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Abstract

We propose a novel localized algorithm that constructs a bounded degree and planar spanner for

wireless ad hoc networks modeled by unit disk graph (UDG). Every node only has to know its 2-hop

neighbors to find the edges in this new structure. Our method applies the Yao structure on the local

Delaunay graph [1] in an ordering that are computed locally. This new structure has the following

attractive properties: (1) it is a planar graph; (2) its node degree is bounded from above by a positive

constant19 + d 2π
α e; (3) it is at-spanner (given any two nodesu andv, there is a path connecting them

in the structure such that its length is no more thant ≤ max{π
2 , π sin α

2 +1} ·Cdel times of the shortest

path in the unit disk graph); (4) it can be constructed locally and is easy to maintain when the nodes

move around; (5) moreover, we show that the total communication cost isO(n log n) bits, wheren is

the number of wireless nodes, and the computation cost of each node is at mostO(d log d), whered

is its 2-hop neighbors in the original unit disk graph. HereCdel is the spanning ratio of the Delaunay

triangulation, which is at most4
√

3
9 π. And the adjustable parameterα satisfies0 < α ≤ π/3.

Index Terms

Wireless ad hoc networks, topology control, bounded degree, planar, spanner, localized algorithm.

I. I NTRODUCTION

We consider a wireless ad hoc network (or sensor network) consisting of a setV of n wire-

less nodes distributed in a two-dimensional plane. Each node has some computation power and

an omni-directional antenna. This is attractive because a single transmission of a node can be

received by all nodes within its vicinity. By a proper scaling, we assume that all nodes have the

maximum transmission range equal to one unit. These wireless nodes define aunit disk graph

UDG(V ) in which there is an edge between two nodes if and only if their Euclidean distance

is at most one. The unit disk graph could haveO(n2) edges. Hereafter, we always assume that

UDG(V ) is a connected graph. We also assume that all wireless nodes have distinctive identi-

ties and each wireless node knows its position information either through a low-power Global

Position System (GPS) receiver or through a localization service. By one-hop broadcasting,

each nodeu can gather the location information of all nodes within the transmission range ofu.

Notice, throughout this paper, abroadcastby a nodeu meansu sends the message to all nodes

within its transmission range. Remember that, in wireless ad hoc networks, the radio signal sent

out by a nodeu can be received by all nodes within the transmission range ofu.
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Unlike wired networks, in wireless ad hoc networks, each node can move and thus change

the topology of the network. In this case, we need to adjust the transmission power to keep

some properties of the network topology such as connectivity or power efficiency. The lifetime

of a wireless network, which depends on battery power, is usually restricted because of limited

capacity and resources on each node. Thus a main goal of topology control is to increase the

longevity of such networks which can be obtained by designing power efficient algorithms [3],

[4], [5], [6], [7], [8].

One effective approach [4], [5], [6], [8], [9], [10], [11], [12], [13], [14] is to maintain only

a linear number of links using alocalizedconstruction method. In other words, we construct a

sparse distributed structure as network topology for the wireless network. However, this sparse-

ness of the constructed network topology should not compromise too much on the power con-

sumptions of communications. So we hope that in the sparse topology every shortest route in

the constructed network topology is efficient. Here a route isefficientif its length is no more

than a constant factor of the least length needed to connect the source and the destination. A

trade-off can be made between the sparseness of the topology and the efficiency. Obviously, not

all sparse subgraphs are good candidates for the underlying network topologies.

Consequently, in this paper, we will focus on the construction of a sparse network topology,

i.e., a subgraph ofUDG(V ), which has the following desirable features.

• Connectivity. Connectivity is the most basic feature of the network topology. It guarantees

that there exists at least one path from one node to any other nodes. Notice that here we

require that the subgraph ofUDG(V ) is connected ifUDG(V ) is connected.

• Sparseness. The topology should be a sparse graph, i.e., withO(n) links. This makes

numerous algorithms, e.g., routing algorithm based on the shortest path, running on this

topology more efficient for both time and power consumption.

• Spanner. We want the subgraph to be a spanner ofUDG(V ). Here a subgraphG′ is a

spanner of a graphG if there is a positive real constantt such that for any two nodes, the

length of the shortest path inG′ is at mostt times the length of the shortest path inG. The

constantt is called thelength stretch factor. A spanner is always power efficient for unicast

routing.

• Bounded degree. It is also desirable that the node degree in the constructed topology is
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small and bounded from above by a constant. A small node degree reduces the MAC-

level contention and interference, and also may help to mitigate the well known hidden

and exposed terminal problems. In addition, a structure with small degree will improve the

overall throughput [15].

• Planar. The topology is a planar graph (no two edges crossing each other in the graph).

Some routing algorithms require the topology to be planar, such as right hand routing,

Greedy Perimeter Stateless Routing(GPSR) [16],Greedy Face Routing(GFG) [17],Adap-

tive Face Routing(AFR) [18]. andGready Other Adaptive Face Routing(GOAFR) [19].

• Efficient Localized Construction. Due to the limited resources of the wireless nodes, it

is preferred that the underlying network topology can be constructed and maintained in

a localized manner. Here a distributed algorithm constructing a graphG is a localized

algorithm if every nodeu can exactly decide all edges incident onu based only on the

information of all nodes within a constant hops ofu. More importantly, we expect that the

time complexity of each node running the algorithm constructing the underlying topology

is at mostO(d log d), whered is the number of 1-hop or 2-hop neighbors.

In [16], [17], two planar subgraphsrelative neighborhood graph(RNG) andGabriel graph

(GG) are used as underlying network topologies. However, Bose,et al. [20] proved that the

length stretch factors of these two graphs areΘ(n) andΘ(
√

n) respectively. They are precisely

n− 1 and
√

n− 1 actually [31]. Recently, some researchers [8], [12] proposed to construct the

wireless network topology based on the Yao graph [28] (also calledθ-graph [35]). It is known

that the length stretch factor and the node out-degree of Yao graph are bounded by some positive

constants. But as Liet al. mentioned in [12], all these three graphs can not guarantee a bounded

node degree (for Yao graph, the node in-degree could be as large asΘ(n)). In [12], [13], Li, et al.

further proposed to use another sparse topology,Yao and Sink, that has both a constant bounded

node degree and a constant bounded length stretch factor. However, all these graphs [8], [12],

[13] are not guaranteed to be planar. Liet al. [1] proposed a planar spannerlocalized Delaunay

triangulations(LDel), and Gaoet al. [21] proposed a planar spannerRestricted Delaunay Graph

for wireless ad hoc networks. However both of them can have unbounded node degree. The

planar structure constructed by Hu [22] may not be a spanner. Previously, no localized methods

were known for constructing a bounded degree and planar spanner.
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Recently Boseet al. [2] proposed a centralizedO(n log n)-time algorithm that constructs a

planart-spanner for a given node setV , for t = (1 + π) · Cdel ' 10.02, such that the node

degree is bounded from above by27. Hereafter, we useCdel to denote the spanning ratio of the

Delaunay triangulation [23], [24], [25]. As far as we know, their algorithm is the first method

to compute a planar spanner of bounded degree. However the distributed implementation of

their centralized method takesO(n2) communications in the worst case for a setV of n nodes.

Recently, Li and Wang [26] improved this by giving a centralized method that constructs a

planar structure with degree bounded by at most19 + d2π
α
e and a spanning ratio of at most

t ≤ max{π
2
, π sin α

2
+ 1} · Cdel. Hereα is an adjustable parameter satisfying0 < α ≤ π/2.

In this paper, we propose thefirst efficient localized algorithm to construct a bounded degree

and planar spanner for wireless ad hoc networks. The contributions of this paper include: (i) the

node degree of the new planar spanner is bounded by19 + d2π
α
e, (ii) its length stretch factor is

t ≤ max{π
2
, π sin α

2
+ 1} ·Cdel, where0 < α ≤ π/3, and (iii) it can be constructed locally using

O(n) messages (each message withO(log n) bits) and is easy to maintain when the nodes move

around.

