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Abstract

We propose a novel localized algorithm that constructs a bounded degree and planar spanner for
wireless ad hoc networks modeled by unit disk graph (UDG). Every node only has to know its 2-hop
neighbors to find the edges in this new structure. Our method applies the Yao structure on the local
Delaunay graph [1] in an ordering that are computed locally. This new structure has the following
attractive properties: (1) it is a planar graph; (2) its node degree is bounded from above by a positive
constantl9 + [%”1; (3) itis at-spanner (given any two nodesandv, there is a path connecting them
in the structure such that its length is no more thahmax{ 7, 7 sin § + 1} - Cy,; times of the shortest
path in the unit disk graph); (4) it can be constructed locally and is easy to maintain when the nodes
move around; (5) moreover, we show that the total communication c¥tidog n) bits, wheren is
the number of wireless nodes, and the computation cost of each node is ab(ddsg d), whered
is its 2-hop neighbors in the original unit disk graph. Hékg, is the spanning ratio of the Delaunay
triangulation, which is at mo§t9@7r. And the adjustable parametersatisfied < o < /3.

Index Terms

Wireless ad hoc networks, topology control, bounded degree, planar, spanner, localized algorithm.

I. INTRODUCTION

We consider a wireless ad hoc network (or sensor network) consisting oflacfet wire-
less nodes distributed in a two-dimensional plane. Each node has some computation power and
an omni-directional antenna. This is attractive because a single transmission of a node can be
received by all nodes within its vicinity. By a proper scaling, we assume that all nodes have the
maximum transmission range equal to one unit. These wireless nodes defiitelesk graph
UDG(V) in which there is an edge between two nodes if and only if their Euclidean distance
is at most one. The unit disk graph could h&ve:?) edges. Hereafter, we always assume that
UDG(V) is a connected graph. We also assume that all wireless nodes have distinctive identi-
ties and each wireless node knows its position information either through a low-power Global
Position System (GPS) receiver or through a localization service. By one-hop broadcasting,
each node: can gather the location information of all nodes within the transmission range of
Notice, throughout this paper,moadcastby a nodeu meansu sends the message to all nodes
within its transmission range. Remember that, in wireless ad hoc networks, the radio signal sent

out by a node: can be received by all nodes within the transmission range of
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Unlike wired networks, in wireless ad hoc networks, each node can move and thus change
the topology of the network. In this case, we need to adjust the transmission power to keep
some properties of the network topology such as connectivity or power efficiency. The lifetime
of a wireless network, which depends on battery power, is usually restricted because of limited
capacity and resources on each node. Thus a main goal of topology control is to increase the
longevity of such networks which can be obtained by designing power efficient algorithms [3],
[4], [5], [6]. [7], [8].

One effective approach [4], [5], [6], [8], [9], [10], [11], [12], [13], [14] is to maintain only
a linear number of links usinglacalizedconstruction method. In other words, we construct a
sparse distributed structure as network topology for the wireless network. However, this sparse-
ness of the constructed network topology should not compromise too much on the power con-
sumptions of communications. So we hope that in the sparse topology every shortest route in
the constructed network topology is efficient. Here a routeffisientif its length is no more
than a constant factor of the least length needed to connect the source and the destination. A
trade-off can be made between the sparseness of the topology and the efficiency. Obviously, not
all sparse subgraphs are good candidates for the underlying network topologies.

Consequently, in this paper, we will focus on the construction of a sparse network topology,
i.e., a subgraph d DG(V'), which has the following desirable features.

« Connectivity. Connectivity is the most basic feature of the network topology. It guarantees
that there exists at least one path from one node to any other nodes. Notice that here we
require that the subgraph 6fDG(V) is connected it/ DG(V') is connected.

. Sparseness The topology should be a sparse graph, i.e., With) links. This makes
numerous algorithms, e.g., routing algorithm based on the shortest path, running on this
topology more efficient for both time and power consumption.

. Spanner. We want the subgraph to be a spannet/dd?G(V'). Here a subgraply’ is a
spanner of a grapty if there is a positive real constanhsuch that for any two nodes, the
length of the shortest path @' is at most times the length of the shortest pathGin The
constant is called thdength stretch factarA spanner is always power efficient for unicast
routing.

. Bounded degree It is also desirable that the node degree in the constructed topology is
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small and bounded from above by a constant. A small node degree reduces the MAC-
level contention and interference, and also may help to mitigate the well known hidden
and exposed terminal problems. In addition, a structure with small degree will improve the
overall throughput [15].

. Planar. The topology is a planar graph (no two edges crossing each other in the graph).
Some routing algorithms require the topology to be planar, such as right hand routing,
Greedy Perimeter Stateless Rout{@PSR) [16],Greedy Face RoutinfGFG) [17],Adap-
tive Face RoutinfAFR) [18]. andGready Other Adaptive Face Routi@@OAFR) [19].

. Efficient Localized Construction. Due to the limited resources of the wireless nodes, it
is preferred that the underlying network topology can be constructed and maintained in
a localized manner. Here a distributed algorithm constructing a gfapha localized
algorithm if every nodeu can exactly decide all edges incident orbased only on the
information of all nodes within a constant hopswofMore importantly, we expect that the
time complexity of each node running the algorithm constructing the underlying topology
is at mostO(d log d), whered is the number of 1-hop or 2-hop neighbors.

In [16], [17], two planar subgraphglative neighborhood grapfRNG) andGabriel graph

(GG) are used as underlying network topologies. However, Betsal. [20] proved that the

length stretch factors of these two graphs@fe) and©(,/n) respectively. They are precisely

n — 1 andy/n — 1 actually [31]. Recently, some researchers [8], [12] proposed to construct the
wireless network topology based on the Yao graph [28] (also céatgcph [35]). It is known

that the length stretch factor and the node out-degree of Yao graph are bounded by some positive
constants. But as lat al. mentioned in [12], all these three graphs can not guarantee a bounded
node degree (for Yao graph, the node in-degree could be as lagf@ gs In [12], [13], Li, et al.

further proposed to use another sparse topolggy,and Sinkthat has both a constant bounded
node degree and a constant bounded length stretch factor. However, all these graphs [8], [12],
[13] are not guaranteed to be planar.etial. [1] proposed a planar spannecalized Delaunay
triangulations(LDel), and Gacet al. [21] proposed a planar spanrieestricted Delaunay Graph

for wireless ad hoc networks. However both of them can have unbounded node degree. The
planar structure constructed by Hu [22] may not be a spanner. Previously, no localized methods

were known for constructing a bounded degree and planar spanner.
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Recently Boseet al. [2] proposed a centralize@(n log n)-time algorithm that constructs a
planart-spanner for a given node s&t, for ¢ = (1 4+ m) - Cye =~ 10.02, such that the node
degree is bounded from above ®y. Hereafter, we usé€;.; to denote the spanning ratio of the
Delaunay triangulation [23], [24], [25]. As far as we know, their algorithm is the first method
to compute a planar spanner of bounded degree. However the distributed implementation of
their centralized method takéXn*) communications in the worst case for a ebf n nodes.
Recently, Li and Wang [26] improved this by giving a centralized method that constructs a
planar structure with degree bounded by at migst- (%’W and a spanning ratio of at most
t <max{F,msin§ + 1} - Cy. Herea is an adjustable parameter satisfying: o < 7 /2.

