
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 45, NO. 2, APRIL 2015 215

Conflict Detection Scheme Based on Formal Rule
Model for Smart Building Systems

Yan Sun, Xukai Wang, Hong Luo, and Xiangyang Li

Abstract—Smart building systems can provide flexible and con-
figurational sensing and controlling operations according to users’
requirements. As the number and the complexity of service rules
customized by users have significantly increased, there is an in-
creasing danger of conflict during the interaction process between
users and the system. To address this issue, we propose a new rule
conflict detection scheme tailored for the smart building system.
First, we present a formal rule model UTEA based on User, Trig-
gers, Environment entities, and Actuators. This model can handle
not only controlled devices with discrete status but also real-valued
environmental data such as temperature and humidity. In addi-
tion, this model takes multiple users with different authorities into
account. Second, we define 11 rule relations and further classify
conflicts into five categories. Third, we implement a rule storage
system for detecting conflicts and design a conflict detection al-
gorithm, which can detect the conflict between two rules as well
as cycle conflict/multicross contradiction among multiple rules.
We evaluated our scheme in a real smart building system with
more than 30 000 service rules. The experiment results show that
our scheme improves the performance in terms of error/missed-
detection rates and running time.

Index Terms—Conflict detection, rule model, service, smart
building system.

I. INTRODUCTION

SMART buildings, utilizing networks of electronic devices,
embedded sensors, and actuators, provide responsive, ef-

fective, and supportive environments to fit occupants’ lifestyles
and to allow occupants to control lighting, Heating, Ventilation
and Air Conditioning and humidity control, and other subsys-
tems. Traditional building automation systems progress slowly
due to high cost. Meanwhile, wireless sensor-actuator networks
(WSANs) comprise groups of low-cost and self-organized wire-
less sensors and actuators that cooperate in monitoring and con-
trolling the physical environment [1], [2] and, thus, can enhance
smart building systems [3], [4]. As a proof of the feasibility of
such a system, we have constructed a smart building system on
our campus by deploying WSANs in each building.

Manuscript received February 15, 2014; revised August 23, 2014; accepted
October 17, 2014. Date of publication November 20, 2014; date of current
version March 12, 2015. This work was supported in part by the National
Natural Science Foundation of China under Grant 61272520, Grant 61370196,
and Grant 61272517; NSF ECCS-1247944 and NSF CMMI 1436786; and the
Research Fund for the Doctoral Program of Higher Education under Grant
20110005110007. This paper was recommended by Associate Editor W. Shen.

Y. Sun, X. Wang, and H. Luo are with the Beijing Key Lab of Intelli-
gent Telecommunication Software and Multimedia, Beijing University of Posts
and Telecommunication, Beijing 100876, China (e-mail: sunyan@bupt.edu.cn;
wangxk@bupt.edu.cn; luoh@bupt.edu.cn).

X. Li is with the Department of Computer Science, Illinois Institute of Tech-
nology, Chicago, IL 60616 USA (e-mail: xli@cs.iit.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/THMS.2014.2364613

Fig. 1. Overview of the WSAN-based smart building system. Sensors in
WSAN collect temperature, light, humidity, smoke, audio, and other environ-
mental data. The actuators include switches, air conditioning controllers, curtain
controllers, lighting controllers, and others.

As shown in Fig. 1, according to their requirements, users
access a central server to customize services via smart devices,
such as mobile phones, tablets, and PCs. For instance, a user
can customize the room service: “Open the air-conditioner if
room temperature is higher than 30 ◦C.” The server converts the
service into rules that can be verified and implemented. Sensors
and actuators in WSAN execute the rules and provide the de-
mand response. They also send the corresponding data to the
sink node via multihop communication. Sink nodes, which per-
form multiprotocol conversion, further report this information
to the server. Traditional work on smart building systems mainly
focuses on issues of automatic control and energy efficiency, but
omits the human–machine interaction problem. In [5] and [6],
the authors address human activity recognition in the home en-
vironment, which can inform the smart building systems from
the perspective of human–machine systems.

In this paper, we focus on another important human–machine
interaction problem for smart building systems, which concerns
conflict detection during the interaction process between mul-
tiple users and the system. The increase in services and their
variety has brought up several challenges including conflicting
services customized by the users. For example, suppose there
are two users A and B in a room. The following cases could
happen.

Case 1: User A subscribes to service 1 “if PM2.51 value
is greater than 75 μg/m3 , then close window.” In order to un-
derstand this service, we analyze the service composition to
construct a rule model. In this service, the PM2.5 sensor and
the actuator responsible for closing the window are directly

1PM2.5 (the full name is fine particulate matter) is microscopic solid or liquid
matter suspended in the Earth’s atmosphere with the diameter of 2.5 μm or less.
As an important air quality index, the PM2.5 concentration can be measured by
PM2.5 sensors.

2168-2291 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

216 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 45, NO. 2, APRIL 2015

involved. The trigger condition is “if PM2.5 value is greater
than 75 μg/m3 ,” and the execution behavior is “close window.”
User B subscribes to service 2 “during 7:00 A.M.–7:30 A.M. ev-
ery day, open window.” According to service 2, at 7:00 A.M.
every day, the window will open, while at 7:30 A.M. every day,
the window will close. If the PM2.5 value meets the trigger
condition of service 1 during 7:00 A.M.–7:30 A.M., then the ac-
tion of closing the window will be executed. In this situation, a
conflict between the two services happens. However, if A and B
have different permissions, for example, A has the administrator
permission and B has the normal user permission, no conflict
exists between the two services.

Case 2: User A subscribes to service 1 “if door is closed, then
open air-conditioner,” while user B subscribes to service 2 “if
air-conditioner is open, then close door.” The trigger condition
of service 2 is dependent on the execution of service 1, and the
trigger condition of service 2 is also dependent on the execution
of service 1. As a result, the behaviors of services 1 and 2 will
be executed repeatedly.

If the service information, such as the trigger condition, ex-
ecutive action, and environmental attributes, is extracted for
constructing a rule model with user’s authorities, the conflicts
can be detected. However, most available methods for conflict
detection do not consider multiple users with different authori-
ties in smart building systems. Moreover, the existing detection
methods mainly focus on devices with binary states (ON/OFF)
without considering the values for most kinds of environmental
data.

Taking the above problems into account, this paper proposes
a rule conflict detection scheme based on a formal rule model for
smart building systems. First, we map sensors and controllers,
which directly interact with environment, into physical environ-
ment entities with specific attributes, and then, we formalize
these environment entities to describe the changes of environ-
ment status. We define a formal rule model, UTEA, according to
User, Triggers, Environment entities, and Actuators that are in-
volved in the process of rule execution. Based on the disjunctive
normal form (DNF) transformation, we decompose a complex
rule into multiple basic rules, and we further utilize this for-
mal rule model to abstract and analyze the relation among basic
rules. In particular, we achieve a fine-grained division of 11 rule
relations including: similar trigger relation, similar action re-
lation, similar prestate relation, contrary poststate relation,
explicit dependence relation, implicit dependence relation, neg-
ative relation, trigger event relation, peer authority relation,
leapfrog authority relation, and compatible authority relation.
Based on the rule relations, we classify the rule conflicts into
shadow conflict, execution conflict, environmental mutual con-
flict, direct dependence conflict, and indirect dependence con-
flict. Finally, we design a rule conflict detection algorithm based
on the conflict classification.

