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Abstract—In this paper, we study the two-tiered wireless are not restricted to: (Iilitary applicationsin the
sensor network (WSN) architecture and propose the optimal pattle field, i.e., enemy surveillance, target tracking

cluster association algorithm for it to maximize the overall ; . T
network lifetime. A two-tiered WSN is formed by number of [2], [3] and countersniper systems [4]; (Bjwiron

small sensor nodes (SNs), powerful application nodes (ANs),mental m()_nit(?ringn the countryside, i.e., mi(_:rOC”'
and base-stations (BSs, or gateways). SNs capture, encoddnate monitoring on Great Duck Island, Maine [5],
and transmit relevant information to ANs, which then send  [6]; (3) structural monitoring and emergency resgcue

the combined information to BSs. Assuming the locations ; o stryctural health monitoring of the Golden Gate
of the SNs, ANs, and BSs are fixed, we consider how tog, ., ~ . .
Bridge in San Francisco.

associate the SNs to ANs such that the network lifetime is

maximized while every node meets its bandwidth require- Thel fth fi . .
ment. When the SNs are homogeneous (e.g., same band- € low power of these iny Sensors raises a unique

width requirement), we give optimal algorithms to maximize challenge for the large scale wireless sensor net-
the lifetime of the WSNs; when the SNs are heterogeneous,works. Even these small sensors are able to act as a
we Eivi a2-6}$ptroximati9?h_a|910gth;ntghat ?FOdUCGfN a ”Iet' router to store and relay the data for other small sen-
WOrK wnose litetime 1S witnin 0 e optumum. e also .
present algorithms to dynamica/lly update ?he cluster associ- _SOI’S, It may take tens or even hunqreds O_f hO_pS forthe
ation when the network topology changes. Numerical results Information to reach the base station which is clearly
are given to demonstrate the efficiency and optimality of the not affordable in most circumstances. Another con-
proposed approaches. In simulation study, comparing net- cern is that these small sensors that are one-hop away
‘évl‘r’:c‘)s';f;f/'i?:' our algorithm outperforms other heuristics  frm the pase station would have to route nearly every

' i . piece of information generated by the sensors in the

Keywords— Network lifetime, wireless sensor networks, .
two-tiered, clustering. network, which makes them run-out of power (called
die) very quickly. Thus, the architecture of WSNs

should be revisited. Due to its possible massive size,
it is natural to build the large scale WSNs in a hierar-

The advances in Micro Electro-Mechanical Syshical model. In fact, several works have already ad-
tems (MEMS) technology, digital circuit design andressed different issues regarding this hierarchical ar-
wireless communication have enabled the built éhitecture, including minimizing the number of clus-
small, cheap and low power sensaegy, the Mica2 ters [7], [8], minimizing the total energy consumption
and Mica2Dot motes [1]. With the introduction of9] and maximizing the lifetime [10], [11]. Following
these components, the new systems which are cdhe work in [10], we consider how to maximize the
posed of thousands even millions of tiny computinifetime of a wireless sensor network with thousands
devices interacting with the environment and con®f tiny and simple sensor nodes (SNs) deployed in
municating with each other becomes possible. #region. In addition, there are several application
the meanwhile, several possible applications basedifles (ANs) who collect the information from small
wireless sensor networks composed of thousandssensors, process the collected information to produce
such tiny device are expected to come into practicednlocal-view and send the information back to the

the near future. These applications may include Hegse-station(BS) if necessary. Every application node
can communicate with the base station either by some
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emergency events if necessary. are said to be heterogeneous. The ANs are said to

Usually the small sensors sleep for most of thee homogeneous if (1) the energy consumption func-
time, only periodically sample the data and send H9" Of €very AN (based on total amount of data pro-
application nodes. Thus, once deployed, they usg%!c?q _by the SNs in its cluster) is the Same, and (2)
ally could last several months even years before th Iﬁ initial p(_)‘;/vert())f 'ﬁ‘NS are same, o_][_rrl]ermsg, these_
battery needed to be replaced, if it is feasible. Al- S are said to be heterogeneous. 1he main contri-
though the application node has much more po ytions of this paper are as follows. First, we present
compared with the small sensor nodes, they also cG2¢"€S of max-flow-based methods to form the clus-

sume much more energy due to the following reasongrs that optimally maximize the lifetime of the WSN

(1) the ANs need to wake up or stay idle for mchhen the small sensors are homogenous. We sepa-

longer time, which is usually proportional to the nurfately study the cases when the ANs are homogenous

ber of small sensors in the cluster; (2) the ANs usuaf%Ir zeteroaeneous. Since these metﬁods”age centrﬁl-
have transmission of bitstreams over much great fd, we then present a new approach (ca_e Smooth-
distances; (3) the ANs need to do more extensive f 9) W"_[h a lOW_ time complexity that is suitable for
cal computations. If not carefully designed, the app lynamic updating. When th? S”?i" sen?ors alre het-
cation nodes usually can only survive a shorter peri8 geneous we present an algorithm to form clusters

of time than the small sensors can. On the other hatji!®S€ lifetime is no .Iess .thaéno.f the optimum. We
if one or two small sensors die, the entire WSN wilen conduct extensive simulations to study the prac-

generally function properly while one or two app”pcal performances of our method compared with the

cation nodes running out of power could result in tfi€"formances of some simple heuristics. Our theoret-
complete lost of the coverage of certain area. Thdgg' results are corroborated by our simulation stud-

here we focus on how to maximize the lifetime of ad-es' , , )

plication nodes instead of small sensors. In a WSN, 1 he remainder of the paper is organized as follows.
usually a global view should be maintained with cel S€ction Il, we present some preliminaries and pre-
tain quality in order to work properly. RemembeYi0US works. In Section lll, we study the scenario in
that the global view is built from the local-views sen/Nich the small sensors are the same. We then study
by those application nodes, thus, the lifetime of tH8€ 9eneralized case when the small sensors could be
WSN heavily depends on the lifetime of certain ANglﬁerent in Se_ctlon V. We _also_dlscu§s some other
Therefore, we define the lifetime of a wireless sensGSUeS in Section V. Extensive simulations have been
network as a certain function of the lifetime of appliconducted to study the practical performances of our
cation nodes. In [11], the authors study the effect BfoP0S€d solutions. We conclude our paper in Sec-
the position of the base station on the lifetime of tHPN VIl with some possible future directions.