In this paper, we propose tliiest efficient localized algorithm to construct a bounded degree
and planar spanner for wireless ad hoc networks. The contributions of this paper include: (i) the
node degree of the new planar spanner is boundeld by (%ﬂ, (ii) its length stretch factor is
t <max{F,msin § + 1} - Cye, WhereO < o < 7/3, and (iii) it can be constructed locally using
O(n) messages (each message Wiitog n) bits) and is easy to maintain when the nodes move
around.

The rest of the paper is organized as follows. In Section I, we review the centralized method
constructing bounded degree planapanner for a unit disk graph. We then give the first local-
ized method, in Section lll, to construct a bounded degree plagpanner fol DG (V') with
total communication cosD(n) under the broadcasting communication model. In Section IV,
experiments are conducted to show the new topology is efficient in practice, comparing to other
well-known topologies used in wireless ad hoc networks. Finally, we briefly conclude our paper

in Section V.

II. PRIORART: CENTRALIZED CONSTRUCTION FORUDG

Our localized algorithm is developed based on the centralized algorithm developed in [26],
which constructs a planar spanner with bounded node degreéf@r(17). The basic idea
of the centralized method is to combine Delaunay triangulation and the ordered Yao structure
[28]. Our localized method is significantly different from this centralized method: it uses a
novel combination of the Yao structure and the local Delaunay graph. For completeness of
presentation, we review the centralized method (shown in Algorithm 1) here. We assume that

every node: has a unique ID, denoted D (u).
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Algorithm 1: Centralized Construction of Planar Spanner with Bounded Degree

1) First, compute the Delaunay triangulatidiz/(1) of the setl” of n wireless nodes.

2) Remove the edges longer tharin Del(V'). Call the remaining graph unit Delaunay
triangulationU Del (V). For every node, we know its unit Delaunay neighbolg; p;(u)
and its node degregu) in U Del (V).

3) Find an orderr of V' as follows: Leti = 1, G; = UDel(V) andds(u) be the node
degree ofu in graphG. Remove the node with the smallest degreé;, (u) (smaller
ID breaks tie) from graplds;, and call the remaining graph;.,. Setr, = n — i+ 1.
Repeat this procedure fdr < i < n. Let P, denote the predecessorswofn =, i.e.,
P,={ueV:m <m}. SinceG; is always a planar graph, the smallest valud©fu)
is at most. Then, in orderingr, nodeu has at mosb edges to its predecessadrs.

4) Let E be the edge set &f Del(V'), E’ be the edge set of the desired spanner. Initialize
to an empty set and mark all nodeslinunprocessedFollowing the increasing order,
run the following steps to add some edges frBrnto £’ (only consider the unit Delaunay
neighborsVy pe;(u) of w):

a) For the unprocessed nodewith the smallest ordetr,, let vy, vq,--- ,v; be the
processed neighbors afin UDel(V) (see Figure 1). Heré < 5. Thenk open
sectors centered at nodeare defined by rays emanated franto the processed
nodesy; in UDel(V). For each sector centeredw@gtwe divide it into a minimum
number ofopencones of degree at mast wherea < 7/3 is a parameter.

b) For each cone, let;, s,, - , s, be the geometrically ordered neighborswoin
Nype(u) in this cone. Noticesy, so, - -, s,, are all unprocessed nodes. For each
cone, first add the shortest edge in £ to £, then add taE’ all the edges;s; 1,

1 < j < m. Notice that here such edgess;,; are not necessarily ity Del(V).
For example, when node has a Delaunay neighbersuch that.x intersects edge
s;si11 and||lux| > 1. Then edges;s;;1 is not Delaunay edge, but ands;.; are
consecutive neighbors afin UDel sinceux is removed.

c) Mark nodeu processed.

Repeat this procedure in the increasing orderrptintil all nodes are processed. Let
BPS;(V) denote the final graph formed by edge Bét
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Notice that in the algorithm we usgpensectors, which means that in the algorithm we do
not consider adding the edges on the boundaries (any edge involved previously processed neigh-
bors). For example, in Figure 1, the cones do not include any edged his guarantees that
the algorithm does not add any edges to nodafterv; has been processed. This approach, as

we will show it later, bounds the node degree.

Fig. 1. Constructing Planar Spanner with Bounded Degreé/foiG(V'): Process node. Here nodes); represents these

nodes have already been processed by our method.

Our localized algorithm borrows some idea from our centralized method, and the proof of
the correctness and the property of the structure constructed locally also uses some statements
proved for centralized method. The following results were proven in [26].

Theorem 1:Graph BPS;(V) is a planar graph. The maximum node degree of the graph
BPS,(V)is atmostl9+[2:]. The spanning ratio aBPS, (V') is at most = max{%, 7 sin 5+
1} - Cye- Here0 < a < m/3.

The proof of the spanner property is attached in the appendix (Section VII) since we will use it
in the proof of our localized method. When= 7 /3, then the maximum node degree is at most
25. It improves the previous bourz¥ on the maximum node degree by Badeal. [2]. When

o = m/3, the spanning ratio is at mo§f + 1) - Cye; Whena = 2arcsin(3 — <) ~ 20.9°, then

the spanning ratio is at mo§t- Cy;.

Notice that the time complexity of the centralized algorithn®ig: log ), the same as with
the method by Boset al. [2]. However, this centralized algorithm has a smaller bounded node
degree, and (more importantly) this algorithm has the potential to be turned into a localized

algorithm as we will describe in this paper.
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[11. L ocALIZED CONSTRUCTION

In [14], Wanget al. showed that an algorithm presented in [30] does construct a bounded
degree spanner for UDG with(n) messages (with unibg n bits) under the broadcast commu-
nication model, i.e., a signal sent by a nedean be received by all nodes within its transmission
range. Liet al. [1] presented the first algorithm that constructs a planar spanner usin@ only
messages under the broadcast communication model. No localized method is known before for
constructing a planar spanner with bounded node degree.

In this section, we show how to extend the centralized algorithm [26] reviewed in the previ-
ous section to generate a bounded degree and planar spanner for UDG in a localized manner.
Remember that a distributed algorithm constructing a grajphalocalized algorithmif every
nodew can exactly decide all edges incident @fiased only on the information of all nodes
within a constant hops af. Our algorithm is based on the efficient localized construction of a
planar spannek.Del® (V) for UDG defined by Liet al. [1]. For completeness of the presen-
tation, we first review the definitions and the efficient localized constructiah/afl® (V) in

O(n) total communications.

A. ConstructZ Del™® (V) Locally

We first introduce some geometric structures and notations to be used in this section. Let
Ny (u) be the set of nodes df that are withink hops distance of; in the unit-disk graph
UDG(V). All angles are measured in radians and take values in the fange For any three
points py, p», andps, the angle between the two raysp, andp,ps is denoted by/pspips
or Zpsp1p3. Theclosedinfinite area inside the anglépsp;p., also referred to as a sector, is
denoted by psp1p2. The triangle determined by, p2, andps is denoted by\p; pops.

