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Abstract—The use of wireless sensor networks (WSNs) for closing the loops between the cyberspace and the physical processes is

more attractive and promising for future control systems. For some real-time control applications, controllers need to accurately

estimate the process state within rigid delay constraints. In this paper, we propose a novel in-network estimation approach for state

estimation with delay constraints in multihop WSNs. For accurately estimating a process state as well as satisfying rigid delay

constraints, we address the problem through jointly designing in-network estimation operations and an aggregation scheduling

algorithm. Our in-network estimation operation performed at relays not only optimally fuses the estimates obtained from the different

sensors but also predicts the upper stream sensors’ estimates which cannot be aggregated to the sink before deadlines. Our estimate

aggregation scheduling algorithm, which is interference free, is able to aggregate as much estimate information as possible from the

network to the sink within delay constraints. We proved the unbiasedness of in-network estimation, and theoretically analyzed the

optimality of our approach. Our simulation results corroborate our theoretical results and show that our in-network estimation approach

can obtain significant estimation accuracy gain under different network settings.

Index Terms—Wireless sensor networks, estimation, aggregation scheduling, delay constraint, cyber-physical systems, networked

control systems

Ç

1 INTRODUCTION

CYBER-PHYSICAL Systems (CPSs) are a promising new
class of systems characterizing seamless, fully syner-

gistic integration of cyber capabilities and physical pro-
cesses, and can find application in a broad range of areas
[1], [2]. Unlike traditional cyber systems which are usually
the passive information receptors in the physical world,
CPSs make cyber resources interact with the physical
world automatically and intelligently. Because of the
advantages of low cost and easy deployment, WSNs are
regarded as a more promising means of observing physical
world for CPSs [3], e.g., smart building applications [4], [5],
[6], waste water processing systems [7], and disaster
monitoring systems [8], [9].

In these WSN-based CPSs whose architecture is depicted
in Fig. 1, a set of sensor nodes distributed in a surveillance
area perform the state sampling of dynamical processes,
and the spatiotemporal sampling data are collected from
the sensor nodes to one or more control centers (or sinks

which we use interchangeably in this paper) by using a
multihop wireless network. Then, based on the collected
sensor information, controllers make appropriate control
decisions which drive actuators to change the physical
processes. In these networked systems, on the one hand,
before making correct control design, the controller residing
in the control center needs to know the process state to be
controlled as accurately as possible. However, the process
state cannot be obtained directly due to the presence of the
process noise and the measurement noise [10]. Therefore,
the system must estimate the process state based on the
sensor measurements, and use the estimates as the input of
the controller. On the other hand, the presence of the
wireless network in the feedback control loop means that
the data packets can be randomly dropped and delayed.
From the viewpoint of networked control systems (NCSs),
the significant transmission delay is equivalent to the data
loss, which leads to the performance degradation or even
loss of the stability of the systems. Thus, the sensor
information must be gathered at the control center within
very stringent time constraints. A key challenge in these
systems is then to design efficient and effective transmis-
sion protocols to satisfy the rigid delay requirement of the
control applications under wireless interference constraints.

Currently, in the field of WSN-based CPSs, the researches
of the state estimation and the protocol design have
remained largely separate. In the aspect of the state
estimation, a method for compensating for the data loss
caused by communication is to improve the estimators so
that they can estimate the dynamic process states with
intermittent observations as accurately as possible. The
estimation problem based on single sensor information over
lossy networks has been extensively studied recently [11],
[12], [13], [14], [15]. But, these estimation techniques only
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view the network as a single end-to-end communication
channel characterizing some data loss model and adapt to
the underlying communication protocols passively. In
addition, multisensor information fusion is usually adopted
in WSNs to deal with the sensing uncertainty, and many
distributed estimation algorithms have been proposed [16],
[17], [18], [19], [20]. However, the current distributed
estimation methods are restricted to either single-hop net-
works or multihop networks without a center, and are thus
not suitable for the multihop networks with one fixed sink. In
the aspect of the protocol design in WSNs, aggregation
scheduling has attracted much attention recently. In WSNs,
compared with transmitting raw data, in-network data
aggregation (whose operation is depicted in Fig. 1) is
effective in improving delay performance as well as reducing
energy consumption [21], [22], [23]. Several protocols have
been proposed in the literature for delay-efficient data
aggregation in WSNs, e.g., [24], [25], [27], [26], [28]. All these
work focus on minimizing the total delay of aggregating the
whole sensor data from the network to the sink under
various interference models. However, these scheduling
schemes cannot be applied to some large-scale networked
real-time systems in which aggregating all the sensor
information cannot satisfy the rigid delay constraints.

In this paper, we consider a state estimation problem with
stringent delay constraints in large-scale WSNs, and this is
an important issue for real-time networked control applica-
tions. Our objective is to obtain an optimal state estimate at
the sink within rigid delay constraints through the collabora-
tion of a set of distributed sensors and the sink. Compared
with prior work, we jointly design an estimation method and
a scheduling algorithm in multihop WSNs, and propose a
novel in-network estimation approach for accurately esti-
mating the state as well as satisfying delay constraints. Our
in-network estimation is a progressive estimate fusion
technique in which every intermediate node on the route
calculates an optimal fusion estimate based on the informa-
tion received from its child nodes in the aggregation tree and
its own measurements. Unlike the minimum delay aggrega-
tion scheduling, the objective of our aggregation scheduling
is to gather maximum sensor information at the sink within
stringent delay constraints, and this is because that we can
reduce the estimation error through collecting the more
information from the sensor networks.

The main contributions of our work are as follows: First, to
the best of our knowledge, this is the first work to use
codesign of the estimate fusion operation and the aggregation
scheduling to address the estimate aggregation problem with
delay constraint in WSNs. Second, we propose an in-network
estimate fusion method to optimally fuse the different
estimates. Our in-network estimation operation cannot only
optimally fuse the estimates received from different sensors
but also predict the upper stream sensors’ estimates which
cannot be aggregated to the sink before deadlines. Third,
under the protocol interference model, we design an
aggregation scheduling algorithm for optimally estimating
a process state and satisfying delay constraints, and we
theoretically prove that the proposed scheduling algorithm is
interference free. Fourth, we prove the unbiasedness of our
in-network estimation, and analyze its optimality.

The rest of the paper is organized as follows: Section 2
formulates an in-network estimation problem. The distrib-
uted in-network estimation operations are presented in
Section 3. We propose an estimate aggregation scheduling
algorithm in Section 4. Section 5 analyzes the performance
of our in-network estimation approach. Section 6 presents
the simulation results. Section 7 reviews the related work.
We conclude the paper in Section 8.

2 PROBLEM FORMULATION

2.1 Network Model

Consider a multihop WSNG ¼ ðV ;EÞwhere V is the set of n
nodes in the network andE is the set of communication links.
Assume a node cannot send and receive data simulta-
neously. To let two links transmit simultaneously, we must
ensure they are interference free. In the protocol interference
model [29] on which our work is based, each node has an
interference range rI . A receiver v of a link uv is interfered by
the signal from another sender p if k p� v k� rI .