WSN. In their model, they assumed that there are al-
ready some clusters and each cluster is composed of
one application node and several small sensors. EdchTwo-Tiered Wireless Sensor Networks

application node in a cluster can receive the informa—A two-tiered wireless sensor network (WSN) con-

tion fr_om all small Sensors In the Same cluster ag(?sts of a set of small sensor nodes (SN), denoted as
send it to the base station either by direct connectlg?w — {51,50,--- 5}, @ set of application nodes

or intermediate routing. However, how to form th%F1

Il. PRELIMINARIES

| 4 what effect the cluster formation has aanV): denoted a8’y = {vy, vz, -, v, }, and at least
cluster and what effect the cluster formation has e base station (BS) The ANs and SNs farius-

the lifetime of the WSNs has not been answered. {21 in each cluster there are many SNs and one
this paper, we mainly focus on how to form the clusgy; - For simplicity, we assume that the application
ters efficiently and study the effect of cluster formay, e, is in clusterc; and the set of small sensors in
tion on the lifetime of the WSN. clusterC; is S; C S),. A small sensor, once triggered
We categorize the WSN into four different case®y the internal timer or some external signals, starts
whether the SNs are homogeneous or heterogenetoaisapture and encode the environmental phenomena
whether the ANs are homogeneous or heterogenedssich as temperature, moisture, motion measure, etc)
Here SNs are said to be homogeneous if the averagel broadcast the data directly to all ANs within its
produced data rates of SNs are same; otherwise, tirgyismission range and to certain ANs via the relay
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of some other neighboring sensors. Here, if AN wake-up time for SNs has been addressed extensively
can receive the data from the small sensothen we [15], [16], [17] and our formation could be coupled
callv; is a neighbor of;. Here sensos; may have to with any of these schemes. It is reasonable to expect
reach ANu; via relay of other sensors. For notationdhat the live time of an ANlecreasesvhen the num-
simplicity, we useN (v;) to denote the neighboringber of small sensors in its clusteicreases Thus, for
small sensors of AN,;. Remember that although sevan AN, its energy consumption mainly are composed
eral ANs can receive the data packets from the smaflthree parts: (1) the energy consumed to receive the
sensors;, only the AN in the same cluster aspro- information from the small sensors of its own clus-
cesses the information. Here, we assume that ornee (2) the overhearing cost incurred by those sensors
formed, the cluster formation does not change oveot belonging its cluster and can reach this AN; (3)
the time. We also let; be the data-rate of the smalthe energy consumed to process the information and
sensors; generates and(S) = > o 7; be the total the energy consumed to send the information to the
data-rates produced by a set of small sensofdsu- base station; and (4) the energy consumed when the
ally, the data-rate;(t) is a function over the time ANSs are idle listening. We implicitly assume that the
instead of a constant. However, if we average the rgewer consumption of (2) - (4) is a fixed value. En-
over a period of timel’, e.g., one day or one weekergy consumption for ANs in different applications
most often it is a constant. Thus, we can define thad scenario may be different. Thus, we do not rely
rater; as the the average rate over a period of timen any special assumptions about energy consump-
Sz T tion. Given an ANy, let S; € Sy, be the set of smalll

. ri(t) ..
i.e., r;, = “>———. When receiving the raw data . . .
ensors in its logical cluster. The power consumption

from SNs from its cluster, an AN might create an a&- : :
plication specific local-view for the whole cluster b of the AN v; is a general functiom(r(S;), N (v:)),

. : herer(S;) is the total data-rate of the small sensors
explorlng some correlations among the data sent by éinzzeN(v-) does not depend on the cluster
different SNs. In the meanwhile, some data fusi 3 !

n . ;
can be conducted by ANs to alleviate the redundarcl*gémauon and can be taken as a constant for a given

in the raw data sent by SNs. After an AN creates‘r"zg’phcatlon nodey;, we can simplify the power con-

local-view of the data, it then forwards the informaz" "PtON function ag;(r(5;)). This model takes into
%?_count all other power consumption that is a fixed

tion to a BS that generates a comprehensive glob iue. Th I tion in thi i< that func-
view for the entire WSN. Notice that here an AN caji® - ¢ ' € Ony assumption infhis paper ',S attunc
ion p;(x) should satisfy thap;(z) > p;(z') when

communicate directly with a BS, or optionally, ANs > 2/, i.e., the more information the small sensors in

can be involved in inter-AN relaying if such activitie'%he cluster generate, the more energy the application
are needed and applicable. ’

node consumes. Notice that, the above monotone in-
creasing property is only assumed to be true for each

_ _AN. For two different ANsv; andv;, it is possible
In this paper, we assume that SNs wake up perlqﬂatpi(x) < p;(z') whenz > .

ically to collect, process and transmit the data to the

ANs. This assumption is natural and used often @ | ifetime of a Two-Tiered WSN

practice. For instance, the small sensors are config- . ' o

ured to transmit once evefymins in the Great Duck [N this paper, we assume tha; is the initial
Island project [6]. After the formation of the clusterdPattery power level of the application nodg and
the AN are able to decide the time slot in which they(7(5i)) is its average energy consumption rate
need to wake up to receive the data sent by SNs frf¥fien the set of small sensof§ is in the cluster
its own cluster. It is critical to reduce the wake up:- The lifetime of an individual ANv; is define as
time due to the high power consumption for idle lisk = 5¢s;- According to thecriticality of a mis-
tening,i.e., sometimes it is as large as the receivirgjon, several different definitions of sensor network
power and about/2 of the transmit power. Recently"fetime has been defined in the literature.
minimizing the wake up time has been addressedsaCRITICAL APPLICATIONNODE LIFETIME (CANLT):
different layers [12], [13], [14]. In this paper, our fo-The mission fails when any AN runs out of energy,
cus is on how to form clusters properly so that thee., the lifetimeLy is Ly = minl,{/;}. The first
network lifetime is maximized. How to schedule th&N that run out of energy are denoted as the critical

B. Energy Model and Notations
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AN. If mission fails wheno percentage ANs are runnodes within one hop of one of its neighbors. This al-
out of energy, then it is called-Critical Application gorithm was improved by the LCA2 algorithm [18],
Node Lifetime (-CANLT). which generates a smaller number of clusters. The
o FuLL CoVERAGELIFETIME (FCLT): A small sen- LCAZ2 algorithm elects the node, with the lowest ID
sor is called @overedsensor if it has at least one aliveamong all nodes which are not withinhop of any
AN neighbor. The total sensing area of etivered chosen clusterheads, as a new clusterhead. The algo-
sensors is called the covered area of the WSN hetithm proposed in [19], chooses the node with high-
The mission fails when the covered area of the WSt degree among its—hop neighbors as a cluster-
is smaller than the originally covered area. If missidmead. In [20], the authors propose a distributed algo-
fails when the ratio of the covered area over the origthm that is similar to the LCA2 algorithm. The Dis-
inally covered area is smaller than percent&gthen tributed Clustering Algorithm (DCA) uses weights
it is called5-Full Coverage Lifetime (FCLT). associated with nodes to elect clusterheads [21]. It
In the literature, the definition of network lifetimeelects the node that has the highest weight among its
implicitly assumes that small sensors have longehop neighbors as the clusterhead. The DCA al-
lifetime than application nodes. The reasons includ@Qrithm is suitable for networks in which nodes are
but are not limited to, several practical considergtatic or moving at a very low speed. The Max-
tions: (1) In many applications, small sensors aMin d—cluster Algorithm proposed in [22] generates
densely deployed to provide better tolerance. Hende;hop clusters with a run-time ad(d) rounds. All
the small sensors could schedule themselves to sakove approaches are aiming to minimize the number
eral independent groups, and when one group is @clusters such that any node in any cluster is at most
duty, other groups can sleep. Thus, the lifetime dfhops away from the clusterhead.
small sensors in a group can be prolonged as a func-

tional unit. (2) Application nodes need coII.ect dat.a In [23], the authors proposed a clustering algorithm
from small sensors and send to base station Whigfat aims at maximizing the lifetime of the network
might be far away, which often costs more energy. py determining optimal cluster size and optimal as-
In this paper, we adopt the above definitions whejignment of nodes to clusterheads. They assumed
conducting theoretical analysis and simulations. Nfat the clusterhead consumes power to send the data
tice that, there are also several other different defifds the nodes in its cluster via broadcast. Thus, the
tions of lifetime of a wireless sensor network, €.gpower consumption of the cluterhead depends on its
see [11]. Our analysis can be extended to those sg&nsmission range, not on the number of nodes in

narios similarly. this cluster. This is fundamentally different from our
. model in which the ANs consume power to process
D. Previous Works and relay the collected information that is closely re-

