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ABSTRACT
We propose a novel localized algorithm that constructs a bounded
degree and planar spanner for wireless ad hoc networks modeled
by unit disk graph (UDG). Every node only has to know its 2-hop
neighbors to find the edges in this new structure. Our method ap-
plies the Yao structure on the local Delaunay graph [21] in an or-
dering that are computed locally. This new structure has the fol-
lowing attractive properties: (1) it is a planar graph; (2) its node
degree is bounded from above by a positive constant 19 + d 2π

α
e;

(3) it is a t-spanner (given any two nodes u and v, there is a path
connecting them in the structure such that its length is no more than
t ≤ max{π

2
, π sin α

2
+1}·Cdel times of the shortest path in UDG);

(4) it can be constructed locally and is easy to maintain when the
nodes move around; (5) moreover, we show that the total commu-
nication cost is O(n), where n is the number of wireless nodes, and
the computation cost of each node is at most O(d log d), where d
is its 2-hop neighbors in the original unit disk graph. Here Cdel is
the spanning ratio of the Delaunay triangulation, which is at most
4
√

3
9

π. And the adjustable parameter α satisfies 0 < α < π/3. In
addition, experiments are conducted to show this topology is effi-
cient in practice, compared with other well-known topologies used
in wireless ad hoc networks.

Previously, only centralized method [5] of constructing bounded
degree planar spanner is known, with degree bound 27 and span-
ning ratio t ' 10.02. The distributed implementation of their cen-
tralized method takes O(n2) communications in the worst case. No
localized methods were known previously for constructing bounded
degree planar spanner.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion, Network topology; G.2.2 [Graph Theory]: Network prob-
lems, Graph algorithms
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1. INTRODUCTION
We consider a wireless ad hoc network (or sensor network) con-

sisting of a set V of n wireless nodes distributed in a two-dimensional
plane. Each node has some computation power and an omni-directional
antenna. This is attractive for a single transmission of a node can be
received by all nodes within its vicinity. By a proper scaling, we as-
sume that all nodes have the maximum transmission range equal to
one unit. These wireless nodes define a unit disk graph UDG(V )
in which there is an edge between two nodes iff their Euclidean
distance is at most one. Hereafter, UDG(V ) is always assumed
to be connected. We also assume that all wireless nodes have dis-
tinctive identities and each wireless node knows its position infor-
mation either through a low-power Global Position System (GPS)
receiver or through some other ways. By one-hop broadcasting,
each node u can gather the location information of all nodes within
its transmission range. Notice, throughout this paper, a broadcast
by a node u means u sends the message to all nodes within its trans-
mission range. The main communication cost in wireless networks
is to send out the signal while the receiving cost of a message is
neglected here.

Topology control for wireless ad hoc networks has draw consid-
erable attentions recently [11, 13, 20, 22, 23, 26, 27, 29, 30]. Topol-
ogy control methods try to maintain a structure that can be used for
efficient routing [7, 14, 15] or improve the overall networking per-
formance [11, 20, 27]. Different structures with different properties
have been proposed recently in the literature. In this paper, we will
focus on the construction of a sparse network topology, i.e., a sub-
graph of UDG(V ), with the following desirable features.

Sparseness. The topology should be a sparse graph, i.e., with
O(n) links. This enables numerous algorithms, e.g., routing algo-
rithm based on the shortest path, running on this topology more
efficiently for both time and power consumption.

Spanner. We want the subgraph to be a spanner of UDG(V ).
Here a subgraph G′ is a spanner of a graph G if there is a positive
real constant t such that for any two nodes, the length of the shortest
path in G′ is at most t times of the length of the shortest path in
G. The constant t is called the length stretch factor. A spanner is
always power efficient for unicast routing.

Bounded degree. It is also desirable that the node degree in
the constructed topology is small and bounded from above by a
constant. A small node degree reduces the MAC-level contention
and interference, also may help to mitigate the well known hidden
and exposed terminal problems.



