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Abstract— Differentiated service (DiffServ) is a mechanism to
provide the Quality of Service (QoS) with a certain performance
guarantee. In this paper, we study how to design DiffServ
multicast when every relay link is an independent selfish agent.
We assume that each linke; is associated with a (privately known)
cost coefficientc; such that the cost ofe; to provide a transmission
service with bandwidth demand x is ¢; - . Further, we assume
that there is a fixed source nodes and a setR of receivers, each of
which requires from s data with a minimum bandwidth demand.
The DiffServ multicast problem is to compute a link-weighted
tree rooted at s and spanning R such that the receivers’ demands
are met. This generalizes the traditional link weighted Steiner
tree problem. We first show that a previous approximation
algorithm does not directly induce a strategyproof mechanism.
We then give a new polynomial time algorithm to construct a
DiffServ multicast tree whose total cost is no more thar8 times
the optimal total cost when the cost coefficient of each link is
known. Based on this tree, we design a truthful mechanism for
DiffServ multicast, i.e., we give a polynomial-time computable
payment scheme to compensate all chosen relay links such that
each link maximizes its profit when it declares its cost coefficient
truthfully.

Index Terms— DiffServ, multicast, selfish agents, algorithmic
mechanism design, approximation algorithms.

|. INTRODUCTION
The Differentiated Services framework (DiffServ) [1], [2]

has been proposed to provide multiple Quality of Servi
(QoS) classes over IP networks. DiffServ is built upon a sim

model of traffic conditioning and policing at the links of the
e

network in addition to classifying flows into different servic
classes. The traffic is forwarded using simple differentiat
treatments, called per-hop behaviors (PHBs), in the core

the network. This differential treatment results in differentia
pricing [3], which is one of the motivating factors for adoptingg

DiffServ by major network providers and ISPs.
Multicast has been a popular mechanism for supporti

group-based applications, such as video-conference and @

tent distribution. Although multicast and DiffServ are com
plementary technologies, there are still some architectu
conflicts between them. The first notable conflict is th
multicast often requires the maintenance of per-group st

e

information at all routers, while DiffServ usually relies on
the statelessness of the core. The second notable conflict is
that multicast is often based aeceiver-drivenQoS, while
DiffServ is usually based osender-driverQoS. Edge-based
multicast (EBM) approach was proposed recently to address
these possible conflicts. In this paper, we characterize the
different QoS of the links by the amount of bandwidth they
dedicate to the multicast transmission.

In a multicast, different receivers of a multicast group
could request different bandwidth demands, which often reflect
different qualities of services the receivers will get. Each
link of the network may have a different cost of providing
multicast with different bandwidth dedication [4]. Due to
the heterogeneity in receivers’ bandwidth demands, different
links in a multicast tree will carry different amount of traffic
such that the demand requirements of downstream receivers
are satisfied. The cost of a link in a multicast tree is then
the cost needed to dedicate a certain bandwidth for down-
stream receivers; it is typically determined by the maximum
bandwidth required by downstream receivers, as well as the
cost coefficient of the link (which we will define later). The
DiffServ multicast problem is to compute tiee and the
bandwidth at each link of the tree such that the receivers’
bandwidth QoS demands are met. Note that the traditional
Steiner tree problem for link weighted graph [5], [6], an NP-

I;iwi’:ard problem, is a special case of the problem of computing

DiffServ multicast tree with the minimum cost.
What introduces an additional degree of complexity to Diff-
%erv multicast is that the relay links may ben-cooperativg

a

[ T$,tead of cooperativeas assumed by previous protocols.
is means that the relay links will aim to maximize their
wn benefits instead of the whole network’s performance. We
ssume that a link will provide the service to receivers only if

r'L't receives a payment large enough to compensate its relay

%]s:t. To do so, each link is first asked to report its relay
cost and then a payment to this link is calculated based on
a Fertain payment scheme. It is often not in the best interests
% these relay links to report their costs truthfully when
e

ey are paid whatever they ask for. Thus, instead of paying
e links theirdeclared costs, we should design a payment
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their own interests, a property known afategyproofness

e strategyproof mechanism for traditional multicast has
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for different bandwidth demands in DiffServ multicast. 3) Polynomial Time Computability (PC): O and P are

In summary, in this paper, we study two different aspects of computed in polynomial time.
the DiffServ multicast: the construction of the multicast tree Notice that in a strategyproof mechanism, there is no
that has low cost, and a strategyproof payment scheme. Thelget-balance: the total payment to all selfish agents could
main contributions of the paper are as follows. First of all, wiee arbitrarily larger than the total declared truthful cost of
show that a previous approximation algorithm does not direct#i agents [9], [10]. Recently, there have been some stud-
induce a strategyproof mechanism. We give an alternaties to quantify the worst performances of a strategyproof
polynomial time algorithm to construct a DiffServ multicastechanism [9], [10], [11], [12], or to design strategyproof
tree whose total cost is no more th&ntimes the optimal mechanisms with better performances [11], [13]. In addition
total cost when the cost coefficient of each link is known. W strategyproof algorithm mechanisms, other approaches to
then characterize the necessary and sufficient conditions ftaal with the selfishness of agents include auctions [14] and
the multicast tree construction algorithms based on which weputation-inference [15]. The advantage of having a strate-
can design a strategyproof payment scheme. Finally, we desgymproof mechanism is its simplicity: it is simple to implement
a truthful algorithmic mechanism for DiffServ multicage., and it relieves all agent from guessing other’s actions and
we give a polynomial-time computable payment scheme pmssibly declaring a much higher cost. Another advantage of
compensate all chosen relay links (by our multicast tressing a strategyproof mechanism is that, given an algorithm
construction method) such that each link maximizes its pro@ibnstructing the multicast tree with approximation ratip
when it declares its cost coefficient truthfully. the multicast tree used will have r@al cost no more than