The remainder of this paper is organized as follows. Section
II presents related work. Section III describes the conceptual
architecture of smart building systems. Section IV proposes a
rule model and classifies rule conflicts. Section V analyzes the
algorithm and the storage technology of rules. Experiments and

simulation results are in Section VI. The paper concludes with
Section VII.

II. RELATED WORK

To provide smart service, the rule system is an indispensable
component in smart buildings. Velik et al. [7] addressed both the
perception and the decision-making process and present an alert-
ing model based on the rule model of the rule markup language.
Chen et al. [6] introduced an ontology-based hybrid approach
to activity modeling that combines domain knowledge-based
model specification and data-driven model learning. Rules can
be extracted though daily activities learning and recognition.
However, in a smart building system, there are many users and
most of the rules are created by users. In fact, manual input may
cause inexact logics or input errors and multiuser rule making
may also result in content conflicts among multiple rules. Hence,
rule conflict detection is essential to ensure the correctness of
rule execution [8].

For rule conflict verification, some existing studies have fo-
cused on storage structure of services and their conflict detection
algorithms [9]–[11]. Petri net-related technologies are widely
used in rule verification and fault detection based on expert
systems. Yang et al. [12] proposed a Petri net model for rule
verification in an expert system. Ma et al. [13] presented a rule-
map-based technique for data inconsistency detection, where
rule map was used to describe the hierarchical structure of rules
and estimate judgment standards for consistency dynamically.
In the rule map, knowledge was illustrated as state sets of re-
lated objects, and logical inconsistency can be determined by
the relations between those state sets. Xu et al. [14] proposed an
ontology-based framework to facilitate the automatic composi-
tion of services. However, they did not address conflict among
services and how to predict mutual conflict among rules.

Shehata et al. [15] proposed a semiformal method, called
IRIS (Identifying Requirements Interactions using Semiformal
methods), for detecting interactions between policies in the
smart home domain. A major component within IRIS, which
is an interaction taxonomy, was also presented. In addition,
the method addressed feature interactions beyond telecommu-
nication features and investigated interactions between policies.
The authors also extended their research on IRIS and gave a
more comprehensive taxonomy for interaction detection in soft-
ware systems [16]. Based on the 29 interaction types in [16]
and semantic web rules, Hu et al. [17] proposed a Semantic
Web-based complementary methodology named SPIDER for
automated detecting of interactions for user policies in smart
homes. The work tackles the process of composition for smart
home services and features, that is, user policy interaction de-
tection. Considering that service conflict among smart build-
ings is produced by function interaction among various nodes,
Nakamura et al. [18] proposed an object-oriented approach to
detect node interaction and judge service conflict. Leelaprute
[19] proposed a classification method and conflict solution in the
context of smart homes and further introduced model detection
techniques to analyze conflict interaction automatically [20].
Luo et al. [21] proposed a set of lightweight rule verification

SUN et al.: CONFLICT DETECTION SCHEME BASED ON FORMAL RULE MODEL FOR SMART BUILDING SYSTEMS 217

Fig. 2. Three layers of a smart building system.

mechanisms for WSAN, and achieved abnormal rule detection
and conflict detection using probability analysis and expression.
Xu et al. [22] presented a method by embedding the service pol-
icy into the traditional WSDL2.0 schema to describe the input-
to-output mapping relationships. Nakamura et al. [23] proposed
an environment impact model and introduced an environment
requirement to define the expected environment state achieved
by each service. Maternaghan and Turner [24] addressed a tech-
nique for offline conflict analysis among policies (the analog of
the feature interaction problem).

Most of these rule verification algorithms have focused on
the rule model, but they only consider binary state devices and
ignore multiuser and the user authority.

III. CONCEPTUAL ARCHITECTURE OF SMART

BUILDING SYSTEMS

Usually, there are many users in a smart building system, and
they control the building’s environment entities by subscribing
services. An environment entity may be controlled by multiple
services simultaneously, and the commands executed by the
physical environment entity may be inclusive or completely
opposite.

To better detect service conflicts among different users in the
smart building system, we divide the smart building system into
three layers: service layer, rule layer, and environment layer (see
Fig. 2). The users only participate to subscribe services and do
not need to know how the services perform. This is because
the rule layer and the environment layer are transparent to the
service layer. In the rule layer, the rule models are constructed
for services, which contain the useful information of the corre-
sponding services, including related nodes controlled by rules.
The sensor nodes and actuator nodes of smart building are in
the environment layer.

Users access the smart building system through customizing
their services. The system converts these services into corre-
sponding rules, which are described by a formal description
model. As shown in Fig. 3, our model is composed of the user,
triggers, environment entities, and actuators. Fig. 3 also illus-
trates the rule execution framework. The system begins to detect
conflict when the model is constructed. If a rule conflicts with
another existing rule in the database, this rule will not be exe-

Fig. 3. Rule execution framework.

cuted, and this conflict will be reported to the user. Otherwise,
this rule will be stored into the database and the corresponding
commands will be sent to a specific node through the wireless
networks. After executing this rule, the result will be reported
to the user.

To design an algorithm for conflict detection, we abstract
each basic component of the rules corresponding to services
and further construct a formal description model. In addition,
we decompose a complex rule into several basic rules as a basis
for the confliction detection algorithm.

IV. RULE MODEL AND CONFLICT CLASSIFICATION

A. Rule Model

Generally, the process of rule execution is to get specific
information from some environment entities and control some
other environment entities using this information. According to
such a composition relation, we define a rule model based on
User, Triggers, Environment entities, and Actuators. Hence, we
name this mode UTEA.

Definition 1: A service rule can be represented by a Rule =
{User, Triggers, Envirs, Actuators}, where Triggers =
{Trigger1 , Trigger2 , . . ., Triggern} is a set of trigger condi-
tions, Envirs = {Envir1 , Envir2 , . . ., Envirn} is a set of envi-
ronment entities, and Actuators = {Actuator1 , Actuator2 , . . .,
Actuatorn} is a set of actuators. The number of triggers, envi-
ronment entities, and actuators in a rule may be one or more,
while the number of users must be one.

1) User: To show various relations of different users conve-
niently, we introduce the user authority into the service rule.

Definition 2: User = {User_ID, User_Au}, where User_ID
uniquely identifies a user and User_Au represents the user
authority.

In our system, the value range of User_Au is a positive inte-
ger, and the smaller User_Au is, the higher the user authority
will be. Different authorities correspond to different priorities.
Higher user authority represents higher priority for operating
environment entities. For example, a user, whose User_Au is
“1,” has higher operating priority than the user whose User_Au
is “2.”

218 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 45, NO. 2, APRIL 2015

Fig. 4. Environment entity classification.