Planarized. The topology is a planar graph (no two edges cross
each other in the graph). Some routing algorithms ask the topology
be planar, such as right hand routing, Greedy Perimeter Stateless
Routing (GPSR) [15], Greedy Face Routing (GFG) [7], Adaptive
Face Routing(AFR) [18]. and Gready Other Adaptive Face Routing
(GOAFR) [19].

Efficient Localized Construction. Due to the limited resources
and high mobility of the wireless nodes, it is preferred that the un-
derlying network topology can be constructed and maintained in
a localized manner. Here a distributed algorithm constructing a
graph G is a localized algorithm if every node u can exactly de-
cide all edges incident on u based only on the information of all
nodes within a constant hops of u. More importantly, we expect
that the time complexity of each node running the algorithm is at
most O(d log d), where d is the number of 1-hop or 2-hop neigh-
bors.

In [7, 15], two planar subgraphs relative neighborhood graph
(RNG) and Gabriel graph (GG) are used as underlying network
topologies. However, Bose, et al. [3] proved that the length stretch
factors of these two graphs are Θ(n) and Θ(

√
n) respectively. They

are precisely n − 1 and
√

n− 1 actually [28]. Recently, some re-
searchers [22, 30] proposed to construct the wireless network topol-
ogy based on Yao graph [31] (also called θ-graph [4]). It is known
that the length stretch factor and the node out-degree of Yao graph
are bounded by some positive constants. But as Li et al. mentioned
in [22], all these three graphs can not guarantee a bounded node de-
gree (for Yao graph, the node in-degree could be as large as Θ(n)).
In [22, 23], Li, et al. further proposed to use another sparse topol-
ogy, Yao and Sink, that has both a constant bounded node degree
and a constant bounded length stretch factor. However, all these
graphs [22, 23, 30] are not guaranteed to be planar. In [21] Li, et
al. proposed a planar spanner localized Delaunay triangulations
(LDel), and in [10] Gao et al. proposed a planar spanner Restricted
Delaunay Graph for wireless ad hoc networks. However both of
them could have unbounded node degree. The structure constructed
by Hu [13] may not be a spanner (not to say that the algorithm it-
self has faults). Previously, no localized methods were known for
constructing bounded degree and planar spanner.

Recently Bose et al. [5] proposed a centralized O(n log n)-time
algorithm that constructs a planar t-spanner for a given nodes set
V , for t = (1 + π) · Cdel ' 10.02, such that the node degree
is bounded from above by 27. Hereafter, we use Cdel to denote
the spanning ratio of the Delaunay triangulation [9, 16, 17]. As we
knew, this algorithm is the first method to compute a planar spanner
of bounded degree. However the distributed implementation of this
centralized method takes O(n2) communications in the worst case
for a set V of n nodes. Recently, Li and Wang [24] improved this
by giving a centralized method that constructs a planar structure
with degree bounded by at most 19 + d 2π

α
e and the spanning ratio

at most t ≤ max{π
2
, π sin α

2
+ 1} · Cdel. Here α is an adjustable

parameter satisfying 0 < α < π/2.
In this paper, we propose the first efficient localized algorithm

to construct a bounded degree and planar spanner for wireless ad
hoc networks. The contributions of this paper include: (i) the node
degree of the new planar spanner is bounded by 19 + d 2π

α
e, (ii) its

length stretch factor is t ≤ max{ π
2
, π sin α

2
+ 1} · Cdel, where

0 < α < π/3, and (iii) it can be constructed locally using O(n)
messages and is easy to maintain when the nodes move around.

The rest of the paper is organized as follows. In Section 2, we
propose our centralized method constructing bounded degree pla-
nar t-spanner for a unit disk graph. We then give the first local-
ized method, in Section 3, to construct a bounded degree planar t-
spanner for UDG(V ) with total communication cost O(n) under

the broadcasting communication model. In Section 4, experiments
are conducted to show the new topology is efficient in practice,
comparing to other well-known topologies used in wireless ad hoc
networks. Finally, we briefly conclude our paper in Section 5.