Numerous literatures have discussed efficient clj@ted to the number of small sensors in the cluster.

ter formation for wireless ad hoc and sensor net-
works. Although almost all works assumed that there Results reported in [10], [11] are closest to this pa-
are some nodes acting aisterheadswvho are in per in spirit. In [10], Paret al. studied the problem of
charge of gathering the information from other nodesaximizing lifetime of a two-tiered WSN with focus
and sending back to some base stations, the critesiathe top-tier. By assuming th@ior known fixed
of forming the clusters vary from case to case. Omguster formation, the authors mainly studied how to
fundemental difference between the cluster formatipiace the base-station in the network such that the
problem studied in this paper and the traditional clukfetime of the WSN is maximized. The ANs are as-
ter formation problems is th&verynode could be a sumed to be homogenous in [10] and generalized to
clusterhead in the traditional methods, while only thge heterogenous in [11]. The authors also discussed
AN can be the clusterhead for the problems studigdw to relay the packets via ANs to some fixed based
here. stations. In this paper, we will focus on the lower-
In the Linked Cluster Algorithm (LCA) [7], a nodetier of the two-tiered WSN: how to form the cluster
becomes the clusterhead if it has the highest ident{ssociate small sensors to application nodes) so the
among all nodes within one hop of itself or among afletwork lifetime is maximized.



[1l. HOMOGENEOUSSMALL SENSORS subject to constraints

In this section, we stu_dy the case when the small zi; = 0,%0;,Vs; & N(v;); (6)
sensors are homogeneous,, all small sensors have

the same data rate, sayThusr(S) = r - |S|, where Tij 2 0, Vi, Vs (7)

|S| is the number of small sensors in the setWe Z xi; < T,V (8)

specifically discuss how to maximize the lifetime un- ;€M

der the critical application node lifetime (CANLT) Zx 1 Vs, 9)

definition when the application nodes are homoge- ” !

nous in subsection IlI-A and heterogenous in subsec-

tion I1I-B. Given the linear programming, we first construct
a flow network as shown in Figure 1 withas the

A. Homogeneous Application Nodes source and as the sink. There is a directional link

In this subsection, we discuss how to maximiz&’> 1 < i < n with capacityk, a directional link
the lifetime of the WSN when all application node§etweeru;s; with capacityl if s; € N(v;) and a di-
are homogeneous, i.e., their initial on-board energgctional Ilnks]t with capacityl. If T" < k, then a
are the same, sap and the energy consumptiorsolutionx of the above linear programming implies a
functions are the same, sayx) Remember that feasible flow for the corresponding flow network de-
Ly = min?{l;} = min}, Sror |S 5y andp(z) is in-  fined in Figure 1z; ; is the flow fromu; to s;. On the
creasing. Thus maximizing the lifetimey of the other hand, whek < T, a feasible flowf with total
WSN is equivalent to minimizing the maximum clusflow m for flow network defined in Figure 1 implies a
ter size. For simplicity, we denote,; = 1 if the feasible solution for the linear programming alsg;
sensors; belongs to cluste€;, andz;; = 0 other- is the flow f(v;, s;). In the following Lemma 1 we
wise. LetN(v;) be the set of sensors who args show the relation between a feasible solution to the

neighbors. We formalize the problem of maximizinégasible system (6) and the maximum network flow

Ly as the following Integer Programming (IP).  in the network shown in Figure (1).
Lemma 1:1f we fix T' = k, then there is a feasible
min max Z i j (1) solution to the FS (6) if and only if the maximum flow
viE€VN 51 €5 of the network illustrated by Figure 1 is, wherem

is the cardinality of5),.

Subject to constraints Proof. The proof that if there is a feasible solu-

x5 = 0,Yv;,Vs; & N(v;); (2) tionto the FS (6) then the maximum flow of the net-
2 € {0,1},Vs;, Yos: 3) work illustrated by Figure 1 im_is trivial ar_1d omit-

ted here. We only prove that if the maximum flow
Z Tij = 1,Vs; (4)  of the network illustrated by Figure 1 is then there

is a feasible solution to the FS (6). Without loss of

Obviously, a feasible solution of the above IP protgenerality, letf;; denote the flow on linky;s; and
lem is afeasiblecluster formation. For simplicity, theobviously, f;; = 0 for all v; ands; ¢ N(v;) be-
set of small sensors in the C|ustér|s denoted as, cause the link;s; iS5 does not exist. Notice that for ev-
in this paper, when no confusion is caused. Next @& nodev;, all the inflow comes from linksv;, thus
present two different approaches to solve the aboXees,, fi; < k for each node;. If the cardlnallty

IP exactly. of the flow ism, then the flow on each link;f is 1
which implies thay |, z;; = 1. This proves thaf; ;
is a feasible solution to FS (6). |
First, we use a Max-Flow approach to solve the IP Usually, for a maximum flow problem, the flow on
(1). By adopting the traditional techniques and reach directional link could be any real number. For-
laxing the constraints; ; € {0,1} to 0 < z;;, we tunately, the solution generated by the flow-network,
transform the IP (1) to a linear programming as folHustrated by Figure 1, has a well-known property.
lows: Lemma 2:If the capacity function takes on only
min 7T’ (5) integral values, then the maximum floyv has the

A.1 Efficient Centralized Approach
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vy, If there is a sensos; that can be moved from the
cluster ofv; to the cluster ofv,. The weight of the
edge is the number of such small sensors that can be
moved from the cluster af; to the cluster of,. Fol-
lowing algorithm presents the method constructing a
virtual graph based on a feasible solutioto FS (2).
(a) homogeneous SNs (b) heterogenous SNs

Fig. 1. A flow network for two-tiered WSN. Algorithm 1 Constructing the virtual graph
Input: A set of ANsVy, a set of small sensors,,

h o lued ¢ IIand a feasible solutior, e.g, assignings; randomly
property that f| is integer-valued. Moreover, for all; av; wheres, € N(v;)

verticesu andv, the flow on edge:v is an integer. Output: A directed virtual graph’ G (x).
Lemma 2 immediately shows that the flow on each
link v;s; is either0 or 1. Remember that the flow_

SetVy as the vertices for virtual graphG.

. L 2: for every pair ofv; ands,; such thatz; ; = 1 do

on link v;s; corresponds ta; ;, which implies that s for evﬁrr;vk SLfch thaftjs- € N(uy) do
zij € {0,1} for everyw; ands; € N(v;). Thus, if there is no directed edgev;, from v; to
a feasible solution to FS (6) also satisfies the con- or then
straints (2). Letx™i® be the solution to IP (1) and5_ kAdd a directed edg@;m; from v; to v,
T™0 = minmaxe.evy 2g;es, Xi5 g Set the weight of the edge tov;v;) = 1.