The rest of the paper is organized as follows. In Section II, we review the centralized method

constructing bounded degree planart-spanner for a unit disk graph. We then give the first local-

ized method, in Section III, to construct a bounded degree planart-spanner forUDG(V ) with

total communication costO(n) under the broadcasting communication model. In Section IV,

experiments are conducted to show the new topology is efficient in practice, comparing to other

well-known topologies used in wireless ad hoc networks. Finally, we briefly conclude our paper

in Section V.

II. PRIOR ART: CENTRALIZED CONSTRUCTION FORUDG

Our localized algorithm is developed based on the centralized algorithm developed in [26],

which constructs a planar spanner with bounded node degree forUDG(V ). The basic idea

of the centralized method is to combine Delaunay triangulation and the ordered Yao structure

[28]. Our localized method is significantly different from this centralized method: it uses a

novel combination of the Yao structure and the local Delaunay graph. For completeness of

presentation, we review the centralized method (shown in Algorithm 1) here. We assume that

every nodeu has a unique ID, denoted byID(u).
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Algorithm 1: Centralized Construction of Planar Spanner with Bounded Degree

1) First, compute the Delaunay triangulationDel(V ) of the setV of n wireless nodes.

2) Remove the edges longer than1 in Del(V ). Call the remaining graph unit Delaunay

triangulationUDel(V ). For every nodeu, we know its unit Delaunay neighborsNUDel(u)

and its node degreed(u) in UDel(V ).

3) Find an orderπ of V as follows: Leti = 1, G1 = UDel(V ) anddG(u) be the node

degree ofu in graphG. Remove the nodeu with the smallest degreedGi
(u) (smaller

ID breaks tie) from graphGi, and call the remaining graphGi+1. Setπu = n − i + 1.

Repeat this procedure for1 ≤ i ≤ n. Let Pv denote the predecessors ofv in π, i.e.,

Pv = {u ∈ V : πu < πv}. SinceGi is always a planar graph, the smallest value ofdGi
(u)

is at most5. Then, in orderingπ, nodeu has at most5 edges to its predecessorsPu.

4) Let E be the edge set ofUDel(V ), E ′ be the edge set of the desired spanner. InitializeE ′

to an empty set and mark all nodes inV unprocessed. Following the increasing orderπ,

run the following steps to add some edges fromE to E ′ (only consider the unit Delaunay

neighborsNUDel(u) of u):

a) For the unprocessed nodeu with the smallest orderπu, let v1, v2, · · · , vk be the

processed neighbors ofu in UDel(V ) (see Figure 1). Herek ≤ 5. Thenk open

sectors centered at nodeu are defined by rays emanated fromu to the processed

nodesvi in UDel(V ). For each sector centered atu, we divide it into a minimum

number ofopencones of degree at mostα, whereα ≤ π/3 is a parameter.

b) For each cone, lets1, s2, · · · , sm be the geometrically ordered neighbors ofu in

NUDel(u) in this cone. Notices1, s2, · · · , sm are all unprocessed nodes. For each

cone, first add the shortest edgeusi in E to E ′, then add toE ′ all the edgessjsj+1,

1 ≤ j < m. Notice that here such edgessjsj+1 are not necessarily inUDel(V ).

For example, when nodeu has a Delaunay neighborx such thatux intersects edge

sisi+1 and‖ux‖ > 1. Then edgesisi+1 is not Delaunay edge, butsi andsi+1 are

consecutive neighbors ofu in UDel sinceux is removed.

c) Mark nodeu processed.

Repeat this procedure in the increasing order ofπ, until all nodes are processed. Let

BPS1(V ) denote the final graph formed by edge setE ′.
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Notice that in the algorithm we useopensectors, which means that in the algorithm we do

not consider adding the edges on the boundaries (any edge involved previously processed neigh-

bors). For example, in Figure 1, the cones do not include any edgesuvi. This guarantees that

the algorithm does not add any edges to nodevi aftervi has been processed. This approach, as

we will show it later, bounds the node degree.
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Fig. 1. Constructing Planar Spanner with Bounded Degree forUDG(V ): Process nodeu. Here nodesvi represents these

nodes have already been processed by our method.

Our localized algorithm borrows some idea from our centralized method, and the proof of

the correctness and the property of the structure constructed locally also uses some statements

proved for centralized method. The following results were proven in [26].

Theorem 1:GraphBPS1(V ) is a planar graph. The maximum node degree of the graph

BPS1(V ) is at most19+d2π
α
e. The spanning ratio ofBPS1(V ) is at mostt = max{π

2
, π sin α

2
+

1} · Cdel. Here0 < α ≤ π/3.

The proof of the spanner property is attached in the appendix (Section VII) since we will use it

in the proof of our localized method. Whenα = π/3, then the maximum node degree is at most

25. It improves the previous bound27 on the maximum node degree by Boseet al. [2]. When

α = π/3, the spanning ratio is at most(π
2

+ 1) · Cdel; whenα = 2 arcsin(1
2
− 1

π
) ' 20.9o, then

the spanning ratio is at mostπ
2
· Cdel.

Notice that the time complexity of the centralized algorithm isO(n log n), the same as with

the method by Boseet al. [2]. However, this centralized algorithm has a smaller bounded node

degree, and (more importantly) this algorithm has the potential to be turned into a localized

algorithm as we will describe in this paper.
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III. L OCALIZED CONSTRUCTION

In [14], Wanget al. showed that an algorithm presented in [30] does construct a bounded

degree spanner for UDG withO(n) messages (with unitlog n bits) under the broadcast commu-

nication model, i.e., a signal sent by a nodeu can be received by all nodes within its transmission

range. Liet al. [1] presented the first algorithm that constructs a planar spanner using onlyO(n)

messages under the broadcast communication model. No localized method is known before for

constructing a planar spanner with bounded node degree.

In this section, we show how to extend the centralized algorithm [26] reviewed in the previ-

ous section to generate a bounded degree and planar spanner for UDG in a localized manner.

Remember that a distributed algorithm constructing a graphG is a localized algorithmif every

nodeu can exactly decide all edges incident onu based only on the information of all nodes

within a constant hops ofu. Our algorithm is based on the efficient localized construction of a

planar spannerLDel(2)(V ) for UDG defined by Liet al. [1]. For completeness of the presen-

tation, we first review the definitions and the efficient localized construction ofLDel(2)(V ) in

O(n) total communications.

A. ConstructLDel(2)(V ) Locally

We first introduce some geometric structures and notations to be used in this section. Let

Nk(u) be the set of nodes ofV that are withink hops distance ofu in the unit-disk graph

UDG(V ). All angles are measured in radians and take values in the range[0, π]. For any three

points p1, p2, andp3, the angle between the two raysp1p2 and p1p3 is denoted by∠p3p1p2

or ∠p2p1p3. Theclosedinfinite area inside the angle∠p3p1p2, also referred to as a sector, is

denoted by]p3p1p2. The triangle determined byp1, p2, andp3 is denoted by4p1p2p3.

An edgeuv is called constrainedGabriel edge(or simply Gabriel edge here) if‖uv‖ ≤ 1

and the open disk usinguv as diameter does not contain any node fromV . It is well known

[32] that the constrained Gabriel graph is a subgraph of the Delaunay triangulation, more pre-

cisely,GG(V ) ⊆ UDel(V ). Recall that a triangle4uvw belongs to the Delaunay triangulation

Del(V ) if its circum-disk, denoted asdisk(u, v, w), does not contain any other node ofV in its

interior. Here we often assume that there are no four nodes ofV co-circumcircle. The following

definition is one of the key ingredients of the localized algorithm constructingLDel(2)(V ).
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Definition 1: A triangle4uvw satisfies thek-localized Delaunay propertyif the interior of

the circumcircledisk(u, v, w) does not contain any node ofV that is ak-neighbor ofu, v, or w;

and all edges of the triangle4uvw have length no more than one unit. Triangle4uvw is called

ak-localized Delaunay triangle.