2) Triggers: No matter whether a rule is simple or complex,
it requires some conditions to trigger rule execution. Thus, we
abstract and represent the trigger condition as follows.

Definition 3: Trigger = {Trigger_ID, Event, Priority},
where Trigger_ID identities the environment entity involved in
the trigger condition, Event is the trigger condition, and Priority
represents its priority.

For example, the trigger of rule “if temperature is higher than
30 ◦C, then open air-conditioner” can be described as Trigger =
{Temperature_ID, >30 ◦C, 1}, where “1” denotes the priority
of trigger condition.

3) Environment Entities: As shown in Fig. 4, environment
entities can be divided into two categories: sensors and con-
trollers. A given sensor or controller can be defined as follows.

Definition 4: Envir = {E_ID, Pre_s, Next_s}, where E_ID
identifies the environment entity, and Pre_s and Next_s repre-
sent the states before and after rule execution, respectively. The
values of Pre_s and Next_s are both real.

For instance, window is a controller described as Controller =
{Air-conditioner_ID, 0, 1}, where “0” indicates the closed state
of air-conditioner and “1” indicates the open state. The tempera-
ture sensor can be also described as Sensor = {Temperature_ID,
>30 ◦C, <30 ◦C}. This means the temperature is changed from
>30 ◦C to <30 ◦C. Using such formal description of environ-
ment entities, we can describe the states of sensors/controllers
with both Boolean and continuous values.

4) Actuators: Similar to the trigger, the actuator is an es-
sential component of a rule. We abstract and represent the rule
action as follows.

Definition 5: Actuator = {Actuator_ID, Action}, where Ac-
tuator_ID identifies the environment entity involved in the ac-
tion, and Action denotes the state of actuator after executing the
rule.

For example, the actuator of the rule “if temperature is higher
than 30 ◦C, then open air-conditioner” can be represented as
Actuator = {air-conditioner_ID, open}.

A rule can be expressed as f : t1 , t2 , . . . , tn →
(a1 ∧ a2 , . . . ,∧am), where t1 , t2 , . . . , tn are n triggers,
a1 , a2 , . . . , am are m actuators, and f denotes a propositional
calculus consisted of the logical operators ∧ and ∨.

For example, a rule can be expressed with the formula like
t1 ∧ t2 ∧ (t3 ∨ (t4 ∧ t5)) → a1 ∧ a2 . We know that each propo-
sitional formula can be converted into an equivalent formula

based on DNF. Therefore, the rule t1 ∧ t2 ∧ (t3 ∨ (t4 ∧ t5)) →
a1 ∧ a2 can be decomposed as follows:

t1 ∧ t2 ∧ (t3 ∨ (t4 ∧ t5)) → a1 ∧ a2

⇓

(t1 ∧ t2 ∧ t3) ∨ (t1 ∧ t2 ∧ t4 ∧ t5) → a1 ∧ a2

⇓

(t1 ∧ t2 ∧ t3) → a1 ∧ a2

(t1 ∧ t2 ∧ t4 ∧ t5) → a1 ∧ a2 .

The rule t1 ∧ t2 ∧ (t3 ∨ (t4 ∧ t5)) → a1 ∧ a2 can be decom-
posed into several basic rules.

Based on the DNF transformation, we decompose a complex
rule into multiple basic rules, which provides a foundation for
the rule conflict detection. The basic rule can be executed only
when the triggers are satisfied simultaneously.

B. Rule Conflict Classification

Based on the four basic components of the formal model rule,
we classify the relation among rules into 11 categories: similar
trigger relation, similar action relation, similar prestate rela-
tion, contrary poststate relation, explicit dependence relation,
implicit dependence relation, negative action relation, trigger
event relation, peer authority relation, leapfrog authority rela-
tion, and compatible authority relation, as listed in Table I.

Take the implicit dependence relation for example. We call a
rule RB implicitly dependent on another rule RA if two rules
satisfy: 1) the environment entities involved in the trigger con-
dition of RB belong to the environment entities of Rule RA ;
and 2) the trigger condition of RB is one of the states after RA

execution. We then write the conditional expression of implicit
dependence relation as

ImpDepeAc(RA,RB) =

(E IDA ⊇ Trigger IDB)∧(Next sA ⊇ EventB)

where E IDA � {Enviri.E ID,∀Enviri ∈ EnvirA}, and
EnvirA denotes the set of environment entities for rule RA .
The similar symbols in Table II also follow this definition form.

In fact, two rules can satisfy multiple relations simultane-
ously. The composition of different relations possibly causes
the rule conflict. According to combination of various relations,
we classify the rule conflicts into five categories: shadow con-
flict, execution conflict, environment mutual conflict, direct de-
pendence conflict, and indirect dependence conflict, as given in
Table II. We can judge whether there exist conflicts between two
rules or among multiple rules using the conditions in Table II
for these five kinds of conflicts.

Conflict C1: Shadow Conflict (SC)
Definition:
For two rules RA and RB , if the actuators of RA and RB

are the same and the trigger condition of RA is contained in
the trigger condition of RB , then there exists a shadow conflict
between RA and RB .

SUN et al.: CONFLICT DETECTION SCHEME BASED ON FORMAL RULE MODEL FOR SMART BUILDING SYSTEMS 219

TABLE I
RULE RELATION CLASSIFICATION

Relation Abbreviation Condition

Similar trigger SimlTr(RA , RB) Trigger_IDA = B ∧ EventA ⊆B ∧ PriorityA = B

Similar action SimlAc(RA , RB) Actuator_IDA = B ∧ ActionA ⊆B

Similar prestate SimlPr(RA , RB) E_IDA = B ∧ Pre_sA ⊆B

Contrary poststate ContPs(RA , RB) E_IDA = B ∧ Next_sA �= B

Explicitly dependence ExplDepe(RA , RB) (Actuator_IDA = Trigger_IDB) ∧ (ActionA ⊇ EventB)
Implicitly dependence ImplDepe(RA , RB) (E_IDA ⊇ Trigger_IDB) ∧ (Next_sA ⊇ EventB)
Negative action NegiAc(RA , RB) Actuator_IDA = B ∧ ActionA �= B

Trigger event TrigEve(RA , RB) E_IDA = B ∧ (Pre_sA ⊆ Next_sB)
Peer authority PeerAuth(RA , RB) User_AuA = B

Leapfrog authority LeapAuth(RA , RB) User_AuA > B

Compatible authority CompAuth(RA , RB) User_AuA < B

TABLE II
CONFLICT CLASSIFICATION

Conflict Condition

Shadow Conflict (SimlTr(RA , RB) ∧ SimlAc(RA , RB)) ∧ (PeerAuth(RA , RB)
Execution Conflict (SimlTr(RA , RB) ∨ TrigEve(RA , RB)) ∧ NegiAc(RA , RB) ∧ (PeerAuth(RA , RB)
Environment Mutual Conflict SimlTr(RA , RB) ∧ ContPs(RA , RB)
Direct Dependence Conflict (ExplDepe(RA , RB) ∨ ImplDepe(RA , RB)) ∧ (ExplDepe(RB , RA) ∨ ImplDepe(RB , RA))
Indirect Dependence Conflict (ExplDepe(RA , RB) ∨ ImplDepe(RA , RB)) ∧ (ExplDepe(RB , RC) ∨ ImplDepe(RB , RC)) · · · ∧ (ExplDepe(RN , RA) ∨ ImplDepe(RN , RA))

Condition:
(SimlTr(RA , RB) ∧ SimlAc(RA , RB)) ∧ (PeerAuth(RA ,

RB)) =⇒ Shadow Conflict.
Example:
R1 : light intensity < 400Lux → open curtain
R2 : light intensity < 500Lux → open curtain.
Conflict analysis:
R1 and R2 can execute separately, and there is no conflict.