The rest of the paper is organized as follows. In Section B, certain factora times of the minimum real cost. This is
we specify the network model, define the problem, and revieviten called bounded social efficiency. If the optimal tree
the necessary technical preliminaries. We also briefly reviesmnstruction method is used, then the tree is the actual optimal
some approximation algorithms to construct multicast treesee. However, when agents declare their costs untruthfully, it
We study how to pay the links in Section IV after presentingill be difficult, if not impossible, to bound the totatal cost
our approximation algorithm for constructing the multicast treef the output compared with the real optimal solution.
in Section Ill. We conclude our paper by pointing out some
possible future work in Section V. B. Problem Statement
DiffServ Multicast Tree Construction: We assume that there
is a connected network = (V, E) with vertex setV, edge
A. Algorithmic Mechanism Design set E, where |V| = n and |E| = m. Every edgee; has

In a standard model of algorithmic mechanism design, thesecost functionc; - « if x is the bandwidthe; dedicates
aren agents{1,2,--- ,n}. Each agent € {1,--- ;n} has to a multicast transmission. Hereafter is called thecost
someprivate information¢;, called itstype (e.g, the cost to coefficientof the link e;. All links’ coefficients define a vector
forward a packet for a node/link in a network environmenty = (¢, ¢o, - ,¢,). There is a source nodeand a set of
The types of all agents definegmofile t = (¢1,t2,--- ,¢,). receiverskR C V that request to receive the multicast service.
Each agent declares a valid type;, which may be different Every receiver; € R has a bandwidth demant] that speci-
from its actual type;, and the strategies of all agents definfies the minimum bandwidth it needs. The DiffServ multicast
a declared type vector = (y,---,7,). A mechanismM = is also called Quality of Service Steiner Tree (Q0SST) problem
(O, P) is composed of two parts: an output functiGhthat in [16].
maps a declared type vecterto an outputo and apayment A bandwidth demand ieomogeneoui$ all receivers require
functionP that decides the monetary payméhtr) for every the same bandwidth. This is the standard Steiner tree problem,
agenti. Each agenti has a valuation functionu;(o) that for which several constant approximation algorithms [5], [6]
expressed its preference over different outcomes. Agent have been proposed. For DiffServ multicast, different receivers
utility (also calledprofit) is u;(O(7)) = w;(O(7)) + P;(7), may require different bandwidths. The DiffServ multicast
given the declared vector type. An agent: is said to be problem consists of two parts: 1) a network topology rooted
rational if it always chooses its strategy that maximizes its at the sendes that spans all receivers in the receiver set; 2) a

Il. PRELIMINARIES AND PREVIOUSWORKS

utility w;. bandwidth for each link for this multicast. The tree topology
Let ——; = (71, ,Ti—1,Tix1, " ,Tn)s I.€, the strategies and bandwidth assignments should satisfy that for any receiver

of all other agents except and letr|'t; = (r,72,---, 74, each link on the path between and s in the tree has

Ti—1,tiy Tit1, -+ ,Tn). A mechanism isstrategyproofif for ~a bandwidth not smaller thad;. Thus, for a linke;, the

every agent;, revealing its true type; will maximize its bandwidth should not be smaller than the maximum bandwidth
utility regardlessof what other agents do. In this paper, welemand of its downstream receivers. Té¢wst of a multicast
are only interested in mechanismé = (O, P) that satisfy topology T with link bandwidth vecto = {by, b2, - , by}

the following three conditions: isw(T,b,c) =), crci-bi. Given the cost coefficients vector
1) Incentive Compatibility (IC): V¥V agenti,Vr, ¢ and the bandwidth demantl of all receivers, the DiffServ
wi(O(7|;)) + Pi(7]t;) > wi(O(7)) + Pi(7). multicast problem is to construct a tréeand a bandwidttb
2) Individual Rationality (IR) (a.k.a., Voluntary Participa- such thatw (7, b, ¢) is minimized.
tion): Each agent must have a non-negative utility, The DiffServ multicast problem was studied before in sev-

w; (O(7]'t;)) + Pi(7|'t;) > 0. eral contexts. Maxemchuk [4] proposed a heuristic algorithm



for its solution. Some results for the case of few rates wegiven in [5]. We call the tree constructed by Algorithm 1
obtained in [17], [18]. For example, for the case of two nora Link Weighted Steiner Tre@.ST), denoted ad.ST (R, c)
zero rates, %a-approximation algorithm was proposed [18]wherec is declared cost coefficient vector.

where o ~ 1.549 is the currently best approximation ratio
[6] for the Steiner tree problem. Recently, Charikaml.[19] Algorithm 1 Construct homogeneous multicast tree [H. Taka-
gave the first constant-factor approximation algorithm for dmashi and A. Matsuyama [5]]

unbounded number of rates. They achieved an approximatigput: A network G = (V, E), the cost coefficient vectat,
ratio of 4« using rounding anda ~ 4.211 using randomized a source node and a set of receivers.

rounding. Recently, Karpinsldt al. [16] gave algorithms with Qutput: A tree LST(R, c) rooted ats that spans the receiver
improved approximation factors. They achieved an approximget R.

tion ratio of 1.960 when there are two non-zero rates and an,. |nitialize LST(R,c) = 0.

approximation ratio of3.802 when there are an unbounded ,. repeat

number of rates. Calinescet al. [20] gave a Primal-Dual 5. for each receive; in R do

algorithm with approximation ratid.311. Xueet al.[21] and . Find the shortest path betweanand r; under link
Kim et al. [22] studied the Grade of Service Steiner Tree cost coefficient vectoe, denoted byLCP(s, 7;, c).
Problem (GOSST) in Euclidean planes. 5. end for

Output and Payment Computation: Throughout this paper, 6. Find the receiver that is closest to the source.
we assume all the links are selfish and rational. Recall thaf. Remover; from R and add the pathCP(s,r;,c) to

a mechanismV/ consists of two parts: an output methétl LST(R,c).

and a payment schenfe. Each edge; is required to reveal g.  get all links' cost on the pathCP(s, 7;,c) as0, i.e,
its cost coefficient and it could declare a valag that is setc; = 0 if and only if e; € LCP(s, 75, c).

different fromc;. Thus, we usea = (as,...,an) to denote o yntil R is empty.

the declaredcost coefficient vector. Given receiver getand ;. Output LST(R, c).
declared cost coefficient vectar the output method computes
a multicast treeT” and a valid bandwidth vecta®(R,a) =
(by,ba,--- ,by). Here,b; = O;(R, a) is the bandwidth on link  For DiffServ multicast, the algorithm by Charikat al.