We assume that there is an aggregation tree Q rooted at a
sink node vn 2 V . There are many ways to construct an
aggregation tree. One example is the distributed approach
presented by Wan et al. [30]. But, this aggregation tree may
not be optimal for the purpose of in-network estimation.
Finding the best tree for state estimation remains an open
research topic.

2.2 Data Model

In this paper, we consider a common discrete-time data
model which characterizes the linear process state and
observation and can be motivated by many practical
applications. We assume sufficient bits per data packet so
that the quantization error is negligible. This assumption
makes sense if the communication packet provides enough
bits for transmitting data so that the effect of quantization
error is dominated by the effect of the process and the
measurement noises [31].

The discrete-time linear dynamical process considered in
this paper is modeled by Schenato et al. [11], [15]

xðkþ qÞ ¼ AxðkÞ þ wðkÞ; ð1Þ

where xðkÞ 2 Rp is the process state vector at time k, A is
the state-transition matrix of the process, q is the sampling
period, and wðkÞ 2 Rp is the zero-mean white Gaussian
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process noise with covariance matrix Rw > 0 and uncorre-
lated across time. The initial state xð0Þ is assumed to be
independent of wðkÞ and to have mean zero and covariance
matrix Rð0Þ. The process state to be estimated has the
different physical interpretation in different systems, e.g.,
the temperature vector whose component is the local
temperature at different locations, and the position vector
of a target to be tracked [10]. The state-transition matrix A
characterizes the temporal correlation between the states of
two consecutive sampling time slots. The observations
about the common state are collected by the physically
distributed sensors according to the measurement model

yiðkÞ ¼ BixðkÞ þ wiðkÞ; ð2Þ

where yiðkÞ 2 Rpi is the measurement output vector
generated by the sensor vi at time k, Bi is the observation
matrix of the sensor vi, and wi 2 Rpi is the measurement
noise of the sensor vi which is assumed to be white, zero-
mean, Gaussian with covariance matrix Ri > 0ð1 � i �
n� 1Þ and is uncorrelated across time and sensors and
independent of process noise wðkÞ.

2.3 Problem Formulation

For accurately estimating state xðkÞ, the sink needs to
gather the sensing information as much as possible.
Moreover, the sensing information collected at time k
should be received by the sink before a given deadline.
Therefore, we address the problem from two coupled
aspects. The first aspect is an effective aggregation
scheduling which can gather much sensing information as
possible from the network to the sink within every
scheduling period (which will be defined later). The other
aspect is the estimation operation which is performed by
each node and is responsible for processing the sensor
information aggregated from the upper stream sensors.

In our in-network estimation approach, we transmit the
estimates of the state instead of the measurements. In the
network G, when the sensor við1 � i � n� 1Þ samples a
new measurement yiðkÞ at time k, it computes a state
estimate x̂iðkÞ based on its local measurements and the
estimates received from its upper stream sensors, and then
forwards the estimate x̂iðkÞ to the next hop node along the
aggregation tree. The estimate error covariance matrix of
the node vi is expressed as

PiðkÞ ¼ E
�
xðkÞ � x̂iðkÞ

��
xðkÞ � x̂iðkÞ

�Tn o
; ð3Þ

where E is the expectation, and T denotes the transpose.
Finally, based on the acquired estimates from the network,
the sink performs an unbiased fusion estimation.

Let A;B � V and A \B ¼ ;. We say that data are
aggregated from A to B in one time slot if all the nodes in
A transmit data simultaneously in one time slot and all the
data are received by some nodes in B without interference,
and A is called a sender set. In this paper, the delay
constraint is set to the sampling period q. This is reasonable
because the sensor information sensed at time k is outdated
when there is the new sensing information obtained right
after time kþ q. For simplicity, we assume that q is an
integer multiple of one time slot assigned to each scheduled
sensor, the networked system starts running at time 0, and
the clocks of all nodes are synchronized. Within every

sampling period q, since there is no new sensing informa-
tion, the object of the scheduling is unchanged and q can
also be termed as a scheduling period.

Then, we divide the time of the each round of scheduling
period into q time slots. In one scheduling period, Si is
defined as the sensor node set all the member nodes of
which synchronously send packets to their corresponding
parent nodes in the ith time slot ði 2 f1; 2; . . . ; qgÞ. The work
of scheduling is to assign the time slot to each node in the
network. In other words, the scheduling problem is how to
determine the node set S for each time slot during which all
the member nodes of S synchronously send packets to their
corresponding parent nodes.

Thus, in the lth round of schedule ðl ¼ 0; 1; . . .Þ, an
aggregation schedule for in-network estimation can be
defined as a sequence of sender node sets S1; S2; . . . ; Sq
satisfying the following conditions:

1. Si \ Sj ¼ ;, 8i 6¼ j and i; j 2 f1; 2; . . . ; qg;
2. The estimates are aggregated from Sk to V �

Sk
i¼1 Si

at time slot k, for all k ¼ 1; 2; . . . ; q, and the estimates
of the state of the time lq are aggregated to the sink
vn before time ðlþ 1Þq.

Notice that we discard the condition
Sp
i¼1 Si ¼ V � v0

required in the other delay-efficient aggregation scheduling
problems [27], [28]. This is because we cannot gather all the
estimates from the network to the sink before the deadline
when q is so small relative to the network size. Condition 1
is to ensure that a node participates in the data aggregation
at most once in one scheduling period.

Given the multihop WSN G, the in-network estimation
problem with delay constraints is to jointly design the
estimation operation x̂iðkÞð1 � i � nÞ of each node and an
aggregation schedule S1; S2; . . . ; Sq such that the estimate
x̂nðkÞ at the sink vn satisfies the following goals:

1. Unbiasedness, E½x̂nðkÞ� ¼ E½xðkÞ�;
2. Optimality, minimizing the trace of fusion estimate

error covariance, minftr½PnðkÞ�g, where tr½�� denotes
the trace of matrix.

3 DISTRIBUTED IN-NETWORK ESTIMATION

In this section, we present the estimation operation
x̂iðtÞð1 � i � nÞ of every node in the network. Before giving
the details, we outline the overall process of our distributed
in-network estimation approach in every scheduling period.
A flowchart version of the in-network estimation approach
is provided in Fig. 2. As shown in the figure, in an
aggregation tree, every node takes the following actions:

1. The leaf node samples the dynamical process state at
time l � q and performs a local estimation based on its
own measurements obtained before time l � qðl ¼ 0;
1; 2; . . .Þ. Then, it waits for being scheduled. If a leaf
node is scheduled, it transmits the local estimate to
its parent directly.