An edgeuv is called constraine®abriel edge(or simply Gabriel edge here) jfuv| < 1
and the open disk usingv as diameter does not contain any node fremlt is well known
[32] that the constrained Gabriel graph is a subgraph of the Delaunay triangulation, more pre-
cisely, GG(V) C UDel(V). Recall that a trianglé&\uvw belongs to the Delaunay triangulation
Del(V) if its circum-disk, denoted agisk(u, v, w), does not contain any other nodelofin its
interior. Here we often assume that there are no four nod&soafcircumcircle. The following

definition is one of the key ingredients of the localized algorithm construdtingl® (/).
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Definition 1: A triangle Auvw satisfies the:-localized Delaunay propertyf the interior of
the circumcircledisk(u, v, w) does not contain any node bfthat is ak-neighbor ofu, v, or w;
and all edges of the trianglewvw have length no more than one unit. Trianglevw is called
ak-localized Delaunay triangle

Definition 2: Thek-localized Delaunay grapbver a node sét’, denoted b)LDel(’“)(V), has
exactly all Gabriel edges and edges offalbcalized Delaunay triangles.

Given a set of point¥’, theunit Delaunay triangulationdenoted byUDel(V'), is the graph
obtained by removing all edges of the Delaunay triangulafief(1") that are longer than one
unit. It was proved in [36], [21] that/Del(V') is at-spanner ofUDG(V'). Li et al. [1]
proved that grapti/Del(V') is a subgraph of the-localized Delaunay graphDel™ (V). Graph
LDel™ (V) is not a planar graph, andDel®) (V) is planar fork > 1. In [1], Li et al. proposed
a communication efficient method to constriiddel) (V') and then make it planar in totél(n)
messages. Here each messagehésg n) bits.

In this paper, by plugging in the work from [33], we gave tfst method to construct
LDel® (V) usingO(n) messages.

Algorithm 2: Localized Construction of Planar Spanner LDel® (V)

1) Every nodeu collects the location information af, (=) based on an efficient method [33]
(reviewed later). It computes the Delaunay triangulatiori( No(u)) of its 2-neighbors
Ny(u), includingu itself.

2) For each edgew of Del(Ny(u)), let Auvw and Auvz be two triangles incident onw.
Edgeuv is a Gabriel edge if both angle&wv and Zuzv are less than /2 and||uv|| < 1.
Nodewu marks allGabriel edges.v, which will never be deleted.

3) Each node: finds all trianglesAuvw from Del(Ny(u)) such that all three edges Ofuvw
have length at most one unit. If anglavuv > %, nodeu broadcasts a messageo-
posal(u, v, w) to N (u) to form a localized Delaunay trianglauvw in LDel™® (V), and
listens to the messages from its neighboring nodes.

4) When a node: receives a messageoposal(u, v, w), u accepts the proposal of construct-
ing Auvw if Auvw belongs toDel(N2(u)) by broadcastingccept(u, v, w) to Ny (u);
otherwise, it rejects the proposal by broadcastajgct(u, v, w) to Ny (u).

5) A nodeu adds the edgesv anduw to its set of incident edges if the triangleuvw is in
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Del(N»(u)) and bothv andw have sent eithesiccept(u, v, w) or proposal(u, v, w).

First, we prove the following lemma which will be used in the analysis of our new algorithm.
The proof of the lemma is included in the Appendix (Section VII).

Lemma 2:An edgeuv is in LDel® (V) iff |uv|| < 1 and there is a disk passing through
andv, which does not contain a node fralWy(u) U Ny(v) inside.

We then review the communication efficient method proposed by Calinescu [33] to collect
N»(u) for every node: when the geometry information is known. Computing the set of 1-hop
neighbors withO(n) messages is trivial: every node broadcasts a message announcing its ID.
Computing the 2-hop neighborhood is not trivial, as the UDG can be dense. The broadcast nature
of the communication in ad hoc wireless networks is however very useful when computing local
information.

The approach by Calinescu [33] is based on the specific connected dominating set introduced
by Alzoubi, Wan, and Frieder [34]. This connected dominating set is based on a maximal inde-
pendent set (MIS). In the algorithm, each node uses its adjacent node(s) in the MIS to broadcast
over a larger area relevant information. Listening to the information about other nodes broad-
cast by the MIS nodes enables a node to compute its 2-hop neighborhood. The algorithm uses
heavily the nodes in the connected dominating set, an example in [33] shows that overloading
certain nodes might be unavoidable.

We start from the moment the virtual backbone is already constructed, and every node knows
the ID and the position of its neighbors. The idea of the algorithm is for every node to efficiently
announce its ID and position to a subset of nodes which includes its 2-hop neighbors. The
responsibility for announcing the ID and position of a nedg taken by the MIS nodes adjacent
to v. Each such MIS node assembles a packet containini®; position counter-, with the
ID and position ofv, and a counter variable being setXoThe MIS node then broadcasts the
packet.

A connector node is used to establish a link in between several pairs of virtually-adjacent MIS
nodes, and will not retransmit packets which do not travel in between these pairs of MIS nodes.
The connector node will rebroadcast packets with nonzero counter originated by one of the
nodes in a pair of virtually-adjacent MIS nodes, thus making sure the packet advances towards
the other MIS node in the pair. Recall that the path in between a pair of virtually-adjacent MIS

DRAFT



11

nodes has one or two connector nodes.

When receiving a packet of typelD; positiony counter-, a MIS node checks whether this
is the first message with this ID, and if yes decreases the counter variable and rebroadcasts the
packet. A node listens to the packets broadcasted by all the adjacent MIS nodes (here it is
convenient to assume a MIS is adjacent to itself), and, using its internal list of 1-hop neighbors,
checks if the node announced in the packet is a 2-hop neighbor or not - thus constructing the list
of 2-hop neighbors.

The number of messages taken by this methad(is), which is proved in [33] by using the
properties of the specific connected dominating set in [34]. Using the area argument, we can
show that the constant i@(n) is at most3 x (2 x 7 + 1)> = 675, since in this method the
message from node can only be re-broadcast by the MIS nodes which areops ofu and

their connectors. The constant can be improved by a tighter analysis.

B. Bound the Degree Locally

In the previous section, we have described a localized algorithm that can construct a planar
spanner using(n) messages for wireless ad hoc networks when every node has the same max-
imum transmission range. However, some node in strudtd?el® (1) could have degree as
large asO(n). We then give an efficient method to bound the node degree, as shown in Algo-
rithm 3.

Algorithm 3: Localized Construction of Planar Spanner with Bounded Degree
1) First, compute the planar localized Delaunay triangulafiéie!® (V), so that every node
u knows all its neighborsV; ., (u) and its node degre&u) in LDel® (V). Assume a
synchronized method is used to colléét ;2 (u) for every nodeu.
2) Build a local orderr of V' as follows: (Every node initializesm, = 0, i.e., unordered.)
a) If nodew hasr, = 0 andd(u) < 5, thenu queries each node, from its unordered
neighbors, the current degré@ ). If nodeu has the smallest ID among all unordered

neighborsy with d(v) < 5, nodeu sets

Tu = max{m, | v € Ny pge (u)} + 1,

!If some unordered neighberwith d(v) < 5 has smaller ID, we call such query roundedled round Nodew performs a
new round of queries only if it finds that the number of its unordered neighbors has been reduced (d(u) has reduced in step 2(b)).

So there are at mostrounds of queries.
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and broadcasts, to its neighborsV, ;) (u).

b) If nodewu receives a message from its neighbsaying thatr, = k& for the first time,
it updates itsi(u) = d(u) — 1 and also updates the order stored locally. Sal(u)
represents how many neighbors are not ordered so far.