Definition 2: Thek-localized Delaunay graphover a node setV , denoted byLDel (k)(V ), has

exactly all Gabriel edges and edges of allk-localized Delaunay triangles.

Given a set of pointsV , theunit Delaunay triangulation, denoted byUDel(V ), is the graph

obtained by removing all edges of the Delaunay triangulationDel(V ) that are longer than one

unit. It was proved in [36], [21] thatUDel(V ) is a t-spanner ofUDG(V ). Li et al. [1]

proved that graphUDel(V ) is a subgraph of thek-localized Delaunay graphLDel (k)(V ). Graph

LDel(1)(V ) is not a planar graph, andLDel(k)(V ) is planar fork > 1. In [1], Li et al. proposed

a communication efficient method to constructLDel(1)(V ) and then make it planar in totalO(n)

messages. Here each message hasO(log n) bits.

In this paper, by plugging in the work from [33], we gave thefirst method to construct

LDel(2)(V ) usingO(n) messages.

Algorithm 2: Localized Construction of Planar Spanner LDel(2)(V )

1) Every nodeu collects the location information ofN2(u) based on an efficient method [33]

(reviewed later). It computes the Delaunay triangulationDel(N2(u)) of its 2-neighbors

N2(u), includingu itself.

2) For each edgeuv of Del(N2(u)), let4uvw and4uvz be two triangles incident onuv.

Edgeuv is a Gabriel edge if both angles∠uwv and∠uzv are less thanπ/2 and‖uv‖ ≤ 1.

Nodeu marks allGabriel edgesuv, which will never be deleted.

3) Each nodeu finds all triangles4uvw from Del(N2(u)) such that all three edges of4uvw

have length at most one unit. If angle∠wuv ≥ π
3
, nodeu broadcasts a messagepro-

posal(u, v, w) to N1(u) to form a localized Delaunay triangle4uvw in LDel (2)(V ), and

listens to the messages from its neighboring nodes.

4) When a nodeu receives a messageproposal(u, v, w), u accepts the proposal of construct-

ing 4uvw if 4uvw belongs toDel(N2(u)) by broadcastingaccept(u, v, w) to N1(u);

otherwise, it rejects the proposal by broadcastingreject(u, v, w) to N1(u).

5) A nodeu adds the edgesuv anduw to its set of incident edges if the triangle4uvw is in
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Del(N2(u)) and bothv andw have sent eitheraccept(u, v, w) or proposal(u, v, w).

First, we prove the following lemma which will be used in the analysis of our new algorithm.

The proof of the lemma is included in the Appendix (Section VII).

Lemma 2:An edgeuv is in LDel (2)(V ) iff ‖uv‖ ≤ 1 and there is a disk passing throughu,

andv, which does not contain a node fromN2(u) ∪N2(v) inside.

We then review the communication efficient method proposed by Calinescu [33] to collect

N2(u) for every nodeu when the geometry information is known. Computing the set of 1-hop

neighbors withO(n) messages is trivial: every node broadcasts a message announcing its ID.

Computing the 2-hop neighborhood is not trivial, as the UDG can be dense. The broadcast nature

of the communication in ad hoc wireless networks is however very useful when computing local

information.

The approach by Calinescu [33] is based on the specific connected dominating set introduced

by Alzoubi, Wan, and Frieder [34]. This connected dominating set is based on a maximal inde-

pendent set (MIS). In the algorithm, each node uses its adjacent node(s) in the MIS to broadcast

over a larger area relevant information. Listening to the information about other nodes broad-

cast by the MIS nodes enables a node to compute its 2-hop neighborhood. The algorithm uses

heavily the nodes in the connected dominating set, an example in [33] shows that overloading

certain nodes might be unavoidable.

We start from the moment the virtual backbone is already constructed, and every node knows

the ID and the position of its neighbors. The idea of the algorithm is for every node to efficiently

announce its ID and position to a subset of nodes which includes its 2-hop neighbors. The

responsibility for announcing the ID and position of a nodev is taken by the MIS nodes adjacent

to v. Each such MIS node assembles a packet containing:<ID; position; counter>, with the

ID and position ofv, and a counter variable being set to2. The MIS node then broadcasts the

packet.

A connector node is used to establish a link in between several pairs of virtually-adjacent MIS

nodes, and will not retransmit packets which do not travel in between these pairs of MIS nodes.

The connector node will rebroadcast packets with nonzero counter originated by one of the

nodes in a pair of virtually-adjacent MIS nodes, thus making sure the packet advances towards

the other MIS node in the pair. Recall that the path in between a pair of virtually-adjacent MIS
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nodes has one or two connector nodes.

When receiving a packet of type<ID; position; counter>, a MIS node checks whether this

is the first message with this ID, and if yes decreases the counter variable and rebroadcasts the

packet. A node listens to the packets broadcasted by all the adjacent MIS nodes (here it is

convenient to assume a MIS is adjacent to itself), and, using its internal list of 1-hop neighbors,

checks if the node announced in the packet is a 2-hop neighbor or not - thus constructing the list

of 2-hop neighbors.

The number of messages taken by this method isO(n), which is proved in [33] by using the

properties of the specific connected dominating set in [34]. Using the area argument, we can

show that the constant inO(n) is at most3 × (2 × 7 + 1)2 = 675, since in this method the

message from nodeu can only be re-broadcast by the MIS nodes which are in7-hops ofu and

their connectors. The constant can be improved by a tighter analysis.

B. Bound the Degree Locally

In the previous section, we have described a localized algorithm that can construct a planar

spanner usingO(n) messages for wireless ad hoc networks when every node has the same max-

imum transmission range. However, some node in structureLDel(2)(V ) could have degree as

large asO(n). We then give an efficient method to bound the node degree, as shown in Algo-

rithm 3.

Algorithm 3: Localized Construction of Planar Spanner with Bounded Degree

1) First, compute the planar localized Delaunay triangulationLDel(2)(V ), so that every node

u knows all its neighborsNLDel(2)(u) and its node degreed(u) in LDel(2)(V ). Assume a

synchronized method is used to collectNLDel(2)(u) for every nodeu.

2) Build a local orderπ of V as follows: (Every nodeu initializesπu = 0, i.e., unordered.)

a) If nodeu hasπu = 0 andd(u) ≤ 5, thenu queries1 each nodev, from its unordered

neighbors, the current degreed(v). If nodeu has the smallest ID among all unordered

neighborsv with d(v) ≤ 5, nodeu sets

πu = max{πv | v ∈ NLDel(2)(u)}+ 1,

1If some unordered neighborv with d(v) ≤ 5 has smaller ID, we call such query round afailed round. Nodeu performs a

new round of queries only if it finds that the number of its unordered neighbors has been reduced (d(u) has reduced in step 2(b)).

So there are at most5 rounds of queries.
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and broadcastsπu to its neighborsNLDel(2)(u).

b) If nodeu receives a message from its neighborv saying thatπv = k for the first time,

it updates itsd(u) = d(u) − 1 and also updates the orderπv stored locally. Sod(u)

represents how many neighbors are not ordered so far.

If nodeu finds thatd(u) ≤ 5 andπu = 0, it goes to Step 2(a).

When nodeu finds thatd(u) = 0 andπu > 0, it can go to step 3.

3) Build structures based on local orderπ as follows: (Initialize all nodes unprocessed)

a) If a unprocessed nodeu has the highest local order in its unprocessed neighborsNu

in LDel(2)(V ), let k be the number of processed neighbors2 of u in LDel(2)(V ).