2. For the relay node, first, it also samples the dynamical
process state at time l � q and performs a local
estimation based on its own measurements obtained
before time l � qðl ¼ 0; 1; 2; . . .Þ. Then, it performs an
optimal information fusion based on the estimates
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received from its child nodes and its own local
estimate. If the estimates cannot be received from its
child nodes in the current scheduling period, the
relay node predicts the estimates based on the
previously received estimates from its child nodes,
and use the predicted estimates to calculate the fused
one. Third, when a relay node is scheduled, it
transmits the fused estimate to the next-hop node.

3. The sink node continuously collects the estimates
from its child nodes. At the deadline of every
scheduling period, the sink predicts the estimates
based on the previously received estimates from its
child nodes, and then calculates an optimal estimate
based on the previously received information and
the predicted estimates.

Note that we consider a large-scale multihop network
scenario in which only part of the state estimates of time l � q
can be aggregated to the sink before time ðlþ 1Þ � q.
Therefore, we need to design an optimal estimate fusion
method which is capable of dealing with the two cases: the
complete upper stream information and the incomplete
upper stream information. In addition, the selection of the
estimate fusion scheme depends on the scheduling, and this
will be discussed in Section 4. The details of the estimation
operation performed at each sensor node are present in the
following sections.

3.1 Estimation at the Leaf

The local estimator at the leaf node adopts the standard
Kalman filter. The Kalman filter estimates a process by
using a form of feedback control: the filter estimates the
process state at some time and then obtains feedback in the
form of (noisy) measurements [32]. As such, the equations
for the Kalman filter fall into two groups: predictor
equations and corrector equations. The predictor equations
are responsible for projecting forward (in time) the current
state and error covariance estimates to obtain the a priori
estimates for the next time step. The corrector equations are
responsible for incorporating a new measurement into the a
priori estimate to obtain an improved a posteriori estimate.

We, respectively, define x̂iðkÞ ¼
4

E½xðkÞjYiðkÞ� and PiðkÞ ¼
4

E½ðxðkÞ � x̂iðkÞÞðxðkÞ � x̂iðkÞÞTjYiðkÞ� as the local filtering
estimate and the estimate error covariance of the node vi at

time k where YiðkÞ ¼4 fyið0Þ; . . . ; yiðkÞg (k ¼ l � q). The pre-
dictor equations of the filter estimation, which project the
state and covariance estimates forward from time step k� q
to step k, are given by

x̂iðkjk� qÞ ¼4 Ax̂iðk� qÞ ð4Þ

Piðkjk� qÞ ¼4 APiðk� qÞAT þRw: ð5Þ

The corrector equations are given by

KiðkÞ ¼4 Piðkjk� qÞBT
i BiPiðkjk� qÞBT

i þRi

� ��1 ð6Þ

x̂iðkÞ ¼ x̂iðkjk� qÞ þKiðkÞ yiðkÞ �Bix̂iðkjk� qÞ½ � ð7Þ

PiðkÞ ¼ Piðkjk� qÞ �KiðkÞBiPiðkjk� qÞ: ð8Þ

The first task during the correction step is to compute the
Kalman gain, KiðkÞ. The next step is to actually measure the
process to obtain yiðkÞ, and then to generate an a posteriori
state estimate by incorporating the measurement as in (7).
The final step is to obtain an a posteriori error covariance
estimate via (8). After each prediction and correction step
pair, the process is repeated with the previous a posteriori
estimates used to project or predict the new a priori estimates.

After the local filter estimation, the leaf node i uses
message msgiðkÞ ¼ ðx̂iðkÞ; PiðkÞ; kÞ as the scheduling unit of
the lth scheduling period, and waits for being scheduled.

3.2 Estimation at the Relay and the Sink

For the relay sensor node vi, once it obtains a new
measurement at sampling time k, it first performs the
Kalman filtering based on its own measurements according
to (4)-(8), and the local estimate x̂tiðkÞ and the local error
covariance Pt

i ðkÞ are acquired consequently. We define CSi
as the children set of the node vi and define Ci ¼ CSi [ fig.
During the lth scheduling period, the relay vi may receive
messages msgjðkÞ ðj 2 CSiÞ from its children before being
scheduled. Now, we will give an estimate fusion method
which combines the previously received estimation infor-
mation and its local estimation results. The fusion method is
based on the optimal fusion algorithm weighted by
matrices in the linear minimum variance sense. Based on
our variable definitions, we represent the following optimal
fusion theorem introduced in [33] and [34].

Theorem 1. Let x̂tjðkÞ ðj 2 CiÞ be unbiased estimates of a p-
dimensional stochastic vector xðkÞ. Let the estimate errors be
~xtjðkÞ ¼ xðkÞ � x̂tjðkÞ. Assume that ~xtj1ðkÞ and ~xtj2

ðkÞ
(j1 6¼ j2) are uncorrelated, and the estimate error variance
matrix is denoted by Pt

j ðkÞ. Then, the optimal fusion estimator
with matrix weights is given by

x̂iðkÞ ¼
X
j2Ci

wjðkÞx̂tjðkÞ; ð9Þ

where the optimal matrix weights wjðkÞ are computed by

wjðkÞ ¼
X
m2Ci

P t
mðkÞ

� ��1

" #�1

Pt
j ðkÞ

� ��1
; ð10Þ

and the corresponding minimal fusion error variance matrix is
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PiðkÞ ¼
X
m2Ci

P t
mðkÞ

� ��1

" #�1

: ð11Þ

Theorem 1 gives an optimal fusion criterion in the linear
minimum variance sense, and we use (9)-(11) as the
estimate fusion method executed at the relays. However,
at some relays, not all the children state estimates of time k
can be aggregated to them at the lth scheduling period due
to the rigid delay constraint. For example, if relay i does not
receive the message from its child j before i is scheduled at
the lth scheduling period, i can predict the child j’s estimate
and the covariance of time k based on the previously
obtained information from the child. Then, at relay i, the
fused estimate and the corresponding covariance of the
child j are, respectively, computed by

x̂tjðkÞ ¼ ð1� �jðkÞÞx̂tjðkjk� qÞ þ �jðkÞx̂jðkÞ; ð12Þ

and

Pt
j ðkÞ ¼ ð1� �jðkÞÞPt

j ðkjk� qÞ þ �jðkÞPjðkÞ; ð13Þ

where x̂tjðkjk� qÞ and Pt
j ðkjk� qÞ are, respectively, the

predicted estimate and the corresponding predicted covar-
iance of time k and they are both initialized to 0, and �jðkÞ 2
f0; 1g is a binary parameter. In the prediction process, we,
respectively, use the prediction (4) and (5) for computing
x̂tjðkjk� qÞ and Pt

j ðkjk� qÞ. In the lth scheduling period, if
node i can receive msgjðkÞ before being scheduled, �jðkÞ is
set to 1, else �jðkÞ is set to 0. �jðkÞ is jointly determined by
the scheduling, the network topology and q, and it will be
further discussed in Section 4.