If nodew finds thatd(u) < 5 andr, = 0, it goes to Step 2(a).
When node: finds thatd(u) = 0 andr, > 0, it can go to step 3.
3) Build structures based on local ordeas follows: (Initialize all nodes unprocessed)

a) If a unprocessed nodehas the highest local order in its unprocessed neighlprs
in LDel®(V), let k be the number of processed neighBass u in LDel® (V).
Nodew divides its transmission range inkoopensectors cut by the rays fromto
these processed neighbors. Then divide each sector into a minimum nunoipenof
cones of degree at mostwith o < 7/3. For each cone, let;, so,- - , s, be the
ordered unprocessed neighborsudh N; ;2 (u). For this cone, node first adds
an edgeus;, wheres; is the nearest neighbor among s, - - - , s,,. Nodewu then
tells s1, s, -+ , s, to add all the edges;s;+1, 1 < j < m. Nodeu marks itself
processed, and tells all nodesin ;2 (u) that it is processed.

b) If a unprocessed nodereceives a message for adding edgefrom its neighbor,

it adds edgen’'.

When all nodes are processed, the final network topology is denot8d’i$ (V).

C. Analysis of Localized Algorithm

We first show that the algorithm does process all nodes. First of all, the algorithm cannot stop
at the stage of ordering nodes locally. This can be shown by contradiction. Assume that there are
some nodes that are unordered. The graph formed by these unordered nodes is planar, and thus
it contains some nodes with at mastinordered neighbors. Among these nodes, the node with
the smallest ID will perform step 2(a), and reduce the number of unordered nodes consequently.

Notice that the ordering computed by our method is not a global ordering. Some nodes may

have the same order. However, no two neighboring nodésiel (2 (V') receive the same order.
Thus, after all nodes are ordered, the algorithm will process all nodes. Observe that the algorithm

“There are at most processed neighbors afin LDel<2>(V) whenu is being processed, because of the way the ordering is

constructed and the fact that the graphel® (V) is planar.
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does not process two neighboring nodes at the same time. Assume that there are two nodes, say
u andv are processed at the same time. Remember that we process a node only if it has the
highest ordering among its unprocessed neighbors. Thus, moale$v must receive the same

order, i.e.;r, = m,, which is impossible in our ordering method.

Additionally, remember that our algorithm checksdifu) < 5 for computing an ordering
locally. Here numbeb can be replaced by any integer that is not less thalsing a larger
integer may make the algorithm run faster, but on the other hand, it worsens the theoretical
bound on the node degree.

We first show that the localized algorithm is communication efficient.

Theorem 3:Algorithm 3 uses at mos?(n) messages, where each message’hias; n) bits.

PROOF Notice that it was shown in [33] that we can collect the 2-hop neighbor information
for all nodes using a total ab(n) messages. The communication cost of buildingel® (V)

is O(n) since every node only has to propose at néasiangles and each proposal is replied to
by two nodes.

The second step (local ordering) takeg:) messages, since every node only queries at most
5 rounds, and at theéth round of query the node sends at mést i query messages. For
each query, only the queried node replies. After it was ordered, it broadcasts once to inform its
neighbors.

The third step (bounded degree) also takés) messages, because every node only broad-
casts twice: (1) to tell its neighbors to add some edges, and (2) to claim that it is processed.
The total number of messages of telling neighbors to add some ed@¥s jssince the total
number of added edges (3(n) from the planar property of the final topology. So the total

communication cost is bounded BYn).

In addition, it is easy to show that the computation cost of each node is at@slog d>),
whered, is the number of its 2-hop neighbors in the original unit disk graph. This can be
improved toO(d; log d;, + ds), whered; is the number of its 1-hop neighbors in the original
unit disk graph. The improvement is based on the fact that we only need the tridngtesin
LDel® (V) that has angle/wuv > 7/3. All such triangles are definitely i DelV) (V) from
the definition of local Delaunay. Thus, we can construct the Delaunay triangula¢iov, (u))

of N;(u) in the first step of Algorithm 2. Then check the candidate triangles to see if they contain
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any node fromV,(u) inside its circumcircle. If it does not, then it belongsiiel (N (u)) also.

Observe that, after each nodeollects the 2-hop neighbor$,(u) (Step 1 of Algorithm 2),
our algorithms can be performed asynchronously. However, colledfifig) needs synchro-
nized communication since otherwise, a node cannot determine if it indeed already collected
No(u).

BOUNDED DEGREE, PLANARITY AND SPANNING RATIO: Next, we show that the con-
structed final topology is still a planar spanner and has bounded node degree.

Theorem 4:The maximum node degree of the graiv.S,(V) is at mostl9 + [22].

PROOF Notice that for a node: there are2 cases that an edge is added to theBP.S, (V).
Let us discuss them one by one.

Casel: When we process hode some edgesv have already been added by some processed
nodesw before. There are two subcases for this case.

Subcasd.l: The edgeuv has been added by a processed no@le = v). For example, in
Figure 1, node: has edges from,, v3 andwvs before it is processed. For each predecessir
only adds one edge to node

Subcasel .2: The edgeuv has been added by a processed nedgy # v). Nodew is an
unprocessed node when processing For example, in Figure 1, nodg has edges from;
andss; added by processing nodebefore nodes; is processed. Notice that bothand v are
neighbors of this processed node For each predecessaot it at most adds two edges to node
U.

Notice that each. can have at most predecessor neighbors (i.e., processed neighbors), and
each of the predecessors can add at Ma=iges tou (either Subcasé.1 or Subcasd.2, or
both). Thus, the number of this kind of edges (edges added by its predecessorsubisfore
processed) is bounded g + 5 = 15.

Case2: When nodeu is processed, we can add one edgdor each cone. Since we have at
most5 sectors emanating fromn and each cone must have an angle of at most is easy to
show that we can have at mak#- [22] cones at.. So the number of this kind of edges is also
bounded byt + [22].

Notice that after node is processed, no edges will be added to it. Consequently, the degree

of each node: is bounded by 9 + [%1, when the structure is generated by above algoritbm.
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Notice that the algorithms in [2] and [26] always add the edges in the Delaunay triangulation
to construct a bounded degree planar spanner for a set of points. Thus, the planarity of the final
structure is straightforward. The algorithm we discussed in Section Il may add some edges (such
as edges;s; 1, added in step 4(b) of Algorithm 1) that do not belong tothBel(1"). To prove
the planarity of the structur8P.S,(V'), in [26] we showed that no two added diagonal edges
intersect. The property that edges, which possibly intergegct; in the centralized algorithm,
are all Delaunay edges is crucial for the centralized algorithm. However, this property does not
hold anymore in the localized algorithm. We will show tli&P S, (1) is a planar graph using a
different approach.

Theorem 5:BPS,(V) is a planar graph.

PrROOF. Notice that Algorithm 3 only adds some edged.ifel® (V) or edges;s;,1 such that
us; andus; ., are edges of Del® (V) ands;, s,, are consecutive neighbors®in LDel? (V)
andZs;us;y1 < m/3. We call such an edges,,; the diagonaledge of the grapli.Del® (V).
Notice that these diagonal edges cannot intersect with any edge frow® (V). Thus, the
only possible intersections, if there is any, #PS,(V') are caused by two diagonal edges.
Without loss of generality, we assume that two diagonal edgesnd vz intersect with each
other. Sinceuy is a diagonal edge; andy are consecutive neighbors of some node, jgap
LDel® (V). From our previous discussion, the only possible intersection to the diagonal edge
uy must be some diagonal edge incident at npd&hus,p is eitherz or v here. See Figure 2
for an illustration of such two intersected diagonal edggsndvz. Here we assume thatis

v. Assume thauyv < Zuzv. Notice thatZuyv = Zuxv will not happen by assuming that
the nodes are in general position, i.e., no four vertices are co-circular. yTiseputside of the
circumcircledisk(u, v, x) of the triangleAuvz.

