (d)
presents the moving averages of ρ with different
sliding window length Lw, and the dropping of ρ

is fast and clear. According to our experimental
evaluation, a devices is said to be moving when ρ

drops below 0.4, and the final detected time td is
quite close to the actual time ta.
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Fig. 5. (a) the CSI image of a sample. The movement starts at about 400 time-slot. (b) the moving averages of
standard deviation with different window lengths Lw. The detected start delays about 100 slot than actual start.
(c) the correlation matrix of the CSI images shown in (a). (d) the moving averages of the correlation coefficients
with different Lw.

4.4 Minimum Sampling Rate

Similar to sensor-based system, sufficient CSI
sampling rate is critical for accuracy. Due to
the un-equal time distribution between fading and
non-fading, the Nyquist sampling rate of fs =

2 · fmax is not sufficient. We carried out experi-
ments to find the minimum fs that can guarantee
good accuracy. Evaluations are carried out in a
wide range of channel frequencies including 2.4G
(channel 1), 5.2Ghz (channel 40), 5.5G (channel
100) and the highest 5.8G(Channel 161). During
the experiment, testers are walking at the same
speed around v = 1.3m/s and the mobile device
in their hands are constantly transmitting beacon
frames at 500hz. After the experiments, we sim-
ulate the sampling rate fs from 20hz to 500hz by
dropping frames uniformly. Fig. 6 presents the
results. We can see from the figure that the es-
timated speed v continuously climbs when fs is
higher than Nyquist rate fN , and the speed stops
raising when fs is about 4 times of fv = 2v/λ.
More experiments in other situations have also
confirmed the 4 · fv sampling rate. Therefore if we
set fmax = 1.6m/s, the minimum sampling rate is
only 100 (or 250) frames/s in 2.4G (or 5.8G) envi-
ronment, or equivalent to approximately 40KBps
or 100KBps traffic.
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Fig. 6. The measured speeds in different sampling rate.
The points denoted by f⋆

N denotes the Nyquist sam-
pling rate, while f⋆

4x denotes the minimum require sam-
pling rate.

The traffic burstiness is another problem.
The burstiness, which happened frequently, is ob-
viously against the CSI-based speed estimation.
Since the burstiness is usually short-time high-
frequency traffic phenomenon, a reasonable as-
sumption could be made to ease this problem: peo-
ple’s walking speed remain stable during the gap
between two burstiness. Fig. 7 presents our solu-
tion that during each burstiness the speed is esti-
mated, while in the gap the speed is approximated
as the average.
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Fig. 7. The burstiness of wireless traffic in practical
environment and the estimated speed.

5 RSS Fingerprints Extraction

RSS fingerprints are the most representative
RSS points for given positions, and the error of
the fingerprint will directly affect the accuracy.
Besides the strong noise, we observed the direc-
tional shadowing problem which may easily break
the traditional fingerprint extraction strategy.

5.1 The Directional Shadowing Problem
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Fig. 8. RSS trajectories with 3APs. The color denotes
the value for 3rd AP: deeper color denotes higher RSS
from 3rd AP.

When people walk along the same path in dif-
ferent directions, the shadowing effect of human
body will generate deviated RSS sample trajecto-
ries. Fig. 8 presents an example of such direc-
tional shadowing problem. Due to the strong di-
rectional shadowing, the same physical path cor-
responds to two parallel RSS trajectories. If ap-
plying clustering-based fingerprint extraction, the
algorithm may wrongfully determine that there are

two parallel paths between the start and end point.
Thus, eliminating such directional shadowing is
crucial for improving the localization accuracy.

5.2 Extracting Fingerprints

The RSS samples are highly deviated for the
same physical position if under directional shadow-
ing, however, the whole RSS changing trends are
remarkably similar. Therefore extracting unique
RSS fingerprints without directional shadowing
could be transformed to a problem of correctly
identifying the correspondence between a lot of
RSS trajectories. Treating these trajectories as
curve-shaped graphs, identifying the correspon-
dence is, however, a n-partite graph matching
problem. Fortunately, this can be done by n − 1

times iteratively graph matching between n-th tra-
jectory and previous resulting RSS fingerprints
graph. As revisited in Section 2, relaxation-based
approaches approximate the graph matching ele-
gantly, and the only job is to build the affinity
matrix MCP×Q for two graphs GP and GQ.