2. CENTRALIZED CONSTRUCTION
Our algorithms borrow some ideas from the algorithm by Bose

et al. [5] which constructs a bounded degree and planar spanner
for a given points set V . They show that the length stretch factor
of the final graph is (π+1)2π

(3 cos π/6)(1+ε)
and node degree is at most 27.

The running time of their algorithm is O(n log n). However, their
method is impossible to have a localized even efficient distributed
version, since they use BFS and several operations on polygons
(such as degree-3 partitions). Notice that breadth-first-search may
take O(n2) communications. In this section, we will give a new
method for constructing a planar spanner with bounded node de-
gree for UDG(V ), and show that it can be converted to a localized
method in Section 3. Our method rigorously combines (localized)
Delaunay triangulation and the ordered Yao structure [4, 31].

2.1 Centralized Algorithm for UDG

ALGORITHM 1. Centralized Construction of Planar Span-
ner with Bounded Degree for UDG(V )

1. First, compute the Delaunay triangulation Del(V ) of V .

2. Remove the edges longer than 1 in Del(V ). Call the remain-
ing graph unit Delaunay triangulation UDel(V ). For every
node u, we know its unit Delaunay neighbors NUDel(u) and
its node degree d(u) in UDel(V ).

3. Find an order π of V as follows: Let G1 = UDel(V ) and
dG(u) be the node degree of u in graph G. Remove the
node u with the smallest degree dGi

(u) (smaller ID breaks
tie) from graph Gi, and call the remaining graph Gi+1. Set
πu = n − i + 1. Repeat this procedure for 1 ≤ i ≤ n. Let
Pv denote the predecessors of v in π, i.e., Pv = {u ∈ V :
πu < πv}. Since Gi is always a planar graph, the smallest
value of dGi

(u) is at most 5. Then, in ordering π, node u at
most have 5 edges to its predecessors Pu in UDel(V ).

4. Let E be the edge set of UDel(V ), E ′ be the edge set of
the desired spanner. Initialize E′ to an empty set and mark
all nodes in V unprocessed. Following the increasing order
π, run the following steps to add some edges from E to E ′

(only consider the unit Delaunay neighbors NUDel(u) of u):

(a) For the unprocessed node u with the smallest order πu,
let v1, v2, · · · , vk be the processed neighbors of u in
UDel(V ) (see Figure 1(a)). Here k ≤ 5. Then k open
sectors at node u are defined by rays emanated from u
to the processed nodes vi in UDel(V ). For each sector
centered at u, we divide it into a minimum number of
open cones of degree at most α, where α ≤ π/3 is a
parameter.

(b) For each cone, let s1, s2, · · · , sm be the geometrically
ordered neighbors of u in NUDel(u) in this cone. No-
tice s1, s2, · · · , sm are all unprocessed nodes. For each
cone, first add the shortest edge usi in E to E′, then
add to E′ all the edges sjsj+1, 1 ≤ j < m. Here such
edges sjsj+1 are not necessarily in UDel(V ).

(c) Mark node u processed.



5. Repeat this procedure in the increasing order of π, until all
nodes are processed. Let BPS1(UDG(V )) or BPS1(V )
denote the final graph formed by edge set E ′.

Notice that in the algorithm we use open sectors, which means
that in the algorithm we do not consider adding the edges on the
boundaries (any edge involved previously processed neighbors).
For example, in Figure 1(a), the cones do not include any edges
uvi. This guarantees the algorithm does not add any edges to node
vi after vi has been processed. This approach, as we will show it
later, bounds the node degree.
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Figure 1: (a) Constructing planar spanner with bounded de-
gree for UDG(V ): process node u. (b) No new edges can be
added by other nodes to intersect sisi+1, where sisi+1 is added
by u and not in UDel(V ).

2.2 Analysis of Algorithm for UDG
In this subsection, we show some nice properties of the generated

graph BPS1(UDG(V )) by proving the following three theorems.

THEOREM 1. The maximum node degree of BPS1(UDG(V ))
is at most 19 + d 2π

α
e.

PROOF. There are two cases when an edge uv can be added to
u in BPS1(UDG(V )). Let us discuss them one by one.