If the disk disk(u,v,z) does not contain a node frofd,(z) U N»(v) inside, then edgewv
belongs to the graphDel® (V). This is a contradiction to the fact that edgesanduvy are
consecutive neighboring edges in grapPel® (V). Thus, there must be some node, say
from Ny (z) U Ny(v) inside the diskdisk(u, v, z). We then discuss the possible locations: of
case by case.

3This is due to the following reason. The graplDel(2>(V) is a planar graph. For each diagonal edgg 1, nodess; and
si+1 are consecutive neighbors of a nadeThis means that;, s;+1 andu belong to the same polygon facebDel<2)(V).
Thus,s;s;41 cannot intersect any edge frofDel ) (V).
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Fig. 2. Two diagonal edgesy andvz intersect. The circum-disHisk(u, v, z) of the triangleAuvz is decomposed of three

regions |, Il, and Ill.

If there is a node: that is inside the region II, thencannot be fromV,(v). Otherwise, we
cannot find an empty circle passing througandv that is free of nodes oV, (u) U N (v) inside.
This contradicts the fact that edge belongs to the graphDel® (V). Thus, node: must be
from Ny(z), but not fromN; () (otherwisez € N,(v) again). Assume that there is a 2-hop path
zwz connectinge andz. We then show that ¢ disk(u, v, z). If nodew is inside the region | or
1, then |juw|| < 1. Thus, any circle passing throughandv will containw or z inside. Since
w € Ny(u) andz € Ny(u), edgeuv cannot belong to graphDel® (V). It is a contradiction.
Similarly, if nodew is inside the region Il, nodes andw will cause a contradiction to the fact
uv € LDel®(V),

Thus nodev ¢ disk(u, v, z). Then similar to the proof of Lemma 2, we can show that to have
a nodez € Ny(z) in region Il is impossible. Similarly, region | cannot contain any node from
Ny (u) U No(z). Thus, only region Il can possibly contain some nedeside. Then|vz|| < 1.
This is proved as follows: it is inside the trianglé\vuz, it is obvious since the three sides of
this triangle have length at most 1;4fis inside the cap defined by arw, ||vz|| < |jvz| since
Lvux < /3.

Let c be the circumcenter of diskisk(u, v, x). Let D be a disk passing throughwith center
on the segmentc. Clearly, D is inside the diskdisk(u, v, x), sinceD is disk(u,v,z) whenc
is the center ofD. Among all such disks, we find the largest diBk that does not have any
nodes inside, i.e., the disk that passes through somesaiel node). Then edge z, belongs
to graphL Del® (V). We then show that, must belong to the sectafuvy. If z, is inside the
cap cut by segmenty, then any disk passing throughandy will contain « or z, inside since

Zyuv + Lyzov > w. See Figure 3(a) for illustrations. It contradicts to the existence of eglge
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in graphLDel® (V).

(a) (b)

Fig. 3. (&)zo is inside the cap cut by segmeny; (b) zo belongs to the sectafuvy.

As shown in Figure 3(b), if, belongs to the sectafuvy, andvz, € LDel®(V), then nodes

y andu cannot be consecutive neighborsudh LDel® (V). Itis a contradiction.

Then we prove that the grapghPS,(V') has a bounded spanning ratio.

Theorem 6:GraphB PSy(V') is at-spanner, where = max{ 7, wsin § 4 1} - Cyer.
PROOF To prove the spanning property, we only need to study the bound on the spanning ratio
for each individual edge instead of the bound on the spanning ratio for each shortest path. This
can be simply proved. A similar proof is given in [12] as the proof of Lemma 1. Noticé fiwat
any edgewv € UDG(V') we can find a path i@/ Del (V') with length at mostCl,,||uv||, where
Ciel = %gw, and every edge of the path is shorter tijan||. So we only need to show that for
any edgeuv € UDel(V), there exists a path iBPS,(V') betweenu andv whose length is at
most a constanttimes||uv||. ThenBPSy(V) is al - Cy-Spanner.

Now we prove the above claim. Consider an edgen U Del(V). If uv € BPS,(V), the
claim holds. So assume that ¢ BPS,(V).

Assume w.l.0.g. that, > ,. It follows from the algorithm that, when we process nade
there must exist a nodein the same cone with such that|uv|| > ||uz||, uz € BPS,(V'), and
Zzxuv < a < /3. There is two casesix is in U Del(V') or not.

Case luz € UDel(V'). We will show that no edges other than Delaunay edges are added to
u betweenux anduv. Then we can use the same proof as in Theorem 7 (in the Appendix) to

“Please refer to the proofs of Lemma 4 and Theorem 5 in [36]. They provediel(V) is at-spanner of /DG (V).
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prove that there is a path 8PS, (V) connecting: andv with length at mostax {7, 7 sin § +
1} - Juvl.

Let wq, ws, - ,w, be the sequence of Delaunay neighborsiah Del(V') from v to x.
See Figure 4(a) for illustrations. First, all the neighbersshould be inside the circumcircle
disk(u, v, x) of the triangleAuvz, since otherwise any circle passing througland w; will
contain either: or v inside which is a contradiction with the fact that, is Delaunay triangle.
Then we prove that all the edgesw; ., are shorter than one unit.

Remember that ifluv|| < 1, |Juz| < 1 and Zzuv < 7/3, then we have|zv| < 1. If
w; andw;,, are both inside the triangl&\vuz or the cap cut by segment:, ||w;w; 1] <
1. Therefore, the only case that edggav;. is longer than one unit is shown in Figure 4(b).
Assume that|w;w; || > 1. Since||zw;41|| < 1 and|jzw;|| < 1, we haveLw;w; 1z < 7/2.
Thus, Zzuv + Zww; iz < w/3 + /2 < m. It implies nodez is inside the circumcircle
disk (u, w;, w;y1). This is a contradiction and finishes the proof of no long edges among all the
edgesw;w; 1.

Thus, we know all edges;w; 1 € UDel(V), and in addition, they are also iDel? (V)
(sinceUDel(V) C LDel®(V)). Therefore we can not have an additional edgeadded to
LDel® (V) in sector{vux, since such an edge breaks the planar properfy/ofl(®) (). See

Figure 4(a) for illustrations.

(@) (b)

Fig. 4. (a) All the neighborss; should be in the circumcircléisk (u, v, z), and no edges other than Delaunay edges are added
to u betweenux anduw; (b) No edgew;w;+1 can have length longer than one.

Case 2:ux ¢ UDel(V). Assumeuz is added toL Del® (V) in the sectordw;uw,, where

wy andw, are consecutive Delaunay neighbors of nadélhere are three cases for Delaunay
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edgesw;u andws,u. We prove that all of them do not exist by contradiction.

Subcase 2.1: both edgesu andw,u are no more than one unit, shown in Figure 5(a). From
the property of Delaunay; must be outside of the circumcirct&sk (u, wy, w,) of the triangle
Auwiws. Thus,Zuwyx+ Zuwsx > w. Any circle passing though andz will contain eitherw,

or w, inside. Notice thatv;, w, € Ny (u). It contradicts the existence of edgein LDel® (V).