A possible graph matching between GP and
GQ is a set of assignments( or pairs) (i, i′), where
i ∈ V P and i′ ∈ V Q. And for every two assign-
ments a = (i, i′) and b = (j, j′), there is an affin-
ity score ma,b that measures the compatibility be-
tween them. Let set CP×Q enumerates all possible
assignments, then MP×Q is the affinity matrix of
it, and MP×Q stores all the affinity scores for all
possible assignments. Based on this definition, an
optimal graph matching is a set of assignments C∗

which has the highest inner affinity scores. Each
element ma,b ∈ M is assigned as follows in current

For visual clarity, we plot only RSS traces from 3 APs.
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system.

M(a,b) =


e−||dij−di′j′ ||, if ||dij − di′j′ || > ϵ

0, otherwise

(6)
where dij and di′j′ are the distance between i and
j, and their assignment pairs i′ and j′, respectively.
Since RSS attenuation along distance is non-linear,
in our system the Minkowski distance [35] with
value p = 1.7 is used to define the distance be-
tween RSS samples a and b.

dab = (
n∑

i=1

|rssai − rssbi|p)
1
p (7)

where n represents the numbers of all heard APs,
and rssai for the i-th AP’s RSS value of RSS sam-
ple a.
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Fig. 9. The correspondence ratio among RSS sampling
sequence. Ted dots denote the extracted RSS finger-
prints.

After solving the graph matching problem
with affinity matrix M using spectral approaches,
the resulting column-wise vector X with length
nP × nQ can then be reshaped to an association
matrix AnP×nQ , where each element Aij denotes
the matching rate between i ∈ V P and j ∈ V Q.
Due to the uniqueness, RSS fingerprints can be
easily extracted by finding the RSS points which
do not have correspondence in historical data. Let
UA be the upper triangular matrix of A and DA

for its diagonal matrix, a RSS point i is considered

to be a RSS fingerprint iff∑
i

(UA −DA) = 0.

Fig. 9 shows a sample association matrix for the
graph matching between two same RSS trajecto-
ries. The red dots denote the extracted unique
RSS samples points by graph matching algorithms,
and they become effective fingerprints.

5.3 Fingerprints Transition Graph

The Fingerprints Transition Graph GT

records the spatial connections of all fingerprints.
There are two conditions that qualify two nodes
i, j ∈ V (GT ) to have an edge eij ∈ ET :

1. i and j are subsequent RSS fingerprints vec-
tor within the same RSS fingerprints seg-
ment;

2. i and j belong to different segments, the dis-
tance dij is smaller than ϵ and at least one
of both is the start or end of a segment.

The weight of each edge eij is set to the geodesic
distance between these two fingerprints measured
by CSI speed estimation module.

6 Mapping Between Fingerprints and
Floor Plan

6.1 Floor Plan in Manifold’s Eyes

In human terms, the shortest distance be-
tween two points i and j in the indoor environ-
ment is not the euclidean distance deu(i, j) but
the geodesic distance dgeo(i, j), which means that
the indoor space in locally euclidean but globally
not. In another words, indoor space could be es-
sentially viewed as a 2D-manifold S embedded in
a 2D-polygon P.

Since the geodesic distance reveals the true
structure of the manifold, we resample the 2D
floor plan with uniformly scattered points and con-
struct an n-nodes graph GM to represent the un-
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folded version of the manifold. Any two nodes
i, j ∈ V M have an edge eij iff the correspondence
points i′, j′ in the floor plan P are in their mutual
neighbourhood with direct line-of-sight distance,
and the weight for edge is the direct distance that
eij = deu(i

′, j′).

6.2 Unsupervised Accurate Mapping

Since the RSS samples are measured along
users’ walking trajectories, the RSS fingerprints
transition graph GT also share the same mani-
fold structure. An intuitive solution to establish
the fingerprint map is to apply graph matching
directly between GF and GM . However, the accu-
racy and performance of large-scale graph match-
ing (>50 points) is too poor for an unsupervised
solution. A lightweight problem relaxation is to
apply graphing matching only on corridor points
graph. Once the corridor points graph are mapped
correctly, the room matching is trivial. Unfor-
tunately, the accuracy and performance of graph
matching between such simple graphs is still not
satisfied.

