
1

FLIGHT: Clock Calibration and Context
Recognition using Fluorescent Lighting

Zhenjiang Li, Member, IEEE, Wenwei Chen, Student Member, IEEE, Cheng Li, Student Member, IEEE,
Mo Li, Member, IEEE, Xiang-Yang Li, Senior Member, IEEE, Yunhao Liu, Senior Member, IEEE

Abstract—In this paper, we propose a novel clock calibration approach called FLIGHT, which leverages the fact that the fluorescent
light intensity changes with a stable period that equals half of the alternating current’s. By tuning to the light emitted from indoor
fluorescent lamps, FLIGHT can intelligently extract the light period information and achieve network wide time calibration by referring
to such a common time reference. The light period can be also viewed as an indoor context indicator. As sampling the light sensor
consumes substantially less energy, FLIGHT provides us a lightweight clock calibration and time synchronization solution. In addition,
FLIGHT suits various mobility-enabled scenarios and it can work well even when the network is temporarily disconnected. We address
a series of practical challenges and implement FLIGHT in TelosB motes. We conduct comprehensive experiments using a 12-node
test-bed in both static and mobile environments. Over one-week measurement suggests that compared with existing technologies,
FLIGHT can achieve tightly synchronized time with low energy consumption. We further leverage the periodical pattern and upgrade
FLIGHT to recognize the ambient indoor/outdoor context, based on which the on/off states of a variety of location-based services can
be controlled automatically for mobile devices.

Index Terms—Clock calibration, time synchronization, energy efficiency, fluorescent lighting, context recognition.

✦

1 INTRODUCTION
In many distributed networking systems, retaining a
common notion of time is one fundamental service and
a variety of applications depend on its availability cross
network nodes. For example, in body area networks
and healthcare monitoring networks [2]–[4], sensory data
from multiple devices are usually processed to coop-
eratively analyze certain body movements or events of
interest. Consistent time clocks among different devices
are necessary for correct time alignment and data pro-
cessing. The emerging High-speed Locational, Phone-to-
Phone (HLPP) gaming [5] with a real-time requirement
would benefit from such a service. A series of network-
wide events must follow a strict common time order
on different phones. Other typical application examples
include sensor networks, mobile ad hoc networks, etc.

Maintaining common time in the network, however,
faces substantial challenges. Due to the low-cost design,
CMOS crystal oscillators serve as the most privileging
signal source to generate on-board clocks. The frequency
of an oscillator is not stable and it fluctuates with the
surrounding environment, affected by various factors
like temperature, humidity, voltage, pressure, etc. For ex-
ample, the 32KHz oscillator adopted by popular sensor
platforms has a clock drift rate of 30-50 ppm [6]. The

• Z. Li, W. Chen, C. Li, M. Li are with the School of Computer Engi-
neering, Nanyang Technological University, Singapore. E-Mail: {lzjiang,
chen0746, cli6, limo}@ntu.edu.sg.

• X. Li is with the Department of Computer Science, Illinois Institute of
Technology, USA. E-Mail: xli@cs.iit.edu.

• Y. Liu is with the School of Software and TNLIST, Tsinghua University,
China. E-Mail: yunhao@greenorbs.com.

• Parts of this paper has been reported in ACM MobiCom 2012 [1].

clock drift in smart phones normally ranges from 5-100
ppm [7], [8]. Thus, clocks on different nodes need to be
precisely calibrated for correcting above errors such that
consistent time can be maintained. Due to the inherent
uncertainty, no matter how accurately clocks are initially
calibrated, they will ultimately tick towards divergency.
Hence, frequent clock calibrations are necessary in most
network systems. Existing networks may typically com-
prise hundreds or even more individual nodes, and
those nodes are usually wireless interconnected in a
multi-hop manner. As a direct consequence, frequently
calibrating clocks prohibitively incurs high overhead
and significant energy consumption for coordinating the
entire network.

Great efforts have been made in the past decade to
address above issues. Proposed solutions mainly rely on
heavy intercommunications between nodes to exchange
their local time references, including RBS [9], TPSN
[10], FTSP [11], etc. The calibration error, however, gets
accumulated hop by hop exponentially as the clock cal-
ibration spreads to the entire network [12]. In addition,
those solutions lead to excessively high communication
overhead and significant power drain in the system.
Such facts largely prohibit the scalability of those solu-
tions in practice. Against the problems, an emerging type
of solutions have been recently proposed, which make
use of certain external signal sources as common time
references. Typical examples are using power lines [13],
FM radio [14], radio stations [15], Wi-Fi [16]. Although
such newly emerging solutions can dramatically reduce
the communication cost, they also utilize radios for
the clock calibration at the expense of higher power
consumption. Even if clock calibration in [13]–[16] can

Digital Object Indentifier 10.1109/TMC.2013.108 1536-1233/13/$31.00 © 2013 IEEE

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

be performed less frequently, the energy consumption
of each calibration could remain high. Besides, most of
those solutions need specific hardware components to
generate or capture periodical signals, which introduce
extra cost and design complexity.

In this paper, we propose a new clock synchronization
approach (and further extend to a context recognition
approach) based on the following observations and facts.
Alternating Current (AC) is a periodical signal with a
frequency of 50 or 60Hz. The AC frequency is adequately
stable, i.e., 5 · 10−5 stability measured by the Allan vari-
ance [13], [17]. In order for power delivered efficiently
across the country, the phase difference between any two
points remain highly constant [13], [17]. Powered by AC,
the fluorescent light intensity thus changes with a stable
period that equals half of AC’s. Commonly available
in most indoor environments like universities, airports,
hospitals, and supermarkets, the fluorescent light pro-
vides a universal period reference. Furthermore, the light
sensor or camera is widely embedded in commodity
wireless platforms, e.g., sensor nodes, and smart phones.
This offers a great opportunity for a plenty of indoor
applications to maintain common time by referring to
the light emitted from fluorescent lamps.

The proposed solution has several key advantages.
First, it does not require any extra hardware support. By
sampling the light sensor with a sufficiently high rate,
accurate period information can be detected for clock cal-
ibration. Hence, our solution is widely available on most
existing commodity platforms. Second, taking advantage
of the stability of the AC frequency, the detected light
intensity, even from different lamps, exhibits a consistent
and stable period, which ensures high synchronization
accuracy. Third, compared with prior radio operation
based solutions, sampling the light sensor consumes sub-
stantially less energy, which provides us a lightweight
solution. Finally, since our approach is independent to
the network message exchange, time synchronization
can be retained even when the network is temporarily
disconnected. When individual devices are moving, they
can still obtain desired periodical patterns for clock
calibration. Such characteristics particularly suit various
mobility-enabled scenarios.

In addition to its wide availability, the periodical
pattern of fluorescent lighting is also a unique feature
in indoor environments and can be treated as a context
fingerprint. With such an observation, the possibility to
intelligently distinguish the indoor environment from
the outdoor environments is further explored. The recog-
nition is beneficial for mobile devices, based on which
the on/off states of a variety of location-based services
can be controlled automatically, e.g., GPS is turned on
only when the device is detected to be outdoor.

Successfully implementing our idea is non-trivial. We
first empirically study the feasibility of detecting peri-
ods from the fluorescent lighting. Starting from static
deployment in the laboratory, our measurements vali-
date that the fluorescent lighting is able to serve as a

viable reference for time calibration. We then propose the
Fluorescent LIGHTing (FLIGHT) approach for achieving
a low-power and accurate clock calibration. FLIGHT can
intelligently extract the period information from the fluo-
rescent light in both static and dynamic environments. In
addition, to achieve a lightweight FLIGHT implementa-
tion, we address a sequence of practical issues including
responsive light sensor sampling, period detection with
interference from other light sources, etc. To evaluate
our design, we implement FLIGHT in TelosB motes and
conduct extensive experiments using a 12-node test-bed
in the laboratory and further with mobility across the
university main academic building of over 20, 000m2.
The results demonstrate that FLIGHT can achieve tightly
synchronized time with low energy consumption. On
the other hand, for the context recognition, we leverage
the periodical pattern and the intensity of fluorescent
lighting. A lightweight solution is achieved for a variety
of embedded devices. We validate the design from 200
different sites in our campus. The results show that our
solution can approach up to 95% detection accuracy.