(a) Subcase 2.1 (b) Subcase 2.2 (c) Subcase 2.3

Fig. 5. All subcases in Case 2 do not exist.

Subcase 2.2: both edgesu andwsu are longer than one unit, shown in Figure 5(b). Since
|lvwy|| > 1 > |Jux|, Zuvwix < 7/2. Similarly, Zuw,x < 7/2. Then we haveluw,z +
Zuwsyx < m, Which contradicts the assumption thas outside of the circumcircléisk (u, w, w,).

Subcase 2.3uz is added toL Del® (V') when one ofw,u andw,u is shorter than one unit
and the other is longer than one unit. Assume that:|| > 1. See Figure 5(c) as illustrations.

Since edgeiwr € LDel®(V), we know||zw; | > 1. Otherwise, ifw; andw, are inNy(u),
then any circle passing thoughandz will contain eitherw; or w, inside. Plus||juw,| > 1
and||uz| < 1, we haveZuw,x < 7/3. Fromz is outside the circumcircl@isk (u, wy, ws),
Zuwix + Luwex > . Thus, Zuwyx > 2m/3, which implies|jux|| > ||uws||. Therefore, in
Algorithm 3, no edge:v from U Del(V') which is below edge.x will selectux as the shortest
neighbor in the same cone, because it will select.

Consider an edgev € UDel(V) which is above edgex which selectsuz as the shortest
neighbor. Sincéjuv| < 1, |uz| < 1 and Zvuxr < 7/3, we haveljvz|| < 1. Notice that
wy ¢ Auvx because ofluw,|| > 1. Again from the property of Delaunay, and = must

be outside of the circumcircléisk(u, wy,ws). It implies thatZvw,z + Zvux > w. Thus,
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Lvunx > m — Louz > 2w /3. Thenl > |lvx|| > ||zw;|| > 1 causes a contradiction. Therefore
Subcase 2.3 shown in Figure 5(c) does not exist too.

Consequently, it is impossible that any nadevill add an edge.x ¢ U Del as the shortest
link to BPS,(V') in a cone that has some edgesfrom U Del. Together with the proof of Case
1, it finishes our proof of the spanner property®P S, (V).

D. Dynamic Update

After the construction of the topology, dynamic maintenance is also an important issue, since
an ad hoc network could be highly dynamic. Three major events may cause the topology ob-
soleted: due to 1) node moving, 2) node joining or leaving, and 3) node failure. Therefore, a
dynamic update method for our proposed topology is needed. Usually, there are two kinds of
update methods: on-demand update or periodical update. Most of the existing topology control
algorithms are invoked periodically, while some algorithms perform the updating only when it
is required (i.e., on-demand). Our algorithm can adapt and combine both of these two update
methods. If no major topology change (for example, some small node movements do not affect
the topology), no update will be performed until some pre-set timer expires. In other words, we
perform our algorithm periodically with a pre-set time. The time could be set quite long depend-
ing on the types of the applications. But for some major topology change (such as a node’s death
or a tremendous movement of nodes), an on-demand update will be performed. Notice that since
our algorithm is a localized algorithm, the update process can be performed only in a local area
(within 2-hop neighborhood of where the topology change occurs) where the change occurs. For
example, When a nodemoves around, if a triangléxyz in the local Delaunay disappears or
a new triangleAzyz appears in the new local Delaunay, thers a (2-hop) neighbor of either
x ory or z (if LDel? is used). In other words, the movement of a nadenly affects its local

neighborhood of the local Delaunay triangulation, thus also the structure defined in this paper.

IV. EXPERIMENTS

In this section we measure the performance of the new bounded degree and planar spanner by

conducting some experiments. In our experiments, we randomly generate atetwireless
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nodes and it§/ DG(V'), and test the connectivity df DG (V). If it is connected, we con-
struct different localized topologies froi, including our proposed topologie8fS; (V') and
BPS5(V)), some well-known planar topologieGébriel graphGG(V), relative neighborhood
graph RNG(V') andlocalized Delaunay triangulations Del(V')), and some bounded degree
spannersYao graphY G(V') andYao and Sink"G*(V')). Then we measure the sparseness, the
power efficiency and the communication cost of these topologies. In the experimental results
presented here, we generaterandom wireless nodes inl@ x 10 square; the number of cones

is set to8 when we construct’ G(V') andY G*(V); the angle parameter = /3 when we
constructBPS; (V) and BPSy(V); the transmission range is set&sWe generaté00 vertex
setsV (each with50 vertices) and then generate the graphs for each of th#sgertex sets.
The average and the maximum are computed over all of théseertex sets. Figure 6 gives

all seven different topologies for the unit disk graph illustrated by the first figure of Figure 6. It

shows that all of these topologies excépt (V') andY G*(V) are planar.

A. Node Degree

The node degree of the wireless networks should not be too large. Otherwise a node with
a large degree has to communicate with many nodes directly. This increases the interference
and the overhead at this node. The node degree should neither be too small: a small node
degree usually implies that the network has a lower fault tolerance and it also tends to increase
the overall network power consumption as longer paths may have to be taken. Thus, the node
degree is an important performance metric for the wireless network topology. The node degrees
of each topology are shown in Table I. Hefg/d,,.. is the average/maximum node degree. It
shows thatBPS; (V') and BPS,(V') have a less number of edges (average node degrees) than
LDel(V),YG(V)andY G* (V). In other words, these graphs are sparser, which is also verified
by Figure 6. Recall that theoretically, onlyG*(V'), BPS;(V') and BPS,(V') have bounded
node degree (both for in-degree and out-degree). In [12], [13&tlal. gave an example to
show thatRNG(V'), GG(V), YG(V) andLDel(V') can have large node degree (in-degree for
Y G(V)). Notice that in our experiments since the wireless nodes are randomly distributed in
2-d space, the maximum node degree of these graphs is not as big as the example. It is proved
that the node degree &fG*(V') is bounded from above hy: + 1)? — 1 (the in-degree is at most

k(k + 1), the out-degree is at mos}, wherek = 8 is the number of cones. In this paper, we
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Fig. 6. Different topologies from the samheDG (V).

prove thatBPS; (V) andBPS5(V') have a bounded node degree of at most [27] = 25 when

a = 7/3. All of these theoretical bounds on the node degree can be verified by the maximum
node degrees in Table I. BotBP.S; (V) and BPS,(V') have smaller maximum node degrees
thanY G(V').

B. Spanner Properties

Besides bounded node degree, the most important design metric of wireless networks is per-
haps the power efficiency, as it directly affects both the node and the network lifetime. So

while our new topologies increase the sparseness, how does it affect the power efficiency of the
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TABLE |

NODE DEGREES& STRETCH FACTORS OF DIFFERENT TOPOLOGIES

davg dmaw tavg tmaz Pavg Pmazx

UDG 16.83 35 1.000 1.000 1.000 1.000
RNG 227 5 1320 5.049 1.059 2.942
GG 3.36 8 1120 2.131 1.000 1.000
LDel 525 11 1.048 1.405 1.000 1.000
YG 8.11 19 1.040 1.681 1.002 1.459
YG* 481 11 1.0/70 1.990 1.003 1.459
BPS, 4.44 9 1075 1965 1.004 1.755
BPS, 4.45 9 1074 1965 1.004 1.823

constructed network? We then define f@ver stretch factofor measuring the power effi-
ciency. A subgraplty’ is a power spanner of a Gragh if there is a positive real constapt

such that for any two nodesandwv, the minimum power consumed by all paths betweemd

v in G’ is at mostp times of the minimum power consumed by all paths between thef in

The constanp is called the power stretch factor. Here we assume that the total transmission
power consumed by path, vq, ..., v IS Zle ||v;_1v;]|?, where the power attenuation constant

£ is a real constant depended on the wireless environment. In our simulgtien3. Table |

also summarizes our experimental results of the length and power stretch factors of all of these
topologies. Herel,,,/t.q. is the average/maximum length stretch factr,/p,.q. is the aver-
age/maximum power stretch factor. It is not surprising that the average/maximum power stretch
factors of BPS, (V) and BPS,(V') are small and at the same level of those of ¥h&(1") and

Y G* (V') while they are planar and much sparser. Notice that Yao graph does perform little bit
better in our simulations in term of spanner properties, but it is not a planar structure and also

cannotbound the nodal degree.