We devise a method called “Skeleton Match-
ing” to achieve unsupervised accurate mapping be-
tween GF and GM even for very complex indoor
structure. We first performs clustering on the cor-
ridor points to form a skeleton graph. Due to
the high sparsity chain structure of GF and GM ,
the topology of the skeleton graphs follow exactly
the structure of corridor points. As a highly con-
densed structure, performing graph matching on
these graphs could achieve very high accuracy.
Finally, once the skeleton graphs are correctly
matched, the corridor points and the rooms will
be matched trivially. The algorithm is detailed in
following 3 steps, including skeleton graphs extrac-
tion, skeleton graphs matching, and find-grained
points matching.

Extract the skeleton graph

Two sub-steps are required to extract the
skeletons and the skeleton graphs. 1). Identi-
fying the corridor points graph GCF ∈ GF and
GCM ∈ GM ; 2). extracting skeleton graphs GSF

and GSM .
In the first sub-step, a customized centrality

measure C(V ) is designed to identify the core cor-
ridor network. For a given point v ∈ V , its cen-
trality C(v) is as follows.

C(v) =
∑

s̸=v ̸=t∈V
σst(v) (8)

where σst(v) is the numbers of shortest path from
s to t via v.

Based on this definition, we design a itera-
tive algorithm to remove the non-central points
effectively. In each round of iteration, the cen-
trality C(v) is measured for every points. If C(v)

is smaller than a low-bound τ , then remove the
points from the graph. This procedure repeats un-
til no points is removed. The choose of value τ

is critical. Too small τ will bring in redundant
points, while overlarge τ will make all points be
removed. Since the raise of τ will lead to mono-
tonic decrease of number of remaining points, we
use binary search method to find the critical τ∗.

In the second sub-step, the skeleton graphs
V S is generated by clustering the corridor points
graph GCF and GCM . We use spectral cluster-
ing [36] (SC) as the clustering algorithm. SC is
computationally faster than K-means and it only
requires the similarity matrix which is exactly suit-
able in our case that both GCF and GCM are rep-
resented only in adjacency matrix. By clustering
on GCF and GCM , we obtain the vertices set of
skeleton graph GSF and GSM . The edge set ESF

and ESM follow the underlying points, that if two
points i, j, belonging to different clustersca and cb

respectively, have an edge, then there is an edge



Jizhong Zhao et al.: Indoor Localization with CSI-speed estimation 13

between ca and cb. The weight of edge eab is de-
fined as the shortest distance between the central
points of cluster a and b, and the central point of
a cluster is the point i which has the shortest dis-
tances to other points within the cluster.

Skeletons Matching

After the extraction of the skeleton graphs for
both GF and GM , we then find the best correspon-
dence between GSR and GSM via graph matching.
Let symmetrical square matrix MSR and MSM

represent their adjacency matrices. We build the
affinity matrix MSR×SM for graph matching as
follows.

MSR×SM = e(1
SM

⊗
MSR−1SR

⊗
MSM )

2

(9)

where
⊗

denotes the Kronecker product [37] and
1SR denotes the full-1 matrix with the same size
of GSR.

We adopt RRWM algorithm [29] to perform
the graph matching. Hungarian algorithm is fur-
ther applied to discretize the X in order to meet
the final integer constraints X ∈ {0, 1}n.

Corridor Points Matching

Graph matching between GSF and GSM is
quite easy. However, due to the inconsistency of
clustering on GCF GCM , the matching between
the skeletons graph cannot lead to the direct one
to one points matching of two matched clusters.

In the corridor points graphs, only a few
points connect multiple chain structures. There-
fore, once we identify the correct correspondences
of these bridge points V CF

b and V CM
b , the rest of

the points can be matched subsequently. In order
to identify the bridge node, we introduce a new
metric called ”bridge centrality”, which is equal to
the number of shortest paths from all vertices to
all others within nearby clusters that pass through

that node.