e;. After designing the output metha@, we need to design [19] works as follows. Given an instance of the DiffServ

a payment schem®@ for the links such that the mechanisnmmulticast, they first construct the rounded-up instance by
M = (O, P) is truthful. Given the receiver sdt and declared rounding up all demands of receivers to the nearest power
cost coefficient vectoa, we useP(R,a) to denote the total of 2. Then they solve the standard Steiner tree problem for
payment to the linksi.e, P(R,a) = >__ . Pi(R,a). Here the receivers of each different demand separately by applying
P;(R,a) denotes the payment to a link given the cost any of the well-known heuristics such as Algorithm 1. Finally,
coefficient vectora and the receiver seR. Notice that the they do a “clean-up” process that transforms the graph given
widely used VCG mechanism [23], [24], [25] can be used toy the union of these Steiner trees into a tree and chooses
design a strategyproof mechanism for the traditional multicaible bandwidth of each link to be the maximum bandwidth
problem (when all receivers have the same demand) with ttlemand of its downstream receivers. They proved that this
objective to minimize the total cost of the multicast tree whesimple approach yields 4« s approximation of the optimal

we can find the minimum-cost multicast tree. However, theost, wherexvgr is the approximation factor of the Steiner tree
optimum solution is often difficult to obtain: it is well-known heuristic used. When Algorithm 1 is used as the Steiner tree
that finding minimum-cost multicast tree is an NP-completeeuristic,asr = 2 and the overall approximation ratio &
problem. Therefore, VCG mechanism for traditional multicagtor notational simplicity, we denote the algorithm as Charikar-
cannot be implemented in polynomial time unléssNP. We Takahashi algorithm. Our algorithm is similar to Charikar-
thus see the trade-off of efficiency for complexity. ActuallyTakahashi algorithm at the first glance, but it has some key
we will show that VCG mechanism does not work for generalifferences that will be described later.

DiffServ multicast problem.

Il. A NEW APPROXIMATION ALGORITHM

C. Literature Review of Steiner Tree Construction In this section, we present an alternative DiffServ mul-

If all receivers have the same bandwidth QoS demand, tlieast tree construction algorithm to the algorithm in [19].
DiffServ problem becomes the standard link weighted SteinBefore we present our algorithm, we define some notations
tree problem. In link weighted Steiner tree, each link habkat will be used later. For a sek® of k& receivers with
a fixed costc; for a unit bandwidth and all bandwidth inbandwidth demand vectad = {d;,d», - ,dx}, we denote
the tree can be normalized to unit. Notice thatequals the the multicast tree with the minimal weight that spaRs
cost coefficient in the DiffServ multicast problem, thus foas 7°?!(R, d,c) and the corresponding bandwidth allocation
notational consistency, we uee¢o denote the input for the link vector asB°P*(R, d, c), wherec is the cost coefficient vector.
weighted Steiner tree problem. The link weighted Steiner tréfethe receivers have homogenous bandwidth demand, then
problem enjoys several constant approximation algorithms [Bhe minimum link weighted Steiner tree, which is denoted as
[6]. In Algorithm 1 we review a2-approximation algorithm 7™ (R, c), does not depend ad. Given a subse$ C R and



a treeT that spansRk, we useTgpt to denote the subtree inThe links picked in earlier rounds will be used in later rounds,
T induced byS if no confusion is caused. without additional costs involved, to connect receivers with
Given a receiver sef?, a cost coefficient vectoc and lower demands.
a bandwidth demand vectat, following algorithm shows  Notice that, as indicated by Line 11 of Algorithm 2, for each
how to find a DiffServ multicast treeDMT(R,c) and its link e; added intdl" in roundt the bandwidth allocation of; is
corresponding bandwidth allocatiaB with low weight. We set to be the maximum bandwidth demand among all receivers
also call this algorithmDMT if no confusion is caused. in R;. This may be more than necessary; after @liwill not
Basically, Algorithm 2 constructs a DiffServ multicast trede relaying packets for all of them. Indeed, one can design
as follows. It first sorts the demands of all receivers in the following Algorithm 3, which constructs the same tree as
descending order and groups them into several groups sédforithm 2 does, and yet allocates less bandwidth on each
that the largest demand in each group is at nibgtmes link e; by setting the bandwidth allocation to be maximum
the smallest demand in that group. Starting from the grolyandwidth demand of;'s downstream receivers. In order to
containing the largest demand, it constructs a multicast treétinguish these two algorithms, we uBg\/T to denote the
to span the receivers in this group using Algorithm 1. kree constructed by Algorithm 3. As minor (and harmless) as
then marks the cost of links chosen @since we will use this modification seems to be, Algorithm 3 does not induce
them anyway to span these receivers and their bandwidths arguthful payment scheme. In the next section, we will use
enough to support any future receivers if they are also chogéis algorithm as an example to show how to use a general
later. We then process all groups in the descending orderapfterion to determine the truthfulness of a payment scheme
their demands. Remember that when process:tthegroup, induced by a given algorithm.
the links chosen to span any grogpwith j < i will have

cost marked a$. Algorithm 3 Construct DiffServ multicast Tree with Less
. . . Bandwidth Allocation

Algorithm 2 Construct DiffServ Multicast Tree Input: A network G with coefficient vectorc, a source node

Input: A network G' with coefficient vectore, a source node s a set of receiver& and a bandwidth demand vectdr

s, a set of receiver® and a bandwidth demand vectdr Output: A tree DMT(R,c) spanning the receivers and a

Output: A tree DMT(R,c) spanning the receivers and &andwidth allocation vectoB.

bandwidth allocation vectoB. 1: Compute a multicast tre® using Algorithm 2.
1: Sort all receivers according to their bandwidth demands: for each linke; in tree T do

in a descending order, sdy = {ry,ra, -+ , 7%} 3. Find the maximal bandwidth demand ef's down-
2: Initialize the treeT" to empty and index =1 stream receivers, say;.
3: For each linke;, label it aswHITE and setB; = 0. 4. e; allocates a bandwidti; = d;.
4: repeat 5. end for

5. Letr; be the first receiver in the receiver detand find 6. OQutput DMT(R, ¢) and bandwidth vectoB.
the maximum index: such thatdy, > %.
6: Set the cost coefficient of eadLAck link as 0, i.e,

¢; = 0 if ¢; is BLACK. We have the following theorem for the approximation bound
7. LetR, = {r;,---,rx} and find the spanning treg = of Algorithm 2 and Algorithm 3. Although there are only
LST(R, c)]L]sing’ Algorithm 1. subtle differences between these two algorithms presented here

8. Remove R, from R and mark all links in tree @nd the one in [19], the proof is not as obvious as that one.

LST(R;,c) aSBLACK.
90 SetT' =TUT:.
10: for each linke; € T} do
11: Setﬁl = dj.
12:  end for
13:  Sett=t+1.
14: until the receiver seR is empty.
15: Output DMT(R,c) = T' and bandwidth vectoB.