Nodeu divides its transmission range intok opensectors cut by the rays fromu to

these processed neighbors. Then divide each sector into a minimum number ofopen

cones of degree at mostα with α ≤ π/3. For each cone, lets1, s2, · · · , sm be the

ordered unprocessed neighbors ofu in NLDel(2)(u). For this cone, nodeu first adds

an edgeusi, wheresi is the nearest neighbor amongs1, s2, · · · , sm. Nodeu then

tells s1, s2, · · · , sm to add all the edgessjsj+1, 1 ≤ j < m. Nodeu marks itself

processed, and tells all nodes inNLDel(2)(u) that it is processed.

b) If a unprocessed nodev receives a message for adding edgevv′ from its neighboru,

it adds edgevv′.

When all nodes are processed, the final network topology is denoted byBPS2(V ).

C. Analysis of Localized Algorithm

We first show that the algorithm does process all nodes. First of all, the algorithm cannot stop

at the stage of ordering nodes locally. This can be shown by contradiction. Assume that there are

some nodes that are unordered. The graph formed by these unordered nodes is planar, and thus

it contains some nodes with at most5 unordered neighbors. Among these nodes, the node with

the smallest ID will perform step 2(a), and reduce the number of unordered nodes consequently.

Notice that the ordering computed by our method is not a global ordering. Some nodes may

have the same order. However, no two neighboring nodes inLDel(2)(V ) receive the same order.

Thus, after all nodes are ordered, the algorithm will process all nodes. Observe that the algorithm
2There are at most5 processed neighbors ofu in LDel(2)(V ) whenu is being processed, because of the way the ordering is

constructed and the fact that the graphLDel(2)(V ) is planar.
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does not process two neighboring nodes at the same time. Assume that there are two nodes, say

u andv are processed at the same time. Remember that we process a node only if it has the

highest ordering among its unprocessed neighbors. Thus, nodesu andv must receive the same

order, i.e.,πu = πv, which is impossible in our ordering method.

Additionally, remember that our algorithm checks ifd(u) ≤ 5 for computing an ordering

locally. Here number5 can be replaced by any integer that is not less than5. Using a larger

integer may make the algorithm run faster, but on the other hand, it worsens the theoretical

bound on the node degree.

We first show that the localized algorithm is communication efficient.

Theorem 3:Algorithm 3 uses at mostO(n) messages, where each message hasO(log n) bits.

PROOF. Notice that it was shown in [33] that we can collect the 2-hop neighbor information

for all nodes using a total ofO(n) messages. The communication cost of buildingLDel(2)(V )

is O(n) since every node only has to propose at most6 triangles and each proposal is replied to

by two nodes.

The second step (local ordering) takesO(n) messages, since every node only queries at most

5 rounds, and at theith round of query the node sends at most6 − i query messages. For

each query, only the queried node replies. After it was ordered, it broadcasts once to inform its

neighbors.

The third step (bounded degree) also takesO(n) messages, because every node only broad-

casts twice: (1) to tell its neighbors to add some edges, and (2) to claim that it is processed.

The total number of messages of telling neighbors to add some edges isO(n) since the total

number of added edges isO(n) from the planar property of the final topology. So the total

communication cost is bounded byO(n).

In addition, it is easy to show that the computation cost of each node is at mostO(d2 log d2),

whered2 is the number of its 2-hop neighbors in the original unit disk graph. This can be

improved toO(d1 log d1 + d2), whered1 is the number of its 1-hop neighbors in the original

unit disk graph. The improvement is based on the fact that we only need the triangles4wuv in

LDel(2)(V ) that has angle∠wuv ≥ π/3. All such triangles are definitely inLDel(1)(V ) from

the definition of local Delaunay. Thus, we can construct the Delaunay triangulationDel(N1(u))

of N1(u) in the first step of Algorithm 2. Then check the candidate triangles to see if they contain
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any node fromN2(u) inside its circumcircle. If it does not, then it belongs toDel(N2(u)) also.

Observe that, after each nodeu collects the 2-hop neighborsN2(u) (Step 1 of Algorithm 2),

our algorithms can be performed asynchronously. However, collectingN2(u) needs synchro-

nized communication since otherwise, a node cannot determine if it indeed already collected

N2(u).

BOUNDED DEGREE, PLANARITY AND SPANNING RATIO : Next, we show that the con-

structed final topology is still a planar spanner and has bounded node degree.

Theorem 4:The maximum node degree of the graphBPS2(V ) is at most19 + d2π
α
e.

PROOF. Notice that for a nodeu there are2 cases that an edgeuv is added to theBPS2(V ).

Let us discuss them one by one.

Case1: When we process nodeu, some edgesuv have already been added by some processed

nodesw before. There are two subcases for this case.

Subcase1.1: The edgeuv has been added by a processed nodev (w = v). For example, in

Figure 1, nodeu has edges fromv2, v3 andv5 before it is processed. For each predecessorv, it

only adds one edge to nodeu.

Subcase1.2: The edgeuv has been added by a processed nodew (w 6= v). Nodev is an

unprocessed node when processingw. For example, in Figure 1, nodes2 has edges froms1

ands3 added by processing nodeu before nodes2 is processed. Notice that bothv andu are

neighbors of this processed nodew. For each predecessorw, it at most adds two edges to node

u.

Notice that eachu can have at most5 predecessor neighbors (i.e., processed neighbors), and

each of the predecessors can add at most3 edges tou (either Subcase1.1 or Subcase1.2, or

both). Thus, the number of this kind of edges (edges added by its predecessors beforeu is

processed) is bounded by10 + 5 = 15.

Case2: When nodeu is processed, we can add one edgeuv for each cone. Since we have at

most5 sectors emanating fromu and each cone must have an angle of at mostα, it is easy to

show that we can have at most4 + d2π
α
e cones atu. So the number of this kind of edges is also

bounded by4 + d2π
α
e.

Notice that after nodeu is processed, no edges will be added to it. Consequently, the degree

of each nodeu is bounded by19+d2π
α
e, when the structure is generated by above algorithm.
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Notice that the algorithms in [2] and [26] always add the edges in the Delaunay triangulation

to construct a bounded degree planar spanner for a set of points. Thus, the planarity of the final

structure is straightforward. The algorithm we discussed in Section II may add some edges (such

as edgessisi+1 added in step 4(b) of Algorithm 1) that do not belong to theUDel(V ). To prove

the planarity of the structureBPS1(V ), in [26] we showed that no two added diagonal edges

intersect. The property that edges, which possibly intersectsisi+1 in the centralized algorithm,

are all Delaunay edges is crucial for the centralized algorithm. However, this property does not

hold anymore in the localized algorithm. We will show thatBPS2(V ) is a planar graph using a

different approach.

Theorem 5:BPS2(V ) is a planar graph.

PROOF. Notice that Algorithm 3 only adds some edges inLDel(2)(V ) or edgesisi+1 such that

usi andusi+1 are edges ofLDel(2)(V ) andsi, si+1 are consecutive neighbors ofu in LDel(2)(V )

and∠siusi+1 < π/3. We call such an edgesisi+1 thediagonaledge of the graphLDel(2)(V ).

Notice that3 these diagonal edges cannot intersect with any edge fromLDel(2)(V ). Thus, the

only possible intersections, if there is any, inBPS2(V ) are caused by two diagonal edges.

Without loss of generality, we assume that two diagonal edgesuy andvx intersect with each

other. Sinceuy is a diagonal edge,u andy are consecutive neighbors of some node, sayp, in

LDel(2)(V ). From our previous discussion, the only possible intersection to the diagonal edge

uy must be some diagonal edge incident at nodep. Thus,p is eitherx or v here. See Figure 2

for an illustration of such two intersected diagonal edgesuy andvx. Here we assume thatp is

v. Assume that∠uyv < ∠uxv. Notice that∠uyv = ∠uxv will not happen by assuming that

the nodes are in general position, i.e., no four vertices are co-circular. Theny is outside of the

circumcircledisk(u, v, x) of the triangle4uvx.

If the disk disk(u, v, x) does not contain a node fromN2(x) ∪ N2(v) inside, then edgexv

belongs to the graphLDel(2)(V ). This is a contradiction to the fact that edgesvu andvy are

consecutive neighboring edges in graphLDel(2)(V ). Thus, there must be some node, sayz,

from N2(x) ∪ N2(v) inside the diskdisk(u, v, x). We then discuss the possible locations ofz

case by case.