At the sink, we also adopt the above estimate fusion
method expressed by (9)-(13) except that we use CSn
instead of Cn in the fusion (9)-(11).

Remark 1. The state estimates obtained from different
sensors are not conditionally independent in general
due to the common process noise. Therefore, the proposed
estimate fusion algorithm is suboptimal. However, it is
more computation efficient than the complicated fusion
method that takes the correlation of the state estimates
into account, and is a more attractive in-network
computation scheme for resource-constraint WSNs.

4 DECENTRALIZED AGGREGATION SCHEDULING

WITH DELAY CONSTRAINTS

In this section, we design an effective interference-free
estimate aggregation scheduling algorithm EASDC for
satisfying delay constraints and accurately estimating the
state. Our estimate aggregation scheduling algorithm is
based on an aggregation tree which can either be a breadth-
first-search (BFS) tree or that constructed by the existing
methods proposed in [30] and [27]. In algorithm EASDC,
we adopt a top-down time-slot assignment mode. In the
aggregation tree, each node locally determines the sche-
dules of its child nodes based on the previously received
messages. The proposed scheduling algorithm performed
in each node does not need any global network information,
and thus it is decentralized.

For node i in the aggregation tree Q, let pi be i’s parent,
let NSi be the set of i’s one-hop neighbors except pi. In our
algorithm, every node should maintain the following local
variables:

1. Number of children: NoCi, the number of i’s child
nodes in the aggregation tree Q.

2. Children number of i’s parent: CNoPi, the number
of the child nodes of i’s parent in the aggregation
tree Q.

3. Time slot to first transmit: TSFTi, the assigned time
slot at which i send its data to its parent for the first
time.

4. Node scheduling period: NSPi, the scheduling
period of i such that i is scheduled once every
NSPi time slots after time TSFTi.

5. Children set: CSi, the node set of i’s children such
that the set elements are arranged according to the
descending order of the size of the subtree rooted at
jð2 CSiÞ.

6. Indicator array of available time slot: IAATSi½��, a
binary array such that if a child node of i can
transmit data without interference in time slot t,
IAATSi½t� is 1, else IAATSi½t� is 0. IAATSi:size is
the size of the array.

7. PSNi ¼ fpjgj2NSi�CSi .
8. NSCi½j� ¼ NSj (j 2 CSi).
9. RANKi ¼ ðlevel; iÞ where level is the hop distance of

i to the root. The ranks of nodes are compared using
lexicographic order.

For accurately estimating the state, the estimate informa-
tion should be gathered by the sink as much as possible
within delay constraints. We define

PSNuNSCi ¼ PSNi

[ [
j2CSi

NSCi½j�
 !

:

The scheduling time of the node i is determined by TSFTi
and NSPi. To determine the schedules for all the nodes in
the sensor network, we use a top-down time-slot assign-
ment method: assign the time slot to nodes level by level
starting from the root level. The node i assigns the time slot
to its children according to the known interference condi-
tions expressed by IAATSi, and sends message
SCHDL(tsft; nsp) to its children and then sends message
SCHDL-CMPLT(tsft; nsp) to PSNi and the corresponding
NSCi½��. Upon receiving message SCHDL(tsft; nsp), the
child j sets tsft and nsp to TSFTj and NSPj, respectively.
Upon receiving message SCHDL-CMPLT(tsft; nsp), a node
updates its IAATS according to the message. Once a node
finish the schedule assignment task for its children, it sends
message FINISHED-SCHDL to its PSNuNSC. Upon
receiving message FINISHED-SCHDL from v, a node
deletes v from its PSNuNSC, and if its RANK is smaller
than that of every node in its PSNuNSC, it begins to assign
time slots to its children. The details of our scheduling
algorithm EASDC are shown in Algorithm 1.

Algorithm 1. Estimate Aggregation Scheduling with Delay

Constraints EASDC.

Input: A network G, the aggregation tree Q rooted at the

node n, and the delay constraint q;
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Output: TSFTi and NSPi for every node i (1 � i < n)
1: Every node i initializes NoCi, CNoPi (CNoPn  1),

RANKi, CSi, PSNi, and NSCi½�� based on the tree Q;

2: Allocates space for the binary array IAATSi½�� whose

size is q �maxfNoCi; CNoPig and each element of the

array is initialized to 1;

3: TSFTi  0; NSPi  q; DONEi  FALSE;

4: Root n calls TAAC(CSn;NoCn; IAATSn; q þ 1; NSPn,

PSNn;NSCn);
5: for Each node i, upon receiving a message

SCHDL(tsft; nsp) do

6: TSFTi  tsft; NSPi  nsp; DONEi  TRUE;

7: m 0;

8: while tsftþm � nsp � IAATSi:size do

9: IAATSi½tsftþm � nsp�  0; m mþ 1;

10: if There is available time-slot based on IAATSi,

tsftþ nsp and nsp then

11: if RANKi < RANKj for each j 2 PSNuNSCi
then

12: Call TAAC(CSi;NoCi; IAATSi; TSFTi;NSPi,

PSNi;NSCi).

13: for Each node i, upon receiving a message

SCHDL-CMPLT(tsft; nsp) do

14: m 0;

15: while tsftþm � nsp � IAATSi:size do

16: IAATSi½tsftþm � nsp�  0; m mþ 1;

17: for Each node i, upon receiving a message

FINISHED-SCHDL from node k do

18: if k 2 PSNuNSCi then

19: PSNuNSCi  PSNuNSCi � fkg;
20: if DONEi ¼ TRUE then

21: if There is available time-slot based on IAATSi,

tsftþ nsp and nsp then

22: if RANKi < RANKj for each j 2 PSNuNSCi
then

23: Call TAAC(CSi;NoCi; IAATSi; TSFTi;NSPi,

PSNi;NSCi).

TAAC (shown in Algorithm 2) is the time allocation
procedure for children. The time-slot assignment principle of
our algorithm is as follows. Consider the node i with the
assigned TSFTi andNSPi, we assumeNACS is the set of i’s
children to which the time slot has not been assigned and noc
is the size of NACS. If the child jð2 NACSÞ has the
maximum size of subtree rooted at j compared to the other
children in NACS, it may aggregate more estimate informa-
tion before time TSFTi. Therefore, we should set the
maximum available time slot t before TSFTi to TSFTj,
and NSPj is equal to NSPi. Based on IAATS, TSFT , and
NSP , the available time slot t is a time slot such that t <
TSFT and IAATS½tþm �NSP � ¼ 1 where m 2 fm0j0 �
m0 � ðIAATS:size� TSFT Þ=NSP;m0 2 ZZg. If there is only
one available time slot t before time TSFTi and noc > 1, we
cannot schedule all the children in NACS within one node
scheduling period NSPi. Then, in every scheduling period,
we choose one child j in NACS in turn to be scheduled and
NSPj is set toNSPi � noc. If there is no one available time slot
and noc > 0, the node i cannot gather any information from
its children in the current scheduling period. However, by
exploiting the temporal correlation of the process state, we

can predict the estimates based on the previously obtained
estimate information from NACS, and the predicted
estimate information can contribute to the estimation
accuracy. Therefore, if the estimate information of NACS
can be scheduled before time TSFTi þNSPi, it is also useful
for estimation accuracy.