Case 1: When we process node u, edge uv has already been
added by some processed node w before. Two subcases here:

Subcase 1.1: The edge uv has been added by a processed node
v (w = v). For example, in Figure 1(a), node u has edges from v2,
v3 and v5 before it is processed. Each predecessor v only adds one
such edge to node u.

Subcase 1.2: The edge uv has been added by processed node w
(w is not v). Node v is also an unprocessed node when processing
w. For example, in Figure 1(a), node s2 has edges from s1 and s3

added by processing node u before node s2 is processed. Notice
that both v and u are neighbors of this processed node w. For each
predecessor w, it adds at most two such edges to node u.

Because for each u, it has at most 5 predecessor neighbors (pro-
cessed neighbors), and each predecessor can add at most 3 edges to
it (one edge from Subcase 1.1, or two edges from Subcase 1.2, or
both). Thus, the number of edges added by its predecessors before
u is processed is bounded by 15.

Case 2: When node u is being processed, we can add one edge
uv for each cone. Since we have at most 5 sectors emanated from
u and each cone must have angle at most α, it is easy to show that
we can have at most 4 + d 2π

α
e cones at u. So the number of this

kind of edges is also bounded by 4 + d 2π
α
e.

Notice that after node u is processed, no edges will be added to it.
Consequently, the degree of each node u is bounded by 19+ d 2π

α
e,

when the structure is generated by above algorithm.

For example, when α = π/3, the maximum node degree is at
most 25. Method presented in [5] does not work for UDG(V ).

THEOREM 2. Graph BPS1(UDG(V )) is a planar graph.

PROOF. When each node u is being processed, we add two
kinds of edges: (1) edge usi, where si is the nearest unprocessed
node in some cone divided by u; (2) some edges sisi+1, where
si and si+1 are consecutive unprocessed neighbors of u in graph
UDel(V ). Such edge sisi+1 will be called as diagonal hereafter
since it must be a diagonal of some polygonal face in UDel(V ).
See Figure 1(a) for illustration.

Observe that UDel(V ) is a planar graph and edges usi belong
to UDel(V ). Obviously, the possible intersection in the final struc-
ture is caused by at least one edge that does not belong to UDel(V ).
Then this edge must be a diagonal edge, say sisi+1. Thus, there
are some edges (such as uw in Figure 1(b)) in Del(V ) between
usi and usi+1 with length longer than 1 (otherwise, sisi+1 ∈
UDel(V )). Then all such endpoints w of these long edges and
si, sj , u will form a polygon, denoted by Q, in UDel(V ). All
the diagonals of polygon Q intersecting sisi+1 are longer than 1,
as uw is. Thus, they will never be added by our algorithm. This
finishes our proof.

THEOREM 3. Graph BPS1(UDG(V )) is a t-spanner, where
t = max{π

2
, π sin α

2
+ 1} · Cdel.

PROOF. Keil and Gutwin [17] showed that the Delaunay trian-
gulation has spanning ratio at most Cdel = 4

√
3

9
π using induc-

tion on the increasing order of the lengths of all pair of nodes. We
can show that the path connecting nodes u and v constructed in
[17] also satisfies that all edges of that path is shorter than ‖uv‖.
Consequently, for any edge uv ∈ UDG(V ) we can find a path in
UDel(V ) with length at most Cdel‖uv‖, and all edges of the path
is shorter than ‖uv‖. So we only need to show that for any edge
uv ∈ UDel(V ), there exists a path in BPS1(UDG(V )) between
u and v with length at most `‖uv‖. Then BPS1(UDG(V )) is a
` ·Cdel-spanner. Then we prove the above claim. Consider an edge
uv in UDel(V ). If uv ∈ BPS1(UDG(V )), the claim holds. So
assume that uv /∈ BPS1(UDG(V )).