Theorem 1:Both Algorithm 2 and Algorithm 3 construct a
tree whose cost is at mosttimes the cost of the minimal cost
DiffServ multicast tree.

PROOFE The proofs for both algorithms are similar. Since the
cost of the tree constructed by Algorithm 2 is not smaller
than the cost of the tree constructed by Algorithm 3, in
the following we only prove the case for Algorithm 2. For
notational convenience, we udeé and B to denote the tree

and bandwidth allocation vector computed by Algorithm 2.

The major difference of this algorithm compared with th&emember thaff; is the tree found in the®" iteration by
Charikar algorithm is that, instead of computing several tre@gplying Algorithm 1. Without loss of generality, we assume
independentlyand then combining them to make the finathat there are iterations in Algorithm 3. LetRy, Ry, --- , Ry
DiffServ multicast tree, we construct a single tree directly. THee a partition of receiver sek, and let B;"**(respectively
receiver set is divided into subsets, each containing receivét3'™) be the maximum (respectively minimal) bandwidth
with demands in a particular range. These subsets are handletand in the receiver sét;. For notational simplicity, we
in multiple rounds, in a descending order according to theiseZ;”" and B°P* to denoteT?" (R, d, c) and B*(R,d,c)
bandwidth demand ranges. In each round, all receivers irrespectively.
subset are connected to the DiffServ multicast tree being built.Recall that each link in tre@“ﬁft should be able to supply




a bandwidth larger tha®i"®. Thus,

w(Ty, B,c) < w(Ty, (R"™),c)
= ernaxw(Th <1>v C)
2R . w(T™™(Ry,c),(1),¢)
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For setR,, we have
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Similarly, for any setR; (1 <1 <) we have

1
(Topt JU Topt Bopt )

w(Ty, B, c) < 42

27

Summing the inequalities farfrom 1 to ¢, we obtain

IA

IN

(DMT(R c), B,c)

0
/\"‘

Topt U Topt Bopt ):|
Topt U R) Bopt )

i=1

8- w(Tg*, B ¢)

This finishes our proof.

IV. PAYMENT FOR SELFISH LINKS

In this section, we first show that VCG mechanism does not
work for any algorithms that we proposed before. In light of
the failure of the VCG mechanism, some truthful mechanisms
that are not based on VCG are needed. Instead of simply
presenting a truthful payment scheme for a specific DiffServ
multicast tree construction algorithm, such as Algorithm 2,
we study a general framework to design a truthful payment
scheme for any given tree construction algorithm. In Subsec-
tion IV-B, we fist give a necessary and sufficient condition
for the existence of a truthful payment scheme for a given
tree construction algorithm. In the meanwhile, we also present
a truthful payment scheme if it exists. We then apply this
general framework to the DiffServ multicast tree constructed
by Algorithm 2 and design a truthful payment scheme. In
this section, we need to distinguish between the declared cost
coefficient vectora and actual cost coefficient vector

A. Failure of VCG mechanism

Arguably the most positive result in mechanism design
is what is usually called the generalized Vickrey-Clarke-
Groves (VCG) mechanism by Vickrey [23], Clarke [24], and
Groves [25]. Although the family of VCG mechanisms is
powerful, but it has its limitations. To use VCG mechanism,
we have to compute the exact output that maximizes the total
valuation of all agents. In our case, we need to find the tree
with the minimum cost that is computationally intractable.
Most often, replacing the optimal algorithm with non-optimal
approximation usually leads to untruthful mechanisms if VCG
mechanism is used [26].

Unfortunately, if we insist on using VCG mechanism for
those algorithms we proposed above, none of the resulting
mechanisms is truthful. Moreover, even for the special case
when bandwidth on each link and for each receiver are
homogeneous, VCG mechanism still fails. Recall that when
bandwidths are homogenous, Algorithm 3, Algorithm 2 and
Charikar-Takahashi Algorithm are exactly Algorithm 1. Thus,

in the following we focus on Algorithm 1.

Given a receiver seR and declared vectas, if we apply
VCG mechanism to Algorithm 1, the payment to an edge
LST(R,a) is

Pi(d) = w(LST(R, al'c0), (1),

Next we show that this mechanism doest satisfy IR prop-
erty, i.e., it is possible that some edges have negative utility if
each link reveals its actual cost coefficient. Figure 1 illustrates

a) —w(LST(R,a),(1),a) + c¢;.

Vi+1
1+¢ +€

S
2 2 02 22
02 G

2 Ok

Fig. 1. Hereq;, 1 <1 < k are receivers; the cost coefficient of each link
Vgp+1¢; andvgi1s is 1 + €, wheree is a small positive real number. The
cost coefficient of each link;g;+1 andsq is 2.



the example with terminak being the source terminal. InThus, we haved?(a|'a;,) > O(al'a;,) asa;, < a;,. This
this example, each link reveals its actual cost coefficieat, proves that4 satisfies MNP.

a; = ¢;. It is not difficult to show that, in the first round, link To prove that if A satisfies MNP then there exists a
sq1 is selected to connect terminalsand ¢; with cost2; in  strategyproof paymenP, we prove it by construction. For
roundr, we will select linkg,_1¢, to connect tag, with cost a link e;, we first fixa_; and user to denote cost vectar|'z

2. Thus, the treeLST(R, c) is pathsgigz - - - g1, whose cost if no confusion is caused. From the assumption thaatisfies
is 2k. When linke; = sq; is not used, it is easy to see thatMNP, functionO7(z) is non-increasing. Recall th&(z) is
the treeLST (R, a|’c0) only uses terminab, ; to connect all a piecewise continuous function. We let < x5 - - - < z,,, be
receivers with total costk + 1)(1 + €). Thus, the utility of the points at whichO#(z) is not continuous, and introduce
link ey = sqy is (k+1)(1+¢€) — 2k = ke — k + 2, which is a dummy pointz,,,+1 = co. We define a functiom;(z) such
negative where < £-2. Thus, the VCG based mechanism i¢hat, forz, < z < 11,

not truthful. o m
rala) =002 @ [ Orwdye Y

r j=p+1

Tjt1 "
| otwa
B. General Framework “

From the definition of the truthfulness, we can fix the -
graphG, the receiver seR and bandwidth demand. Thus, b (DMT.a['%)
for our notational convenience, we uée(a) to denote the
bandwidth vector computed by an algoritbfrfor links, where
b; = Of(a) is the bandwidth on link;.