Algorithm 2. Time Allocation Algorithm for Children

TAAC(CS; noc; IAATS; tsft; nsp; PSN;NSC).

1: for Select a node j from CS according to the descending
order of the size of the subtree rooted at j.

2: if There is no available time-slot based on IAATS,

tsft and nsp, and noc > 0 then

3: tsft tsftþ nsp;

4: if There is only one available time-slot t based on

IAATS, tsft and nsp, and noc > 1 then

5: Send the message SCHDL(t; nsp � noc) to j;

6: Send the message SCHDL-CMPLT(t; nsp � noc) to
PSN

S
NSC½j�;

7: CS  CS � fjg;
8: i 1;

9: for Select a node k from CS do

10: Send the message SCHDL(tþ nsp � i; nsp � noc)
to k;

11: Send the message SCHDL-CMPLT(tþ nsp � i; nsp �
noc) to PSN

S
NSC½k�;

12: i iþ 1;

13: CS  CS � fkg.
14: else

15: Find the maximum available time-slot t based on

IAATS, tsft and nsp;

16: m 0;

17: while tþm � nsp � IAATS:size do

18: IAATS½tþm � nsp�  0; m mþ 1;
19: Send the message SCHDL(t; nsp) to j;

20: Send the message SCHDL-CMPLT(t; nsp) to

PSN
S
NSC½j�;

21: CS  CS � fjg;
22: noc noc� 1.

23: Send the message FINISHED-SCHDL to PSNuNSC.

In our aggregation scheduling algorithm, every node
allocates the transmission schedule to its children by calling
Algorithm 2 TAAC. Algorithm 2 TAAC assigns the time
slots to the nodes based on the previously received
messages and the local topology information. The time slot
assignment operations begin to be performed at the root
node. The root node also calls TAAC to determine the
schedule of its children. So, the proposed scheduling
algorithm performed in each node does not need any
global network information.

Fig. 3 illustrates the scheduling results of our algorithm
for a small sensor network. There is a label xðy; zÞ beside a
node where x is the node’s ID, y and z are, respectively,
TSFT and NSP of the node. The solid lines represent the
edges in the aggregation tree and the dotted lines represent
the other edges in the graph. Node n is the sink. The delay
constraint q is set to 4. At first, the nodes at the level 1 are
assigned the scheduling time. Because the subtree of node 2
has a maximal size than the subtrees of node 1, 3, and 4 (the
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size of the subtree of a leaf node is 0), node n sends message
SCHDL(4,4) to node 2, and sends message SCHDL-
CMPLT(4,4) to nodes 1 and 3. Then, node n, respectively,
sends the messages SCHDL(3,4), SCHDL(2,4), and
SCHDL(1,4) to nodes 4, 3, and 1 in sequence, and,
respectively, sends the corresponding SCHDL-CMPLT
messages to its PSN and the corresponding NSCs. Upon
receiving message SCHDL(4,4), node 2, respectively, sets 4
and 4 to its TSFT and NSP , and waits for the FINISHED-
SCHDL message from 1. Upon receiving the messages,
node 2 calls TAAC to assign the scheduling time to its
children. Since there is only one available time slot 3 and
two nodes 5 and 6 need to be assigned time, node 2,
respectively, sends message SCHDL(3; 4� 2) and message
SCHDL(3þ 4� 1; 4� 2) to nodes 5 and 6. In this way, all
the nodes are assigned the scheduling time.

Remark 2. The sink estimates the state every q time slots.
However, when the size of the network is so large that
not all the estimates can be aggregated from the network
to the sink within q time slots. In the above example
(shown in Fig. 3), the estimate of node 12 cannot be
aggregated to the sink before the deadline. Node 12 still
sends its estimate to its parent node 7 because node 7 can
predict the estimate of node 12 in the next scheduling
period based on the estimate sent in the current
scheduling period. Therefore, the parameter �12ðlqÞ of
node 7 is 0 (l ¼ 0; 1; . . . ). Similarly, the parameters �5ð2lqÞ
and �6ðð2lþ 1ÞqÞ of node 2 are 1, and �5ðð2lþ 1ÞqÞ and
�6ð2lqÞ are 0. In summary, the parameters �xðtÞ are
determined by the schedule, the network topology and
the delay constraints, and thus the in-network estimation
is not stochastic.

Theorem 2. Algorithm EASDC generates an interference-free
aggregation schedule.

Proof. We prove that the resulting schedule is interference
free by contradiction. For each node i in the aggregation
tree, we define CoNi ¼

S
j2NSi�CSi CSj. Suppose there is

an interference in time slot k0, then there must exist two
nodes v1 and v2 both have k0 as their schedules, and v1’s
parent or v2’s parent hears two messages in k0. There are
four cases in this situation. The first case is p1 ¼ p2. In
EASDC, the schedules of node i is assigned by pi
according to IAATSi½�� by calling TAAC. If p1 (or p2) sets
v1’s schedule to k0, it cannot set v2’s schedule to k0. Here

comes the contradiction. The second case is v2 2 CoN1,
and this means p1 2 PSNp2

and p2 2 NSCp1
½1�. If

RANKp1
� RANKp2

, p2 cannot assign time slots to v2

until it receives a FINISHED-SCHDL message from p1,
else p1 receives a FINISHED-SCHDL message from v2

before assigning time slots to v1. Therefore, v1 and v2

cannot obtain the same schedule anyway. The three case,
which is v1 2 CoNðv2Þ, can be proved by the same way as
the second case. The fourth case is v2 2

S
u2CS1

CSu (or
v1 2

S
u2CS2

CSu). This means p2 2 NSCp1
½1� (or p1 2

NSCp2
½2�), and p2 (or p1) can receive the SCHDL-CMPLT

message from p1 (or p2) before setting schedule to v2 (or
v1). Therefore, if the schedule k0 is set to v1 (or v2), v2 (or
v1) cannot obtain the schedule k0. Till now, we have
completed the proof of Theorem 2. tu

Remark 3. In this work, we assume the aggregation tree is
given, and the local topology information for each node is
known because it can be obtained in the routing
construction process. In the schedule construction pro-
cess, we adopt a top-down time-slot assignment scheme.
The scheduling algorithm begins from the root node, and
then is performed by the nodes level by level in the
aggregation tree. Each node determines the schedule of
its children based on the previously received messages
and its local topology information. The information only
needs to propagate from the upper level to the lower
level without information feedback. In the aggregation
tree, since all the nodes make schedules for its child
nodes one by one in the worst case, the time complexity
of our aggregation scheduling algorithm EASDC is OðnÞ
where n is the number of nodes in the network.