The rest of this paper is organized as follows: In
Section 2, we introduce the preliminary information
and perform a measurement study. The architecture and
the design detail of FLIGHT are given in Sections 3
and 4, respectively. In Section 5, we evaluate FLIGHT’s
performance through extensive experiments. The context
recognition design is introduced in Section 6. Related
works are reviewed in Section 7 and we conclude this
paper in Section 8.

2 PRELIMINARY
In this section, we first discuss the clock calibration
problem that this paper studies and compare it with the
traditional clock synchronization problem. We then de-
tail the target applications for clock calibration and con-
text recognition. We illustrate the principle of fluorescent
lighting and present our initial empirical measurement
study that motivates this work.

2.1 Clock calibration v.s. synchronization
A native clock is the clock driven by a node’s built-in
crystal oscillator directly. We denote the native clock as
cn(t0 + t), referring to the measured time duration from
an initial time t0 until t by the native clock. Without loss
of generality, we assume t0 to be zero; hence the native
clock can be written as cn(t) for short. The periodical
pattern of the fluorescent light intensity can be treated
as a global reference clock, which is denoted as cg(t). In our
system, the AC frequency is 50Hz; thus, the frequency
of the global reference clock fg is 100Hz and the time
unit of the global reference clock is 1/(100Hz) = 10ms.
In addition, each node maintains a logic clock, written as
cl(t). The logic clock is used by upper-layer applications
and it advances as follows:

cl(t) = cl(0) +

∫ t

0

r(τ)dτ, (1)

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

where r(τ) is the instant rate of the native clock at time τ .
The goal of FLIGHT is to ensure logic clocks consistent
among different nodes.

Clock synchronization in prior literatures [9]–[11] en-
sures the absolute clock values of different nodes to be
consistent, while in this work we primarily focus on clock
calibration, which mainly ensures that different clocks
advance with a same speed. Referring to Eq. (1), clock
synchronization essentially first compensates the differ-
ence of the starting time cl(0) of each node and further
maintains consistent clock ticks for

∫ t

0
r(τ)dτ . On the

contrary, clock calibration only guarantees a consistent
clock rate for

∫ t

0
r(τ)dτ despite of different node starting

times. Therefore, with accurate clock calibration, clock
synchronization can be easily achieved by compensating
the initial time differences of nodes, while sole clock
calibration already suffices to support many practical
applications. In this paper, we first propose FLIGHT
to achieve an accurate clock calibration, and then we
discuss how FLIGHT can be integrated with existing
mechanisms (e.g., FTSP [11]) to achieve precise clock
synchronization with much reduced communication and
energy overhead.

2.2 Target applications
The primary applications of FLIGHT are those, in which
a precise timing service across indoor environments
is desired with minimal communications. For instance,
body area networks and healthcare monitoring networks
need to detect and report a series of gestures, move-
ments, and accidents (e.g., falling down). Clock calibra-
tion could be adopted in such applications since event
detections rely on an accurate data timing sequence.
Absolute time values of sensory data, however, are
not necessarily needed. In such a scenario, nodes are
attached to human bodies. The miniature requirement
on the node size prevents prior external signal based
approaches, e.g., [13]–[15], from being applied due to
the extra hardware requirement. On the other hand,
the node density in such applications could be high.
Frequent message exchanges of radio-based approaches,
like [9]–[11], can influence the regular event detection
and report. Against such issues, body area and health-
care monitoring networks would greatly benefit from the
design of FLIGHT.

In wireless sensor networks, clock calibration can sup-
port many services as well, like the target tracking, the
topology control, and the event logging for diagnosis
where the order of events rather than their precise time
matters. Sensor networks normally consist of hundreds,
or even thousands of nodes. Extra hardware components
[13]–[15] may dramatically increase the deployment and
maintenance costs. On the other hand, the useable band-
width resources of sensor nodes are usually limited (e.g.,
due to low data rates and duty-cycled operation mode).
FLIGHT is parallel to the wireless communication, which
saves bandwidth and simplifies the MAC design.

A variety of location-based services for mobile devices
can benefit from the extended design from FLIGHT for
the context recognition. We can avoid launching services
improperly to save energy and guarantee their perfor-
mance. For instance, before turning on GPS, one may
first check whether it is outside a building. Before search-
ing for the access points of WiFi, one may check whether
it is inside or near buildings. Due to the requirements
on expensive sensors, solutions like [18] may not be
applicable for low-end smart phones and embedded de-
vices, e.g., on-board GPS module, embedded computer
system, mobile sensor motes. The solution proposed in
this paper, however, can overcome the hardware barrier
and achieve a lightweight context recognition efficiently.

There is no strict requirement on the space and time
coverage of fluorescent lamps in our design. As we will
show later, the period information can be extracted even
when the detected light intensity is very low. One fluo-
rescent lamp, thus, can coordinate plenty of surrounding
nodes. Fluorescent lighting from different lamps can
exhibit a stable and consistent period. Hence, lamps can
be sparingly used in the field. In our experiment, only
a small number of lamps can coordinate all the nodes
in our laboratory of 600m2. Lamps can also coordinate
nodes in different rooms even different buildings.

2.3 Principle of fluorescent lighting
The fluorescent lamp is a gas discharge lamp using
electricity to excite mercury vapor. When the lamp is
turned on, the electric power heats up the cathode to
emit electrons. Electrons quickly jump from a higher
energy level to a lower level and photons will be emitted.
Emitted photons are absorbed by electrons in the atoms
of the interior fluorescent coating of lamp, leading to
physical reactions with emission of visible light. After
being heated up, the gas conductivity inside the lamp
rapidly rises, allowing the alternating current to flow
through and continuously emit light. From the principle
of fluorescent lighting, the emitted light is expected to
exhibit a periodical pattern since its AC power source is
a periodical signal. As the period of AC is adequately
stable and phase-coherent, we expect that the light gen-
erated by fluorescent lamps can be used as a periodic
reference for clock calibration.

2.4 Empirical measurement study
We focus on evaluating following two properties of
the fluorescent lighting strategy: stability and accuracy
of detected light periods. In the rest of this paper, we
mainly take standard TelosB motes as a vehicle to present
the measurement results and the design principle. Due
to the limited computation capacity and buffer size,
design challenges of FLIGHT for TelosB motes are more
general. Dealing with the performance optimization in
other high-end devices, like smart phones and laptops,
can further serve as a promising future work of this
paper. In the experiments, 12 TelosB motes are deployed

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Fig. 1. Single-lamp experiment in the laboratory

in the laboratory and the longest distance between any
two pairs of sensor nodes is up to 15m. We report the
results based on one week measurement. Among those
12 deployed TelosB nodes, the minimum distance to a
light lamp is around 20cm and the maximum distance
is about 7m. The detected light intensity is measured by
the voltage value of two pins of the light sensor.

We start from examining a simple case, in which only
one lamp is open. As a benchmark, we plot the instant
voltage value from two front-end pins of the light sensor
using an oscilloscope. Through one week measurement,
we observe that the reading from oscilloscope is quite
stable and exhibits a regular fluctuation with a period
of 10ms (depicted in Figure 1(a)), which is equivalent
to 100Hz. In practice, sensor nodes need to sample the
light sensors. After sampling, we see that the sampling
results exhibit the same periodical property as depicted
in Figure 1(b), which suggests that the obtained light
intensity pattern can be used for clock calibration. Figure
1(c) summarizes the statistics of the detected period
lengths from the trace. We observe that the detected
period lengths are highly concentrated within the range
centered at 10ms. The error of detection is less than 50μs
for most cases as depicted in Figure 1(d).

We further examine the case where there are more than
one lamps. During the measurement, 200 fluorescent
lamps in our laboratory are all turned on. Nodes may
extract period patterns from different lamps. Similar
to the single-lamp case, readings from different nodes
all exhibit good periodical patterns of 10ms duration.
Different distances to a lamp only incur different ampli-
tudes of the detected patterns. The periodical property
always exists. In Figure 2(a), we plot a portion of the
trace from the sensor node with the largest distance to
its closest lamp. Note that in one period, three local max-
imum points do not mean the light pattern in Figure 2(a)
is from exact three different lamps. They only represent
phase differences. Each local maximum point of the light
intensity might be composed of the light from multiple
lamps with the same phase. In Figure 2(b), we further
depict the statistical result of detected period lengths of
all the nodes with respect to different lamps. Based on

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

Error of Detected Periods (µs)

CD
F

(b)

0 100 200 300 400 500
60

80

100

120

140

Time (ms)

Vo
lta

ge
 (m

V)

(a)

180 190 200 210
60

80

100

Fig. 2. Multi-lamp experiment in the laboratory

the trace, the error is smaller than 65μs for most cases.
In summary, our initial empirical studies validate the

stability and accuracy of fluorescent lighting in practice.
Later we will make use of such lighting period informa-
tion for clock calibration in FLIGHT.