Here, we assume th&?;!(a) is piecewise continuousith
respect to any variable;, i.e,, a finite number of piece-wise
linear functions. The only possible types of discontinuities
for a piecewise continuous function are removable and step
discontinuities. In the following we give a definition that is
critical to the presentation of our general framework.

Definition 1 (Monotone Non-increasing Property (MNP)):
An algorithm A is said to satisfy thenonotone non-increasing
property if for every link e; and any two of its possible
coefficientsa;, < a;,, O (al'a;,) > O (al'as,).

Now we are ready to present the necessary and sufficient, rigyre 2, 4, (2) corresponds to the area of the shaded
condition for the existence of truthful mechanism given 3fegion. Given an algorithm4 and a coefficient vectos,

algorithm A4 that computes the bandwidth. This theorem iﬁ\lgorithm 4 defines the payment based on algoritdm
similar to the forklore for the binary demand games.

Theorem 2:For a given algorithn, there exists a payment/lgorithm 4 Payment Scheme based g
schemeP such that the mechanistd = (4, P) is truthful if Input: Algorithm A and declared coefficient vecter
and only if A satisfies MNP. Output: The payment schemg.
PrROOF. First, we prove that if there exists a strategyproofi: for each linki do
mechanismM = (A, P) then A satisfies MNP. We consider 2:  Fix a_;. The payment ta is P;(A, a) = x;(a;).

Fig. 2. Bandwidth allocation functio®P”MT (a|iz).

two coefficients profilez|’a;, andal'a;, wherea;, < a;,. 3: end for
Consider the case when lirk has coefficient;;, . Remem-
berP is strategyproof, thus if link; lies its coefficient taz;,, Thus, we only need to prove the payment scheme computed
its utility should not increase. Thus, we have by Algorithm 4 is truthful. See Lemma 7 in the appendix
for the proof of this statement. This finishes the proof of the

Pi(A,al'a;,) — a;, - O (al’as,)
> Pi(A al'ai,) — ai, - OF(al'as,).

theorem.

We note that the above theorem applies to any problem
(e.g, job scheduling) when the cost of an agent is of format
¢; - b;, wherec; is a privately known cost-coefficient arid

Pi(A, aliai,) — as, 'Of(a\iaiz) is its load computed by o_utput method.. Actually, Archer and
> P A ala) — as, - OA(alia;) Tardps [27] pro_ved a similar result fo_r job scheduhng._ If we
= Th "1 2 M gl require that a linke; that has0 bandwidth should receive

Combining the above two inequalities, we obtain payment (which is callethormalizedpayment scheme), then
we have the following theorem.

Now consider the case when link actually has cost coeffi-
cienta;,. Similarly, we have

L 10A altas ) — OA(altas
iz [Oli(a‘ ai) = O; (?| @iy )] (1) Theorem 3:Given an algorithm4 satisfying MNP, the pay-
Pi(A, al*ai,) = Pi(A al'ai,) ment scheme defined by Algorithm 4 is tbely normalized
ai, - [0 (al'as,) — O al'as,)] truthful payment scheme.

vV 1V



PROOF In inequality 1, substitute for a;, andx+ 4§ for a;, 1) Check whether the bandwidth function of algoritidrt

we obtain(z+0)(0#(z) — O (x+0)) > Pi(z) —Pi(x+0) > satisfies MNP. If not then return, else continue.
(07 (x) — OA(z +6)). WhenO#(x) is continuous atr, we  2) Compute the bandwidth functia@(a).
can set) — 0 and obtain 3) Design the payment according to Algorithm 4.

(+0) d(_O’A(x)) 2 d(=Pila)) z = d(—Og“(x)) ) C. Design Truthful Mechanism

From equation 2, ift is continuous in(/, u), then we obtain  \ve first show that, there is no truthful payment scheme

@) = pil) - pi(u) based on Algorithm 3 and Algorithm by Chariket al. [19].
_ / 2d(—~0A(x) Theorem 4:There is no truthful mechanism that uses either
. ¢ Algorithm 3 or Charikar-Takahashi algorithm as its output
u " method.
= —/ zd(O; (x)) According to Theorem 2, it suffices to prove the following
A A Lemma.
= k0 / OF (z)dz] Lemma 5: Neither Algorithm 3 nor Charikar-Takahashi al-

gorithm satisfies MNP.
PROOE We prove it by presenting a counter example illus-
trated by Figure 3. A networksy has three receiverns, o, r3

= 1-0M(1) —u-Of(u /(’)A

Setl =g; andu = ;11 (1 < j < g), we obtain with bandwidth demand; = d> = 1 andds = 1.5. Under
Pi(z;) — Pizji1) this bandwidth demand vector, all receivers’ demand will be
T rounded to the same value and only one iteration of Algorithm
= x;-0Mzj) —xj01 - OP (xj11) +/ OA(z)dz 1 is needed. Thus, Both Algorithm 3 and Charikar-Takahashi
i algorithm output the same tree and bandwidth vector. The
Assumez, < a; < z,+1, then summing from p + 1 to ¢ coefficient of the link is described in Figure 3 (a). Now we
we have apply Algorithm 3 to networkG. In the first iteration, path
svry is chosen (with coHd); in the second iteration, pathry
Pi(xps1) = Pi(zp1) — Pi(zg11) is chosen (with coss); and in the last iteration, pathvovsrs
is chosen (with cost2.1). The final tree shown in Figure 3
- pi(wj) = pi(wj+1) (b). The bandwidth allocation of linkyvs is 1.5. Consider the

scenario when the coefficient of linkgvs changes froml.1
to 0.9 while other coefficients remain the same. When apply
Algorithm 3 to networkG, in the first iteration, patlsvsvsry
is chosen (with cos8.9); in the second iteration, pativ,r,
+ Z / 7+1 is chosen (with cos9.9); and in the last iteration, patiyrs is
chosen (with cos®). The new spanning tree topology is shown
CD]+1 in Figure 3 (c). The bandwidth omvs becomesl, which is
= Tpi1- (9 (Tp41) Z decreased compared with the former case when the coefficient
j=pt17 i is 1.1. This contradicts the MNP property and finishes our
proof. =]