However, simultaneous existence of them will result in a redun-
dancy conflict. That is, if R1 exists and R2 starts to execute,
we can find that the trigger condition of R1 is contained in R2
and their trigger priorities are the same. If there is no authority
priority between them, a shadow conflict will occur.

Conflict C2: Execution Conflict (EC)
Definition:
For two rules RA and RB , if the trigger condition of RA is

contained in the trigger condition of RB and the actions of the
same actuator in RA and RB are contrary, then there exists an
execution conflict between RA and RB .

Condition:
(SimlTr(RA , RB) ∨ TrigEve(RA , RB))∧ NegiAc(RA , RB)

∧ PeerAuth(RA , RB) =⇒ Execution Conflict.
Example:
R3 : humidity < 45%RH → open humidifier
R4 : humidity < 65%RH → close humidifier.
Conflict analysis:
From the descriptions of R3 and R4 , the trigger condition

of R4 is contained in R3 , and the actions for humidifier are
contrary. Hence, when humidity captured by humidifier is less
than 45%RH, the behavior of the humidifier is unstable. In
addition, if the user authority of R4 is not less than that of R3 ,
then an execution conflict will happen.

Conflict C3: Environment Mutual Conflict (EMC)
Definition:
Two rules, RA and RB , execute simultaneously. For a

given environment entity, if the state (Next_s) after RA exe-
cution is inconsistent with the state after RB execution, then
there exists an environment mutual conflict between RA and
RB .

Condition:
SimlTr(RA , RB) ∧ ContPs(RA , RB) =⇒ Environment Mu-

tual Conflict.
Example:
R5 : temperature > 30 ◦C → open air-conditioner ∧ keep

temperature below 28 ◦C
R6 : temperature < 25 ◦C → open heater ∧ keep temperature

above 28 ◦C.
Conflict analysis:
When the temperature exceeds 30 ◦C, air-conditioner will

open for cooling which makes the temperature decrease below
28 ◦C. Once, the temperature decreases to 25 ◦C, the heater
will open according to R6 . In this way, air-conditioner and
heater work at the same time. Then, the environment entity of
temperature is possibly in an unstable state, i.e., the environment
mutual conflict happens.

Conflict C4: Direct Dependence Conflict (DDC)
Definition:
For two rules RA and RB , if the trigger condition of RB is

the state after RA execution and vice versa, then there exists a
direct dependence conflict between RA and RB .

Condition:
(ExplDepe(RA , RB) ∨ ImplDepe(RA , RB)) ∧

(ExplDepe(RB , RA) ∨ ImplDepe(RB , RA)) =⇒ Direct
Dependence Conflict.

220 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 45, NO. 2, APRIL 2015

TABLE III
COMPARISON AMONG UTEA, SPIDER, AND IRIS

conflict classification UTEA SPIDER IRIS

Shadow Conflict
√ � �

Execution Conflict
√ � �

Environmental Mutual Conflict
√ √ √

Direct Dependence Conflict
√ √

Indirect Dependence Conflict
√

√
: type of detected conflict.

�: type of conflict detected without considering authority.

Example:
R7 : air-conditioner opens → close window
R8 : window closes → open air-conditioner.
Conflict analysis:
There is interdependency between two rules. The trigger con-

dition of R7 depends on the execution result of R8 while the
trigger condition of R8 depends on the execution result of R7 .
Thus, both R7 and R8 execute in an endless loop and cause a
direct dependence conflict.

Conflict C5: Indirect Dependence Conflict (IDC)
Definition:
For multiple rules RA , RB , RC , . . ., RN , if the trigger con-

dition of RB is the state after RA execution, . . ., and the trigger
condition of RN −1 is the state after RN execution, and the trig-
ger condition of RA is the state after RN execution, then there
exists an indirect dependence conflict among RA , RB , RC , . . .,
RN .

Condition:
(ExplDepe(RA , RB) ∨ ImplDepe(RA , RB)) · · · ∧

(ExplDepe(RN −1 , RN) ∨ ImplDepe(RN −1 , RN)) ∧
(ExplDepe(RN , RA) ∨ ImplDepe(RN , RA)) =⇒ Indirect De-
pendence Conflict.

Example:
R9 : air purifier opens → close window
R10 : window closes → close curtain
R11 : curtain closes → open air purifier.
Conflict Analysis:
The trigger conditions of R10 , R11 , and R9 depend on the

execution results of R9 , R10 , and R11 , respectively. That is any
rule-pair among the three rules is a dependent relation and the
dependent relations form a loop.

C. Classification Completeness Analysis

To verify the completeness of conflict classification, we com-
pare UTEA with SPIDER [17] and IRIS [15], as listed in
Table III. Symbol “

√
” represents the type of conflict that can be

detected, and symbol “�” represents the type of conflict that can
be detected without considering user authority. In our solution,
we take user authority into account. Therefore, false conflicts
can be avoided and the efficiency of conflict detection can be
improved.

The SPIDER method did not consider the continuous states of
an environment entity. Therefore, a device with two states can
be used in the comparison. Particularly, the SPIDER method
cannot detect IDC mainly because that it only focused on two

TABLE IV
EXAMPLE OF XML-FORMAT RECORD

< ?xml version=”1.0” encoding=”UTF-8”? >

<SubDescription>

if temperature is more than 25 ◦C, open air-conditioner
< /SubDescription>

<User_ID>7< /User_ID>

<Area>
<Building>Building 3< /Building>

<Floor>9< /Floor>
<Room> 902< /Room>

< /Area>
< Is_elec_control> true < /Is_elec_control>
< IsOver> false < /IsOver>
< IsNotify> true< /IsNotify>

<Rule>
< triggerGroup>

<condition>

< trigger>
<sensorType> temperature< /sensorType>
<sensorID>17< /sensorID>

<clusterWay>SINGLE< /clusterWay>

<operation>More than< /operation>

< threshold>30 ◦C< /threshold>

< /trigger>
< /condition>

< /triggerGroup>

<actuatorGroup>

<actuator>
<actuator>Air-conditioner< /actuator>
<actuatorID>33< /actuatorID>

<action>open< /action>

< /actuator>
< /actuatorGroup>

< /Rule>

TABLE V
RULE TABLE FOR DETECTION

Field Values

ID Integer
Location String, identifies the location in location tree
User XML, including subscriber ID and his authority
Triggers XML, including Trigger_ID, event and its priority
Environment Entities XML, including E_ID, Pre_s and Next_s
DependRules Array, records ID on which this rule depends

users. The IRIS method considered two kinds of conflicts:
1) negative impact conflict—the two attributes are still pre-
served, but one attribute will negatively affect the second one;
and 2) override conflict—one attribute will override and cancel
the other attribute. However, the IRIS method did not consider
the dependence between two rules or among more than two rules
in some cases. Therefore, it cannot detect DDC as well as IDC.
Our method extends the number of rules involved in a conflict
detection algorithm from 2 to n (n ≥ 3), i.e., can detect not only
conflicts between two rules but also conflicts among multiple
rules (such as cycle conflict and multicross contradiction).