If we know the exact value of ™", then we can g. else
find x™" by solving the maximum flow problem in-. Update the weight ag(v;v;) = ¢(v;v;) +
network (1). Remember thdt™" is a non-negative 1.

integer and is at most, thus by performing a binary

search o™ we can find the exact value. In the directed virtual graply G(x), if there is a
We can find the solution to IP (1) by solvingyath fromu; to v;, then we say; reachesv;. All
log m max-flow problems for different values af. \qrtices thaty; can reach forms a s&;(x), called
Thus, the time complexity for Max-Flow approach ighecliquecentered at the AN;. Given a solutiorx of
m-logm - (n+m)?, which is very expensive and im-gg (2 and its corresponding virtual grapld(x), we

practical. Notice that the cluster formation problefRaye the following property about cliques (its proof is
with minimum cluster size becomes the Maximurgnmitted due to space limit).

Cardinality Matching problem in a bipartite graph | amma 3:Given a feasible assignmestof small

[24]. In [24], Hopcroft and Karp presents the beslongors to ANs and its corresponding virtual graph

known algorlthm that achleve§ the time co_mplexnyG(X)’ for any ANwv; and its cliqueR; (x) in VG(x),

Vm - nm. 3Th|s reduces the t|1r}12e complexity fromy /s also a feasible assignment of SNs to ANs, we

O((n + m) ) to O(nm . (n + m) log(n + m)) for _ VeZv-eRi(x) |SZ(X)| < ZV-E'Ri(x’) |Si(X’)|

a fix valueT'. Therefore, we can solve the IP (1) in 3 . . 3 .

time O(n - m2 log?(m)). The Algorithm relies on th_e relation _between
w;(x), wj(x) andT™" wherev; is the AN with the

largest weight and; is the AN with the smallest

weight inR;(x).

Although the previous approach computes a clus-Lemma 4:Letv; be the AN with the largest weight
tering quickly in centralized manner, it may be toandv; be the AN with the smallest weight iR;(x)
expensive to collect the necessary information. In thigder any feasible assignmest then |S;(x)| <
subsection, we propose a different approach that BA™ < [S;(x)].
be implemented efficiently in a distributed manner. Proof: Remember that; has the maximum
The basic idea of this approach is to construct a vireight among all ANs, thug™" < |S;(x)| trivially
tual directed graph on ANs and iteratively move thieolds. Therefore, we only need to propMg (x)| <
sensors from those clusters who have the largest niR#®. We prove this by contradiction. For the sake
ber of small sensors to smaller clusters. In the virtuad contradiction, we assume all ANs reachableuvby
directed graph, there is an edg@;, from AN v; to has a weight greater thah. From the assumption

A.2 Efficient Distributed Algorithm by Smoothing



that|Sy.(x)| > T™™ for everywv;, € Ri(x), we have Algorithm 3 SMOOTH(v;, v;, VG(x), X)

S(Ri(x) = Lveeri Sk(x)] > T™ - |Ri(x)|, nput: Afeasible assignmentand its corresponding

\l/)vhere|72i(x)| denotes the number of ANs reachablgirected virtual grapi’ Gi(x), a pair of nodes; and
Y ;. ;.

Let x™i* be the solution to IP (1). From,. Letv;,v;, - - - v;, be the path connecting andv,
Lemma 3, we obtain thal’,, cr, ) |9k (x m)| > with the minimum number of hop. Here,, = v
D versx) [Sk(x)| > T™" - [Ri(x)|. Remember andov;, = v;.
that 7™ - [Ri(X)| > 3, crio [Sk(x™™)]. Thus 2. fort=0tok —1do

T |Ri(x)| > T™". |R;(x)|, which is a contradic- 3: Assume thatr;; = 1 for some SNs, with

tion. This finishes our proof. | s¢ € N(v)) ands, € N(vi1). Setzy; = 0
Given a virtual graph constructed by Algorithm 1 andz;1; = 1, i.e., moves, from clusterC, to

based on a feasible assignment of SNs to ANs, our clusterC. .

approach to find a better solution is to iteratively ap- for everyv, such that, € N(v,) do

ply a process calleBMOOTH to reduce the maximum5: Updatec(vuva) = C(m) 1. Remove

weight of the application nodes if possible. Here, the directed link;, v, if c(v;,va) = 0.

weight of an application node under a feasible as-s: Updatec(v;,,,v,) = c(zﬁ) + 1. Add a

signmentx is the number of small sensors assigned directed linkv;,, v, if c(v;,,,vq) = 1.

to the clusteC;, denoted as);(x). 7. Setw;(x) = wj(x) + 1 andw;(x) = wi(x) — 1.

Algorithm 2 Smooth Algorithm
Input: A feasible assignmemn.
Output: A solutionto IP (1).

1. Construct virtual graply G(x) based on the fea-
sible assignment using Algorithm 1.

Tmn = wi(x) — 1 or T™" = w;(x). First, we

consider the case whefi™™ = w;(x) — 1. In
7 . > min .

2 repeat this case, we have;(x) > T™" for everyv, €

3: Find the AN with the largest weight, say. If Ri(x) which implies > ,, e, i |Si(x)| = T -

there are more than one such ANs, choose OH%I — 1| + T™* + 1. For the solutionx™"
randomly. f IP (1), every AN’s weight is not greater than

4: Find the AN with the smallest weight in7"™"". Thus Zv R0 [9i(X mim)| < T \7_2( x)|.
Ri(x), sayv;. If there are more than one suctirrom Lemma 3, we have_, cr, o [Si(x™")] =

ANs, choose one randomly. > vier (o |Si(X)]. This implies that™™ - |R;(x)| >
5. Apply proceduresSMOOTH(v;, v, VG (x),X).  rpmin . |7z (x) — 1| + T™ 4 1, which is a contra-
6: until w;(x) < wj(x) +1 diction. Thus, ™" = w;(x). Remember that is a
solution to the FS (2). Therefore,is a solution to IP

Theorem 5:Algorithm 2 terminates after at mos{(1). This finishes our proof. [

m iterations, with an solution to IP (1).

Proof: From Lemma 4, we have);(x) < Now we analyze the time complexity of Algorithm
T < wi(x). If Algorithm 2 does not stop at this2. In proceduresMoOTH(v;, v;, VG(x), x), there are
iteration, we havey;(x) > wj(x) + 1, which implies at most: nodes on the path betweenv; and up ton
that7™" > w;(x) + 1. For a feasible solutiog, we iterations in the “FOR” loop between line7. Thus,
defined;(x) = |Si(x)| — |Si(x™")| if w;(x) > T™* the time complexity 06MOOTH(v;, v;, VG (x), x) is
and0 otherwise. LetA(x) = >°_ _y, di(x), itis not O(n?). From Theorem 5, it takes at maS{(m - n?)
difficult to observe that\(x) will be decreased by for Algorithm 2 to terminate. Constructing the virtual
for each iteration. Thus, Algorithm 2 terminates aftegraph based on a feasible solutiwrtould take time
at mostm iterations. O(m-n?). Thus, the total time complexity of smooth-

Remember when Algorithm 2 terminates, we haweg algorithm is als@(m - n?). If n = o(y/m), then
wi(x) < wj(x) + 1. Combining with the rela- Algorithm 2 outperforms the best known max-flow
tion w;(x) < T™n < w;(x), we havew,;(x) < algorithm bylog®m; whenn is a constant the time
T™min < w(x) < wj(x) + 1. This implies that complexity become®(m) which is optimal.
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A.3 Efficient Distributed Implementation Regarding the distributed Algorithm 4, we have the
following theorem.