[z - O (a5) — wj41 - O (41))]

=p+1

Let! = a; andu = :cpH, we haveP;(a;) — Pi(zp+1) =
a;- O a;) = xpy1- O (@pe1) + [7F O (y)dy. Combining

the above two equatlons we gef The above example also shows that there is no strategyproof

mechanism for the DiffServ multicast tree construction method

Pi(ai) presented in [19] when the bandwidth on any link is taken as

A the maximum bandwidth demand of its downstream receivers.

= api1 O (2pr1) Z / O (x)dz + ai - O (a:) Meanwhile, we can show that there exists a truthful payment
J=ptl scheme for Algorithm 2 with the following theorem.

Tp41 A
~aps1- O (2ps1) +/a O (z)de Theorem 6:Algorithm 2 satisfies MNP.
Tpi1 @ +1 PROOE Given a linke;, if it does not appear in the tree
A P .A J
= ai-O; (ai)+/ 07 (y)dy + Z / DMT(R a) then OPMT (a) = 0. Otherwise, ife; € T; —
“ =pt1m Tk,le in iterationy, the linke; is added to the spanning
This finishes our proof. tree DMT(R, a) for the first time, therOM7 (a) = R~

Whene; declares a smaller coefficient, we show by cases
We then summarize the general framework to designtlaat its bandwidth does not become smaller.
truthful payment scheméP, such thatM = (OA,P) is Case 1l:¢; is added to the spanning tré&\/ T'(R, a) before
truthful, for a given output algorithn©+ that constructs a the j** iteration of REPEAT loop in iterationj. Without loss
DiffServ multicast tree and outputs the bandwidth allocatioof generality, we assume that is added toDMT (R, a) in
for DiffServ multicast. iteration j;/ < 5. Remember that the partition d? does not




rl r2 r3
(a) Original networkG (b) The spanning tree wheary = 1.1  (c) New tree wheruy = 0.9
Fig. 3. The spanning tree constructed by Algorithm 3.

depend on coefficient vectar thus(’)TjMT(aV@) = R > Algorithm 5 Payment based on Algorithm 1
Rmax — ODMT (5) Input: A network G with link cost coefficient vectom, a
J 4 :

Case 2:¢; is not added to the spanning tr@IT(R,a) SOUrce node and a receiver sek. _
before thej" iteration of REPEAT loop in Algorithm 2. In OutPut: A truthful payment based on Algorithm 1.
this case, each link's label does not change in the beginning ComputeLST(R,a) using Algorithm 1.
of iteration j. Following we show that the link; mustin 2 for each linke; € LCP(R, a) do
the tree LST(R;, a|’a,;). From our assumptiorg; is in the 3 Settemp=q, for each linke;.
tree LST(R;,a) and without loss of generality, we assume4  Seta; = oo, andp; = 0.
that e; is in path LCP(s, 7, c) that is selected in the¢!» 5 repeat

iteration of Algorithm 1. Ife; is selected beforé'" iteration & Find the shortest pathCP(s, r;, a) betweens and
of Algorithm 1 when we constructing treBST(R;, al a;), ri for each receive; in R.

then the argument is proven. Otherwise, we can assume thét Find the receiver; that is closest to the source.

e; is not selected before iteratioh Notice that ife; is not 8 Seta; = 0 and find the shortest pathCP(s, r;, a)
selected beforg" iteration, each path selected befofé betweens andr; for each receive; in R.

iteration should be the same. In other words, in the beginnin§: Find the receiver; that is closest to the source and
of iteration ¢ of Algorithm 1, (1) the receiver seR is the let |P’;| be the cost of the shortest path path between
same; (2) the cost of each link exceptis the same. Thus, if s andr;’.

c is the cost vector in the beginning of iteratiérwhen input 10 Seta; = cc.

is a, thenc|’a; is the cost vector in the beginning of iterationl1: Remover; from R and add the pathCP(s,r;,a)

¢ when input isal’a;. It is not difficult to observe that the to LST (R, a).

pathLCP(s, 7y, c) is decreases by; — a; if c|'a; is the cost 12 Set all links’ cost on the pathCP(s,r;,a) aso, i.e,
vector. On the other hand, the cost of any path is decreased at ~ Seta; = 0 if and only if e; € LCP(s, 7, a).

mosta; —a; if c|ia; is the cost vector instead of Thus, path 13:  Setp; = max{p;, |LCP(s,r;,¢)| — |Pj|}.

LCP(s,y,c) is also selected under cost vecigfa;. Thus, 14: until Ris empty. _
e; is selected by Algorithm 2 before iteratign which means 15:  Seta; = temp for each linke;.
that OPMT (al'a;) > R, 16: end for

This proves thatoPMT (a) does not decrease when " SetPi(R, a) = p; and outputp.
decreases. Thus, Algorithm 2 satisfies MNP.