Assume w.l.o.g. that πu < πv . It follows from the algorithm
that, when we process node u, there must exist a node v′ in the same
cone with v such that ‖uv‖ > ‖uv′‖, uv′ ∈ BPS1(UDG(V )),
and ∠v′uv < α ≤ π/3. Let v′ = s1, s2, · · · , sl = v be this
sequence of nodes in the ordered unprocessed neighborhood of u
in UDel(V ) from v′ to v. Let v′ = w1, w2, · · · , wk = v be the
sequence of neighbors of u in Del(V ) from v′ to v. Obviously, the
set {s1, s2, · · · , sl} is a subset of {w1, w2, · · · , wk}.

Similar to [5], consider the polygon P , formed by edge uw1,
uwk and path w1w2 · · ·wk. We will show that the path w1w2 · · ·wk

has length that is at most a small constant factor of the length ‖uv‖.
Let us consider the shortest path from w1 to wk that is totally inside
the polygon P . Let S(w1, wk) denote such path. This path consists
of diagonals of P and is contained inside 4uw1wk. For example,
in Figure 2, S(w1, wk) = w1w7w9.

Assume that ‖uv′‖ = x. Let w be the point on segment uv such
that ‖uw‖ = ‖uv′‖. Assume that ‖uv‖ = y, then ‖wv‖ = y − x.
Notice that node v′ is the closest Delaunay neighbor in such cone.
Obviously, all Delaunay neighbors wi in this cone are outside of the
sector defined by segments uw and uv′. We will show that such
path S(w1, wk) is contained inside the triangle 4ww1wk. First,
if no Delaunay neighbor is inside 4ww1wk, then S(w1, wk) =
w1wk. Thus, the claim trivially holds. If there are some Delaunay
neighbors inside4ww1wk, then w1 will connect to the wi forming
the smallest angle ∠uw1wi. Similarly, node wk will connect to the



wj forming the smallest angle ∠uwkwj . Obviously wi and wj are
inside 4ww1wk, thus, the shortest path connecting them is also
inside 4ww1wk. Since path S(w1, wk) is the shortest path inside
the polygon P to connect w1 and wk, by convexity, the length of
S(w1, wk) is at most ‖v′w‖ + ‖wv‖ = 2x sin θ

2
+ y − x. Here

θ = ∠v′uv < α.
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Figure 2: The shortest path in polygon P .

An edge wiwj of S(w1, wk) has endpoints wi and wj in the
neighborhood of u. Let D(wi, wj) be the sequence of edges be-
tween wi and wj in the ordered neighborhood of u, which are
added by processing u. For example, in Figure 2, D(w1, w7) =
w1w2w3w4w5w6w7. We can bound the length of D(wi, wj) by
π/2‖wiwj‖ by the argument in [5, 6]. In [6], it is shown that the
length of D(wi, wj) is at most π/2 times ‖wiwj‖, provided that
(1) the straight-line segment between wi and wj lies outside the
Voronoi region induced by u, and (2) that the path lies on one side
of the line through wi and wj . In other words, we need D(wi, wj)
to be one-sided Direct Delaunay path 1 [9]. In [5], they showed
that both these two conditions hold when ∠wiuwj < π/2. This is
trivially satisfied since ∠wiuwj < α ≤ π/2.

Thus, we have a path uw1w2 · · ·wk to connect u and v with
length at most x + (2x sin θ

2
+ y − x) · π/2, which is at most

y ·max{π
2
, π sin α

2
+ 1} from x ≤ y.

Since any such node wi is not inside the polygon Q (defined in
the Figure 1(b) of proof for Theorem 2), the path us1s2 · · · sk (in
BPS1(UDG(V ))) is not longer than the length of path uw1 · · ·wk.

Consequently, BPS1(UDG(V )) is a spanner with length stretch
factor at most max{π

2
, π sin α

2
+ 1} · Cdel.

For example, when α = π/3, the spanning ratio is at most ( π
2

+

1) · Cdel; when α = 2arcsin( 1
2
− 1

π
) ' 20.9o, the spanning ratio

is at most π
2
· Cdel. We expect to further improve the bound on the

spanning ratio by using the following property: all such Delaunay
neighbors si is inside the circumcircle of the triangle uvv′; see
Figure 2.