Cbg(v) =
∑

{(s,t)|v∈ci,s,t∈NN(ci),s,t/∈ci}

σst(v) (10)

where NN(ci) denotes the nearby cluster of ci.
The bridge point will be the point with the highest
bridge centrality.

After identifying the correspondence of bridge
points in GCF and GCM , we next start the match-
ing of the chain points in both graphes. Since
the bridge points hold the main structure of
the graphs, the enumeration of all the one-hop
paths between any two bridge points will cover all
the chains. For every one-hop path matched in
both graphs, the points in GCF are sequentially
matched to GCF according to distance informa-
tion.

7 Localization and Tracking

C2IL provides a unified localization and
tracking service by treating the direction local-
ization request as a tracking request without his-
torical data. Here we mainly focus on track-
ing technique in C2IL. Unlike the stateless K-NN
based method which is widely adopted in previ-
ous approaches, in our solution, the users’ trajec-
tories are globally determined from the very be-
ginning by transforming the tracking problem to
a graph matching problem between the measured
RSS samples transition graph GS and the finger-
print transition graph GT . After the graph match-
ing, the accuracy is further improved by bring-
ing in the CSI-based speed estimation through a
particle-filter based fusion. Here we start intro-
ducing these two steps.

7.1 Graph Matching Based Tracking

Graph matching based tracking is to find the
best correspondence between the sequence of RSS
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samples of tracking request and extracted finger-
prints. This is exactly the same matching process
undertaken in Section 5, except for the differences
that the tracking is to find the matched points,
while in Section 5 the un-matched RSS samples
are added to the fingerprints database.

Let X nS×nF represent the association matrix
obtained through spectral matching where nS and
nF are the numbers of RSS samples and candi-
date fingerprints respectively. Due to the error
in RSS measurement and fingerprints map con-
struction, a single RSS samples pi may corre-
spond to multiple fingerprints in X ,e.g., a RSS
sample may correspond to two fingerprints, one
is in corridor, and another is in a room. Fortu-
nately the temporal correlation can help eliminate
those false correspondence by checking the spatial
continuity between current and subsequent candi-
date fingerprints. After eliminating the false corre-
spondence, the globally estimated coordinates se-
quence will be given by TGS = fGT (GS), where
f : fingerprint → GM represents the mapping
from fingerprints to the floor plan manifold GM ,
and TGS are the resulting coordinates sequence in
GM .

However, full graph matching between all fin-
gerprints set and RSS samples is time-consuming,
therefore a matching candidates pruning process is
introduced to meet practical demand of real-time
tracking of multiple clients.

Matching Candidates Pruning: The main
idea of the pruning is to find the probable walking
area for the tracking request using coarse-grained
nearest neighbor (NN) method, which will signifi-
cantly reduce the search space.

Let RT = {rT1 , .., rTn } represent the RSS se-
quence of the tracking request at time t, where ri

is a n-dimensional RSS vector. The length n is
smaller than a positive integer L, such that the
tracking algorithm provides limited backtracking.

Let RF = {rF1 , .., rFn } denote the RSS fingerprints
set and graph GF

P denote the positions of finger-
prints in the floor plan. The pruned matching can-
didate set Su is defined as follows.

Su = {rF |rF ∈ RF , rF ∈ ϵ-NNRF(NNRF(RT))}
(11)

where NNRF(RT) denotes the nearest neighbors of
RT within the fingerprints set RF , and ϵ-NNA(B)

denotes the B’s neighborhood within distance ϵ in
the set A. Here the ϵ is set to 3m.

7.2 Fine-Grained User Tracking

The movement estimation from trajectories
matching (TM) and CSI-based speed estimation
(CBSE) are naturally complementary. TM is slow-
responsive yet accurate in long time, while CBSE
may drift with time cumulation yet be accurate in
short time. Obviously, a fusion scheme for TM
and CBSE will significantly improve the accuracy.
Due to the linearity constraints and difficulties in
correctly estimating the error covariance matrices,
we don’t use the conventional Kalman filter. The
more robust particle filter (PF) is adopted as the
fusion algorithm.