In order to find the truthful payment for Algorithm 2,how to find the bandwidth allocation function for Algorithm 2.
we should find the bandwidth output functi@g®”” (a|’z) Algorithm 6 shows how we can find the bandwidth-allocation
for every link e; first. Recall that for every linke;, the function.
bandwidth could only be a real value that is equalRf}**  With the bandwidth allocation functio®@”™7(.), we give
for some index;j. Let ) < x5 < --- < x, be the points at our truthful payment scheme, as illustrated by Algorithm 7,
which O;(DMT, a|’z) is not continuous, then the bandwidthby using the general framework. The proof of the correctness
allocation function©O;(DMT,a|'z) should be a constant, of these algorithms are either straightforward or omitted here
sayy! in (z%,2%,,) as shown in the Figure 2. In order todue to space limit. Notice that since Algorithm 3 often
find the values of these discontinuous points, we first neednstructs a multicast tree with less cost than the multicast
to compute the truthful payment for standard Steiner treéee constructed by Algorithm 2, the multicagprihcipal’
problem. Following we brief review the algorithm to computenay jump to Algorithm 3 after all links declared their cost
the payment for Algorithm 1. Please refer for [8] for moreoefficients. This will be prevented from the untruthfulness of
details. Algorithm 3 when links knew that the “principal” will jump

For clarity of the notation, we usg;(R,a) to denote the to Algorithm 3, i.e, links could lie to gain more benefits.
payment computed for a link; by Algorithm 5 and study When links are unaware of this jump, we need a trusted third-




Algorithm 6 Bandwidth Output Function for Algorithm 2 Algorithm 7 Payment Scheme for Algorithm 2
Input: A networkG with declared link cost vectat, a source Input: A network G with cost coefficient vectoa, a source

nodes and a receiver sek with demand vectotl. nodes and a receiver sek with demand vectod.
Output: The bandwidth output function for Algorithm 2.  Output: A truthful paymentPPMT for Algorithm 2.
1: ComputeDMT(R,a) and bandwidth vectoB. 1: Compute the multicast treéMT(R,a) by applying
2: for each linke; in DMT(R, a) do Algorithm 2.
3. Label each link it asvHITE. 2: Compute the bandwidth allocation function for tree
4:  Settemp= a; for each linke;. DMT(R,a) by applying Algorithm 6.
5.  Seta; = oo and indext = 1. 3: for each linke; do
6: Initialize the list X' =0, Y* =0, up =0, andq = 0. 4:  if e; isin tree DMT(R, a) then
7:  repeat 5: Find an index; such thatréﬁ <a; < a:;'-H. Then the
8: L_et r; be the_ first r_ecelver in the recelve;s@tand payment isPPMT (R a) = Zfijl;ll yi - (2l —
find the maximum index such thatd, > . x@ + (xi‘ﬂ — )yt
9: Set the cost coefficient of eaghAck link as0,i.e, 4 glse ’ ’
a; = 0 if e; is BLACK. 7. PDOVT(R a) = 0.
10: Let Ry = {rj,---,r} and find the spanning tree 5.  ong if
LST(R;:,c) using Algorithm 1. o end for
11: RemoveLST(R;,a) from R and mark all links in

tree LST(R;,a) asBLACK.

12: SetT = T'|JT; and computes;(R;, a) using Algo- o ) o ) ) .,
rithm 5. minimum bandwidth (the minimum bandwidth is called "start

point” in literatures) that is not grouped yet is chosen and each

13: if k;(R:,a) > up then X X ; ) e

14 Setqg = ¢+ 1 andup = r;(Ry, ). receiver whose bandwidth is at maattimes the minimum

15: Setz! = k;(Ry,a) and yi'_ émax bandwidth is fallen into the same group. On the other hand,
. q __ K2 9 . Jq - .t . . ” . . .

16: Add zi to setX’ andy; to Y. if we u_seey as the start point for some fixedand replacing

17: end if the ratio of2 by e for the geometric sequence (of rounded

18: Sett = ¢+ 1 up bandwidth demands) should not affect strategyproofness.

Furthermore, the randomized process also does not encourage
untruthfulness of the links: if for any fixed start poieit, the

links find no incentive to lie, nor will they find incentives to

lie when such start point is randomly selected.

19: until R is empty
20:  Setx{=0 andz?*! = oco.
21:. fori=1tog+1do

22: SetOPMT (R, al'x) =yt for af_| <z <zl _ .

23 end for Charikaret al. [19] also proposed a de-randomized process
24:  Seta; = temp for each linke;. to replace the a_bove rando_m selection (_)f start peﬂmt\mth _
25: end for the cost of an increased time complexity. For each distinct

bandwidth demandi;, the same algorithm is invoked with
y; = Ind; — |[Ind;]. It is claimed that there is at least
Qe y; such that the solution foy = y; has a cost no
more than the expected cost of the solution for a randomly
picked y. Therefore, we can simply pick the best solution
(with the minimum cost) among all solutions computed using
D. Performance Improvement and Special Case differenty. A similar technique is used for the case with only
In essence, Algorithm 2 converts the original instance &vo non-zero rates for bandwidth demands [18], improving
the DiffServ multicast problem to a “rounded-up” one, withhe approximation bound td - 2 ~ 2.667. The common
bandwidth demand vector forming a geometric sequence affaracteristic of the two algorithms is to compute multiple
ratio 2. According to the result of Charikaet al. [19], the DiffServ multicast trees using different methods (or same
approximation ratio of8 of Algorithm 2 can be improved method but with different parameters), and pick the one with
(while still using Algorithm 1 for computing approximatelythe smallest cost. Although this approacle.( taking the best
optimal Steiner trees) if the “randomized bucketing” technigueutput of several outcomes and using a certain combination of
is used. Specifically, a numberis picked randomly with a the payments for these separated games as its final payment)
uniform distribution in the rangéo, 1], and the (non-zero) works for binary selection problems under certain conditions
bandwidth demands of all receivers are rounded up to tf8], [29], a problem arises when it comes to determining the
nearest?*%. (Note that the ratio of the geometric sequence ispayments to the links for DiffServ multicast.
instead oR.) Theexpectedapproximation ratio ig-2 ~ 5.437. In the network shown in Figure 4 (a), receiver has
Here we argue that we can also convert the mechanisrandwidth demand; = 1 unit and each of receivers, r3, r4
described above for DiffServ multicast to a randomized ormas bandwidth demand, = 4. Let Ry = {r1} and Ry =
with an expected approximation ratio®fl37, while maintain- {rq,r3,74}, and letc be the cost vector shown in Figure
ing strategyproofness. First of all, in Algorithm 2, we groug (a). Let ¢’ be the cost vector we get by changing the
the receivers according to their bandwidths: a receiver wittost of edgesv; from 1.5 + ¢ to 1.5 — ¢ while keeping

party to prevent the principal from changing the multicast-tr
construction algorithm.