3 SYSTEM OVERVIEW

In this section, we first introduce the basic idea of the
fluorescent lighting based clock calibration scheme. We
then give an overview of the design challenges as well
as the FLIGHT architecture and implementation.

3.1 Principle of clock calibration
The objective of FLIGHT is to ensure logic clocks consis-
tent among different nodes. In Section 2.1, Eq. (1) has
stated that the logic clock evolves as cl(t) = cl(0) +∫ t

0
r(τ)dτ , where r(τ) is the instant rate of the native

clock at time τ . Ideally, we have
∫ t

0
r(τ)dτ = cn(t)/fn,

where fn represents the claimed frequency of the built-
in crystal oscillator. In practice, however, fn is not stable
and it fluctuates due to the variances of surrounding
environmental parameters as mentioned in Section 1. In
other words, fn is not constant in real systems and keeps
varying. Such uncertainty is also known as skew [7],
[19]. We utilize fn(t) to capture the time-varying nature
of fn. By defining the frequency ratio as α(t) = fn(t)/fg,
Eq. (1) can be rephrased as follows:

cl(t) = cl(0) + cn(t)/(
1

t

∫ t

0

(α(τ) · fg)dτ),

= cl(0) + cn(t)/(α(t) · fg). (2)

where α(t) is the average value of α(t) from time 0
to t. As unveiled in existing works [7], [12], [19], clock
skew can accumulate with time. Thus, FLIGHT should
calibrate clocks to minimize its negative impact by con-
trolling the differences of each cn(t)/(α(t) · fg) among
different nodes; otherwise, logic times will rapidly ex-
hibit heterogeneous advancing rates respect to the global
reference and among themselves. As a convention, the

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Fig. 3. Illustration of periodical calibrations

time difference caused by the skew accumulation is also
referred to as drift.

Eq. (2) essentially indicates that by continuously es-
timating the frequency ratio, the logic time can be pre-
cisely maintained. As a matter of fact, the variance of the
logic time is limited within a short period of time and
most applications can tolerate certain amount of such er-
rors [20], [21]. Hence, instead of continuously measuring
the frequency ratio, we predict the logic time by using
the native clock and the estimated frequency ratio. To
further guarantee the accuracy of such a prediction, we
configure the clock calibration in a periodical fashion, as
depicted in Figure 3.

3.2 System architecture and implementation
Figure 4 depicts the system architecture. There exist three
major components in FLIGHT: clock calibration, logic
time interface, and interval adaptation. Based on the
readings from the light sensor, the period generation
module in the calibration component is launched to
produce the global reference clock for later calibration.
The output of the period generation module acts as the
input of the logic time maintenance module, which is
responsible for updating the frequency ratio α(t) and
correcting the accumulated drift between two calibra-
tions. The newly obtained logic time can be used by
upper layer applications. Meanwhile, the output from
the logic time maintenance module can be adopted to
determine the interval length for the next calibration.

We implement FLIGHT in TinyOS 2.1x on the TelosB
platform. The native clock is driven by the built-in crys-
tal oscillator with a 32KHz frequency. The AC frequency
in our experiments is 50Hz. Thus, the frequency of the
global reference clock is 100Hz. The kernel of FLIGHT
includes 600 lines of NesC code that was complied
to 2242 bytes of RAM and 16114 byes of ROM. As a
result, FLIGHT only occupies 23% of the total buffer and
the remaining space is available for other applications.
We use the built-in light sensor on the TelosB mote
in our experiments. The light sensor utilizes an ADC
module to measure the light intensity and records it as a
corresponding voltage value in the register. The standard
TinyOS packages the ADC module and relies on the
MSP430 Timer to control the ADC sampling. The maxi-
mum sampling rate limited by TinyOS is around 1KHz,
which is not fast enough for FLIGHT. To overcome this
issue, we write a driver to directly access the register of
the ADC module. By doing so, the effective sampling

Fig. 4. Illustration of the FLIGHT architecture

rate can break the 1KHz barrier and achieves up to
83KHz in the implementation. There are some system
parameters that we have not touched yet and we will
later discuss each of them in corresponding sections.

4 SYSTEM DESIGN
4.1 Period generation
After sampling the light sensor, nodes need to extract the
light period and further generate a series of signals with
the same period to serve as the common time reference.
In this subsection, we discuss how to efficiently and
precisely generate such global reference signals.

4.1.1 Challenging issues
Assume the light sampling rate to be 10KHz. Ideally,
100 = 10ms × 10KHz samples are detected within one
light period. A greedy searching solution for counting
the maximum (or minimum) points cannot work here,
since there exist multiple local maximum points in one
light period for the general multi-lamp scenario. A more
sophisticated method may record samples of one period
and then apply the greedy searching. When one local
maximum point is detected, if its value is close to the
recorded maximal value, such a point can be viewed as
a period delimiter. Nevertheless, as we will show next in
the mobile case, although the light period is still stable,
the detected light intensity can fluctuate significantly.

We perform experiments to verify such a point in the
mobile environment. In the experiments, three persons
roam in the main academic building of an University
and each of them holds one TelosB mote and one laptop
computer. Due to the limited buffer size, motes are con-
nected to computers through a USB 2.0 port for storing
sampled data. Particularly, they move cross different
floors. During the movement, sensor nodes might be
rotated, shaken, or even temporarily blocked (not sight-
in-line to lamps). The moving duration of each person
lasts around 120 minutes. During the movement, many
places that we passed by are only sparsely covered by
lamps, i.e., some places are fully covered by the light
while some places are relatively dark. To clearly present
our harvested trace, we depict one representative clip in
Figure 5(a), which contains the portions collected in both

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Fig. 5. Experiments with mobility
and sparsely deployed lamps

50 100 150 200 250 300 350
−5

−4

−3

−2

−1

0

1

2
x 104

Frequence (Hz)

FF
T

Feasible cutoff
frequency region

Fig. 6. Frequency domain prop-
erty of the harvested trace

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error of Extracted Periods (µs)

CD
F Static: single−lamp

Static: multi−lamp
Mobile: rotation
Mobile: movement

Fig. 7. CDF of detected period
errors in different scenarios

light and dark places. From the zoom in sub-figures in
Figure 5(a), however, we can observe that the detected
pattern always demonstrates a good periodical property
in both light and dark scenarios. The only difference is
the observed light intensity.

To further exploit the sensitivity of the detected light
intensity, we record the detected pattern of one node
when it is rotated. We hold the sensor node in the
multi-lamp laboratory and its distance to the closest
lamp is around 4m. Initially, the light sensor faces to the
lamp. After a 180-degree rotation, the light sensor almost
faces to the ground and the incident light is mainly
the scattering light. Figure 5(b) summarizes the result
during a 540-degree rotation. In the zoom in sub-figure,
we can see that even when the light sensor is opposite
to the lamp and the detected light intensity is low, the
detected pattern can exhibit a periodical property as
well. As we will show later, one lamp can cover up
to around 100m2 floor size such that fluorescent lamps
can be sparingly used in FLIGHT. Now the question is
how we can capture such period information under such
intense light fluctuation.

One possible way for the period generation is to use
existing DSP techniques, e.g., self-correlation. In prin-
ciple, they are effective for extracting periodic signals
in both static and mobile environments. In practice,
however, the extensive computation burdens involved
in those techniques will occupy the MCU of nodes for
a long time, which may disturb the processing of other
important tasks, and inevitably consume more energy.

4.1.2 Filtering solution
To tackle such challenges, we propose to utilize a
lightweight filtering method to extract periods. In Figure
6, we perform the Fast Fourier Transformation (FFT) for
the trace depicted in Figure 5(a) and find that the trace
demonstrates a dominant frequency response around
100Hz. Such a result indicates that the light intensity
indeed changes with a stable period of 10ms. However,
due to noises, the light samples are also mixed with
other frequency band components. Figure 6 implies if
the trace is processed by a low-pass filter with a cutoff

frequency between 135Hz and 175Hz, the trace can be
used to generate stable periodical signals.