Notice that we can build Delaunay triangulation in O(n log n),
and do ordering in time O(n log n) (using heap for the ordering
based on degrees), and Yao structure in O(n) (each edge is pro-
cessed at most a constant times and there are O(n) edges to be
processed). Consequently, the time complexity of our algorithm is
O(n log n), same with the method by Bose et al. [5]. However,
our algorithm has smaller bounded node degree, and (more impor-
tantly) our algorithm has potential to become a localized version
for wireless ad hoc networks application as we will describe next.

3. LOCALIZED CONSTRUCTION
1For any pair of nodes u and v, let u = w1, w2, · · · , wk = v be
the sequence of nodes whose Voronoi region intersects segment uv
and the Voronoi regions at wi and wj share a common boundary
segment. The the Direct Delaunay path DT (u, v) is w1w2 · · ·wk.

In [29], Wang et al. showed that an algorithm presented in [2]
does construct a bounded degree spanner for UDG with O(n) mes-
sages (with unit log n bits) under the broadcast communication
model. Li et al. [21] presented the first algorithm that constructs
a planar spanner using only O(n) messages under the broadcast
communication model. No localized method is known before for
constructing a planar spanner with bounded node degree.

In this section, we then show how to extend the algorithms pre-
sented in previous section to generate bounded degree planar span-
ner for UDG in a localized manner. Our algorithm is based on the
efficient localized construction of a planar spanner LDel(2)(V ) for
UDG presented by Li et al. [21]. For completeness of the presen-
tation, we first review the definitions and give an efficient localized
construction of LDel(2)(V ) in O(n) total communications.

3.1 Construct LDel(2)(V ) Locally
We first introduce some geometric structures and notations to be

used in this section. Let Nk(u) be the set of nodes of V that are
within k hops distance of u in the unit-disk graph UDG(V ). An
edge uv is called constrained Gabriel edge if ‖uv‖ ≤ 1 and the
open disk using uv as diameter does not contain any node from V .
It is well known [25] that the constrained Gabriel graph is a sub-
graph of the Delaunay triangulation, more precisely, GG(V ) ⊆
UDel(V ). Recall that a triangle 4uvw belongs to the Delau-
nay triangulation Del(V ) if its circumcircle disk(u, v, w) does not
contain any other node of V in its interior. Here we often assume
that there are no four nodes of V co-circumcircle. The following
definition is one of the key ingredients of the localized algorithm
constructing LDel(2).

DEFINITION 1. A triangle 4uvw satisfies k-localized Delau-
nay property if the interior of the circumcircle disk(u, v, w) does
not contain any node of V that is a k-hops-neighbor of u, v, or w;
and all edges of the triangle 4uvw have length no more than one
unit. Triangle 4uvw is called a k-localized Delaunay triangle.

DEFINITION 2. The k-localized Delaunay graph over a node
set V , denoted by LDel

(k)(V ), has exactly all Gabriel edges and
edges of all k-localized Delaunay triangles.

Given a set of points V , the unit Delaunay triangulation, denoted
by UDel(V ), is the graph obtained by removing all edges of the
Delaunay triangulation Del(V ) that are longer than one unit. It was
proved in [10, 21] that UDel(V ) is a t-spanner of UDG(V ). They
[21] proved that graph UDel(V ) is a subgraph of the k-localized
Delaunay graph LDel

(k)(V ). Graph LDel(1) is not a planar graph,
and LDel(k) is planar for k > 1. In [21], Li et al. proposed a com-
munication efficient method to construct LDel(1) and then make it
planar in total O(n) messages. Here each message has O(log n)

bits. They [21] cannot construct LDel(2) in O(n) messages due
to the difficulty of collecting the 2-hop neighbors for every node in
O(n) messages. In this paper, we gave the first method to construct
LDel(2) using O(n) messages.

ALGORITHM 2. Construct LDel(2) Locally

1. Every node u collects the location information of N2(u) based
on an efficient method [8] described later. It computes the
Delaunay triangulation Del(N2(u)) of its 2-neighbors N2(u),
including u itself.