3This is due to the following reason. The graphLDel(2)(V ) is a planar graph. For each diagonal edgesisi+1, nodessi and

si+1 are consecutive neighbors of a nodeu. This means thatsi, si+1 andu belong to the same polygon face ofLDel(2)(V ).

Thus,sisi+1 cannot intersect any edge fromLDel(2)(V ).
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u v

x y

III
I

c

II

Fig. 2. Two diagonal edgesuy andvx intersect. The circum-diskdisk(u, v, x) of the triangle4uvx is decomposed of three

regions I, II, and III.

If there is a nodez that is inside the region II, thenz cannot be fromN2(v). Otherwise, we

cannot find an empty circle passing throughu andv that is free of nodes ofN2(u)∪N2(v) inside.

This contradicts the fact that edgeuv belongs to the graphLDel(2)(V ). Thus, nodez must be

from N2(x), but not fromN1(x) (otherwisez ∈ N2(v) again). Assume that there is a 2-hop path

xwz connectingx andz. We then show thatw 6∈ disk(u, v, x). If nodew is inside the region I or

III, then ‖uw‖ ≤ 1. Thus, any circle passing throughu andv will contain w or z inside. Since

w ∈ N1(u) andz ∈ N2(u), edgeuv cannot belong to graphLDel(2)(V ). It is a contradiction.

Similarly, if nodew is inside the region II, nodesx andw will cause a contradiction to the fact

uv ∈ LDel(2)(V ).

Thus nodew /∈ disk(u, v, x). Then similar to the proof of Lemma 2, we can show that to have

a nodez ∈ N2(x) in region II is impossible. Similarly, region I cannot contain any node from

N2(u)∪N2(x). Thus, only region III can possibly contain some nodez inside. Then‖vz‖ ≤ 1.

This is proved as follows: ifz is inside the triangle4vux, it is obvious since the three sides of

this triangle have length at most 1; ifz is inside the cap defined by arcxv, ‖vz‖ ≤ ‖vx‖ since

∠vux < π/3.

Let c be the circumcenter of diskdisk(u, v, x). Let D be a disk passing throughv with center

on the segmentvc. Clearly,D is inside the diskdisk(u, v, x), sinceD is disk(u, v, x) whenc

is the center ofD. Among all such disks, we find the largest diskD0 that does not have any

nodes inside, i.e., the disk that passes through some nodez0 and nodev. Then edgevz0 belongs

to graphLDel(2)(V ). We then show thatz0 must belong to the sector]uvy. If z0 is inside the

cap cut by segmentvy, then any disk passing throughv andy will contain u or z0 inside since

∠yuv + ∠yz0v > π. See Figure 3(a) for illustrations. It contradicts to the existence of edgevy
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in graphLDel(2)(V ).

vu
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yx

III
I

c
II 0

D

D

u v

x y

0z
III

I

c
II 0

D

D

(a) (b)

Fig. 3. (a)z0 is inside the cap cut by segmentvy; (b) z0 belongs to the sector]uvy.

As shown in Figure 3(b), ifz0 belongs to the sector]uvy, andvz0 ∈ LDel(2)(V ), then nodes

y andu cannot be consecutive neighbors ofv in LDel(2)(V ). It is a contradiction.

Then we prove that the graphBPS2(V ) has a bounded spanning ratio.

Theorem 6:GraphBPS2(V ) is at-spanner, wheret = max{π
2
, π sin α

2
+ 1} · Cdel.

PROOF. To prove the spanning property, we only need to study the bound on the spanning ratio

for each individual edge instead of the bound on the spanning ratio for each shortest path. This

can be simply proved. A similar proof is given in [12] as the proof of Lemma 1. Notice that4 for

any edgeuv ∈ UDG(V ) we can find a path inUDel(V ) with length at mostCdel‖uv‖, where

Cdel = 4
√

3
9

π, and every edge of the path is shorter than‖uv‖. So we only need to show that for

any edgeuv ∈ UDel(V ), there exists a path inBPS2(V ) betweenu andv whose length is at

most a constant̀ times‖uv‖. ThenBPS2(V ) is a` · Cdel-spanner.

Now we prove the above claim. Consider an edgeuv in UDel(V ). If uv ∈ BPS2(V ), the

claim holds. So assume thatuv /∈ BPS2(V ).

Assume w.l.o.g. thatπu > πv. It follows from the algorithm that, when we process nodeu,

there must exist a nodex in the same cone withv such that‖uv‖ > ‖ux‖, ux ∈ BPS2(V ), and

∠xuv < α ≤ π/3. There is two cases:ux is in UDel(V ) or not.

Case 1:ux ∈ UDel(V ). We will show that no edges other than Delaunay edges are added to

u betweenux anduv. Then we can use the same proof as in Theorem 7 (in the Appendix) to
4Please refer to the proofs of Lemma 4 and Theorem 5 in [36]. They proved thatUDel(V ) is at-spanner ofUDG(V ).
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prove that there is a path inBPS2(V ) connectingu andv with length at mostmax{π
2
, π sin α

2
+

1} · ‖uv‖.
Let w1, w2, · · · , wm be the sequence of Delaunay neighbors ofu in Del(V ) from v to x.

See Figure 4(a) for illustrations. First, all the neighborswi should be inside the circumcircle

disk(u, v, x) of the triangle4uvx, since otherwise any circle passing throughu andwi will

contain eitherx or v inside which is a contradiction with the fact thatuwi is Delaunay triangle.

Then we prove that all the edgeswiwi+1 are shorter than one unit.

Remember that if‖uv‖ ≤ 1, ‖ux‖ ≤ 1 and∠xuv ≤ π/3, then we have‖xv‖ ≤ 1. If

wi and wi+1 are both inside the triangle4vux or the cap cut by segmentvx, ‖wiwi+1‖ <

1. Therefore, the only case that edgewiwi+1 is longer than one unit is shown in Figure 4(b).

Assume that‖wiwi+1‖ > 1. Since‖xwi+1‖ < 1 and‖xwi‖ < 1, we have∠wiwi+1x < π/2.

Thus, ∠xuv + ∠wiwi+1x < π/3 + π/2 < π. It implies nodex is inside the circumcircle

disk(u,wi, wi+1). This is a contradiction and finishes the proof of no long edges among all the

edgeswiwi+1.

Thus, we know all edgeswiwi+1 ∈ UDel(V ), and in addition, they are also inLDel(2)(V )

(sinceUDel(V ) ⊆ LDel(2)(V )). Therefore we can not have an additional edgeuy added to

LDel(2)(V ) in sector]vux, since such an edge breaks the planar property ofLDel(2)(V ). See

Figure 4(a) for illustrations.

m

u

y

v

x

w

w

w

w

1

i

i+1 iu

v

x

w
wi+1

(a) (b)

Fig. 4. (a) All the neighborswi should be in the circumcircledisk(u, v, x), and no edges other than Delaunay edges are added

to u betweenux anduv; (b) No edgewiwi+1 can have length longer than one.

Case 2:ux /∈ UDel(V ). Assumeux is added toLDel(2)(V ) in the sector]w1uw2, where

w1 andw2 are consecutive Delaunay neighbors of nodeu. There are three cases for Delaunay
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edgesw1u andw2u. We prove that all of them do not exist by contradiction.

Subcase 2.1: both edgesw1u andw2u are no more than one unit, shown in Figure 5(a). From

the property of Delaunay,x must be outside of the circumcircledisk(u,w1, w2) of the triangle

4uw1w2. Thus,∠uw1x+∠uw2x > π. Any circle passing thoughu andx will contain eitherw1

or w2 inside. Notice thatw1, w2 ∈ N1(u). It contradicts the existence of edgeux in LDel(2)(V ).
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(a) Subcase 2.1 (b) Subcase 2.2 (c) Subcase 2.3

Fig. 5. All subcases in Case 2 do not exist.