In addition, SPIDER and IRIS do not consider user authority;
therefore, their detections on shadow and execution conflicts are
incomplete. For example, when there is a conflict between two
rules, if the user authority of one rule is higher than that of the
other, the conflict does not exist. Therefore, SPIDER and IRIS

SUN et al.: CONFLICT DETECTION SCHEME BASED ON FORMAL RULE MODEL FOR SMART BUILDING SYSTEMS 221

methods will increase the amount of false negative detections
and reduce the detection efficiency.

In this paper, we summarize five kinds of conflicts after con-
sidering conflict conditions in a smart building system. Shadow
and execution conflicts contain device conflicts, as a shadow
conflict defines redundant action while an execution conflict
defines contrary action. Environment mutual conflict is used to
detect environment conflict. Besides, considering that depen-
dent relations will exist in rule, we define direct conflict and
indirect conflict to detect dependent conflict. In particular, user
authority is an essential factor for conflict detection, and it can
be included in the process of judgment. Based on the classi-
fication mentioned above, we include all conflicts in a smart
building system.

V. RULE STORAGE AND ALGORITHM DESIGN

A. Rule Storage

When a user subscribes to a rule “temperature > 30 ◦C →
open air-conditioner,” which is executed in Room 902, an XML-
record of this rule will be generated, as shown in Table IV. In
the XML record, “Rule” tag contains the execution information
of triggers and actuators. “SubDescription” tag records the rule
content, and “Area” tag records the location where the rule can
be applied. When the rule is executed completely, the result
contained “IsNotify” tag will be communicated back to the
user according to “IsNotify” tag. Besides, “Is_ele_control” tag
and “IsOver” tag, respectively, represent whether the actuator is
electrical and whether the rule has already executed.

It is convenient to record all the information related to the
implementation of a rule using this kind of XML format. How-
ever, this XML record contains too much useless information for
detecting conflicts. Thus, we need to convert the XML record
into a more simple format.

According to Definition 1, we extract relevant fields from
the XML record and store them in rule detection base (RDB)
including: rule table which stores the rule information used in
detection; location tree which records rules control area hier-
archically; and authority tree which records the priority of the
user.

1) Rule Table: Different from the XML-format rule, the
rule table only stores the detection-relevant fields, as listed in
Table V. ID identifies the RDB rule. Location represents the
place where the rule executes and can be extracted from Loca-
tion Tree. By location information, we can decide which rule
needs to be compared. User indicates the subscriber of this rule
and his corresponding authority.

2) Location Tree: For reducing the comparison times during
the detection process, we construct a tree to record the hierar-
chical building structure. Every rule is bound to one node in the
location tree according to its control area.

As illustrated in Fig. 5, if a rule Rx is bound to R902, i.e., the
control area of Rx is Room 902, we only need to compare Rx

with the rules on R902, Re ,...,Rf , for conflict detection.
3) Authority Tree: In order to gain the user’s authority of our

smart building system, we also utilize a tree structure to store
authority.

Fig. 5. Location tree.

Fig. 6. Authority tree.

In our smart building system, we define three types of au-
thority groups. As shown in Fig. 6, AD represents administrator
authority, and User authority belongs to the ordinary users, while
the Guest authority is for the guest. According to this storage
structure, we can find the authority group to which the user
belongs.

B. Conflict Detection Algorithm

After converting the XML-formal rule to the specific recorded
rule in RDB, we can use definitions of rule relation (see Table I)
and rule conflicts (see Table II) to detect conflicts among rules.
We propose Algorithms 1 and 2 to judge the rule relations and
detect conflicts, respectively.

Algorithm 1 returns relation, a field of 16 bits that cor-
responds to the relations in Table I. In Algorithm 1, the
relation between RA and RB can be compared among
user authority, triggers, environment entities, and actua-
tors, and the 11 kinds of relations correspond to the
low 11 bits of relation, which are represented with rela-
tion.SimlTr, relation.SimlAc, relation.SimlPr, relation.ContPs,
relation.ExplDepe, relation.ImplDepe, relation.NegiAc, rela-
tion.TrigEve, relation.PeerAuth, relation.LeapAuth, and rela-
tion.CompAuth from the lowest bit to 11th bit orderly. To sim-
plify the calculation in Algorithm 2, the 12th and 13th bits
record the explicitly dependence and implicitly dependence
relations, respectively, which can be represented with rela-
tion.contrary_ExplDepe and relation.contrary_ImplDepe. For
each bit, “1” denotes the corresponding relation exists; other-
wise, “0” denotes the corresponding relation does not exist.

Using the output of Algorithm 1, Algorithm 2 detects con-
flicts and determines whether this rule can be stored in RDB.
In Algorithm 2, we traverse each rule in RDB to judge whether
there is conflict and, then, record the relation between each rule
and RB using array rel. If there is no shadow conflict, execu-
tion conflict, environment contradiction and direct dependence

222 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 45, NO. 2, APRIL 2015

conflict between two rules, then we use Queue to determine
whether there is an indirect dependent conflict. If not, all the
rules that are dependent on it will be found and put into Queue
using the dependenceRule field of each rule in the array. Repeat
the process until the Queue is empty. In this case, it indicates
that there exists no indirect dependence conflict between RB

and the rule in RDB, then RB can be stored into RDB and the
dependenceRule field of rule in RDB, which RB depends on,
can be modified.

C. Computational Complexity

Let Mt , Ma , and Me be the number of triggers, actuators,
and environment entities, respectively. M is the sum of Mt , Ma

and Me . In Algorithm 1, from line 2, the time complexity of
traversing the triggers, actuators and environment entities of RA

is O(M), where M = Mt + Ma + Me . From lines 4, 11, and
19, we use three “for” loops to compare the relations of two
rules which cost O(Mt),O(Ma), and O(Me), respectively. As
a result, the running time of Algorithm 1 is O(M 2).

Let N be the number of rules. In Algorithm 2, from line 1
to line 30, there is one “for” loop running N times. Because
function rule_relation(RA , RB) in line 2 runs Algorithm 1,
and thus, the time complexity of the loop is O(NM 2). The
“while” loop from line 17 to line 23 is used to detect the indirect
dependence conflict. In the worst case, all N rules are dependent,
and we need to traverse the N rules for detecting the indirect
dependence conflict. This means the “while” loop runs up to N
times. Generally, for a rule, the number of triggers, actuators,
and environment entities are limited, i.e., M is a relatively small
number. Therefore, Algorithm 2 runs in O(N).