The state space of the tracking is a two di-
mensional vector Xt = [Mi, vt], where Mi rep-
resents the i-th node in the floor plan manifold
M , and v for the walking speed. The main chal-
lenge here is that the speed v has no direction in-
formation, therefore every round the PF evolves
and there are multiple candidate predictions. For
instance, when walking in a corridor without op-
tional paths, there are two candidate directions,
forward and backward, and therefore two state
candidates Xfor = [Mj , vt] or Xrev = [Mh, vt],
where Mj and Mh are two nearby nodes in differ-
ent directions.

Fortunately,the PF can handle this problem
elegantly by sprinkling different amounts of parti-
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cles in different directions. In the prediction phase
of each filter iteration, the particles will be re-
sampled and enumerate all possible candidate di-
rections.

Fig. 10 illustrates the particles distribution
along a path, in each round the particles enumer-
ate all possible candidate directions. When there
are optional paths, the particles will enumerate all
possible options. After the fusion, the Mi is trans-
formed to floor plan coordinates.

Fig. 10. The predicted particles distribution before each
new measurement: red dots represent the particles, and
green dots for the determined position in last round.

8 System Evaluation

8.1 Prototype System with Customized
APs

We designed and developed a prototype hard-
ware system for C2IL. The prototype system is
deployed in a large 2000m2 office environment
with circular corridor network as shown in Fig. 11.
To maximize the participation rate, C2IL is de-
ployed at AP-end. In total, 19 customized APs
are sparsely deployed across the office that pro-
vide both wireless networking service and localiza-
tion service. They will forward the measured RSS
and CSI values to a central localization server. A
developed simple client App is installed on testers’
Android smartphones. The localization server will
calculate the clients’ position based on the net-
working traffic, and clients only need to read the
location coordinate from server.
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Fig. 11. The floor plan of our test area, and red dots
denote the deployed customized APs.

Fig. 12. Prototype system for C2IL with Intel Atom-
based Mini PC and 5300NIC as AP.

Although CSI is a standard PHY layer infor-
mation, currently only Intel 5300 NIC can export
it to user level. Our customized AP is simply an In-
tel ATOM- based mini PC with 5300 NIC. Figure
12 shows our customized AP. It equips with single-
core 1.6Ghz ATOM CPU and 5300 NIC. The total
cost is about $90. The OS is Ubuntu 12.04 64-bit,
and AP function is hosted by hostapd. Besides the
ordinary AP interface, a monitor virtual interface
is also added to overhear the wireless traffic. Both
measured CSI and RSS are uploaded to localiza-
tion server in real-time.

8.2 C2IL Speed and Distance Estimation

In this experiment, 10 students are asked to
walk 3 times around the 129m long circular corri-
dor as shown in Fig. 11. They are asked to main-
tain constant walking speed in first round, and the
speed may change slightly and remarkably in sec-
ond and third round. The measured speed will
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be integrated to walking distance Dw. We mainly
considered the error rate ew = |Dpath−Dw|/Dpath.

Two other speed estimation approaches
i.e. pedometer-based and channel coherent-time
based [28], are also developed as comparison. For
pedometer we use NASC [2] method to detect
steps, and the step length is predefined in train-
ing phase. The accelerometer data required by the
algorithm was retrieved from laptop’s HD active
protection. For coherent-time based approaches,
we use a constant ξ = 0.396, which is manually
optimized for this evaluation.
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Fig. 13. The Error CDF of 3 methods.

Fig. 13 presents the error CDF of three meth-
ods in three walking manners: with constant speed
(R1), slightly varying speed (R2), and with marked
change (R3). The experiment shows that, com-
paring to pedometer- based approach, C2IL with
CSI can achieve better accuracy without requir-
ing predefined constants or training data, mean-
while, C2IL significantly outperforms pedometer-
based (Pedo) approaches when speed is varying
or pre-defined step length is out of effectiveness.
Coherent-time based approach (Chnt) haves the
similar speed-invariance feature, however, the ac-
curacy is considerably poorer than C2IL and pe-
dometer in constant speed.