5 PERFORMANCE ANALYSIS

5.1 Estimation Unbiasedness

Theorem 3. By using the in-network estimation approach given
in Sections 3 and 4, the estimate obtained by the sink is unbiased
for every scheduling period, namely E½x̂nðkÞ� ¼ E½xðkÞ�.

Proof. First, we consider the relay nodes whose children are
just the leaves in the aggregation tree Q, and we define
these relays as 1-relay nodes. If 1-relay node i can receive
all the estimates x̂jðkÞ of its children within the lth
scheduling period by using the algorithm EASDC
(k ¼ l � q), the estimates to be fused at node i are all the
Kalman filtering estimates of time k, and thus the fused
estimate x̂iðkÞ obtained by using (9) and (10) is unbiased
according to Theorem 1. If some children cannot send
their estimates to node i within the lth scheduling period,
their estimates can be predicted based on previously
received estimates by using (4), and the predicted
estimates are unbiased obviously. Then, the fused
estimate based on these partially predicted estimates is
still unbiased according to Theorem 1. Therefore, one-
relay nodes perform an unbiased estimation.

Next, we consider the relay nodes whose children are
the leaves or one-relay nodes, and these relays are
defined as two-relay nodes. The estimates of two-relay’s
children are unbiased. Therefore, no matter whether a
two-relay node can receive all the estimates from its
children within one scheduling period, the two-relay
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node performs an unbiased estimation according to the
above unbiasedness proof about one-relay nodes.

Third, we consider the relay nodes whose children
are the leaves, one-relay nodes or two-relay nodes, and
these relays are defined as three-relay nodes. Similarly,
we can conclude the estimate of a three-relay node for
every scheduling period is unbiased. Obviously, the sink
is a three-relay node, and the theorem has been proved
till now. tu

5.2 Optimality Analysis

Now, we analyze the optimality of our in-network estima-
tion approach.

Definition 1. Given a tree consisting of a node set, the root
centered set (RCS) is a connected node subset which contains

the root of the tree.

Lemma 1. Suppose that V1 is a RCS of the aggregation tree Q.
Let Pt

i ðkÞ be the estimate error covariance matrix of the node

vi’s filtering estimation for the lth scheduling period (vi 2 V1

and k ¼ l � q). If all the estimation information of the nodes in

V1 can be aggregated to the sink vn within one scheduling
period by using our in-network estimation approach presented
in Sections 3 and 4, we have PnðkÞ ¼ ½

P
i2V1
ðPt

i ðkÞÞ
�1��1.

Proof. Because V1 is a RCS of the aggregation treeQ, it is also
a tree obviously. Given relay node j in V1, we assume Tj is
a V1’s subtree rooted at node j. In the following proof, we
use the one-relay, two-relay, and three-relay definitions
which are given in the proof of Theorem 3. Because the
sink does not sample the process state, we assume
Pt
nðkÞ ¼ 1. We will prove that whether relay node j is a

one-relay, two-relay, or three-relay, we always have
PjðkÞ ¼ ½

P
i2TjðP

t
i ðkÞÞ

�1��1.
First, we consider the node j is a one-relay node. Since

the children of node j are just the leaves and all the
estimates of j’s descendants can be aggregated in node j
within one scheduling period, we have PjðkÞ ¼
½
P

i2TjðP
t
i ðkÞÞ

�1��1 according to Theorem 1.
Second, we consider the node j is a two-relay node.

We assume V 1
j;c is the j’s children set in which the

elements are all the one-relay nodes and the j’s children
set V leaf

j;c consists of the leaf nodes. Similarly, according to
Theorem 1 and the above proof, we have

PjðkÞ

¼
�
Pt
j ðkÞ

��1 þ
X
l2V leaf

j;c

�
Pt
l ðkÞ

��1 þ
X
l2V 1

j;c

�
Pt
l ðkÞ

��1

2
64

3
75
�1

¼
�
Pt
j ðkÞ

��1 þ
X
l2V leaf

j;c

�
Pt
l ðkÞ

��1 þ
X
l2V 1

j;c

X
i2Tl

�
Pt
i ðkÞ

��1

2
64

3
75
�1

¼
X
i2Tj

�
Pt
i ðkÞ

��1

2
4

3
5
�1

:

Third, we consider the node j is a three-relay node.
We assume V 2

j;c is the j’s children set in which the
elements are all the two-relay nodes. Similarly, according
to Theorem 1 and the above proof, we have

PjðkÞ

¼
"�
Pt
j ðkÞ

��1 þ
X
l2V leaf

j;c

�
Pt
l ðkÞ

��1 þ
X
l2V 1

j;c

�
Pt
l ðkÞ

��1

þ
X
l2V 2

j;c

�
Pt
l ðkÞ

��1

#�1

¼
"�
Pt
j ðkÞ

��1 þ
X
l2V leaf

j;c

�
Pt
l ðkÞ

��1 þ
X
l2V 1

j;c

X
i2Tl

�
Pt
i ðkÞ

��1

þ
X
l2V 2

j;c

X
i2Tl

�
Pt
i ðkÞ

��1

#�1

¼
X
i2Tj

�
Pt
i ðkÞ

��1

2
4

3
5
�1

:

Since the sink is a three-relay node obviously, we obtain
PnðkÞ ¼ ½

P
i2TnðP

t
i ðkÞÞ

�1��1. In addition, Tn is actually V1.
Therefore, the theorem has been proved. tu

Theorem 4. Suppose that the node subsets V1 and V2 are two
RCSs of the aggregation tree Q and satisfy V1 � V2. By using
our in-network estimation approach presented in Sections 3
and 4, PV1

n ðkÞ and PV2
n ðkÞ are the estimate error covariance

matrices of the sink vn for the lth scheduling period based on
the estimates obtained from V1 and V2, respectively (k ¼ lq).
Then, we have tr½PV1

n ðkÞ� � tr½PV2
n ðkÞ�.