SUN et al.: CONFLICT DETECTION SCHEME BASED ON FORMAL RULE MODEL FOR SMART BUILDING SYSTEMS 223

Fig. 7. Real deployment environment of smart building platform. The sen-
sors, actuators, and router are designed with STM32F103 processing chip and
CC2530 RF; the gateways are designed with the AT91SAM7X256 processing
chip, CC2530 RF, and WiFi module; the server consists of Intel Core2 Duo
P8400, 2 GB memory, WiFi module, and 100 M Ethernet card.

VI. EXPERIMENT

In order to verify our proposed model and algorithms, we
perform a series of experiments, which are based on a practi-
cal smart building system. We also compare our scheme with
the traditional semantic-based method [17] and semiformal
method [15].

A. Platform Introduction

In the smart building platform, we deployed 200 sensor nodes
(such as temperature, humidity, light, audio, and image sensor
nodes) and 50 actuators (such as lighting and air-conditioner
controllers), 50 routers, five gateways, and one server, as illus-
trated in Fig. 7. The teaching building has ten floors with 20
sensor nodes, five routers, and five actuators on each floor, and
a gateway on every two floors. Each sensor node self-discovers
its sensing capability, location, and action range and, then, re-
ports the information to routers. The information is further sent
to the gateway (sink node). The capabilities of the whole under-
lying network are given on the web pages. The router in path
is responsible for fusing data and transferring the results to the
router at the higher level via a multihop ZigBee network and,
eventually, to the gateway. The gateway reports all data to the
server via a WiFi network. The server analyzes data and makes
decision and then forwards customer-ordered information and
control commands to the appropriate users and actuators,
respectively.

For the results in this paper, the platform stored more than
30 000 rules in the RDB. The following conflict case study is
based on the platform.

B. Case Study

To analyze and verify conflicts defined in this paper, we as-
sume that six basic rules have already been stored in the RDB,
as listed in Table VI. User G is assigned to Room 902, which

TABLE VI
BASIC RULES LISTED IN RDB

Rule ID Rule Description Authority

r1 time = 7:00 A.M. → open window ∧ open lamp. 2
r2 time = 7:30 A.M. → close window ∧ close lamp. 2
r3 time ∈ [7:00 A.M., 7:30 A.M.] ∧ illumination value >

80Lux → close lamp.
1

r4 temperature > 30 ◦C ∧ infrared = 1 → open
air-conditioner ∧ keep temperature below 28 ◦C.

1

r5 temperature > 25 ◦C ∧ infrared = 1 ∧ air-conditioner open
→ close the fan.

2

r6 infrared = 1 ∧ CO2 density > 1000 ppm → open
air-conditioner.

2

Fig. 8. Case of execution conflict.

Fig. 9. Case of environment mutual conflict.

is on ninth floor of No. 3 Building, with guest authority (values
“2”).

User G subscribes to a rule, RA , which is expressed as “In-
frared = 1 ∧ (PM2.5 > 80 μg/m3 ∨ temperature < 25 ◦C) →
close window ∧ open heater ∧ keep temperature above 28 ◦C.”
This rule means “when somebody is at room,2 if the value of
PM2.5 is greater than 80 μg/m3 or temperature is less than 25 ◦C,
then close the window and open the heater for keeping the tem-
perature above 28 ◦C.” For detecting conflicts efficiently, the
rule should be decomposed into basic rules first. Based on DNF,

2In our system, the infrared sensors are used for determining whether someone
is in a room. “Infrared = 1” means someone is in the room.

224 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 45, NO. 2, APRIL 2015

Fig. 10. System reports the detection results to the user.

RA is decomposed into two basic rules: r7 “Infrared = 1 ∧
PM2.5 > 80 μg/m3 → close window ∧ open heater ∧ keep
temperature above 28 ◦C” and r8 “Infrared = 1 ∧ temperature
< 25 ◦C → close window ∧ open heater ∧ keep temperature
above 28 ◦C.” Then, we detect conflicts among r7 , r8 and the
basic rules in RDB.

According to the UTEA models of r1 and r7 (see Fig. 8),
the trigger conditions are different: “time = 7:00 A.M.” for r1 ,
and “Infrared = 1 ∧ PM2.5 > 80 μg/m3” for R7 . When the
time is 7:00 A.M., the events of r7 may be triggered at the same
time; that is, the trigger condition of r7 is contained in r1 , satis-
fies the trigger event relation. Moreover, the actuators(window)
of the two basic rules are the same while the actions are oppo-
site. Then, r1 and r7 also satisfy the negative action relation.
Due to the same user authority, an execution conflict between
r1 and r7 occurs.

From the UTEA models of r4 and r8 shown in Fig. 9, the
action of r4 is “open air-condition ∧ keep temperature below 28
◦C,” while the action of r8 is “close window ∧ open heater ∧
keep temperature above 28 ◦C”; then, r4 and r8 satisfy the con-
trary poststate relation. Meanwhile, the guest authority of G is
lower than that of the administrator. Although their actuators are
different, the environment mutual conflict will occur according
to the above relations between r4 and r8 . After conflict detec-
tion of r7 and r8 , the report for conflict detection of RA will be
communicated to user G, as shown in Fig. 10.

Next, we consider the case that the user G submits another
rule, RB , which is expressed as “Infrared = 1 ∧ (temperature
>25 ◦C ∧ fan closed ∨ CO2 density > 1500 ppm) → close
window ∧ open air-conditioner.” RB means “When somebody
is at room, if the temperature is greater than 25 ◦C and the
fan is closed, or CO2 density > 1500 ppm, then close win-
dow and open the air-conditioner.” Similarly, two basic rules: r9
and r10 will be decomposed as “Infrared = 1 ∧ temperature >
25 ◦C∧ fan closed→ close window∧ open air-conditioner” and

Fig. 11. Case of shadow conflict.

“Infrared = 1 ∧ CO2 > 1500 ppm → close window ∧ open air-
conditioner.” From r6 and r10 illustrated in Fig. 11, the trigger
conditions of r6 and r10 are “infrared = 1 ∧ CO2 > 1000 ppm”
and “infrared = 1 ∧ CO2 > 1500 ppm,” respectively. Then,
the trigger condition “CO2 > 1000 ppm” of r6 contains the
“CO2 > 1500 ppm” of r10 . In addition, the actuators, actions,
and user authorities of the two rules are the same. Therefore, r6
and r10 satisfy the similar trigger relation, and a shadow conflict
occurs.

According to the UTEA models of r5 and r9 (see Fig. 12),
the trigger3 of r9 and the actuator of r5 are the same, i.e., the
trigger3 of r9 depends on the execution result of r5 . Moreover,
the trigger3 of r5 depends on the execution result of r9 . There-
fore, r5 and r9 satisfy the explicit dependence relation, and the
direct dependence conflict occurs, which will make the execu-
tion enter an endless loop.