Denote x[i] to be input function and y[i] to be the
output function, where i is the sample index. In general,
the first-order filter can be expressed as:

y[i] = a · x[i] + b · y[i− 1], (3)

where a and b are filter parameters and a + b = 1.
Based on Eq. (3), a higher order filter can be further
constructed. For instance, the second-order filter is y[i] =
a · x[i] + b · (a · x[i− 1]+ b · y[i− 2]). A general expression
for any m-order filter, where m ≥ 1, can be obtained
iteratively. The settings of a and b have been discussed in
Appendix. We conduct an experiment to evaluate perfor-
mances of the period extraction with filters of different
orders. The result shows that if the filter order is small,
the trace still exhibits multiple maximum points. When
the filter order is sufficiently high, it becomes viable to
apply a simple greedy searching scheme to accurately
extract periods. In our experiments, we find that a 6-
order filter is adequate in FLIGHT. In such a case, a node
only needs to buffer 6 latest samples for the filtering
operation. The involved computation burden contains
merely 12 multiply operations, 6 plus operations and
the greedy searching, which is particularly beneficial for
resource constrained mobile devices.

In Figure 7, we summarize the detection accuracy
of the filtering method. We have shown the detection
errors in static scenarios in Section 2. For the mobile
scenario in Figure 5(a), Figure 7 shows that the error is
bounded by 165μs and smaller than 100μs most of time.
The detection errors in our rotation experiments are also
within 165μs and less than 65μs for majority cases.

4.2 Logic time maintenance
To maintain the logic time, frequency ratio must be
updated by the extracted light period in each calibration.

4.2.1 Frequency ratio calibration
According to the output from the period generation
component, the generated signal can be viewed as a

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

common time reference. Suppose the start time of the
calibration and the calibration window size are tc and τ ,
respectively. For the presentation simplicity, we assume
tc = 0 without loss of generality. The basic principle of
clock calibration is illustrated in Figure 8. In Figure 8,
there are totally M samples between the first and the last
generated periods. Each Ij represents the sample index
where 1 ≤ j ≤ M . We denote the native clock frequency
in τ as fn(τ). Based on the generated global reference,
fn(τ) can be measured by f̂n(τ) as follows:

L

fg
=

IM − I1

f̂n(τ)
, (4)

where L is the number of light periods detected in the
calibration window τ . Based on the definition, the fre-
quency ratio can be calibrated by the following equation:

α̂(τ) =
f̂n(τ)

fg
=

IM − I1
L

. (5)

The rationale behind the calibration is that native
clocks of different nodes run with different speeds. By
referring to the global reference, frequency ratios are cal-
culated to compensate those differences. If the measured
native clock f̂n(τ) in Eq. (4) is accurate, the frequency
ratio in Eq. (5) can precisely capture the real situation
when predicting the logic time after the calibration.

4.2.2 Calibration window configuration

In Figure 8, M native clock ticks have been elapsed
during the calibration window τ . Due to the instability
of the native clock, M/fn(τ) may not exactly equal to
M/fn, where fn is the claimed clock frequency and
fn(τ) is the average value of the native clock within
τ . We denote this offset in the calibration window as
o(τ) = M/fn(τ) − M/fn and it can be viewed as a
relative drift of the native clock with respect to the global
reference since both fn and fg are constant. The relative
skew, thus, can be expressed as s(τ) = o(τ)/τ .

On the other hand, due to jitters, each sampling point
(except the first one I1 since we artificially fix it and
view it as the starting point) actually further exhibits a
tiny shift, h, compared with the ideally stable sampling
point. Prior studies have shown that such a shift follows
h ∼ N (0, σ2

h). Therefore, the really observed offset in the
calibration window τ can be expressed as:

ô(τ) =
∑M

j=2
[(

Ij

fn(τ)
+ hj)− (

Ij−1

fn(τ)
+ hj−1)]−

L

fg
,

= o(τ) + hM , (6)

where each hj indicates the shift for the sampling point
Ij for 2 ≤ j ≤ M . In Appendix, we can show that if
ŝ(τ) = ô(τ)/τ is an accurate estimation of s(τ), f̂n(τ)
will precisely estimate its true value fn(τ). In other
words, the frequency ratio α(τ) can be well measured
by the observed ratio α̂(τ) in Eq. (5), yielding a good

Fig. 8. Illustration of the clock calibration

calibration result. We utilize V ar[(ŝ(τ)−s(τ))] to quantify
the estimation accuracy. By skew’s definition, we have:

V ar[(s(τ) − ŝ(τ))] = V ar[
(o(τ) − ô(τ))

τ
] = σ2

h/τ
2.(7)

Eq. (7) suggests that it is beneficial to set the calibration
window to be large. However, we argue that in practice,
the solution is beyond such a simple strategy and there
exist practical limitations. For example, the buffer size
limitation may prohibit to obtain enough data during
the calibration. Devices usually have buffers with limited
capacity for multiple applications, which may not be able
to hold enough samples during the calibration window.
For instance, the buffer size of a TelosB mote is 10kB, in
which 8kB can be allocated to store sampled data at the
most. If each sample occupies two bytes, the buffer can
hold up to 4k samples. If the sampling rate is 10kHz,
only 40 periods can be collected, which may not be
enough for an accurate calibration.

To tackle such an issue in FLIGHT, we propose to
parallel the sampling and period generation operations.
After initial raw data have been filtered, we can drop
those data and only store 1) the number of periods that
have been detected, and 2) the total amount of samples
within those periods. By doing so, the buffer size is
virtually increased so as to accommodate adequate data
for the calibration. On the other hand, the real buffer
occupancy is small and it will not conflict with other
applications. To implement such an idea in FLIGHT,
we insert the computation process of filtering between
the interval of two consecutive samplings. Whenever
a new sample has been obtained, it will be processed
immediately. We claim that the selection of the sampling
rate and the order of the filter should guarantee that
the filtering computation must be completed in between
two consecutive samplings; otherwise, the data loss will
lead to errors in the generated global reference signals.
In Section 5, we will verify such a statement.

4.2.3 Logic time updating
After the frequency ratio has been updated as α̂(τ), the
logic time afterward can be predicted by using such
a new frequency ratio and the native clock till the
next calibration window. To maintain an accurate logic
time, in addition to the calibration, we also need to
correct the drift accumulated between two consecutive
calibrations. We utilize Figure 9 to illustrate such a point.
In the first calibration interval, we set the logic time to
10, 000μs at the end of the last detected period. Since

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

the period length of light is 10ms = 10, 000μs, the logic
time should increase 10, 000μs whenever one period has
elapsed. After the first calibration, we assume that after
10 light periods, the node performs the next calibration.
If the clock is stable, the logic time at the last detected
period in the second calibration should be 130, 000μs.
However, the real logic time might be 130, 200μs due to
the clock uncertainty. Such an error cannot be corrected
by the frequency ratio updating, while it will naturally
deteriorate the time consistency among different nodes.

The insight obtained from Figure 9 is that if the
accumulated error can be controlled within a certain
range, the last several digits contains the information
about the drift. In Figure 9, if the accumulated drift
is smaller than 10, 000μs, in principle, the logic time
can be corrected by resetting the last four digits to
zero, i.e., 130, 200μs will be changed to 130, 000μs. If
we denote tci , Li, and ni to be the finish time of the
ith calibration, the number of light periods detected
in the ith calibration, and the number of light periods
between the ith and i + 1th calibration respectively, we
can essentially adjust the logic time at the last detected
period to cl(ti+1) = cl(ti) + (ni +Li)/fg to eliminate the
drift. Now we formally derive the logic time in FLIGHT.
If t = tci , then

cl(t) =
∑i

j=1
(Lj + nj)/fg. (8)

In fact, each nj is unknown. The operation in Eq. (8)
can be achieved by resetting the last several digits of the
logic time to zero (the exact digit number is related to the
required error bound), or nj is estimated by α̂(tcj−1

) ×
nj−1. On the other hand, if tci < t < tci+1

, we have:

cl(t) = cl(tci) + (cn(t)− cn(tci))/(α̂(tci) · fg). (9)

Now, by directly tuning to the light period at the
end of each calibration, the logic time can be precisely
aligned to the global reference and the drift accumulated
in the previous calibration interval is thus eliminated.

4.3 Calibration intervals
In this section, we describe how we can further utilize
the calibration interval to reduce the number of sam-
plings. We also discuss how to determine the interval
length between two calibrations.