C. Communication Cost

In Section Il we proved that the localized algorithm constructihg? (V') uses at mosp(n)
messages. We found that when the number of wireless nodes increases the average messages

used by each node for constructidity®S,(V) is still in the same level. In this experiment,
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we generate from0 to 300 random wireless nodes inl& x 10 square and run our localized
algorithm to buildBS P,(V'). The average and the maximum are computed d¥eertex sets.

All other parameters and settings are same with previous experiments. Table || summarizes our
experimental results of the node degree, length and power stretch factors, and communication
costs of BPSy (V). Here,du,,(UDG)Id, .., (UDG) is the average/maximum node degree for

the original unit disk graphtot_msg./tot-msgm.. is the average/maximum total messages
cost for constructing3 P.S»(V'); nod_-msgawg/nod-msgm.. is the average/maximum messages

cost in each node during the construction. Notice that here we do not count the messages used
in building LDel® (V). In other words, we only consider the messages used in the second and
third steps of Algorithm 3. Remember that by plugging in the work from [33], we can construct
LDel® (V) usingO(n) messages. However, the hidden constant is pretty large. Therefore, in
this experiment, we used a naive method to collect 2-hop neighbor information (broadcasting
one-hop neighbor information to its all neighbors) and directly biildel? (V') based on the
information. The first two rows of Table Il show the network becomes more and more dense
while the number of wireless nodes increases. Experimental results of communication costs on
each node show that the localized method does not cost more messages on each node even the
graph becomes more dense. Simulations in Table Il also show that the performances of our new

topology BPS,(V') are stable when number of nodes changes.

V. CONCLUSION

In this paper, we proposed a localized algorithm to construct planar spanners with bounded
node degree for wireless ad hoc networks based on a centralized method we developed. The
localized algorithm can be implemented usifign) messages under the broadcast communi-
cation model for wireless networks. The basic idea of this new method is to use a localized
Delaunay graph to construct a planar spanner graph, and then to apply some ordered Yao graph
to bound the node degree. It is carefully designed to not lose all the good properties when com-
bining them. To the best of our knowledge, this is the first localized algorithm for constructing a
bounded degree and planar spanner. We also conducted experiments to show that this topology is
efficient in practice compared with other well-known topologies for wireless ad hoc networks. It

is still an open problem how to bound the total edge length of our localized strugfagg(1/).
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TABLE Il

PERFORMANCES AND COMMUNICATION COSTS OFBPS2 (V).

num_of nodes 50 100 150 200 250 300
davg(UDG) 16.81 3498 51.79 68.25 85.89 103.87

ez (UDQ) 35 63 93 114 141 177
davg 443 449 453 461 458 4.63
naz 9 9 11 11 10 9

tavg 1.079 1.091 1.090 1.092 1.093 1.089
tmaz 1958 1964 1.949 1.965 1.968 1.963
Pavg 1.005 1.007 1.006 1.005 1.005 1.006
Prmaz 1.865 1.891 1.850 1.872 1.861 1.873
tot_msgaug 443 912 1379 1855 2340 2798
tot-msgmaq 448 921 1394 1870 2326 2812
nod_msgauyg 886 9.13 919 927 930 9.32
nod_msgmaz 13 14 16 15 17 15
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VIlI. APPENDIX
A. Proof of Spanner Property for Centralized Method

Here we review the proof of spanner property for the centralized method, since the proof of
localized method uses some techniques presented here.

Theorem 7:GraphBPS; (V) is at-spanner, where = max{7, wsin § 4 1} - Cyer.
PrROOF For completeness, we review the proof here. Keil and Gutwin [25] showed that the
Delaunay triangulation is@spanner for a constant;,; = %gw using induction on the increas-
ing order of the lengths of all pairs of nodes. We can show that the path connectingunodes
andv constructed in [25] also satisfies that the length of each edge of that path is dtumpst
Consequently, for any edge € UDG(V') we can find a path i/Del (V') with length at most
at = %gw times||uv||, and all edges of the path is shorter thiam||. So we only need to show
that for any edgew € U Del(V'), there exists a path iBP S, (V') between: andv whose length
is at most a constarittimes||uv||. ThenBPS, (V) is al - Cy-Spanner.

Now we prove the above claim. Consider an edgen UDel(V). If uv € BPS,(V), the
claim holds. So assume that ¢ BPS;(V).
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Assume w.l.o.g. that, < m,. It follows from the algorithm that, when we process nage

there must exist a nod€ in the same cone with such that|uv|| > [|uv'||, uv’ € BPS{(V),

andZv'uwv < a < 7/3. Letv’ = sq,$9,---,5 = v be this sequence of nodes in the ordered
unprocessed neighborhood ©fin UDel(V') from v’ to v. Letv = wy,wy, - ,wy = v be
the sequence of neighbors®in Del(V') from v' to v. Obviously, the sefs;, ss,---, s} isa
subset of wy, wo, - - -, wy }.

Similar to [2], consider the polygo#®, , formed by edgeiw;, uw; and pathw,w, - - - wy.
We will show that the pathv,w, - - - w;, has length that is at most a small constant factor of the
length||uv||. Let us consider the shortest path framto w, that istotally insidethe polygonp.
Let S(wy, wy) denote such a path. This path consists of diagonal3 afid is contained inside
Auwiwyg. For example, in Figure §(wy, wy) = wiwrws.

Assume thatjuv’|| = . Letw be the point on segment such that|uw|| = ||uv’||. Assume
that ||uv|| = y, then||wv|| = y — . Notice that node’ is the closest Delaunay neighbor in
such cone. Obviously, all Delaunay neighbarsin this cone are outside of the sector defined
by segmentsw anduv’. We will show that such patl(w;, wy) is contained inside the triangle
Awwywy. First, if no Delaunay neighbors are insidevw, wy, thenS(wq, wy) = wywg. Thus,
the claim trivially holds. If there are some Delaunay neighbors ingideo; wy, thenw; will
connect to the one; forming the smallest anglguw;w;. Similarly, nodew, will connect to
the onew,; forming the smallest anglguw;w;. Obviouslyw; andw; are insideAww;wy, thus,
the shortest path connecting them is also ingldew, w;. Since pathS(wy,wy) is the shortest
path inside the polygof® to connectu; andwy, by convexity, the length of (w;, wy,) is at most
[v'w|| + lwo|| = 2zsin g + y — . Hered = Zv'w < a.