Proof. Since V1 � V2, there exists a node v1 that satisfy
v1 2 V2 � V1. We define V 1

1 ¼
4
V1

S
fv1g. Let Pt

i ðkÞ (> 0) be
the error covariance of the vi’s filtering estimate for the
lth scheduling period. By using our estimate aggregation
approach, if the estimation information can be aggre-
gated to vn within one scheduling period, we have

PV1
n ðkÞ ¼

� X
vi2V1

�
Pt
i ðkÞ

��1
	�1

>

� X
vi2V 1

1

�
Pt
i ðkÞ

��1
	�1

¼ PV 1
1

n ðkÞ

according to Lemma 1, else there exists a v1’s ancestor

node va1 whose estimation information can be aggregated

to vn within one scheduling period and va1 may obtain a

predicted estimation information Pp
1 ðkÞ (�0) of v1 based

on the previously received information, and thus we also

have PV1
n ðkÞ � P

V 1
1

n ðkÞ according to Lemma 1. If V 1
1 ¼ V2,

we have tr½PV1
n ðkÞ� � tr½PV2

n ðkÞ�, else there exists a node v2

that satisfy v2 2 V2 � V 1
1 , and then we define V 2

1 ¼
4

V 1
1

S
fv2g. Based on the above set construction method,

we can obtain a set sequence V 1
1 � V 2

1 � � � � � V r
1 (r ¼

jV2 � V1j and V r
1 ¼ V2). According to the above proof, we

have PV1
n ðkÞ � P

V 1
1

n ðkÞ � � � � � PV r
1

n ðkÞ ¼ PV2
n ðkÞ. Therefore,

we have tr½PV1
n ðkÞ� � tr½PV2

n ðkÞ�. tu
Theorem 4 shows that the estimation accuracy of the sink

can be improved by aggregating the more estimation
information of the nodes from the network. In addition,
the new estimation information is more useful for improv-
ing the estimation accuracy than the old one obviously.
Therefore, we can evaluate optimality of our in-network
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estimation approach through measuring how many nodes
can send their updated estimation information to the sink
within delay constraints. Next, we will give the overall
upper bound on the number of the nodes that can send their
updated estimation information to the sink within delay
constraints. Here, the overall upper bound refers to
maximum number of the nodes whose state estimates of
time k can be aggregated to the sink by any method before
time kþ q.
Theorem 5. Suppose that ni is the number of the nodes which are

at the ith level of the aggregation treeQ. Under any interference
model, the overall upper bound of the number of the nodes whose
estimates for the state of time k can be aggregated to the sink by
any method before time kþ q is

Pq
i¼1 ni.

Proof. The upper bound
Pq

i¼1 ni immediately follows from
the fact that no matter what algorithm is implemented
and no matter what interference model we will use, the
sink can gather at most all the estimates of the nodes
whose level is less than or equal to q within the delay
constraint q. tu

Theorem 6. Under the protocol interference model, there is a
placement of nodes such that the number of the nodes whose
state estimates of time k are aggregated to the sink before time
kþ q by using our estimate aggregation can achieve the upper
bound

Pq
i¼1 ni provided in Theorem 5.

Proof. We prove by construction. In Fig. 4, we construct a
tree network example in which the root has four children
nodes and all the other nodes have one child at most.
There is only one node in the level q, two nodes in the
level q � 1, three nodes in the level q � 2, and four nodes
in the level q � 3. The distance between any pair of nodes
in the network is greater than rI except that between a
child-parent pair. By using our estimate aggregation
approach, every node obtains its own schedule time
expressed by ðx; yÞ beside the node in Fig. 4 where x and
y are, respectively, the TSFT and NSP of the node.
From the schedule, we can see that all the estimates of
the nodes whose level is less than or equal to q can be
aggregated to the sink within the delay constraint q. This
finishes the proof. tu

Theorem 7. Under the protocol interference model, the number of
the nodes whose state estimates of time k are aggregated to the
sink before time kþ q by using our estimate aggregation is at
least minfq; ng.

Theorem 7 is obvious according to our scheduling
algorithm EASDE.

6 SIMULATION ANALYSIS

We implemented the proposed in-network estimation
approach and conducted the simulation using MATLAB
7.0. In our simulation, we randomly deploy the sensors into
a region of 200 m� 200 m. An aggregation tree rooted at the
sink is constructed by using the BFS method. In fact, other
aggregation tree construction methods, like the method
proposed in [27], are also suitable. We consider the discrete-
time linear dynamical system (1) and (2) with

A ¼ 1 0
0:5 1

� 	

and Rw ¼ I2. The measurement matrix Bi is chosen from the
following matrices:

B1 ¼ 1 0
0 0

� 	
; B2 ¼ 1 0

0 1

� 	
; and B3 ¼ 0 0

0 1

� 	
:

Assume the maximum level number of the aggregation
tree isH. If the level number of node vi is less than 1

3 �H,Bi is
set to B1, else if the level number of node vi is more than
2
3 �H,Bi is set toB3, elseBi is set toB2. The covariance matrix
Ri of the measurement noise is chosen from 10 � I2, 20 � I2,
and 30 � I2 randomly. The initial state x0 and error covariance
matrix Rð0Þ are, respectively, set to ½10 1 �T and 10 � I2.

For the performance comparison with our in-network
estimation approach, we implement a nonaggregation
estimation approach named NAE. In NAE, each sensor node
first performs a filter estimation based on its own measure-
ments, and then sends the estimates to the sink along the
aggregation tree without data fusion at the relays. For
satisfying the delay constraint, the estimates are gathered by
the sink level by level starting from the lowest level.

First, we evaluate the overall efficiency of our in-network
estimation approach. The number of nodes is 500. All
sensors have the same transmission radius which is fixed to
25 m. The delay constraint q is 100 time slots. Fig. 5
compares the traces of the estimate error covariance matrix
of the sink with every estimation time step using the three
methods. Here, the optimal method is the fusion-based
estimation method that performs the optimal estimate
fusion given in Theorem 1 on the estimates of the whole
network. On the one hand, it can be seen that our in-
network estimation approach has a similar estimation
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Fig. 4. An upper bound example based on our estimate aggregation
approach.

Fig. 5. Covariance matrix trace at the sink for three methods.



performance to the optimal method. This is because that our
in-network estimation approach has the ability to compen-
sate for the estimate loss of the remote sensors by exploiting
the temporal correlation of the state. On the other hand, our
in-network estimation approach can gather more estimate
information than NAE within the delay constraint so that
the estimation performance of our method is better than
that of NAE in the most of the time. More importantly, the
stability of the estimation accuracy of our approach out-
performs that of NAE observably, and this performance
criteria is critical to control applications.

Second, we compare the estimation accuracy of our in-
network estimation approach with that of NAE under the
different network parameters. In Fig. 6, the transmission
radius of each sensor node is fixed to 25 m. The figure
shows the average trace of the covariance matrices at the
sink by running the two algorithms while the number of
nodes increases. In Fig. 7, the number of nodes is fixed to
500. The figure compares the average trace of the covariance
matrices at the sink using the two algorithms when the
transmission radius varies. It can be seen from the two
figures that the average estimation accuracy of our in-
network estimation approach outperforms that of NAE
significantly. Moreover, the estimation performance im-
provement will be larger with the increase of the number of
the nodes and the transmission radius. This is because that

the number of the estimates gathered by the sink decreases
when the opportunity of the wireless interference increases.

Third, Figs. 8 and 9 show the traces of the estimate error
covariance matrix at the sink with every estimation time step
for our in-network estimation approach and NAE, respec-
tively. From Fig. 8, if the delay constraint is reduced, the
estimation accuracy of our approach will degrade, and the
degradation rate is slow. However, as illustrated in Fig. 9,
we can see the estimation accuracy of NAE is influenced by
the delay constraints greatly. Once the delay constraint is
reduced, the estimation accuracy will degrade dramatically.
Therefore, our in-network estimation approach can achieve
a better tradeoff between estimation accuracy and delay
constraints.