In Figure 9, if a proper calibration window size should
at least contain 13 light periods, a naive method is to
extract 13 light periods for each calibration window.
However, Figure 9 implies that if we know that 10 light
periods will elapse between two consecutive calibration
windows, we only need to sample three additional peri-
ods in the second calibration window (Calibration 2). By
using the similar method in Eq. (8), the node can estimate
how many light periods have been elapsed between
Calibrations 1 and 2. In addition to the number of the
light periods have been detected in Calibration 2, the total
number of light periods between two calibration win-
dows can be obtained. On the other hand, the number

Fig. 9. Example of the logic time error

of the native clock ticks are always recorded (to calculate
any instant logic time). As a result, the frequency ratio
can still be calibrated using Eq. (5). Benefited from
such a method, although only three light periods have
been extracted in Calibration 2, the frequency ratio can
be accurately calibrated based on 13 light periods. In
practice, the calibration interval normally spans more
than 20 minutes. Hence, nodes are able to sample a small
number of periods while still achieve high accuracy in
each calibration.

In Section 5, we examine the calibration interval selec-
tion to balance the calibration accuracy and cost. In this
study, we also propose a dynamic interval adjustment
scheme. We introduce a drift controlling factor (u) to
restrict the total amount of logic time errors accumulated
between two calibrations. Suppose the drift detected
at the last period in the ith calibration is ei and the
calibration interval length between the ith and the i+1th
calibrations is di. The next calibration interval di+1 in
FLIGHT can be predicted as:

di+1 = di ×
u

|ei+1|
. (10)

Initially, d0 is set to be 20min. Eq. (10) states that if the
drift rapidly accumulates, the calibration interval should
be short such that the drift can be corrected in time; vise
versa. In Section 5, we will investigate the impact of u.

4.4 Upgraded to time synchronization
Clock calibration only guarantees a similar increasing
rate of the maintained logic clock despite of different
starting times. As mentioned in Section 2.2 and [13],
[14], [16], clock calibration itself serves for a variety
of useful applications. Sometimes, people may want to
upgrade to time synchronization for a finer understand-
ing of the system performance in the time domain. For
instance, nurses in the healthcare networks may need
to understand timely situations of monitored patients.
System operators in wireless sensor networks may need
to record the exact time of certain events. FLIGHT can be
easily used to facilitate such an upgrading. To eliminate
the clock offset globally, we may simply adopt the
FTSP protocol [11]. With the FLIGHT calibration, we do
not need to run the full synchronization protocol with
heavy intercommunications between nodes. Instead, we
only need to cancel the initial time difference with one
communication round. We note that the communication
overhead and energy consumption to maintain an abso-
lute clock value can be dramatically reduced when clocks
of nodes are already precisely calibrated with respect to
a common time reference.

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

1 2 3 4 5 6 7
0

100

200

300

400

Order of the Filter

De
tec

tio
n E

rro
r (

µs
)

(a)

1 2 3 4 5 6 7

80

100

120

140

Order of the Filter

Fil
ter

ing
 D

ela
y (

tic
ks

)

(b)

1 2 3 4 5 6 7

6

8

10

12

14

Order of the Filter

Sa
mp

lin
g F

re
qu

en
ce

 (K
Hz

) (c)

Theoretical maximum
Practical maximum

Fig. 10. Filtering configura-
tions

3.72KHz 7.06KHz 9.30KHz 10.05KHz 12.82KHz
0

1000

2000

3000

4000

5000

6000

Sampling frequency

Lo
gic

 tim
e e

rro
r (

µs
)

10min
20min
30min

Fig. 11. Logic time error v.s.
sampling frequency

0 200 400 600 800 1000 1200 1400
−600

−400

−200

0

200

400

600

800

1000

Time (min)

Log
ic t

ime
 err

or
(µs

)

Max logic time error
Avg logic time error

Fig. 12. Maximum and average logic time
error in the stable environment

5 PERFORMANCE EVALUATION

In this section, we evaluate the system performance of
FLIGHT through extensive experiments.

5.1 Filter configuration

In Figure 10, we evaluate the impact of the order of the
filter by varying it from 1 to 7. Figure 10(a) shows that
when m = 1, the period generation component leads to
the largest detection error. From statistics, we observe
that the average error reaches as high as 323μs. As we
increase m, errors of generated periods reduce dramat-
ically. From Figure 10(a), we can also notice that if we
increase m after 5, the error reduction is slight, implying
that the order of the filter can be kept relatively low
without compromising the achieved period accuracy. In
Figure 10(b), we further examine the processing delay
to filter one sample respect to different filter orders.
As what we expect, the filtering delay becomes linearly
increased when m increases as depicted in Figure 10(b).
Such a processing delay essentially limits the maximum
sampling rate that can be used for each specific m;
otherwise, the filtering and sampling operations cannot
be parallelized. To facilitate the sampling rate selection
for the practical development, we plot the maximum
sampling rates allowed for each m in principle (i.e.,
theoretical maximum in Figure 10(c). Since feasible fre-
quencies in practice are not continuous, in Figure 10(c),
we plot the maximum frequency that can be adopted for
each m in the TelosB platform as an example. Based on
the results in the figure, we find that the pair of m = 6
and fs = 7.06KHz can produce both a small period
detection error and a sufficiently high sampling rate.

In Section 4.2.2, we claim that the filtering com-
putation should be completed within two consecutive
samplings; otherwise, the inaccurately detected periods
may incur serious logic time errors. To validate such an
argument, we conduct an experiment using two TelosB
motes. In this experiment, m = 6 and the sampling rate
changes from 3.72KHz to 12.42KHz. After the initial
calibration, we examine their logic time error in 10, 20,
and 30 minutes. From Figure 11, we can easily observe
that when fs is greater than 7.06KHz, the error increases

dramatically. On the other hand, due to the extra com-
putation burden from the period delimiter searching and
the interruptions of the MCP to other tasks, the 7.06KHz
sampling rate may not always provide sufficient safe
guarding region to parallel the sampling and computa-
tion. As a result, the synchronization accuracy might be
impacted. In our experiment, we use a smaller frequency
value 3.72KHz that offers adequate safe guarding region
and reliably provides a small logic time error. We use the
3.72KHz sampling rate in the following experiments.

5.2 Logic time accuracy
In this section, we examine the logic time differences of
different nodes in both static and dynamic environments.

5.2.1 Static environment
In the static environment, 12 sensor nodes are uniformly
distributed in our laboratory. One beacon node is placed
in the middle of the laboratory and broadcasts beacon
messages to trigger each node logging its current logic
time. The experiment is conducted for one week and we
summarize the performance from Figures 12 to 16.

Figure 12 depicts the max and average logic time er-
rors with respect to a randomly selected reference node.
We plot one 24-hour trace clip for a clear presentation.
Overall, the trace evolves following a zigzag pattern. The
sudden drops of two curves are due to the logic time
updating in each calibration window. From Figure 12, we
can observe that on average, different clocks have been
tightly synchronized. From statistics, we find that the
average error keeps less than 600μs all the time and it is
smaller than 200μs for over 80% of time. The maximum
logic time error is also well controlled in the experiment.
Statistics show that the maximum error is always smaller
than 950μs and it is less than 350μs most time. Figure 12
indicates that clocks can be highly calibrated by FLIGHT.

To further understand the logic time accuracy, we ex-
amine three typical node pairs and depict their pairwise
errors. In particular, the first pair of nodes are physically
close to each other and they are synchronized to the
same lamp. For over 80% of time, the mutual logic
time error is limited by 300μs and the maximum error
does not exceed 850μs. The second pair is physically

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logic Time Error (µs)

CD
F Pair 1

Pair 2
Pair 3

Fig. 13. CDF of logic time errors
of three typical node pairs

8 15 24 35 55
0

200

400

600

800

1000

1200

Calibration Interval (min)

Lo
gic

 Ti
me

 E
rro

r (µ
s)

Fixed calibration interval
Adaptive calibration interval

Fig. 14. Logic time error v.s. cali-
bration intervals

4 5 6 7
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Lo
gic

 Ti
me

 E
rro

r (µ
s)

Different Distances (m)
4 5 6 7

0

100

Lig
ht

 In
ten

sit
y (

mV
)

Error−10min
Error−20min
Error−30min
Light Intensity

Fig. 15. Logic time error v.s. light
intensity

apart from each other and they are synchronized to
different lamps. Their mutual logic time error is still
smaller than 450μs for over 80% of time. Meanwhile, the
maximum error is always smaller than 900μs. The last
pair of nodes might be temporarily blocked from the
lamp by students or staffs in the laboratory during the
experiment. However, we do not observe a significant
performance deterioration and the error is below 650μs
for 80% of time. In the worst case, their mutual logic
time error is 960μs.