Subcase 2.2: both edgesw1u andw2u are longer than one unit, shown in Figure 5(b). Since

‖uw1‖ > 1 ≥ ‖ux‖, ∠uw1x < π/2. Similarly, ∠uw2x < π/2. Then we have∠uw1x +

∠uw2x < π, which contradicts the assumption thatx is outside of the circumcircledisk(u,w1, w2).

Subcase 2.3:ux is added toLDel(2)(V ) when one ofw1u andw2u is shorter than one unit

and the other is longer than one unit. Assume that‖w1u‖ > 1. See Figure 5(c) as illustrations.

Since edgeux ∈ LDel(2)(V ), we know‖xw1‖ > 1. Otherwise, ifw1 andw2 are inN2(u),

then any circle passing thoughu andx will contain eitherw1 or w2 inside. Plus‖uw1‖ > 1

and‖ux‖ ≤ 1, we have∠uw1x < π/3. Fromx is outside the circumcircledisk(u,w1, w2),

∠uw1x + ∠uw2x > π. Thus,∠uw2x > 2π/3, which implies‖ux‖ > ‖uw2‖. Therefore, in

Algorithm 3, no edgeuv from UDel(V ) which is below edgeux will selectux as the shortest

neighbor in the same cone, because it will selectuw2.

Consider an edgeuv ∈ UDel(V ) which is above edgeux which selectsux as the shortest

neighbor. Since‖uv‖ ≤ 1, ‖ux‖ ≤ 1 and∠vux < π/3, we have‖vx‖ ≤ 1. Notice that

w1 /∈ 4uvx because of‖uw1‖ > 1. Again from the property of Delaunay,v and x must

be outside of the circumcircledisk(u,w1, w2). It implies that∠vw1x + ∠vux > π. Thus,
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∠vw1x > π − ∠vux > 2π/3. Then1 ≥ ‖vx‖ > ‖xw1‖ > 1 causes a contradiction. Therefore

Subcase 2.3 shown in Figure 5(c) does not exist too.

Consequently, it is impossible that any nodeu will add an edgeux /∈ UDel as the shortest

link to BPS2(V ) in a cone that has some edgesuv from UDel. Together with the proof of Case

1, it finishes our proof of the spanner property ofBPS2(V ).

D. Dynamic Update

After the construction of the topology, dynamic maintenance is also an important issue, since

an ad hoc network could be highly dynamic. Three major events may cause the topology ob-

soleted: due to 1) node moving, 2) node joining or leaving, and 3) node failure. Therefore, a

dynamic update method for our proposed topology is needed. Usually, there are two kinds of

update methods: on-demand update or periodical update. Most of the existing topology control

algorithms are invoked periodically, while some algorithms perform the updating only when it

is required (i.e., on-demand). Our algorithm can adapt and combine both of these two update

methods. If no major topology change (for example, some small node movements do not affect

the topology), no update will be performed until some pre-set timer expires. In other words, we

perform our algorithm periodically with a pre-set time. The time could be set quite long depend-

ing on the types of the applications. But for some major topology change (such as a node’s death

or a tremendous movement of nodes), an on-demand update will be performed. Notice that since

our algorithm is a localized algorithm, the update process can be performed only in a local area

(within 2-hop neighborhood of where the topology change occurs) where the change occurs. For

example, When a nodeu moves around, if a triangle4xyz in the local Delaunay disappears or

a new triangle4xyz appears in the new local Delaunay, thenu is a (2-hop) neighbor of either

x or y or z (if LDel2 is used). In other words, the movement of a nodeu only affects its local

neighborhood of the local Delaunay triangulation, thus also the structure defined in this paper.

IV. EXPERIMENTS

In this section we measure the performance of the new bounded degree and planar spanner by

conducting some experiments. In our experiments, we randomly generate a setV of n wireless
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nodes and itsUDG(V ), and test the connectivity ofUDG(V ). If it is connected, we con-

struct different localized topologies fromV , including our proposed topologies (BPS1(V ) and

BPS2(V )), some well-known planar topologies (Gabriel graphGG(V ), relative neighborhood

graphRNG(V ) and localized Delaunay triangulationsLDel(V )), and some bounded degree

spanners (Yao graphY G(V ) andYao and SinkY G∗(V )). Then we measure the sparseness, the

power efficiency and the communication cost of these topologies. In the experimental results

presented here, we generate50 random wireless nodes in a10× 10 square; the number of cones

is set to8 when we constructY G(V ) andY G∗(V ); the angle parameterα = π/3 when we

constructBPS1(V ) andBPS2(V ); the transmission range is set as8. We generate100 vertex

setsV (each with50 vertices) and then generate the graphs for each of these100 vertex sets.

The average and the maximum are computed over all of these100 vertex sets. Figure 6 gives

all seven different topologies for the unit disk graph illustrated by the first figure of Figure 6. It

shows that all of these topologies exceptY G(V ) andY G∗(V ) are planar.

A. Node Degree

The node degree of the wireless networks should not be too large. Otherwise a node with

a large degree has to communicate with many nodes directly. This increases the interference

and the overhead at this node. The node degree should neither be too small: a small node

degree usually implies that the network has a lower fault tolerance and it also tends to increase

the overall network power consumption as longer paths may have to be taken. Thus, the node

degree is an important performance metric for the wireless network topology. The node degrees

of each topology are shown in Table I. Heredavg/dmax is the average/maximum node degree. It

shows thatBPS1(V ) andBPS2(V ) have a less number of edges (average node degrees) than

LDel(V ), Y G(V ) andY G∗(V ). In other words, these graphs are sparser, which is also verified

by Figure 6. Recall that theoretically, onlyY G∗(V ), BPS1(V ) andBPS2(V ) have bounded

node degree (both for in-degree and out-degree). In [12], [13], Liet al. gave an example to

show thatRNG(V ), GG(V ), Y G(V ) andLDel(V ) can have large node degree (in-degree for

Y G(V )). Notice that in our experiments since the wireless nodes are randomly distributed in

2-d space, the maximum node degree of these graphs is not as big as the example. It is proved

that the node degree ofY G∗(V ) is bounded from above by(k +1)2−1 (the in-degree is at most

k(k + 1), the out-degree is at mostk), wherek = 8 is the number of cones. In this paper, we
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UDG(V ) RNG(V ) GG(V )

LDel(2)(V ) Y G(V ) Y G∗(V )

BPS1(V ) BPS2(V )

Fig. 6. Different topologies from the sameUDG(V ).

prove thatBPS1(V ) andBPS2(V ) have a bounded node degree of at most19+d2π
α
e = 25 when

α = π/3. All of these theoretical bounds on the node degree can be verified by the maximum

node degrees in Table I. BothBPS1(V ) andBPS2(V ) have smaller maximum node degrees

thanY G(V ).

B. Spanner Properties

Besides bounded node degree, the most important design metric of wireless networks is per-

haps the power efficiency, as it directly affects both the node and the network lifetime. So

while our new topologies increase the sparseness, how does it affect the power efficiency of the
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TABLE I

NODE DEGREES& STRETCH FACTORS OF DIFFERENT TOPOLOGIES.

davg dmax tavg tmax ρavg ρmax

UDG 16.83 35 1.000 1.000 1.000 1.000

RNG 2.27 5 1.320 5.049 1.059 2.942

GG 3.36 8 1.120 2.131 1.000 1.000

LDel 5.25 11 1.048 1.405 1.000 1.000

Y G 8.11 19 1.040 1.681 1.002 1.459

Y G∗ 4.81 11 1.070 1.990 1.003 1.459

BPS1 4.44 9 1.075 1.965 1.004 1.755

BPS2 4.45 9 1.074 1.965 1.004 1.823

constructed network? We then define thepower stretch factorfor measuring the power effi-

ciency. A subgraphG′ is a power spanner of a GraphG if there is a positive real constantρ

such that for any two nodesu andv, the minimum power consumed by all paths betweenu and

v in G′ is at mostρ times of the minimum power consumed by all paths between them inG.