So far we have illustrated the basic idea of the ) )
Smoothing algorithm, which clearly can be imple- Theorem 6:Algorithm 4 converges in at most-n
ment in a distributed manner. In the remainder of tf@uUnds and total message complexityJign* - m) if
section, we will describe how this method can be ini?€ ANS are homogeneous.
ple_mented efficie_ntly. Giyen an Ahl;, we Sayv; Is Proof: Given an assignment, we denotex;(x)
adjacent to ANy if there is a small sensoy, in the ;¢ 1o nymper of small sensorsith largest cluster.
cIuster_Ci N N(v_j). If v; andv; are not adjacent, thenLetFi(x) _ Zi:1 w;(x), andx® be the assignment of
we define the distance betwegrandv; as the small- : L n f
est number of hops between them if we consider t gtﬂsecr)ési;narztrjnnﬁl. Si?}gz'gj%ri':i% zn%:igg \I/?n(;Z)
adjacent graph of the ANs. For an Althat is adja- . round, then|Sy| > || + L andit < i*. Né)-

centwv,, let ¢ be the largest non-negative integer suc%ﬂ . .
;7(r,2 z_”g.r)g g g Ice that after the small sensor migrating from clus-
that J ske:;’?]v 7y

: < wi(x). We define thellit- ter ¢, to v, Ty(x*) decreases by if j < ¢ < i
ferenceof v; andv; asdif; ;(x) = ¢. Based on the and does not change otherwise. Thi%,decreases
notation of difference, we have following localizedby 1 for every small sensor migrating. It is not diffi-
algorithm. cult to observe that if there is no small sensor migrat-
ing in roundk, then Algorithm 4 terminates. Since

; . . )
Algorithm 4 Distributed Smoothing aigorithm forl < 7 Algorithm 4 terminates in at most - m
AN v, rounds.

Input: An initial_ assignment, -, ; for every adja- _In every round, every AN sends only one RE-

cent AN v, that is the number of sensors that are WUEST message and receives at most one REJECT

N (i) (C;- message. Thus, there is at mastn) REQUEST

1. When v; receive an UPDATE-LEAVE or and REJECT messages. It is also not difficult to ob-
UPDATE-JOIN message from an adjacent ANerve that every AN sends at most one ACK mes-
vj, it updatesy; ; if necessary. sages. Thus, there are at ma3tn® - m) RE-

2. Letw; be one ofv;’s adjacent AN with the maxi- QUEST, ACK and REJECT messages in total. On
mum difference. Here, we break the tie arbitrathe other hand, there is exact one UPDATE-LEAVE

ily. and UPDATE-JOIN message for every small sensor
3 if dif; ;(x) > 1 then migrating. Thus, there are at ma@gtn-m) UPDATE-
: Send a REQUEST message to AN LEAVE and UPDATE-JOIN messages. Therefore,
5.  Whenv; receives all REQUEST messages th@e overall message complexityGgn? - m). ]

ANs that adjacent to it, it sends out an ACK mes-
sage to the AN that has the maximum weight and Notice that the message complexity analysis is
REJECT messages to all other ANs. very pessimistic. In simulations, it is much smaller
. if v; receives an ACK message framthen than the worst case analysis. Observe that when Al-
7 Choose one SN, say,, in C;(\ N(v;). Set gorithm 4 terminates, it not necessarily gives an op-
z;, = 0 and send SUCC message with the [bmal solution. However, Algorithm 4 gives the best
k to v;. solution among all localized algorithms in which ev-
8: Upatey, ; = v;; — 1 and send the UPDATE-ery AN can only know the information of its adja-
LEAVE message with IDk to all adjacent cent ANs. Furthermore, if we define the diameter of
ANS. the network as the largest distance of the ANs, we

9- When v; receives the SUCC message fram have the following theorem (its proof is omitted due
with ID £, it first setsz;, = 0 and~y(j,i) = !0 space limit).
v(j,7) + 1. After that it also sends UPDATE-
JOIN message with I[2 to all adjacent ANSs.
Remark: Afterward, we also say that the smal
sensorsy, is migratingfrom clusterC; to C;.

Theorem 7:When Algorithm 4 terminates, it gives
n assignment with maximum cluster size at most
< T™in + D whereD is the diameter of the net-
work.
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A.4 Dynamic updating could be redeployed (e.g., new ANSs join the system
g after old ANs have been activated). Further-

In wireless sensor networks, some old sensors nlg . s
re, two different application nodes may consume

run out of battery and new sensors may be deploye . :
different energy to receive, process and send the in-

from time to time. Furthermore, in certain appli . i .
formation to the base station even given the same set

cations, some sensors are able to move. Thus, ésmall sensors. Thus, it is more practical to assume
is necessary to consider how to dynamically updg S - 1 nus, P assu
application nodes are heterogenous. In this paper,

the cluster when the WSN changes. Here, we foctu ) " L.
g consider the heterogeneity in two ways: the initial

on the case when single small sensor leaves or jomgb q q ton functi
the WSN. If there are more multiple sensors joinin%n oar engrng and energy consumption function
x) wherez is the sum of the rate of the small sen-

and/or leaving, it could be easily be reduced to the"/
single sensor case. When an AN node runs out Ji'S |n_the C'“Stef- L
power, the small sensors in its cluster has to be reN this subsection, we redfglfwzeaelghtgf')a AN vi
assignedi.e,, it is treated as the case that a group &r assignmenk asw;(x) = $ where
small sensors joins the networks. We discuss hd@w is the initial onboard energy and(zx) is energy
to dynamically update the cluster formation after tr@onsumption function. Here, the lifetime of the net-
formation of the cluster according to the localized Alwork is defined as
gorithm 4 by cases. P,

Small sensor leaving In this case, we assumel = max Ilégl > : " = min max w; ().
the sensor;, originally belongs to cluste€;. The VEEN P\ 2sjesn Tiid N
weight of v; is decreased by. Assumev; is the  Thus maximizing the lifetime is equivalent to min-
AN with the largest weight that is adjacenf. If imizing the maximum weight over all ANs. Simi-
wj(x) > wi(x) thenv; sends an UPDATE-LEAVE |ar to the approach for the homogenous application

message with 1D to every adjacent, with ID k. node case, we formalize the problem as an Integer
Otherwise, we first choose any arbitrary small sengofogramming as follows.

s¢ € C;( N(v;). Removes, from C; and assign it to
C,. v; sends an UPDATE-LEAVE message with ID

pi(r ' ZSJ'ES]W :L'ZJ)

k and an UPDATE-JOIN message with Do every o 1%% P; (10)
adjacent ANp; sends an UPDATE-LEAVE Messagepject to constraint
with ID 7 to every adjacent AN.