In Figure 14, we evaluate the adaptive calibration
interval scheme compared with the deterministic inter-
val setting. We choose five different error controlling
factors to be 5, 10, 15, 25, and 30 native clock ticks
and each native clock tick corresponds to 30.515μs. For
each factor, the experiment lasts 5 hours. When the
experiment terminates, we calculate the average length
of the calibration interval to be 8, 15, 24, 35 and 52min,
respectively. Then, we repeat the experiment for the
same duration by using the deterministic calibration
interval policy with the calculated interval length. In
Figure 14, we plot the average, maximum, and minimum
logic time errors observed in the experiment. From the
figure, we find that the deterministic policy generally
incur a larger error than the adaptive policy. In order to
control the average error below 500μs as [14], [16], we
choose 25 as the default value of u since such a setting
can achieve the accuracy requirement and reduce the
number of calibrations at the same time.

In Figure 15, we examine the impact of the light inten-
sity on the logic time consistence. In this experiment, we
open one lamp array in the rear of our laboratory and
switch off all other lamps. Then, we place sensor nodes
in a line covering both light region and dark region. In
Figure 15, the x-axis represents the approximate distance
of one node to the rear of the laboratory. We first plot
the received light intensity in Figure 15. As the node
becomes far away from the rear region, the detected light
intensity drops. From Figure 15, we can observe that
when the light intensity is higher than 25mV , logic times
are accurately maintained, e.g., the logic time errors are
smaller than 600μs after 30 minutes. Only after the light
intensity drops below 25mV , the logic time error reaches
780μs. However, such a performance is still acceptable

in many systems with the 1ms error bound [16]. As a
matter of fact, in most indoor environments, the node
can normally observe 50mV above light intensity. There-
fore, one lamp can cover a large-scale field such that
fluorescent lamps can be sparingly used in FLIGHT.

Finally, we examine the impact of the interference from
other light sources. We first mix the fluorescent light
with the sunlight, which commonly occurs when the
node is deployed close to the window. The sunlight is
a direct signal. We observe that the combined reading
of the node consists of a 800mV direct component
and a 90mV alternating component, and find that the
periodical pattern from fluorescent lighting can still be
accurately detected. The result shows that up to 80% of
time, the logic time error is less than 600μs. In addition,
we also mix the fluorescent light with the LED signal
from a smart phone, which is the most widely existing
noise for FLIGHT in the indoor environment. Although
the generated light from LED is relative stable, due to the
slight shaking of the smart phone, the amplitude of the
combined signal varies, and the amplitude of the LED
signal is greater than that of the fluorescent light. Similar
to Figure 5, FLIGHT can still capture the frequency
component close to 100Hz and accurately detect the
lighting period delimiters. From statistics, we observe
that the logic time is still accurate. Figure 16 shows that
the error is controlled within 900μs and in most cases the
error is less than 610μs. Finally, we mix the fluorescent
light with the filament light that is another common
noise for FLIGHT. In this scenario, the logic time is also
accurate according to Figure 16. Therefore, we believe
that FLIGHT is robust to external interferences from
other light sources during clock calibration.

5.2.2 Dynamic environment
In this subsection, we conduct several trails of experi-
ments to evaluate FLIGHT in dynamic environment. In
the first experiment, two sensor nodes (A and B) are
attached to the gates of the laboratory. Notice that only
the gate with sensor node A can be open. Both of the
two nodes can synchronize their clocks with the same
lamp. To avoid disturbing the entrance of students to
the laboratory, node A transmits its recorded logic times
through wireless communications. This experiment lasts

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logic Time Errors (µs)

CD
F Sunlight

Filament light
LED light

Fig. 16. CDF of logic time
errors mixed with other lights

0 100 200 300 400 500 600 700 800 900 1000

0.4

0.5

0.6

0.7

0.8

0.9

1

Logic Time Error (µs)

CD
F

Fig. 17. Time error with
controlled mobility

0 200 400 600 800 1000 1200 1400

−800

−600

−400

−200

0

200

400

600

800

1000

Time (min)

Lo
gi

c
Ti

m
e

E
rr

or
 (µ

s)

Period 1

Period 2

Period 3

Fig. 18. Nodes’ logic time error during the
movement

6 hours and we also deploy a node (node C) with the
ultrasonic wave sensor to count the number of people
passing through the gate to approximate the times of
gate opening. During the experiment, the final value of
the counter is 158 and we estimate the gate has been
opened more than 70 times during the experiment. We
summarize the system performance in Figure 17. We
find that the average clock difference between node A
and B is smaller than 1, 000μs all the time and it is
less than 400μs most of time. Compared with the static
environment in Figure 11, the average error increasing
is slight and accounts for 12% performance degradation.

In the second trail of experiment, three persons take
turns to roam in the academic building. In particular,
during periods 1, 2, and 3 in Figure 18, they roam in
the office area, the class room area, and the laboratory,
respectively. In each period, each person holds three
TelosB motes and roams for around one hour. Two sensor
nodes are used to be calibrated and the third one peri-
odically sends out beacon messages to trigger the logic
time recording. To store recorded logic times, the to-be-
synchronized motes are connected to a laptop inside a
bag carried by the person. Except the three highlighted
periods, sensor nodes are placed in the laboratory stilly.
From Figure 18, we can observe that when the motes
roam outside the laboratory (i.e., periods 1 and 2), the
logic time error is mainly distributed within [600, 800]μs.
The increasing of the logic time error in the two periods
is mainly due to the noises introduced by the mobility
and surrounding environments. In addition, some places
during the roaming are not well covered by light, which
also contributes to the performance deterioration. Dif-
ferently, logic times in period 3 suffers from a much less
error during the movement. Compared with the static
case, the logic error in period 3 only slightly increases.

5.3 Energy consumption
To understand the energy efficiency of FLIGHT, we first
evaluate FLIGHT under different calibration intervals
and then compare it with some recent approaches in-
cluding ROCS, WizSync, and FTSP [11], [14], [16]. We
directly measure the working power of FLIGHT from
the hardware. The working power of FLIGHT is around

5.394mW and each calibration in FLIGHT can be fin-
ished within 100ms. The (overall) energy consumption of
FLIGHT with different intervals is plotted in Figure 19.
We see that the energy consumption of FLIGHT is usu-
ally less than 5μW , which is highly desired for power-
constrained mobile devices. For the comparison study,
we directly measure the energy consumption of FTSP as
well. The working power of FTSP is 48mW . For ROCS
and WizSync, on the other hand, since both two methods
need specific-designed hardware and algorithms, we
refer to results in their corresponding literatures.

We configure four schemes with consistent settings
(with comparable timing accuracy) and report the results
in Figure 20. We evaluate the energy consumptions of
FLIGHT, ROCS, and WizSync, by varying the calibration
interval from 10min to 30min. From Figure 20, we can
see that the communication-based protocol indeed in-
curs a high-energy consumption. Compared to FLIGHT,
ROCS, and WizSync, the power consumption of FTSP is
much higher even when we set a much larger calibration
interval. As we can see from Figure 20, the energy con-
sumption of ROCS and WizSync is similar with the same
calibration interval setting. Due to the uncertainty of the
Wi-Fi beacon period, the calibration interval of WizSync
is usually configured to be 10min in practice and the
corresponding power consumption is around 50μW . The
calibration interval of FLIGHT and ROCS can be set
around 30min, so their energy efficiencies are around
40 times and 6 times higher than WizSync, respectively.
Since sampling the light sensor in FLIGHT consumes
much less energy than operating the FM receiver module
in ROCS, FLIGHT can achieve higher energy efficiency.