The constantρ is called the power stretch factor. Here we assume that the total transmission

power consumed by pathv0, v1, ..., vk is
∑k

i=1 ||vi−1vi||β, where the power attenuation constant

β is a real constant depended on the wireless environment. In our simulationsβ = 2. Table I

also summarizes our experimental results of the length and power stretch factors of all of these

topologies. Here,tavg/tmax is the average/maximum length stretch factor;ρavg/ρmax is the aver-

age/maximum power stretch factor. It is not surprising that the average/maximum power stretch

factors ofBPS1(V ) andBPS2(V ) are small and at the same level of those of theY G(V ) and

Y G∗(V ) while they are planar and much sparser. Notice that Yao graph does perform little bit

better in our simulations in term of spanner properties, but it is not a planar structure and also

cannotbound the nodal degree.

C. Communication Cost

In Section III we proved that the localized algorithm constructingBSP2(V ) uses at mostO(n)

messages. We found that when the number of wireless nodes increases the average messages

used by each node for constructingBPS2(V ) is still in the same level. In this experiment,
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we generate from50 to 300 random wireless nodes in a10 × 10 square and run our localized

algorithm to buildBSP2(V ). The average and the maximum are computed over50 vertex sets.

All other parameters and settings are same with previous experiments. Table II summarizes our

experimental results of the node degree, length and power stretch factors, and communication

costs ofBPS2(V ). Here,davg(UDG)/dmax(UDG) is the average/maximum node degree for

the original unit disk graph;tot msgavg/tot msgmax is the average/maximum total messages

cost for constructingBPS2(V ); nod msgavg/nod msgmax is the average/maximum messages

cost in each node during the construction. Notice that here we do not count the messages used

in building LDel(2)(V ). In other words, we only consider the messages used in the second and

third steps of Algorithm 3. Remember that by plugging in the work from [33], we can construct

LDel(2)(V ) usingO(n) messages. However, the hidden constant is pretty large. Therefore, in

this experiment, we used a naive method to collect 2-hop neighbor information (broadcasting

one-hop neighbor information to its all neighbors) and directly buildLDel(2)(V ) based on the

information. The first two rows of Table II show the network becomes more and more dense

while the number of wireless nodes increases. Experimental results of communication costs on

each node show that the localized method does not cost more messages on each node even the

graph becomes more dense. Simulations in Table II also show that the performances of our new

topologyBPS2(V ) are stable when number of nodes changes.

V. CONCLUSION

In this paper, we proposed a localized algorithm to construct planar spanners with bounded

node degree for wireless ad hoc networks based on a centralized method we developed. The

localized algorithm can be implemented usingO(n) messages under the broadcast communi-

cation model for wireless networks. The basic idea of this new method is to use a localized

Delaunay graph to construct a planar spanner graph, and then to apply some ordered Yao graph

to bound the node degree. It is carefully designed to not lose all the good properties when com-

bining them. To the best of our knowledge, this is the first localized algorithm for constructing a

bounded degree and planar spanner. We also conducted experiments to show that this topology is

efficient in practice compared with other well-known topologies for wireless ad hoc networks. It

is still an open problem how to bound the total edge length of our localized structureBPS2(V ).
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TABLE II

PERFORMANCES AND COMMUNICATION COSTS OFBPS2(V ).

num of nodes 50 100 150 200 250 300

davg(UDG) 16.81 34.98 51.79 68.25 85.89 103.87

dmax(UDG) 35 63 93 114 141 177

davg 4.43 4.49 4.53 4.61 4.58 4.63

dmax 9 9 11 11 10 9

tavg 1.079 1.091 1.090 1.092 1.093 1.089

tmax 1.958 1.964 1.949 1.965 1.968 1.963

ρavg 1.005 1.007 1.006 1.005 1.005 1.006

ρmax 1.865 1.891 1.850 1.872 1.861 1.873

tot msgavg 443 912 1379 1855 2340 2798

tot msgmax 448 921 1394 1870 2326 2812

nod msgavg 8.86 9.13 9.19 9.27 9.30 9.32

nod msgmax 13 14 16 15 17 15
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VII. A PPENDIX

A. Proof of Spanner Property for Centralized Method

Here we review the proof of spanner property for the centralized method, since the proof of

localized method uses some techniques presented here.

Theorem 7:GraphBPS1(V ) is at-spanner, wheret = max{π
2
, π sin α

2
+ 1} · Cdel.

PROOF. For completeness, we review the proof here. Keil and Gutwin [25] showed that the

Delaunay triangulation is at-spanner for a constantCdel = 4
√

3
9

π using induction on the increas-

ing order of the lengths of all pairs of nodes. We can show that the path connecting nodesu

andv constructed in [25] also satisfies that the length of each edge of that path is at most‖uv‖.
Consequently, for any edgeuv ∈ UDG(V ) we can find a path inUDel(V ) with length at most

a t = 4
√

3
9

π times‖uv‖, and all edges of the path is shorter than‖uv‖. So we only need to show

that for any edgeuv ∈ UDel(V ), there exists a path inBPS1(V ) betweenu andv whose length

is at most a constant` times‖uv‖. ThenBPS1(V ) is a` · Cdel-spanner.

Now we prove the above claim. Consider an edgeuv in UDel(V ). If uv ∈ BPS1(V ), the

claim holds. So assume thatuv /∈ BPS1(V ).
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Assume w.l.o.g. thatπu < πv. It follows from the algorithm that, when we process nodeu,

there must exist a nodev′ in the same cone withv such that‖uv‖ > ‖uv′‖, uv′ ∈ BPS1(V ),

and∠v′uv < α ≤ π/3. Let v′ = s1, s2, · · · , sl = v be this sequence of nodes in the ordered

unprocessed neighborhood ofu in UDel(V ) from v′ to v. Let v′ = w1, w2, · · · , wk = v be

the sequence of neighbors ofu in Del(V ) from v′ to v. Obviously, the set{s1, s2, · · · , sl} is a

subset of{w1, w2, · · · , wk}.
Similar to [2], consider the polygonP , , formed by edgeuw1, uwk and pathw1w2 · · ·wk.

We will show that the pathw1w2 · · ·wk has length that is at most a small constant factor of the

length‖uv‖. Let us consider the shortest path fromw1 to wk that istotally insidethe polygonP .

Let S(w1, wk) denote such a path. This path consists of diagonals ofP and is contained inside

4uw1wk. For example, in Figure 7,S(w1, wk) = w1w7w9.

Assume that‖uv′‖ = x. Let w be the point on segmentuv such that‖uw‖ = ‖uv′‖. Assume

that ‖uv‖ = y, then‖wv‖ = y − x. Notice that nodev′ is the closest Delaunay neighbor in

such cone. Obviously, all Delaunay neighborswi in this cone are outside of the sector defined

by segmentsuw anduv′. We will show that such pathS(w1, wk) is contained inside the triangle

4ww1wk. First, if no Delaunay neighbors are inside4ww1wk, thenS(w1, wk) = w1wk. Thus,

the claim trivially holds. If there are some Delaunay neighbors inside4ww1wk, thenw1 will

connect to the onewi forming the smallest angle∠uw1wi. Similarly, nodewk will connect to

the onewj forming the smallest angle∠uwkwj. Obviouslywi andwj are inside4ww1wk, thus,

the shortest path connecting them is also inside4ww1wk. Since pathS(w1, wk) is the shortest

path inside the polygonP to connectw1 andwk, by convexity, the length ofS(w1, wk) is at most

‖v′w‖+ ‖wv‖ = 2x sin θ
2

+ y − x. Hereθ = ∠v′uv < α.