Small sensor joining In this case, we assume the x;; = 0,Yv;,Vs; & N(v;); (11)
sensors,, joins the wireless sensor network. Find the i, € {0,1},Vs;, Voi; (12)
AN v; with the minimum weight such that, € N(v;) ’
and assign, to clusterC;. v; sends out an UPDATE- and Z T =1,Ys; (13)

JOIN with ID k to every adjacent AN.
For any individual small sensor leaving or joiningB.1 Max-Flow Approach

the clustering terminates in at mastrounds and the Similar to the homogenous case, by adopting the

overall message complexity is at m&tn- D) where traditional techniques, we transform the IP (1) into a

D is the diameter of the network. However, in S|mﬁgw P as follows:
ulations, we found that the message complexity an

convergence rounds are battfl) most of the time. min7T (14)
B. Heterogeneous Application Nodes Subject to constraint

In subsection IlI-A, we discuss how to form the z;; = 0,Yv;,Vs; & N(v;); (15)
clusters when both the small sensors and application i € {0,1},Vs;, Voy; (16)
nodes are homogeneous. However, in practice, such
node homogeneity cannot always be guaranteed. For Z Tij = 1,s;; 17
example, the initial onboard energy of ANs built by vi
different vendors may not be proportional to the bit- Z Ti; < ky, Vv (18)

rate at which they generate, or the application nodes ;€S0
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Herek; = @ Theny"
pi(r>, ESM Zi )

syesy Tig < kils equiv-

alent to < T sincep;() is assumed 10 Ajgorithm 5 Smoothing algorithm for heterogenous
be monotone non- decreasing. ANS

Letx™" be the solution to IP (14) anb™® pe the Input: An Integer Programming (10)
minimum weight of the ANs. Unlike in the homogeQutput: The solution to Integer Programming (10).

nous SN case, the valig™ could be any positive ;. Finq 5 feasible solutios, e.g, randomly assign
real number here. Thus, the simple binary search on every SN to a neighboring AN.

T™" does not work. However, since there must exist  construct a virtual graph’G(x) based orx by
an InleZ suchthaty® ¢ xi; = ki, wecan guess  applying Algorithm 1.
such index fromi = 1 to n then perform a binary . repeat

search o), . ;. Therefore, we only need to,,  Choose any one of AN with the largest weight
decide whether there is a solution for the following randomly, say;.
Feasible System for a givein ‘. Definew (x) — Pr(ry,, ;skM Xie j+T)
ziy = 0,V Vs; & N(uvy); (19) © Find the AN v; with the smallestﬁ( ) in
’ 215 € 10,1}, Vs, Vo (20) Ri(x). If there are more than one such AN,
I PR choose one randomly.
Zl’i,j =1,Vsj; (21) 7 Apply procedure
i SMOOTH.HETE(v;, v;, VG(%), X) if
Z T S ki,Vvi (22) wi(X) > w_jJr(X)
;€801 g until w(x) < w; (x)

Here, we construct a network withas the source

andt as the sink as shown in Figure 1. There is

a directional linksv; (1 < i < n) with capacity

k;, a directional link between;s; with capacity1 if

s; € N(v;) and a directional Iinls_j;f with capacityl. Algorithm 6 Procedure

Similar to Lemma 1 for homogenous case, we ha8®OOTHHETE(v;, vj, VG(x), X)

the following lemma. The proof is straightforwardnput: A feasible solutionk of FS (11) and its cor-

and is omitted here. responding directed virtual grapiG(x), a pair of
Lemma 8:There is a solution to FS (19) for a givemodesy; andv.

T if and only if the maximum flow of the network (1)1:  Letuw,, (v;)v;, - - -v;, (v;) be the path connecting

is m, wherem is the cardinality ofS);. andv; with the minimum number of hop. Here,
By guessing thd” for log m - n time, we can find vy, = v; andu;, = v;.

the solution to Integer Programming (10) by solv fort =0tok — 1 do

ing log m - n bipartite max-flow problems. Thus, the;. Assumer;; = 1 ands, € N(vyy,). Setz,; =

time complexity for Max-Flow approach i©(n?* - 0 andz,y1; = 1.

m?®?log?(m)) which is very expensive and impracs. for everyq;a such thats, € N(v,) do

tical. 5: Updatec(v;,v,) = c(v;,v,) — 1. Remove
directed linkv;, (v, ) if c(v;,v,) = 0.

B.2 Smoothing Algorithm 6:  for everywy, such that, € N(v,) do

In this subsection we continue to show that our (i, 0p) = (v, 0p) + 1. Add a directed
smoothing Algorithm 2 also applies to the heteroge- link v;, ., vp if c(vi,, 05) = 1.

nous case with only minor modification. Update w;(x) = wf(x) and w;(x) =
Lemma 9:Letv; be the AN with the largest weight pi(r'ZSJG;M X5 7T)

and v; be the AN with the lowest weight that is
reachable byy; in a feasible assignment. Then
wj(x) < T™in < wy(x).



11

Theorem 10:Algorithm 5 outputs a solution of IP Proof: We consider the special case when ap-
(14) and terminates aften iterations. plication nodes are homogeneous. In this case, since

The proof of this theorem is omitted here due to,(x) = p(z) is increasing, it is equivalent to mini-
space limit. Surprisingly, the time complexity of Al-mizing the maximunESjeSM r; - x; ; subject to con-
gorithm 5 is alsa)(m -n*), which is exactly the samestraints (24). If every ANy; satisfies thatV(v;) =
as in the homogenous case. This reduces the tigig — v,, then the problem becomes the traditional
complexity by an order of/m log*m and more im- job scheduling problem [25], [26], which is known to
portantly, Algorithm 4 also works for the heterogehe NP-Hard. This finishes our proof. H
nous case with only modification of the definition of Sjnce solving IP (23) is NP-hard, we will present
difference. However, we only have the following conan algorithm approximating the optimal solution by
jecture for the convergence and message complexitrowing some ideas from job scheduling [27], [28].

of localized smoothing algorithm. It is an open anflgain we transform IP (23) into Integer Program-
interesting problem to either prove or disprove th@ing (27) as follows.

following conjecture.

Conjecture 1:Algorithm 4 terminates after at most min T’ (27)
n-m rounds and the total message complegity, - _ _
m) when the ANs are heterogenous. Subject to constraints
IV. HETEROGENEOUSSMALL SENSORS z;; = 0,Yv;,Vs; & N(v;); (28)
Usually in WSNSs, several different kinds of sen- x5 € {0, 1}, Vsj, Voy; (29)
sors cooperate together to fulfill some certain goals. Z v =1,Vs;; (30)
Some sensors may generate data at a higher rate than o

others doeg.g, the visual sensors have a bit-rate that is
much higher than the bit-rate generated by a temper- Z rj - @iy < ki, Vi (31)
ature sensor. Even in scenarios when all small sen- 85 €5

sors are of same type, sometimes sensors locateg, a _

t _ 1 ) min H
different locations may need to sample the data a F@e Eg% a—n gr}m(f%ej,;%e;itl)} un(?grtg(()alust(i)cl)l:::gl?nto

different time_interval. Th_us, it is more reasonable ﬁ?is easy to observe that™n satisfies the following
assume that in a WSN different type of sensors pro- J

duce different bit-rates. constraint.
By assuming that every small sensor has its own
data rate-;, we formalize the problem of maximizing

the lifetime as an Integer Programming as follows: |t we relax the constraint; ; € {0,1} we obtain a
Linear Programming as follows.