6 FLIGHT FOR CONTEXT RECOGNITION

So far, we have introduced how fluorescent lighting is
used to maintain a common notion of time in the net-
work. As a promising extension to leverage its periodic
property, we find that the periodical pattern obtained
from FLIGHT can be viewed as an indoor context indi-
cator, based on which the on/off states of a variety of
location-based services can be controlled automatically.
For example, before turning on GPS, one may first check
whether it is outside a building. Before searching for

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Calibration Interval (min)

Av
er

ag
e P

ow
er

 (µ
W

)

Fig. 19. Energy consumption
of FLIGHT

10 20 30 10 20 30 10 20 30 30 60 100
0

50

100

150

200

250

300

350

Av
er

ag
e P

ow
er

 (µ
W

)

FLIGHT(min) ROCS(min) FTSP(sec)WizSync(min)

Fig. 20. Energy consumption
comparisons

0 2 4 6 8 10

x 104

0

200

400

600

800

1000
Daytime

Index of Sampling Points

Vo
lta

ge
 (m

V)

0 1 2 3 4 5 6 7

x 104

0

50

100

150

200

250

300
Night with lights in corridor

Index of Sampling Points

Vo
lta

ge
 (m

V)

0 1 2 3 4 5 6 7

x 104

0

50

100

150

200

250

300
Night without lights in corridor

Index of Sampling Points

Vo
lta

ge
 (m

V)

7600 7800
100

150

200

5.16 5.18

x 104

850

900

5.16 5.18

x 104

60

65

70

5.16 5.18

x 104

0

10

20

Fig. 21. Different lighting features de-
tected in different contexts

the access points of WiFi, one may check whether it
is inside or near buildings. In this section, we leverage
the periodical pattern and the intensity of fluorescent
lighting to identify the indoor/outdoor context for a va-
riety of embedded devices, e.g., on-board GPS modules,
embedded computer systems, mobile sensor motes, etc.

Figure 21 illustrates the basic principle of our design.
First, the light intensities in the indoor and outdoor envi-
ronments have significant differences. For example, the
outdoor light intensity is normally greater than 400mV
in the daytime. At night, however, its light intensity
is smaller than 15mV (even less than the indoor light
intensity). In addition, in the indoor environment, the
probability to successfully detect the periodical pattern
of fluorescent lighting is quite high. On the contrary,
the periodic pattern detection probability in the outdoor
scene approaches to zero. During the brief transition be-
tween the indoor and outdoor environments, the feature
of the detected light is exhibited between two extremes.

Approach: within a w-second window, FLIGHT sam-
ples the light sensor and counts the number of detected
light periods in the window. We denote n to be the
period counts and ñ to be the maximum number of
periods that can be detected within the window. If
the ambient environment is full of fluorescent lighting,
n is close to ñ. n can be slightly smaller than ñ as
the starting point of a sampling window may not be
perfectly aligned with the delimiter of a light period.
On the other hand, if parts of the readings are obtained
from a transition range between the indoor and outdoor
environments or a complete outdoor environment, the
ratio r = min(n, ñ)/max(n, ñ) can be much smaller than
1, as the period extraction module may fail to output
certain (even all) delimiters in those scenarios.

For better energy efficiency, the device needs not
to sample the light sensor all the time. Instead, the
sampling is in a duty-cycled manner. We configure the
window size to be one second and the device samples
the light sensor every two seconds. As people’s normal
moving pace is about 1 m/s, two consecutive sampling
sites are approximately 2 meters away, which preserves
sufficient fidelity. With such a setting, the working power
of our context recognition solution is 1.798mW merely.
If the device is equipped with accelerometers, the duty-

Fig. 22. The ambient context recognition procedure

cycled sampling is performed only when the mobility is
detected to further reduce the energy consumption.

The detection procedure is detailed in Figure 22. We
first use the average light intensity level (l) to classify
two cases. When the system operates, we assume the
light sensor is available and has a valid reading.
• When l is greater than a threshold lu, the device

possibly stays in the outdoor environment. In this
scenario, the range of ratio r = min(n, ñ)/max(n, ñ)
is between 0 and 1. If the current ratio r is suffi-
ciently small, the confidence for the device indeed
being outdoor is high, and we denote the confidence
level as c = 1 − r. The confidence about the device
being outdoor is low if a large r is observed.

• When l ≤ lu, the device reads to the on-board time
information. When the timer indicates the daytime
or the ratio r is greater than a threshold ru, we have
high confidence about the device being indoor. The
confidence setting is given in Figure 22. In case it
is at night and r ≤ ru, the device refers to the light
intensity again. If l < ll, we have high confidence
that the device is outdoor, i.e., c = 1; Otherwise, the
confidence is relatively low, i.e., c = 1− r.

To properly set the thresholds lu, ll, and ru used in the
design, we collect indoor/outdoor light intensity traces
for an empirical investigation. We find that on a sunny
day, the light intensity is usually above 600mV . Even
on a cloudy or rainy day, the light intensity is above
500mV . Differently, indoor light intensity is relatively
stable that is around 170mV . We thus set lu to be 400mV
as the default value to reserve sufficient safety margin.
In addition, the reading from light sensors at night is
close to zero in the outdoor. If a device senses light from

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

street lamps or buildings, the light intensity is usually
smaller than 75mV . We set ll to be 15mV (to tolerate
certain hardware jitter) as the default value to identify
the scenario when the node is completely outdoor at
night. On the other hand, in the indoor environments,
the quality of the detected periodic patterns, measured
by r, is usually close to 100%. We configure ru to be 95%
to reserve a 5% safety margin.

In Figure 22, one point worth noting is that the detec-
tion result for “outdoor with low confidence” does not
imply the device probably being indoor. It only states
the harvested evidence is not strong enough for a device
to conclude its ambient context as “outdoor” though
the device knows it is not likely being indoor. The
reason is due to the transition range between the indoor
and outdoor environments. We find that identifying the
transition scene is sometimes useful. For instance, in the
transition environment, GPS should not be switched on
as the GPS receiver may not observe enough satellites at
this time. In contrast, the WiFi module can be turned on
since the device is already in the vicinity of a building.
Thus, the detection confidence is used as one input for
upper-layer applications.

Evaluation: we evaluate the performance of our con-
text recognition approach in Figure 23. Four students
participate the experiment and each of them randomly
selects 25 indoor and 25 outdoor sites in the campus.
The experiment lasts for 5 days with different weather
conditions and include different periods of a day, e.g.,
daytime, night, sunrise, and sunset. The results show
that in the outdoor environment, the device can ac-
curately detect its ambient context. The accuracy is as
high as 95%. In the indoor environment, we find that
other type of light sources may cause the detection error.
Moreover, when the device is close to the door and the
door is just open, our approach might classify the device
to be outdoor with low confidence. According to the
statistics, the indoor detection accuracy is 90%.

7 RELATED WORK

Most existing works for achieving common time notion
in the network rely on wireless communications. RBS
[9] eliminated the sender-side delay for synchronization.
TPSN [10] further canceled out the propagation delay.
By using the MAC-layer stamping technique, FTSP [11]
largely increases the synchronization accuracy. However,
the authors in [12] find that errors among different
clocks exponentially increase with the network diameter.
[22] proposes a fast flooding scheme and [20] studies
the synchronization accuracy in low-duty-cycle sensor
networks. [23] estimates clock uncertainty for duty-
cycled sensor networks. On the other hand, some other
works also focus on addressing the clock uncertainty
and reducing the time synchronization cost. ACES [19]
suggested to track skew by using Kalman filter and ODS
[7] introduces the on-demand accuracy synchronization.
Both [24] and [25] explore the temperature compensated

Fig. 23. Context recognition accuracy

scheme to mitigate the clock skew. In [20] and [21], au-
thors introduce to maintain a common time by using two
clocks on each individual node with different accuracies.
Communication-based protocols are easy to implement
but with high energy consumption and overhead.

Recently, several emerging studies exploit the external
signal source with a stable period for clock calibration
and synchronization. The majority of those solutions
utilize radios for the clock calibration at the expense
of higher power consumption [14], [26]. Although clock
calibration can be performed periodically, the energy
consumption for each calibration could not be reduced
and the accumulated power draining for time synchro-
nization is still high. [15] designs passive radio receivers
for synchronizing nodes to radio stations. In [16], authors
introduce to synchronize clocks to Wi-Fi beacons without
the extra hardware support. Such a global reference,
however, may not be stable enough due to channel
contention and collisions. In [13], the authors propose
to use power lines for clock calibration. However, due
to dramatically decay, the periodical signals can only be
detected in the vicinity of power lines. Extra hardware
is required as well in [13]. On the contrary, FLIGHT is
not constrained by those limitations and FLIGHT can
precisely calibrate clocks in an energy-efficient manner
without any specific hardware.