An edgewiwj of S(w1, wk) has endpointswi andwj in the neighborhood ofu. LetD(wi, wj)

be the sequence of edges betweenwi andwj in the ordered neighborhood ofu, which are added

by processingu. For example, in Figure 7,D(w1, w7) = w1w2w3w4w5w6w7. We can bound

the length ofD(wi, wj) by π/2‖wiwj‖ by the argument in [2], [29]. In [29], it is shown that

the length ofD(wi, wj) is at mostπ/2 times‖wiwj‖, provided that (1) the straight-line segment

betweenwi andwj lies outside the Voronoi region induced byu, and (2) that the path lies on

one side of the line throughwi andwj. In other words, we needD(wi, wj) to beone-sided
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Fig. 7. The shortest path in polygonP .

Direct Delaunay path5 [23]. In [2], they showed6 that both of these two conditions hold when

∠wiuwj < π/2. This is trivially satisfied since∠wiuwj < α ≤ π/2.

Thus, we have a pathuw1w2 · · ·wk to connectu andv with length at most

x + (2x sin
θ

2
+ y − x) · π/2

≤y · (π
2

+
x

y
· (π sin

α

2
− π

2
+ 1))

≤y ·max{π

2
, π sin

α

2
+ 1}

Since any such nodewi is not inside the polygonQ formed by the Unit Delaunay neighbors

of u (see [26] for more detail), the pathus1s2 · · · sk (which is inBPS1(V )) is not longer than

the length of pathuw1w2 · · ·wk.

Consequently,BPS1(V ) is a spanner with length stretch factor at mostmax{π
2
, π sin α

2
+1} ·

Cdel.

5For any pair of nodesu andv, let u = w1, w2, · · · , wk = v be the sequence of nodes whose Voronoi region intersect

segmentuv and the Voronoi regions atwi andwj share a common boundary segment. The the Direct Delaunay pathDT (u, v)

is w1w2 · · ·wk.
6Firstly, the Voronoi region centered atu will not intersect the segmentwiwj . This can be proved by showing that‖up‖ >

max{‖wip‖, ‖wjp‖} for any pointp on segmentwiwj , which is due to∠uwip + ∠uwjp > ∠wiup + ∠wjup = ∠wiuwj .

Notice that∠wiuwj < α ≤ π/2. Secondly, the pathD(wi, wj) is on one-side ofwiwj because it is part of the shortest path

connectingw1 andwk. Thirdly, the pathD(wi, wj) is Direct Delaunay pathDT (wi, wj). This can be proved by showing that

V or(wq) intersects the segmentwiwj for any i ≤ q ≤ j. This is obvious since the circumcenter (belonging toV or(wq)) of

any triangleuwq−1wq is on the same side ofwiwj asu.
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B. Proof of Lemma 2

Lemma 2:An edgeuv is in LDel (2)(V ) iff ‖uv‖ ≤ 1 and there is a disk passing throughu

andv which does not contain a node fromN2(u) ∪N2(v) inside.

PROOF. It is trivial that if an edgeuv is in LDel (2)(V ) then that kind of disk exists, since either

uv is a Gabriel edge oruv is an edge from a2-localized Delaunay triangle. Then we prove the

other direction.

Assume that there is a diskD1 passing throughu andv, and there is no node fromN2(u) ∪
N2(v) inside this circleD1. If uv is the diameter of circleD1, then it is a Gabriel edge which

must be inLDel (2)(V ). Otherwise, letD3 be the disk whose diameter isuv (with centerc3).

Disk D3 must contain some node, sayw, inside as shown in Figure 8. DiskD1 cannot containw

inside. AssumeD1 has centerc1. Let D be a disk centered at some pointc on the segmentc1c3

and passing throughu andv. Then we can move the centerc of diskD alongc1c3 from c1 to c3

and set the radius ofD be‖cu‖, until the disk touches thefirst nodew from N2(u) ∪ N2(v) or

becomesD3.

D3

D2

w

u

v

c
c

1c
2

D

3

1

Fig. 8. DiskD2 touches a nodew from N2(u) ∪N2(v).

If the disk becomesD3, thenuv is a Gabriel edge and inLDel (2)(V ). Otherwise, the diskD

touches some nodew, which is shown in Figure 8 as diskD2. ThenD becomes the circumcircle

disk(u, v, w) of u, v andw. SinceD2 does not contain any node fromN2(u)∪N2(v) inside, we

only need show it is empty fromN2(w) to prove that4uvw is a2-localized Delaunay triangle

and thusuv is in LDel (2)(V ). We prove this by contradiction.

Assume that there is a nodey from N2(w) insidedisk(u, v, w). Clearly, nodey cannot be

from N2(u) ∪ N2(v), sinceD2 does not contain any node fromN2(u) ∪ N2(v) inside. Node

y must be two hops away fromw, otherwisey ∈ N2(u). In addition, nodey cannot be inside

the cap defined by arcuwv since‖uw‖ ≤ 1 and‖uv‖ ≤ 1. Assume that a nodex is one hop
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neighbor of bothy andw. Notice thatx cannot be a one hop neighbor ofu or v, otherwise,y

will become the two-hop neighbor ofu or v, which is a contradiction to the property of diskD.

Then we know that edgesuw, uv, vw, xy andxw are shorter than one unit, while edgesuy, vy,

wy, xu andxv are longer than one unit. There are two cases about the location of nodex: on the

different side ofuv asy and on the same side ofuv asy, as shown in Figure 9. Clearly, nodex

is outside of the diskD, otherwise,D will contain a 2-hop neighborx of u inside (through path

uwx).

III

w

y
u

v

I

II

IV

x

w

v

u

c

y

I
II

III

(a) Different side (b) Same side

Fig. 9. Two cases in the proof:x is on the same side or different side ofuv asy.

For the first case, we divide the half-space bounded by lineuv, which containsw and excludes

the capuwv, into three regions as shown in Figure 9(a).

If x is inside the region I, see Figure 10(a) for an illustration. Since‖xw‖ ≤ 1, ‖uw‖ ≤ 1,

and‖xu‖ > 1, we have∠xwu > π/3. Thus,∠xuw < 2π/3. Since‖xy‖ ≤ 1, ‖xu‖ > 1,

and‖uy‖ > 1, we have∠yux < π/3. Thus,∠wuy = 2π − ∠xuw − ∠yux > π, which is

impossible.

If x is inside the region II, see Figure 10(b) for an illustration. Since‖xu‖ > 1, ‖yu‖ > 1,

and‖xy‖ ≤ 1, we have∠xuy < π/3. Similarly, we have∠uxv < π/3, ∠xvy < π/3, and

∠xvy < π/3. Thus,2π = ∠xuy + ∠uxv + ∠xvy + ∠xvy < 4π/3, which is a contradiction.

When nodex is inside region III, the proof is the same as it is in region I.

For the second case, we further divide it into four subcases when nodex is inside region I, II,

III, or V. Obviously,∠uyv + ∠uwv > π and∠uyv < π/3. Thus,∠uwv > 2π/3, which implies

∠uvw < π/3.
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Fig. 10. Nodex is inside region I or region II.

If nodex is inside the region I, see Figure 11(a) for an illustration. Since∠uwv > 2π/3, we

have∠wuv < π − ∠uwv < π/3. Notice that∠wux + ∠wuv > π, so∠wux > 2π/3. This

implies that1 ≥ ‖wx‖ > ‖ux‖ > 1. It is a contradiction.

If nodex is inside the region II, see Figure 11(b) for an illustration. Herec is the circumcenter

of the diskD. Notice that when nodex is on the diagonalwc and just outside the circle,∠wux

has the minimum value slightly larger thanπ/2. Thus,∠wux > π/2. This implies that1 ≥
‖wx‖ > ‖ux‖ > 1. It is a contradiction.

When nodex is inside the region III, or V, the proofs are similar to the cases II, or I respec-

tively.
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Fig. 11. Nodex is inside region I or region II.
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Then we know that the circumcircledisk(u, v, w) of the triangle4uvw does not contain any

node fromN2(u) ∪ N2(v) ∪ N2(w) inside. Thusuv is in LDel (2)(V ). This finishes the proof.
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