C. Efficiency Comparison and Performance Analysis

1) Efficiency Comparison: In the smart home/building do-
main, IRIS [15] is well known and commonly used as a reference

SUN et al.: CONFLICT DETECTION SCHEME BASED ON FORMAL RULE MODEL FOR SMART BUILDING SYSTEMS 225

Fig. 12. Case of direct dependence conflict.

method. As mentioned in Section II SPIDER [17], based on the
extension of IRIS [16], is also proposed for smart homes spe-
cially. Therefore, we compare our UTEA-based scheme with
SPIDER and IRIS. We collected 152 rules in Room 902, which
are subscribed to by admin users and guest users from Sep. 26,
2013 to Sep. 28, 2013 and utilize UTEA, SPIDER, and IRIS to
detect conflicts among these rules, respectively.

From the results listed in Table VII, we have the following.
1) For environment mutual conflict, UTEA, SPIDER, and

IRIS all detect 11, 5, and 4 in three days. This means that
the three methods have a similar effect on environment
mutual conflict detections.

2) Both SPIDER and IRIS detect the same number of shadow
and execution conflicts, i.e., they have a similar effect on
shadow and execution conflicts detections, but UTEA de-
tects less shadow and execution conflicts. Take Sep. 26,
2013 for example, for shadow and execution conflicts,
both SPIDER and IRIS detect 13 and 7, while UTEA de-
tects 7 and 5, respectively. This is because the user author-
ity considered in UTEA can avoid some “fake” shadow
and execution conflicts. Thus, the error-detection rate is
determined by the proportion of these fake conflicts, which
is affected by rule authorities and the number of shadow
and execution conflicts.

3) Because IRIS cannot detect both direct and indirect de-
pendent conflicts, the missed-detection rate is the ratio of
direct and indirect dependent conflicts number to the to-
tal conflicts number. Similarly, the missed-detection rate
of SPIDER is the ratio of indirect dependent conflicts
number to the total conflicts number. This means the pro-
portions of direct and indirect dependent conflicts affect
the difference of missed-detection rate among the three
methods.

Therefore, compared with SPIDER and IRIS, UTEA de-
creases the error-detection rate and the missed-detection rate
so as to improve the efficiency of the smart building system.

2) Performance Analysis: In the smart building system,
the number of rules increases with the number of users. In
Section V-C, we analyzed the complexity of our detection al-
gorithm, which runs in O(N), where N is the number of rules.
The runtime of rule detection linearly increases as the size of
RDB increases. In order to verify this result, we increase N

TABLE VII
COMPARISON AMONG UTEA(U), SPIDER(S), AND IRIS(I)

Conflict
Type

Sep. 26, 2013 Sep. 27, 2013 Sep. 28, 2013

U S I U S I U S I

SC 7 13 13 6 8 8 5 11 11
EC 5 7 7 7 8 8 6 10 10
EMC 11 11 11 5 5 5 4 4 4
DDC 6 6 0 7 7 0 3 3 0
IDC 9 0 0 8 0 0 2 0 0
Total
Conflict

38 37 31 33 28 21 20 28 25

Error-
detection
rate

0% 21.1% 21.1% 0% 9.1% 9.1% 0% 50% 50%

Missed-
detection
rate

0% 23.7% 39.5% 0% 24.2% 45.5% 0% 10% 25%

Fig. 13. Consuming time of detection conflict.

TABLE VIII
COMPARISON OF DETECTION AND TIME

Conflict r7 r8 r9 r1 0

SC false false false true
EC true false false false
EMC false true false false
DDC false false true false
IDC false false false false
Time(s) 0.0011 0.0013 0.0015 0.0013

from 50 to 1000 with the interval of 50. For a given value of
N , we calculate the mean times of nonconflict detecting cases
and conflict detecting cases, respectively. Fig. 13 illustrates the
results. According to linear regression of the results in Fig. 13,
we obtain the linear functions of N , Time = 1.87N + 25.04
and Time = 1.096N + 19.66, for nonconflict detecting cases
and conflict detecting cases, respectively. Both of the coeffi-
cients of determination are larger than 0.99. This means that the

226 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 45, NO. 2, APRIL 2015

relation between N and detection time growth is approximately
linear.

From the pseudocode of the conflict detection algorithm, Al-
gorithm 2 completely executes if there is no conflict and partially
executes if a conflict occurs. Then, the mean time of nonconflict
detecting cases is larger than the conflict detecting cases. When
N increases to 1000, the conflict detection time is only about
1 s and the detection time of nonconflict is about 1.4 s. This
result indicates that our algorithm may be suitable for real-time
services in the smart building system.

To analyze runtime performance, we compare our approach to
[20]. Here, we use four basic rules from r7 to r10 in the Section
VI-B to detect conflicts and calculate time. From Table VIII,
“true” means conflict occurs, for example, execution conflict
(EC) in r7 was detected compared with previous rules. These
preliminary results are promising as each is faster than the 0.2
ms required in [20].

VII. CONCLUSION

To improve the efficiency of rule conflict detection in smart
building systems, a formal rule model UTEA and a conflict de-
tection scheme are proposed in this paper. The UTEA model
contains user, triggers, environment entities, and actuators.
The rule relations, defined by four parts of the UTEA model,
are utilized to classify rule conflicts. In order to further improve
detection efficiency, we design a rule database including rule
table, location tree, and authority tree to filter out useless infor-
mation in the XML format. We design a rule conflicts detection
algorithm, which can detect conflicts between two rules as well
as cycle conflict/multicross contradiction among multiple rules.
Furthermore, we verify our algorithm in the smart building sys-
tem deployed in our campus.

In this paper, to detect conflicts among complex policies,
we decompose complex policies into several basic simple rules
based on DNF and then detect conflicts among these basic sim-
ple rules. This parser approach is effective but with low effi-
ciency sometimes. In the future work, we will further study
the constitution of complex policies and then construct an effi-
cient model for detecting the conflicts among complex policies
directly.

REFERENCES

[1] T. Wark, D. Swain, C. Crossman, P. Valencia, G. Bishop-Hurley, and
R. Handcock, “Sensor and actuator networks: Protecting environmentally
sensitive areas,” IEEE Pervasive Comput., vol. 8, no. 1, p. 30–36, Jan.–
Mar. 2009.

[2] E. C.-H. Ngai, J. Liu, and M. R. Lyu, “An adaptive delay-minimized route
design for wireless sensor-actuator networks,” IEEE Trans. Veh. Technol.,
vol. 58, no. 9, p. 5083–5094, 2009.

[3] E. Jafer, O. B. Flynn, O. C. Mathuna, and W. Wang, “Design of minia-
turized wireless sensor mode and actuator for building monitoring and
control,” in Proc. 17th Int. Conf. Telecommun., Doha, Qatar, 2010,
pp. 887–892.

[4] C. Suh and Y.-B. Ko, “Design and implementation of intelligent home
control systems based on active sensor networks,” IEEE Trans. Consumer
Electron., vol. 54, no. 3, pp. 1177–1184, Nov. 2008.

[5] C.-H. Lu, Y.-C. Ho, Y.-H. Chen, and L.-C. Fu, “Hybrid user-assisted
incremental model adaptation for activity recognition in a dynamic smart-

home environment,” IEEE Trans. Human-Mach. Syst., vol. 43, no. 5,
pp. 421–436, Sep. 2013.