Initial efforts on the context recognition have been
made [18]. [18], however, focuses on the design for smart
phones using expensive sensors, which may prohibit its
usage for low-end smart phones and embedded devices.
Differently, we propose to solely utilize the periodical
pattern and the intensity of fluorescent lighting so that
a lightweight context service can be achieved.

8 CONCLUSION
In this paper, we develop a new clock synchronization
approach called FLIGHT, which leverages the fact that
the light intensity from fluorescent lamps varies with
a stable period. FLIGHT does not require any extra
hardware and radio operations. By sampling light sensor
or camera, FLIGHT can intelligently extract periods for
the clock calibration and retain a common notion of time
in the system. We give in-depth analysis on various
practical issues to ensure the calibration accuracy. We
implement FLIGHT in TelosB motes and evaluate its
performance using a 12-node test-bed under both static
and mobile settings. We further leverage the observation
from FLIGHT for context recognition, which utilizes the

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

periodical pattern and the intensity of fluorescent light-
ing to distinguish the indoor and outdoor environments.

ACKNOWLEDGEMENT
This study is supported by Singapore MOE AcRF Tier
2 grant MOE2012-T2-1-070. It is also supported by
NAP M4080738.020, NSFC Major Program No. 61190110,
NSFC Distinguished Young Scholars Program 61125202.

REFERENCES
[1] Z. Li, W. Chen, C. Li, M. Li, X. Li, and Y. Liu, “Flight: Clock

calibration using fluorescent lighting,” in Proc. of ACM MobiCom,
2012.

[2] T. Gu, Z. Wu, X. Tao, H. Pung, and J. Lu, “epsicar: An emerging
patterns based approach to sequential, interleaved and concurrent
activity recognition,” in Proc. of IEEE PerCom, 2009.

[3] G. Virone, A. Wood, L. Selavo, Q. Cao, L. Fang, T. Doan, Z. He,
and J. Stankovic, “An advanced wireless sensor network for
health monitoring,” in Proc. of D2H2, 2006.

[4] A. Natarajan, B. de Silva, K. Yap, and M. Motani, “Link layer
behavior of body area networks at 2.4 ghz,” in Proc. of ACM
Mobicom, 2009.

[5] J. Qiu, D. Chu, X. Meng, and T. Moscibroda, “On the feasibility of
real-time phone-to-phone 3d localization,” in Proc. of ACM Sensys,
2010.

[6] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low
power wireless research,” in Proc. of ACM/IEEE IPSN, 2005.

[7] Z. Zhong, P. Chen, and T. He, “On-demand time synchronization
with predictable accuracy,” in Proc. of IEEE Infocom, 2011.

[8] “Product List of Seiko Instruments Inc., 2009,” http://speed.sii.
co.jp/pub/compo/quartz/productListEN.jsp.

[9] J. Elson, L. Girod, and D. Estrin, “Fine grained network time
synchronization using reference broadcasts,” in Proc. of ACM
OSDI, 2002.

[10] S. Ganeriwal, R. Kumar, and M. Srivastava, “Timing sync protocol
for sensor networks,” in Proc. of ACM Sensys, 2003.

[11] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “The flooding time
synchronization protocol,” in Proc. of ACM Sensys, 2004.

[12] C. Lenzen, P. Sommer, and R. Wattenhofer, “Optimal clock syn-
chronization in networks,” in Proc. of ACM Sensys, 2009.

[13] A. Rowe, V. Gupta, and R. Rajkumar, “Low-power clock synchro-
nization using electromagnetic energy radiating from ac power
lines,” in Proc. of ACM Sensys, 2009.

[14] L. Li, G. Xing, L. Sun, W. Huangfu, R. Zhou, and H. Zhu,
“Exploiting fm radio data system for adaptive clock calibration
in sensor networks,” in Proc. of ACM Mobisys, 2011.

[15] Y. Chen, Q. Wang, M. Chang, and A. Terzis, “Ultra-low power
time synchronization using passive radio receivers,” in Proc. of
ACM/IEEE IPSN, 2011.

[16] T. Hao, R. Zhou, G. Xing, and M. Mutka, “Wizsync: Exploiting
wi-fi infrastructure for clock synchronization in wireless sensor
networks,” in Proc. of IEEE RTSS, 2011.

[17] D. Allan and H. Machlan, “Time transfer using nearly simulta-
neous reception times of a common transmission,” 26th Annual
Symposium on Frequency Control, 1972.

[18] P. Zhou, Y. Zheng, Z. Li, M. Li, and G. Shen, “Iodetector: a generic
service for indoor/outdoor detection,” in Proc. of ACM SenSys,
2012.

[19] B. Hamilton, X. Ma, Q. Zhao, and J. Xu, “Aces: adaptive clock
estimation and synchronization using kalman filtering,” in Proc.
of ACM Mobicom, 2008.

[20] J. Koo, R. Panta, S. Bagchi, and L. Montestruque, “A tale of two
synchronizing clocks,” in Proc. of ACM Sensys, 2009.

[21] T. Schmid, P. Dutta, and M. Srivastava, “High resolution, low
power time synchronization an oxymoron no more,” in Proc. of
ACM/IEEE IPSN, 2010.

[22] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient
network flooding and time synchronization with glossy,” in Proc.
of ACM/IEEE IPSN, 2011.

[23] S. Ganeriwal, I. Tsigkogiannis, H. Shim, V. Tsiatsis, M. Srivastava,
and D. Ganesan, “Estimating clock uncertainty for efficient duty-
cycling in sensor networks,” IEEE/ACM Transactions on Networking
(TON), 2009.

[24] T. Schmid, Z. Charbiwala, Z. Anagnostopoulou, M. Srivastava,
and P. Dutta, “A case against routing-integrated time synchro-
nization,” in Proc. of ACM Sensys, 2010.

[25] Z. Yang, L. Cai, Y. Liu, and J. Pan, “Environment-aware clock
skew estimation and synchronization for wireless sensor net-
works,” in Proc. of IEEE Infocom, 2012.

[26] A. Rowe, R. Mangharam, and R. Rajkumar, “Rt-link: A time-
synchronized link protocol for energy-constrained multi-hop
wireless networks,” in Proc. of SECON, 2006.

Zhenjiang Li (M’12) received his B.E. degree in
the Department of Computer Science and Tech-
nology from Xi’an Jiaotong University, China, in
2007, the Mphil and Ph.D. degrees in Depart-
ment of Electronic and Computer Engineering
and Department of Computer Science and En-
gineering from Hong Kong University of Science
and Technology in 2009 and 2012, respectively.
His research interests include networked dis-
tributed systems and mobile computing.

Wenwei Chen (S’13) received his B.E. degree
in the Automation Department from University of
Science and Technology, in 2011. He is currently
a second year PhD student of Nanyang Techno-
logical University. His current research interest is
wireless sensor networks.

Cheng Li (S’13) received his B.E. degree in the
Department of Electronic and Engineering from
University of Electronic Science and Technology
of China, in 2010. He is currently a second
year PhD student of Nanyang Technological Uni-
versity. His current research interest is wireless
sensor networks.

Mo Li (M’06) received his BS degree in the
Department of Computer Science and Technol-
ogy from Tsinghua University, China, in 2004
and PhD degree in the Department of Computer
Science and Engineering from Hong Kong Uni-
versity of Science and Technology in 2009. He
is currently an assistant professor in School of
Computer Engineering of Nanyang Technologi-
cal University, Singapore. His research interest
includes wireless sensor networking, pervasive
computing, mobile and wireless computing.

Xiang-Yang Li (SM’08) received the B.Eng. de-
gree in computer science and the Bachelors
degree in business management from Tsinghua
University, Beijing, China, in 1995, and the M.S.
and Ph.D. degrees in computer science from
the University of Illinois at Urbana Champaign
in 2000 and 2001, respectively. He is a Pro-
fessor of computer science with Illinois Institute
of Technology, Chicago. His research interests
span sensor networks, and algorithms.

Yunhao Liu (M’02-SM’06) received the B.S. de-
gree from the Automation Department, Tsinghua
University, Beijing, China, in 1995, and the M.S.
and Ph.D. degrees in computer science and
engineering from Michigan State University, East
Lansing, in 2003 and 2004, respectively. He is a
member of the Tsinghua National Lab for Infor-
mation Science and Technology and the Director
of the Tsinghua National MOE Key Lab for In-
formation Security, both in Tsinghua, China. His
research interests include Distributed Systems

and Wireless Sensor Networks/ RFID, Cyber Physical Systems and IoT.

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