Tij = 0 V’UZ‘,VSJ' ri > k; (32)

pi(Zs]-eSM ry- $z;)

i 23
I Pi (23) min 7T’ (33)
Subject to constraint Subject to constraints
w5 = 0,Yv;, Vs; & N(vy); (24) 2 = 0,Y0;,Vs; & N(v;); (34)
xi,j € {0, 1},V5j,Vvi; (25) l’ij Z O,VUz‘,\V/Sj; (35)
;xm = 1,Vs; (26) S iy =1,9s;; (36)
Unlike the case for homogenous SNs in which we Z 7wy < ki Vo (37)
can find the solution that maximizes the lifetime ex- 515 ’
actly, Theorem 11 shows that it is NP-Hard to find the
solution to IP (23). Let z* be the solution to LP (33) plus constraint 32

Theorem 11:We can not find the solution of IPandT™* be the value ofin 7" under solutiornz*. Then
(23) in polynomial time ifP # N P. T* < T™in, By binary search ofi'* we can find the
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solutionz* to LP (33) plus constraint 32 in polyno-we assumed that every SN can reach at least one AN
mial time. Furthermore, we can find a solutienthat directly. However, this assumption may not be true
has some special properties. For a small seasof in practice because SN’s transmission range is usu-
there exists an AN; such thab < z; ; < 1, we call ally smaller than the AN’s. Thus, the SNs formed
s, Is fractionally assigned to clustér. We construct a routing tree that could be reached by some ANs,
a graph with verteX/y | Sy, and add an edgev; if  which complicated the case. However, if we define
and only if0 < z; ; < 1. Obviously, it is a bipartite C; as all the SNs that belong to the tree that is rooted
graph and it is generally known [28], [29] that we caatv; and N (v;) as all the SNs that can communicate
transform the solution* to another solution* such or belong to some SNs i6;, our localized smooth-
that its corresponding bipartite graph is composed iafy algorithm still has a pretty good performance in
forests with(or without) a line. Remember that evenhancing the life time although it does not achieve
ery node inS); connects to at least two nodesAn;, the optimal. Our conjecture is that it is impossible to
thus there is a matching such that every nodéjin find the optimal solution in this case unle8s= N P

can connect to a distinct node itw. The final solu- and it could be an interesting open question to find
tion is to assigr; to cluster with head; if one of the the some algorithms with good performance guaran-
following two conditions holds: tee that integrates both the routing tree formation of
o xj; =1 SNs and the clustering of these SNs.

« ; Is connected withy; in the matching. Multihop Network of ANs : Remember that in or-

In this section, to make sure that we can guafipr tg simply our analysis, we assumed that the ap-
antee the performance of the above job-scheduligg:ation nodes send the packet directly to the base
based approach, we add one more requirement &tiion |n the real world, it is possible that the appli-
the power consumption functign. We assume that ation nodes form a multi-hop relay network to relay
the marginal cost of, («) is not increasingi.e., for  {he packets to the base station. Different application
x1 2 @2, pi(1 +0) — pi(21) < pi(22 +0) — pi(T2).  podes may be in different positions in this relay net-

This assumption is almost universally satisfied. {fork according to the base station. This makes the

this assumption is not satisfied, we can construct Sfoblem even complicatede., all these ANs that can
amples to show that the above approach (based,@gch pase station directly are expected to relthy
job scheduling) cannot provide any theoretical perfofyg packets generated in the network. This makes the
mance_guarantees, although its practical performang@s cioser to BS easier to be run out of power than
may still be good. _ far-away ANs. Notice that we did not pose any spe-
Theorem 12:0ur job scheduling based methody| restriction on the energy consumption function
produces a cluster formation such that the lifetime gf 5, application node. In other words, we assumed
the WSN is at leas} of the maximum lifetime of the 4 generic energy consumption function for ANs. If
WSN. _ we can defin€; as all the SNs whose traffic need to
Proof:  For any ANw;, there is at most On&  pe relayed viay; and N(v;) as all the SNs that can
connecting ta; in the matching and, < k;. Thus, communicate or belong to some SN<ipour local-
ZsjesM Ty~ Lij = ZsjesM\r[ i Tij T T Ta < jzed smoothing algorithm still works when the relay
2k;. Therefore,p; (3, cs,, 75 - @ij) < pi(2ki) < network of the ANs are known in advance. However,
2p;(k;) = 2P; - T* < 2P; - T™», This finishes the some algorithms other than smoothing algorithms are
proof. B needed to decide the ANs relay network formation
when it is not known in advance and we list it as one
V. OTHER ISSUES of our possible future research directions.

In previous sections, we proposed several methodsStatic vs. Dynamic Cluster In previous sections,
for clustering formation for two-tiered wireless senwve discussed how to maximize the lifetime of the
sor networks. Although we have addressed the he¥SNs by forming some logical clusters. We required
erogeneous application nodes and heterogeneous es-the cluster formation is permanein,, the clus-
sor nodes, there are still lots of interesting questiotes's do not change during the whole lifetime of WSN.
left for further research. Obviously, the lifetime of the WSN could be further

Multihop Network of SNs: In previous sections, improved if we allow a dynamic cluster formation,
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i.e, the clusters will adapt to the remaining enerdyetweenl 00 units and200 units. Hereafter we call a
level of the ANs. Notice that the improvement oémall sensor node that has power remaining and has
lifetime is not guaranteed since there is always ovet least one alive application node in their transmis-
head to dynamically update the cluster. For exampon region as aalive sensor

when the power consumption function satisfies a cer-

tain propertyge.g, itis linear, the lifetime is improved A-1 Other Heuristics

by at most a very small fraction. Thus, we Only con- To Study the performance of our Smoothing A|go_
sider the static case in our simulation afterwards. rithm 2, we compare it with other heuristics listed be-
low: (1) [-Nearest] Each sensor node is assigned to

VI. PERFORMANCESTUDIES the nearest AN. (2}-Arbitrary] Each sensor node is

We conducted extensive simulations to study tfi@ndomlyassigned to one of the application nodes in-
performance of different algorithms and approachgile its transmission range. ([@pmart-Arbitrary] In
introduced in this paper. As mentioned earlier in thi§is method, each sensor nodegasdomlyassigned
paper the network is composed of application nod&sone of the application nodes that is inside the sen-
and sensor nodes. Sensor nodes communicate &Rk Node’s transmission range. The probability of a
application nodes only and application nodes comN s; assigned to a neighboring AN is the ratio
municate with sensor nodes and other applicatiopkthe remaining power of; over the total remaining
nodes. Here we mainly study the case with hetergower of all neighboring ANs of this Sh. (4) [-All]
geneous application nodes and homogeneous seft®fi€, each sensor node is assignealit¢the applica-
nodes. Each sensor node has a transmission rapi@@ nodes that are inside the sensor node’s transmis-
and is able to communicate with application nod&on range. This is clearly the worst method. Thus
within its transmission range and also each sensor MggWill not compare with this method in most simu-

a sensing range and is able to monitor the area wit##ions.

its sensing range. We assume that the ANs have Ee . .