2. For each edge uv of Del(N2(u)), let 4uvw and 4uvz be
two triangles incident on uv. Edge uv is a Gabriel edge if
both angles ∠uwv and ∠uzv are less than π/2 and ‖uv‖ ≤



1. Node u marks all Gabriel edges uv, which will never be
deleted.

3. Each node u finds all triangles 4uvw from Del(N2(u))
such that all three edges of 4uvw have length at most one
unit. If angle ∠wuv ≥ π

3
, node u broadcasts a message pro-

posal(u, v, w) to N1(u) to form a localized Delaunay trian-
gle 4uvw in LDel

(2)(V ), and listens to the messages from
its neighboring nodes.

4. When a node u receives a message proposal(u, v, w), u ac-
cepts the proposal of constructing 4uvw if 4uvw belongs
to Del(N2(u)) by broadcasting accept(u, v, w) to N1(u);
otherwise, it rejects the proposal by broadcasting reject(u, v, w)
to N1(u).

5. A node u adds the edges uv and uw to its set of incident
edges if the triangle 4uvw is in Del(N2(u)) and both v and
w have sent either accept(u, v, w) or proposal(u, v, w).

We now briefly review the communication efficient method [8]
to collect N2(u) for every node u. Computing the set of 1-hop
neighbors with O(n) messages is trivial: every node broadcasts a
message announcing its ID. Computing the 2-hop neighborhood is
not trivial, as the UDG can be dense. The broadcast nature of the
communication in ad hoc wireless networks is however very use-
ful when computing local information. The approach by Calinescu
[8] is based on the specific connected dominating set (virtual back-
bone) introduced by Alzoubi, Wan, and Frieder [1]. This connected
dominating set is based on a maximal independent set (MIS). In
Calinescu’s algorithm, each node uses its adjacent node(s) in the
MIS to broadcast its relevant information (its ID and position) over
a larger area (constant hops away from the adjacent MIS nodes)
on the virtual backbone. Listening to the information about other
nodes broadcast by the MIS nodes enables a node to compute its
2-hop neighborhood. The algorithm uses heavily the nodes in the
connected dominating set, an example in [8] shows that overload-
ing certain nodes might be unavoidable. The number of messages
taken by this method is O(n), which is proved in [8] by using the
properties of the specific connected dominating set in [1]. Using
the area argument, we can show that the constant in O(n) is at
most C1 = 3 × (2 × 7 + 1)2 = 675, since in this method the
message from node u can only be re-broadcast by the MIS nodes
which are in 7-hops of u and their connectors. The constant can be
improved by a tighter analysis.

Finally, we prove the following lemma which will be used in
analysis of our new algorithm.

LEMMA 4. An edge uv is in LDel
(2)(V ) iff ‖uv‖ ≤ 1 and

there is a disk passing through u, and v, which does not contain
node from N2(u) ∪N2(v) inside.

PROOF. It is trivial that if an edge uv is in LDel
(2)(V ) then

that kind disk exists, since either uv is a Gabriel edge or uv is an
edge from a 2-localized Delaunay triangle. Then we prove the other
direction.

Assume that there is a disk D1 passing through u, and v, and
there is no node from N2(u) ∪ N2(v) inside this circle D1. If uv
is a diameter of circle D1, then it is a Gabriel edge which must
be in LDel

(2)(V ). Otherwise, let D3 be the disk whose diameter
is uv (with center c3). Disk D3 must contain some node, say w,
inside as shown in Figure 3. Disk D1 cannot contain w inside.
Assume D1 has center c1. Let D be a disk centered at some point
c on the segment c1c3 and passing through u and v. Then we can
move the center c of disk D along c1c3 from c1 to c3 and set the

radius of D be ‖cu‖, until the disk touches the first node w from
N2(u) ∪N2(v). Call resulting disk D2, which is shown in Figure
3. Since D2 does not contain any node from N2(u)∪N2(v) inside,
we only need show it is empty from N2(w) to prove that 4uvw is
a 2-localized Delaunay triangle and thus uv is in LDel

(2)(V ). We
prove this by contradiction.
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Figure 3: Disk D2 touches a node w from N2(u) ∪N2(v).