all other links’ costs unchanged. Figure 4 shows that the)
tree LST(R,c) and treeLST(R, ') are the same. We have
w(LST(R,c),b) = w(LST(R,c'),b) = 5.5-dy = 22. Figure
4 (c) shows the treé& ST (R;,c)ULST (R, c) and its weight
is1.5-d; + (5+¢€)-dy =21.5+ 4e < w(LST(R,c),b) for
small e. Thus, whensv; has costl.5 + ¢, it has bandwidth
do 4. Now consider the cost vectot’. Figure 4 (c)
shows the tred.ST(Ry,c’) U LST(Rz,c’) and its weight is [13]
1.5-d14(6+3¢)-dy = 25.5—12¢ > w(LST(R, '), b) for small
e. Thus, whensv; has costl.5 — ¢, its bandwidth is0. This
shows that the tree output by the algorithm in [18] violates tH&4
MNP property, which implies that there is no truthful payment.
[15]

(20]
(11]

(12]

V. CONCLUSION

In this paper, we studied the DiffServ multicast problem in gg]
game theoretic context, where network links are selfish agents
who would demand payments to at least cover their costs w
relaying data packets, and may lie about their actual costs in
order to maximize their gains. We show that a naive conversion
of the previously known 8-approximation algorithm does ndt®
work. We then propose an alternative approximation algorithm
for DiffServ multicast with the same approximation bound?9]
We also introduced a general method to convert any DiffSe
multicast algorithm satisfying the Monotone non-increasing
Property to a strategyproof mechanism, and applied it to the
algorithm we proposed. [21]

The strategyproof payment scheme is not the end story fes)
designing protocols for DiffServ multicast. The very natural

guestion to ask is how these payments can be split among H}ﬁ}

receivers, which is known as thaulticast payment sharing
problem [7]. Several criteria [30], [7] for thiairnessof shar- [24]
ing have been proposed in previous work, and we would like
design payment sharing schemes that are considered to be[{%
according to these criteria. Another important work is to design
distributed implementations of our proposed strategypro%fn
mechanism, which could be based on some results in [31],
[32]. Last, but not the least, since strategyproof mechanisms
will often pay more than what the agents declared, it is
interesting future work to design scheme that could result in
a less total payment by the multicast principal at some certain
equilibrium of the agents’ declaration. Some initial work has
been done in this direction for unicast [14], [33], [34]. [29]
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Lemma 7:Algorithm 4 defines a truthful payment scheme.
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(b) (d)

Fig. 4. An example to show that simply choosing the best solution may not work. Here (a) denotes the original r@w@kis the tree
LST(R,c)(LST(R,c")), (c) is the treeLST(R1,c) U LST(R1,c) and (d) is the tred.ST(R1,c') U LST(R1,c).

PrROOF Hereafter, we always fix_;, i.e, we are interested Thus, linke; have no incentive to lie its coefficient upward.
only in a;. Notice that wher; reveals its true coefficient;, its Case 2:Link e; lies its coefficient downward ta;. In this
utility is w;(a;) = Pi(ai)—ai-O;“(ai) = ﬁi(ai)—ai-O;“(ai) case, we assume,, < a;, < xp41. Sincea; > a;, p > p'.

= [ OfMy)dy+> 4 faij“ O7(y)dy. Remember that The utility of nodei becomesu; (a;) = O7'(a;) - (a; — a;) +
OA(y) is non-negative. Thus,(a;) > 0, which implies that [,” " O (y)dy + X711 [/ Of (y)dy.

payment scheme 4 satisfies IR. To prove that payment schem&here are two subcases here als If p’ then

4 satisfies IC, we prove it by cases.

Case 1:Nodei lies its cost upward t@;. In this case, we uiai) .
assumer,, < @; < xp4+1. Sincea; < @;, p < p'. The utility = O0May) - (ai — ) +/ P41 OA )y
of nodei becomes - a;
p—1 T a;
w(@) = pil@) — e OF (@) = (@) — a: - OF (@) + 3 /”1 0;“(y)dy+/ O (y)dy
m j+1 - x5 T
= / 4 O (y)dy + Z / O (y)dy J=p'+17 %3 i p.
ai j=p/ 1" % et A ARV
. o + [ otmar+ Yo [T oty
+a; - 07 (ai) — ai - OF (aq) a; j=p+17%j
Tplyq
There are two subcases hereplk p’ then < OMas) - (ai — ai) +/ ’ O (ai)dy
ui(ai) pl L @
o, e 3 [T oM+ [ ot ey +uia)
= / O (y)dy + Z / O (y)dy j=p'+17 %] zp
! e = OfMas) (e — ai) + OF (@) - (ai — ) + ui(a)
Tpt1 Pl ey = (a;
- [Totwa+ Y [T otway uila:)
a; j=pt17 T If p=yp' then
A L A [T A (a;
+ [ Ofwdy+ | T Ofwdy+ Y O (y)dy ui(ai)
v : Vo e = O0f'(ai)- (@—ai)+/ "ot )y
> O @) [(wpr1 —a) + (Y (w1 —2;)) + (@ — zp)] L
j=p+1 + > / OA (y)dy
Tplgl m Tj+1 j=p/+1"7 %
+ [ oty 3 [T oty | .
a i1 Iz = OMa) - (ai—ai)+ [ OF(y)dy +ui(ai)
Tpt1 i Tj+1 %
= bi@) (@ —a)+ /7 O (y)dy + Z / O (y)dy < OMai) - (ai —ai) + 1 O (ai)dy + ui(a:)
a; j=p’+1 Tj - — — a; —
= ul(a) = ul(a,)
If p=p' then This proves that nodé does not have incentive to lie down-
. m o ward. Thus, the payment scheme 4 satisfies IC. Therefore, the
p+1 A J+1 A )
ui(a;) = / OF (y)dy + Z / 07 (y)dy payment scheme 4 is truthful.
@i J=p+1v %3

Tp/+1 i Ti+1
= ["Totwas Y [T otway

i J=p'+1"%i
= (@) - (@ - a) O @) + / "0 (y)dy

wi(@) — (@ — ai) - 07 (@) + (@ — ;) - OF\ (@)

= ui(ai)
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