[6] L. Chen, C. Nugent, and G. Okeyo, “An ontology-based hybrid approach
to activity modeling for smart homes,” IEEE Trans. Human-Mach. Syst.,
vol. 44, no. 1, pp. 92–105, Feb. 2014.

[7] R. Velik and H. Boley, “Neurosymbolic alerting rules,” IEEE Trans. Ind.
Electron., vol. 57, no. 11, pp. 3661–3668, Nov. 2010.

[8] Xu, Yuemei, Niu, Wenjia, and T. Hui, “A policy-based web service re-
dundancy detection in wireless sensor networks,” J. Netw. Syst. Manage.,
vol. 21, no. 3, pp. 384–407, 2013.

[9] H. Lee, Y.-K. Jeong, and I.-W. Lee, “A mechanism of ontology-based rule
management for smart building energy saving service,” in Proc. 2012 Int.
Conf. Digital Object Identifier, 2012, pp. 737–738.

[10] S. Chakraborty, T. Ito, R. Kanamori, and T. Senjyu, “Application of incen-
tive based scoring rule deciding pricing for smart houses,” in Proc. Power
Energy Soc. General Meeting, 2013, pp. 1–5.

[11] M. Shehata, A. Eberlein, and A. Fapojuwo, “Managing policy interactions
in KNX-based smart homes,” in Proc. 31st Annu. Int. Comput. Softw. Appl.
Conf., 2007, vol. 2, pp. 367–378.

[12] S. J. H. Yang, A. S. Lee, W. C. Chu, and H. Yang, “Rule base verification
using petri nets,” in Proc. 22nd Annu., IEEE Comput. Soc. Int. Comput.
Softw. Appl. Conf., Vienna, Austria, 1998, pp. 476–481.

[13] J. Ma, J. Lu, and G. Zhang, “A rule-map based technique for information
inconsistency verification,” in Proc. IEEE Comput. Soc. Inf., Decision
Control, Adelaide, Australia, 2007, pp. 296–301.

[14] J. Xu, Y. Lee, and W. Tsai, “Ontology-based smart home solution and ser-
vice composition,” in Proc. Int. Conf. Embedded Softw. Syst., Hangzhou,
China, May 2009, pp. 297–304.

[15] M. Shehata, A. Eberlein, and Fapojuwo,, “Using semi-formal methods
for detecting interactions among smart homes policies,” Sci. Comput.
Program., vol. 67, no. 2, pp. 125–161, 2007.

[16] M. Shehata, A. Eberlein, and Fapojuwo, “A taxonomy for identifying
requirement interactions in software systems,”Comput. Netw., vol. 51,
pp. 398–425, 2007.

[17] H. Hu, D. Yang, L. Fu, H. Xiang, C. Fu, J. Sang, C. Ye, and R. Li, “Semantic
web-based policy interaction detection method with rules in smart home
for detecting interactions among user policies,” IET Commun., vol. 5,
no. 17, pp. 2451–2460, 2011.

[18] M. Nakamura, H. Igaki, and K.-I. Matsumoto, “Feature interactions in
integrated services of networked home appliances,” in Proc. Int. Conf.
Feature Interactions Telecommun. Netw. Distrib. Syst., 2005, pp. 236–
251.

[19] P. Leelaprute, “Resolution of feature interactions in integrated services of
home network system,” in Proc. Asia-Pacific Conf. Commun., Bangkok,
Thailand, Oct. 2007, pp. 363–366.

[20] P. Leelaprute, T. Matsuo, T. Tsuchiya, and T. Kikuno, “Detecting feature
interactions in home appliance networks,” in Proc. ACIS Int. Conf. Softw.
Eng., Artificial Intell., Netw. Parallel/Distrib. Comput., Phuket, Thailand,
Aug. 2008, pp. 895–903.

[21] H. Luo, R. Wang, and X. Li, “A rule verification and resolution framework
in smart building system,” in Proc. 19th IEEE Int. Conf. Parallel Distrib.
Syst., 2013, pp. 438–439.

[22] Y. Xu, W. Niu, H. Tang, G. Li, Z. Zhao, and S. Ci, “A policy-based web
service redundancy detection in wireless sensor networks,”J. Netw. Syst.
Manage., vol. 21, pp. 1–24, 2013.

[23] M. Nakamura, K. Ikegami, and S. Matsumoto, “Considering impacts and
requirements for better understanding of environment interactions in home
network services,”Comput. Netw., vol. 57, pp. 2442–2453, 2013.

[24] C. Maternaghan and K. J. Turner, “Policy conflicts in home automa-
tion,”Comput. Netw., vol. 57, pp. 2429–2441, 2013.

Yan Sun received the B.S. degree from Beijing
Jiaotong University, Beijing, China, in 1992, and the
M.S. and Ph.D. degrees from the Beijing University
of Posts and Telecommunications, Beijing, in 1999,
and 2007, respectively.

She is currently an Associate Professor with the
School of Computer Science, Beijing University of
Posts and Telecommunications, Beijing. She is also
a Research Member of the Beijing Key Lab of Intel-
ligent Telecommunication Software and Multimedia.
Her research interests include internet of things, sen-

sor networks, smart environments, and embedded systems.

SUN et al.: CONFLICT DETECTION SCHEME BASED ON FORMAL RULE MODEL FOR SMART BUILDING SYSTEMS 227

Xukai Wang received the B.S. degree in computer
science from Beijing University of Chemical Tech-
nology, Beijing, China, in 2012. He is currently work-
ing toward the M.S. degree with Internet of Things
Lab, Beijing University of Posts and Telecommunica-
tions, Beijing. His research interests include internet
of things, sensor networks, and smart environments.

Hong Luo received the B.S., M.S., and Ph.D. degrees
from the Beijing University of Posts and Telecommu-
nications, Beijing, China, in 1990, 1993, and 2006,
respectively.

She is currently a Professor with the School of
Computer Science, Beijing University of Posts and
Telecommunications. She is also a Research Member
of the Beijing Key Lab of Intelligent Telecommuni-
cation Software and Multimedia. Her research inter-
ests include internet of things, wireless networking,
sensor networks, smart environments, and communi-

cation software.

Xiangyang Li received the Bachelor’s degree from
the Department of Computer Science and the Bach-
elor’s degree from the Department of Business Man-
agement, Tsinghua University, Beijing, China, both
in 1995, and the M.S. and Ph.D. degrees from the
Department of Computer Science, University of Illi-
nois at Urbana-Champaign, Champaign, IL, USA, in
2000 and 2001, respectively.

He is a currently a Professor with the Illinois In-
stitute of Technology, Chicago, IL, USA. He holds
the EMC-Endowed Visiting Chair Professorship with

Tsinghua University. He currently is a Distinguished Visiting Professor with
Xi’an JiaoTong University and the University of Science and Technology of
China. His research interests include wireless networking, mobile computing,
security and privacy, cyber physical systems, smart grid, social networking, and
algorithms.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