7 RELATED WORK

7.1 State Estimation Using WSNs

Estimation over lossy networks has been well studied in
recent years. Sinopoli et al. [11] considered the problem of
performing Kalman filtering with intermittent observations
whose arrival is modeled as a random process. Smith and
Seiler [12] proposed a suboptimal but computationally
efficient estimator that can be applied when the arrival
process is modeled as a Markov chain. In [13] and [14], the
authors proposed to estimate the process state (or encode
the sensor measurements) at the sensor side of the link
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Fig. 6. Average trace of covariance matrices at the sink with different
number of nodes.

Fig. 7. Average trace of covariance matrices at the sink with different
transmission radius.

Fig. 8. Covariance matrix trace at the sink for our in-network estimation
approach.

Fig. 9. Covariance matrix trace at the sink for NAE.



without assuming any statistical model for the data loss
process. Schenato et al. [15] designed the optimal estimators
over lossy networks under the TCP-like and UDP-like
communication protocols, respectively. All the methods
mentioned above treat a network of communication links as
a single end-to-end link with some data loss model. By
using the memory and processing ability of intermediate
nodes, Gupta et al. [31] proposed a recursive algorithm for
information processing at the nodes of the network so that
the estimator can calculate the optimal state estimate for any
packet-dropping process, but the strategy is only for the
single source case.

Distributed estimation is an important signal processing
problem for wireless sensor networks. If the sensors in
networks exchange and fuse their sensing information, the
resulting estimate can be better than that based on the
sensor own measurements. Roumeliotis and Bekey [16]
decomposed a single Kalman filter into a number of smaller
communicating filters for the multirobot localization pro-
blem. Sun and Deng [17] proposed a multisensor optimal
information fusion criterion weighted by matrices in the
linear minimum variance sense. Based on this optimal
fusion criterion, a general multisensor optimal information
fusion decentralized Kalman filter with a two-layer fusion
structure was given for discrete time linear stochastic
control systems with multiple sensors and correlated noises.
However, all of the above-referenced works are restricted to
single-hop networks. For many applications, large-scale
sensor networks are needed to collect data from a wide
area. Distributed estimation for multihop networks has also
attracted strong interests recently. Based on consensus
averaging, Schizas et al. [18] presented a distributed
Kalman smoother state estimator. Three novel distributed
Kalman filtering algorithms for sensor networks were
proposed in [19]. Speranzon et al. [20] proposed a new
distributed algorithm for cooperative estimation of a slowly
time-varying signal using a wireless sensor network.
However, the above-mentioned algorithms for multihop
networks are all iterative in nature, and they are not suitable
for the network with one fixed sink because their conver-
gence cannot be guaranteed within any given time window.

7.2 Delay-Efficient Scheduling for Data Aggregation

Data aggregation is considered to be an effective method
for improving the delay performance in multihop wireless
networks. In multihop WSNs, every intermediate node
combines all received data with its own data according to
an aggregation function, and transmits the aggregated data
rather than the raw data in the network. Consequently, the
data aggregation delay from the network to a distin-
guished sink and the energy consumption are reduced
because the data needed to be scheduled in the network is
reduced [21], [22].

Minimum delay data aggregation in WSNs under
various interference models has been proven to be NP-hard
[24], and several approximation algorithms have been
proposed recently, e.g., [24], [25], [27], [26], [28]. Chen
et al. [24] proposed an algorithm to generate a collision-free
schedule with a latency bound of ð�� 1ÞR, where � is the
maximum node degree and R is the network radius. Huang
et al. [25] proposed a centralized aggregation scheduling
algorithm with the latency bound 23Rþ�� 18, and the

algorithm is based on a simple primary interference model:
no node can send and receive simultaneously. Under the
protocol interference model, Wan et al. [26] proposed three
centralized data aggregation methods for networks when
nodes have the same transmission radius and interference
radius. An efficient distributed algorithm that produces an
interference-free schedule for data aggregation was pro-
posed in [27], and the delay is at most 24Dþ 6�þ 16 time
slots where D is the network diameter. Xu et al. [28]
proposed a distributed aggregation scheduling method
generating interference-free schedules with an upper bound
on delay of 16Rþ�� 14 time slots where R is the radius of
the network.

There have been lots of work on delay-efficient aggrega-
tion scheduling in WSNs and the object is to minimize the
total time of aggregating the whole sensor data from
the network to the sink, but there is no work on the estimate
aggregation scheduling for large-scale network systems in
which the object is to gather maximum sensor information
at the sink within stringent delay constraints.

In [15] and [35], the authors suggested jointly addressing
estimation and communication problems in NCSs, but they
did not give any practical solutions. In [36] and [37], the
authors jointly addressed the estimation and communica-
tion problems in CPSs, and designed an adaptive-reliability
transport protocol. But they did not consider the real-time
issue of control systems.

8 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we jointly addressed the state estimation and
scheduling problems in multihop WSNs. For accurately
estimating a process state as well as satisfying rigid delay
constraints, we proposed an in-network estimation ap-
proach which includes two coupled parts: the estimation
operations performed at sensor nodes and an aggregation
scheduling algorithm. Our in-network estimation operation
performed at intermediate relay nodes not only optimally
fuses the estimates obtained from different sensors but also
predicts upper stream sensors’ estimates which cannot be
aggregated to the sink before deadlines. Our estimate-
based aggregation scheduling algorithm, which is inter-
ference free, is able to aggregate as much estimate
information as possible from a network to a sink within
delay constraints. The unbiasedness of our in-network
estimation has been proved, and the theoretical analysis
about the estimation optimality and the simulation results
show that our approach can achieve a considerably high
estimation accuracy.

CPSs have been attracting significant attention in the
past few years. Though the research of CPSs can benefit
from the related theoretical and technical results of
communication, control, embedded computing, etc., simply
integrating the various techniques to build CPSs is usually
not efficient or even not feasible. It is because that the
optimization of every component or subsystem of a system
does not insure the optimization of the whole system. A
more desirable method is to jointly design or optimize the
different parts of the networked system. This paper gives an
initial attempt to codesign the estimation and transmission
methods over cyber-physical networks, and the further
efforts are still required.
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First, as one of the future research directions, the duty
cycle wireless networks should be considered. For saving
the limited energy of sensor nodes, the duty cycle design of
WSNs is prevalent in practice. Therefore, how to tradeoff the
energy consumption and the control performance is an
urgent issue in CPSs. Second, the cyber-physical network
usually supports the multiple control tasks which have the
different QoS demands, and thus another problem is how to
effectively schedule the different kinds of feedback data for
meeting the different system performance demands in the
network. Third, this paper only considers the centralized
control scheme in which the sensor data are gathered to one
sink, but the distributed control is more appropriate in some
scenarios. The cyber-physical codesign of wireless network-
ing and control for distributed control systems is still open.
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