same properties but are different in the initial power’ Simulation Results

and the power consumption rate for sending a ultl Lifetime

amount of data to the base-station. In addition, W€\ this subsection, we compare the lifetime of

assume that the transmission range and the Sengiig jitterent methods under two different definitions
range of all sensor nodes are the same. Each apB*'ertimes: CANLT, FCLT. Fora-CANLT and -
cation node consumeme unitof battery power to FCLT lifetime, whena and 3 are smallerj.e., a —
Serve one sensor node for one day. 30%; our smoothing algorithm performances much
worst than most the other methods. The reason is that
our smoothing algorithm makes its best effort to max-
We randomly placed2000 sensor nodes in aimize the lifetime whermv = 100% and 5 = 100%.
800 feet x 800feet square region, the transmissiofhus, fora or g that is different fromi00%, we can
range of each sensor node is sethtfeet and the apply the following simple technique: sefd- « or
sensing range is set 0 feet. Notice that, the small 1 — 5 percentage of the ANs to sleep in a round-robin
sensors are typically randomly placed without anpanner. This technique can apply to all five methods
strategic locations. To guarantee that the area ofr@ntioned above for the sake of fairness. It is not dif-
a x a square feet region is covered with high prolicult to observe that the lifetime of all four methods
ability by n» small sensors with sensing rangewe increase by a fix percentag%{; or 1%). Thus, it
should have the following relationw(£)* ~ Inn. suffices to use the CANLT and FCLT only. See Sec-
We found that the small sensors with these settintysn Il for definitions. Figure 2 (a), (b) show the life-
in our simulations will cover the majority part of theime of different assignment methods under lifetime
region. Then we put a different number of applicaiefinition CANLT, FCLT respectively. We generate
tion nodes, from 50 to 300 (with incremental5) and 100 random WSNSs and all results are the average over
measured the network lifetime based on several difie performance of thed®0 WSNSs.
ferent definitions of lifetimes. In addition, the initial As can be seen, the network lifetime increases al-
battery power of each sensor node is a random vaest linearly with the number of application nodes

A. Simulation Environment
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Lifetime (CANLT)
5 & 8

3 4 5
Number of ANs

(a) CANLT (b) FCLT Localized and Centralized Algorithm
Fig. 2. Comparison of lifetime for different methods

available initially for all methods, except the simplestensor nodes and also the percentage of coverage area
ALL approach that does not perform any logic clustare basically the same as shown in Figure 3 (b) and
at all. A striking observation is that, as we expecte(t).

our smoothing based method outperforms all other

tree methods under all four definitions of lifetimes re-

gardless of the density of the application nodes. In §I3 Area Coverage

simulations, we found that our method generally out-

performs the other methods by alm®80%. In other

words, the network lifetime is almosioubledwhen To further study the area covered by sensor nodes

our method is used to form the cluster. we build a two tiered sensor network wiih applica-
tion nodes,1000 sensor nodes randomly placed in a

We also compare the performance of the Centra|: ) 7
. : . : 0feet x 250 feet region. The transmission range of
ized Smoothing Algorithm 2 (CSA) and Localize : .
all sensor nodes is set’0 f cet and the sensing range

Smoothing Algorithm 4 (LSA)' We fixed the NUMs set tol0feet. To servel000 small sensor nodes
ber of the ANs to50 and varies the number of SN . .

: , or one month30, 000 units of energy is needed. We
from 200 to 500. Figure 3 (c) shows difference of theset the initial battery power of each application node
lifetime (CANLT) between CSA and LSA, and it is yp PP

not difficult to observe that the lifetime of LSA ancf0 a random value betweal0 and800 units. Each

CSA only differs about% to 8%. This corroborates appllcano_n node has_ on averagib units of bat@ery
: : . ower. Figure 4 depicts the sensor node assignment
our theoretical analysis and we will only compare the . .
lifetime of CSA with other four methods afterwards > nd coverage of the network at various date by vari-
ous methods.
B.2 Load Balancing In the method (callecALL) that do not perform
logic cluster all application nodes die aftgérdays.

As mentioned in Section 1lI-B, for heterogeneou&s can be seen in Figure 4, afté days, the "Near-
application nodes case, application nodes have dist AN” and "Arbitrary AN” methods fail to keep all
ferent initial battery powers, and the objective of thine application nodes alive and hence the area is not
Algorithm 2 is to assign less sensor nodes to applidaily covered. Till the end of day9, our method
tion nodes that have lower remaining battery poweraintains to keep all the application nodes alive and
and more sensor nodes to application nodes that haeace the full coverage. Our algorithm guarantees a
higher battery power. To see how good the load b&lalanced power consumption of the application nodes
ancing of our algorithm is, we run simulation for th@nd maintain full coverage. For the lifetime defined
networks with150 application nodes till all applica-based on coverage area, our method improves the
tion nodes die. As can be seen in Figure 3, our algdetime of the network by almos20% for this net-
rithm achieves a very good load balancing meanimgprks (composed of000 sensors and0 application
that all application nodes consume energy at a ratedes in &50 feet x 250 feet area). Our previous
proportional to their initial battery power and thesimulations (see Figure 2 (c) and (d)) reported a larger

they all die together. The result for number of alivenprovement if we had more ANs.
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(a) Number of ANs alive (b) Number of SNs alive (c) Area percentage covered
Fig. 3. Comparison for different methods

(d) Closest Methods Aftet5 days (e) Nearest Method Afteép days  (f) Arbitrary method afte?9 days
Fig. 4. Coverage in two-tiered networks.



VIl. CONCLUSION [7]

In this paper, we studied a generic two-tiered wire-

less sensor networks (WSN) composed of small S(ﬁ
sor nodes (SNs), more powerful application nod
(ANs), and base-stations (BSs). We especially stuél-
ied how to organize the WSN to form logic clusters

to maximize the lifetime of the networks.

By us-

ing CANLT as the definition of the lifetime for the[10!
WSN, we considered the scenarios when the appli-
cation nodes are homogeneous or heterogeneous, the2003, pp. 286-299, ACM Press.

sensor nodes are homogeneous or heterogeneoué”rk
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D. J. Baker and A. Ephremides, “The architectural organization of
a mobile radio network via a distributed algorithnhZEE Trans-
actions on Communicationsol. 29, no. 11, pp. 1694 — 1701,
Nov 1981.

A. K. Parekh, “Selecting routers in ad-hoc wireless networks,” in
Proceedings of ITSL994.

S. Bandyopadhyay and E. Coyle, “An energy efficient hierar-
chical clustering algorithm for wireless sensor networks,”Irn
Proceedings of the 22nd Annual Joint Conference of the IEEE
Computer and Communications Societies (Infoc&@ap3.

L. Cai Y. ShiJ. Pan, Y. T. Hou and S. X. Shen, “Topology control
for wireless sensor networks,” roceedings of the 9th Annual
International Conference on Mobile Computing and Networking

L. Cai Y. Shi J. Pan, Y. T. Hou and S. X. Shen, “Optimal base-
station locations in two-tiered wireless sensor networkslEBRE

spectively. When the sensors are homogeneous, we TRANSACTIONS ON MOBILE COMPUTIN® appear.
give optimal algorithms to maximize the lifetime of!2

the networks; when the sensors are heterogeneous

we give a2-approximation algorithm that produces

a network whose lifetime is within /2 of the op-

[13]

timum. We also showed that it is NP-hard to find
the optimum cluster formation. Our theoretical re-
sults are corroborated by extensive simulation stugls
ies. Our simulations show that our algorithms actu-
ally perform much better not only theoretically but
also for randomly generated WSNSs.

There are some interesting important questions ti
have not been addressed in this paper.

ple, maximizing the lifetime under other definitions
deserves further study. It is also important to study
how the schematically improve the lifetime by inte-
grating the routing tree formation of small sensorg;]
the routing tree formation of application nodes angk; j. wieselthier A. Ephremides and D. J. Baker, “A design con-
the attachment of sensor routing trees to application cept for reliable mobile radio networks with frequency hopping
nodes. Once again, we point out that our work is on Yo
an opening but not concluding work of this direction
which deserve more research efforts in the future. [20]
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