The accuracy of CSI-based distance estima-
tion is then evaluated. To evaluate the influence of
richness of multipath components to the distance
estimation error, we carried out experiments in 3
typical environments, a compact corridor, a large

office environment, and a very large hall. In each
environment we walked along a 50m straight line
for 10 times. Two APs were simultaneously used
to estimate walking distance. One was placed at
the end of the path with strong LoS component,
and the other was placed in a cubicle to cut-off
the LoS components to simulate strong Rayleigh
fading. Figure 14 (a) plots the Rician K Fac-
tor [38] along the walking path in different envi-
ronment, which estimate the degree of LoS com-
ponents. Very low and stable K appears in corri-
dor environment which means there are rich multi-
path components, while in office and hall the mul-
tipath components is significantly reduced due to
the weak reflection in large wide-open space. Fig-
ure 14 (b) and (c) plot the CDF of estimated walk-
ing distance by the AP in path and cubicle respec-
tively. We see in the best situation that in a cor-
ridor with strong multipath component, there is
only 3% error. In Figure 14 (c), we also see small
error happened in the path, and in the worst sit-
uation, in a large hall with very weak multipath
components, the averaged estimated error is less
than 10%.

8.3 Mapping Accuracy Test

Fig. 15 (a) shows extracted corridor points
and the ”bridge points”. The critical τ∗ is set to
127 after 6 round of iteration. To obtain the RSS
transition graph, 5 students are asked to walking
in the rooms for 20 minutes to cover all acces-
sible area. The RSS and CSI data is collected,
and Fig. 15 (b) and (b) shows the visualization
of GT and GCT respectively. Please note that
our mapping algorithm requires only the adjacency
matrix of graphs, and the MDS-based position is
only for visualization. The graph matching result
is shown in figure (d). For each graph GSF or
GSM there are 8 points, the graph matching under
such small scale could achieve stably and accurate
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Fig. 14. (a) the Rician factor K along the path in different environment. (b) the CDF of estimated distance
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Fig. 15. (a) The clustering of corridor points graph GCM , the purple points denotes the ”bridge points”. (b) An
visualization of RSS fingerprints transition graph GT . (c) The clustering of the GCT (the corridor points of GT ).
(d) The skeleton matching result between GST and GSM . (e) The matching between GCT and GCM under the
guide of skeleton matching and the ”bridge points”, the same color denotes the correspondence. (f) The room
matching accuracy CDF.

mapping. Figure (e) shows the matching of cor-
ridor points under the guide of skeleton matching
and the ”bridge points”. Figure (f) shows the error
of both corridor points mapping and room points
mapping. We can see clear that the corridor points
are highly matched. The corridor points maximum
error is still under 2m, while the maxmium room
matching error is under 6m.

8.4 Localization and Tracking
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Fig. 16. The localization & tracking error CDF with dif-
ferent amount of historical RSS fingerprints data. The
RADAR scheme is as comparison. The suffix num-
ber (0m) denotes the direct single point localization,
while (10m) denotes the tracking service with a histor-
ical data of 10m.
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In this test, we compared C2IL with our pre-
vious work SENIL [16], and RADAR [10] system
still worked as baseline. the RSS/CSI samples of
20 minutes walking in different speeds are used as
testing data. Since we mainly evaluated the ac-
curacy with different length of historical data, we
randomly select ℓ successive RSS samples for each
round. Figure 16 plots the error CDF with differ-
ent amount of historical data. Comparing to SE-
NIL, C2IL is averagely 1m better. The accuracy
improvement is mainly due to the precise moving
speed/distance estimation.

9 Conclusion

In this paper, we proposed an indoor local-
ization and tracking scheme, C2IL. Our scheme
does not require using additional sensors, except
the availability of 802.11n wireless connection. We
believe that C2IL is the first scheme that the really
benefits from the multipath effect in complex en-
vironment. An innovative method is proposed to
accurately estimate the moving speed and distance
purely based on 802.11n CSI, which should find a
wide range of applications alone. Based on this ac-
curate distance estimation, we built the mapping
between RSS fingerprints and location using unsu-
pervised learning, and unified the localization and
tracking. Our extensive evaluation results indicate
that our scheme C2IL successfully handles very
complex indoor structure and simultaneously pro-
vides the best performance in contribution rate,
localization cost, and localization/tracking accu-
racy.
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