An edgew;w; of S(w,,wy) has endpoints; andw; in the neighborhood af. Let D(w;, w,)
be the sequence of edges betwegmandw; in the ordered neighborhood of which are added
by processing:. For example, in Figure 7D (w;,w;) = wywswswswswew,. We can bound
the length ofD(w;, w;) by 7 /2||w;w;|| by the argument in [2], [29]. In [29], it is shown that
the length ofD(w;, w;) is at mostr /2 times||w;w; ||, provided that (1) the straight-line segment
betweenw; andw; lies outside the Voronoi region induced by and (2) that the path lies on

one side of the line throughy; andw,. In other words, we need(w;, w;) to be one-sided
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Fig. 7. The shortest path in polygdn

Direct Delaunay pati® [23]. In [2], they showed that both of these two conditions hold when
Zwuw; < /2. This is trivially satisfied sinc&w,uw; < o < /2.

Thus, we have a patiww, ws - - - wy, to connect, andv with length at most

0
$+(2xsin§+y—x)‘7r/2

Sy-(g—l—g-(wsin%—g—l—l))
a
—+1}

(s .
<y - max{g,ﬂsm 5

Since any such node; is not inside the polygory formed by the Unit Delaunay neighbors
of u (see [26] for more detail), the patls, s, - - - s (which is in BPS;(V)) is not longer than
the length of pathuw,ws - - - wy.

ConsequentlyB PS5, (V) is a spanner with length stretch factor at mest{ 7, 7sin § + 1} -
Cer.- =]

SFor any pair of nodes andv, letu = wi, we, ---, wx = v be the sequence of nodes whose Voronoi region intersect
segmentw and the Voronoi regions at; andw; share a common boundary segment. The the Direct Delaunay}¥#th, v)

iSw1w2 ce Wk
SFirstly, the Voronoi region centered atwill not intersect the segmenit;w;. This can be proved by showing thaip|| >

max{||w:pl|, ||w;pl/} for any pointp on segmentv;w;, which is due taZuw;p + Zuw;p > Zw;up + LZwjup = Zw;uw;.
Notice thatZw;uw; < o < w/2. Secondly, the pat(w;, w;) is on one-side ofv;w; because it is part of the shortest path
connectingw: andwyg. Thirdly, the pathD(w;, w;) is Direct Delaunay patibT'(w;, w;). This can be proved by showing that
Vor(wg) intersects the segment;w; for any: < ¢ < j. This is obvious since the circumcenter (belonging/ter(w,)) of
any trianglevwg—1wq is on the same side af;w; asu.
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B. Proof of Lemma 2

Lemma 2:An edgeuv is in LDel® (V) iff |luv|| < 1 and there is a disk passing through
andv which does not contain a node fralvy (u) U Na(v) inside.

PROOF ltis trivial that if an edgeuw is in LDel® (V') then that kind of disk exists, since either
uv is a Gabriel edge ov is an edge from &-localized Delaunay triangle. Then we prove the
other direction.

Assume that there is a didR; passing through andv, and there is no node from,(u) U
N, (v) inside this circleD;. If uv is the diameter of circlé,, then it is a Gabriel edge which
must be inLDel® (V). Otherwise, letD; be the disk whose diameteris (with centercs).
Disk D3 must contain some node, sayinside as shown in Figure 8. DigR; cannot contaimw
inside. Assumé); has center;. Let D be a disk centered at some poirdn the segment; c;
and passing throughhandv. Then we can move the centeof disk D alongc;cs from ¢; to c3

and set the radius dP be||cu

, until the disk touches thiérst nodew from Ny(u) U No(v) or

becomedD;.

Fig. 8. DiskD, touches a node from N2 (u) U N2(v).

If the disk become®s, thenuv is a Gabriel edge and ihDel® (V). Otherwise, the disio
touches some node, which is shown in Figure 8 as didR,. ThenD becomes the circumcircle
disk(u, v, w) of u, v andw. SinceD, does not contain any node froiVy(u) U No(v) inside, we
only need show it is empty fromV,(w) to prove thatAuvw is a2-localized Delaunay triangle
and thusuv is in LDel® (V). We prove this by contradiction.

Assume that there is a nodefrom N, (w) inside disk(u, v, w). Clearly, nodey cannot be
from Ny(u) U No(v), sinceD, does not contain any node frofi,(u) U No(v) inside. Node
y must be two hops away from, otherwisey € N,(u). In addition, node; cannot be inside

the cap defined by arecwv since|juw| < 1 and|juv|| < 1. Assume that a node is one hop
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neighbor of bothy andw. Notice thatz cannot be a one hop neighborwobr v, otherwisey
will become the two-hop neighbor afor v, which is a contradiction to the property of digk
Then we know that edgesv, uv, vw, xy andxw are shorter than one unit, while edgesg vy,
wy, xu andzv are longer than one unit. There are two cases about the location of:node¢he
different side ofuv asy and on the same side af asy, as shown in Figure 9. Clearly, node
is outside of the dislO, otherwise,D will contain a 2-hop neighbar of « inside (through path

uwz).

v

(a) Different side (b) Same side

Fig. 9. Two cases in the proatf: is on the same side or different sidewaf asy.

For the first case, we divide the half-space bounded bylin@hich containgy and excludes
the capuwwv, into three regions as shown in Figure 9(a).
If  is inside the region I, see Figure 10(a) for an illustration. Sihee| < 1, ||luw| < 1,

and ||zu|| > 1, we haveZzwu > w/3. Thus,Zzuw < 2x/3. Since|zy| < 1,

zul| > 1,
and|juy|| > 1, we have/yur < /3. Thus,Zwuy = 27 — Zruw — Zyux > m, which is
impossible.

If « is inside the region Il, see Figure 10(b) for an illustration. Siftee| > 1, ||yul > 1,
and||zy|| < 1, we haveZzuy < /3. Similarly, we haveZuxv < w/3, Zzvy < w/3, and
Lxvy < /3. Thus2m = Lzuy + Luxv + Lxvy + Lxvy < 47/3, which is a contradiction.

When noder is inside region Ill, the proof is the same as it is in region I.

For the second case, we further divide it into four subcases whernnisdeside region I, Il,
1, or V. Obviously, Zuyv + Zuwv > mandZuyv < /3. Thus,Zuwv > 27/3, which implies

Zuvw < /3.
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(a) Subcase 1 (b) Subcase 2

Fig. 10. Nodex is inside region | or region II.

If nodez is inside the region I, see Figure 11(a) for an illustration. Sideav > 27/3, we
have Zwuv < m — Zuwv < 7/3. Notice thatZwuz + Zwuv > m, S0 Zwuzr > 27 /3. This
implies thatl > ||wz|| > ||uz|| > 1. Itis a contradiction.

If nodex is inside the region Il, see Figure 11(b) for an illustration. Heigethe circumcenter
of the diskD. Notice that when node is on the diagonadc and just outside the circle;wux
has the minimum value slightly larger thati2. Thus, Zwux > /2. This implies thatl >
||lwz|| > ||ux| > 1. Itis a contradiction.

When noder is inside the region I, or V, the proofs are similar to the cases Il, or | respec-
tively.

(a) Subcase 1 (b) Subcase 2

Fig. 11. Noder is inside region | or region II.
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Then we know that the circumcirclésk (u, v, w) of the triangleAuvw does not contain any
node fromN,(u) U Na(v) U Ny(w) inside. Thusuw is in LDel'® (V). This finishes the proof.
=i
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