Assume that there is a node y from N2(w) inside disk(u, v, w).
Clearly, node y cannot be from N2(u) ∪ N2(v). Node y must be
two hops away from w, otherwise y ∈ N2(u). In addition, node
y cannot be inside the cap defined by arc uwv since ‖uw‖ ≤ 1
and ‖wv‖ ≤ 1. Assume that a node x is one hop neighbor of
both y and w. Notice that x cannot be one hop neighbor of u or v,
otherwise, y will become the two-hop neighbor of u or v, which is a
contradiction to the property of disk D2. Then we know that edges
uw, uv, vw, xy and xw are shorter than one unit, while edges uy,
vy, wy, xu and xv are longer than one unit. There are two cases
about the location of node x: on the different side of uv as y and
on the same side of uv as y, as shown in Figure 4. Clearly, node
x is outside of the disk D2, otherwise, D2 will contain a 2-hop
neighbor x of u inside (through path uwx).
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Figure 4: Two cases in the proof: x is on the same side or dif-
ferent side of uv as y.

For the first case, we divide the half-space bounded by line uv,
which contains w and excludes the cap uwv, into three regions as
shown in Figure 4 (a).

If x is inside the region I, see Figure 5 (a) for an illustration.
Since ‖xw‖ ≤ 1, ‖uw‖ ≤ 1, and ‖xu‖ > 1, we have ∠xwu >
π/3. Thus, ∠xuw < 2π/3. Since ‖xy‖ ≤ 1, ‖xu‖ > 1, and
‖uy‖ > 1, we have ∠yux < π/3. Thus, ∠wuy = 2π −∠xuw −
∠yux > π, which is impossible.

If x is inside the region II, see Figure 5 (b) for an illustration.
Since ‖xu‖ > 1, ‖yu‖ > 1, and ‖xy‖ ≤ 1, we have ∠xuy <
π/3. Similarly, we have ∠uxv < π/3, ∠xvy < π/3, and ∠uyv <
π/3. Thus, 2π = ∠xuy +∠uxv +∠xvy +∠uyv < 4π/3, which
is a contradiction.

When x is in region III, the proof is the same as it is in region I.
For the second case, we further divide it into four subcases when
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Figure 5: Node x is inside region I or region II.

node x is inside region I, II, III, or IV. Obviously, ∠uyv+∠uwv >
π and ∠uyv < π/3. Thus, ∠uwv > 2π/3, which implies ∠uvw <
π/3.

If node x is inside the region I, see Figure 6 (a) for an illustration.
Since ∠uwv > 2π/3, we have ∠wuv < π − ∠uwv < π/3.
Notice that ∠wux + ∠wuv > π, so ∠wux > 2π/3. This implies
that 1 ≥ ‖wx‖ > ‖ux‖ > 1. It is a contradiction.

If node x is inside the region II, see Figure 6 (b) for an illustra-
tion. Here c is the circumcenter of the disk D. Thus, ∠wux > π/2.
This implies that 1 ≥ ‖wx‖ > ‖ux‖ > 1. It is a contradiction.

When node x is inside the region III, or IV, the proofs are similar
to the cases II, or I respectively.
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Figure 6: Node x is inside region I or region II.

Then we know the circumcircle disk(u, v, w) of the triangle
4uvw does not contain any node from N2(u) ∪ N2(v) ∪ N2(w)

inside. Thus uv is in LDel
(2)(V ). This finishes the proof.

3.2 Bound the Degree Locally
In the previous section, we have described a localized algorithm

that can construct a planar spanner using O(n) messages. However,
some node in structure LDel(2)(V ) could have degree as large as
O(n). We then give an efficient method to bound the node degree.

ALGORITHM 3. Localized Construction of Planar Spanner
with Bounded Degree for UDG(V )

1. First, compute the planar localized Delaunay triangulation
LDel(2)(V ), so that every node u knows all its neighbors
NLDel(2)(u) and its node degree d(u) in LDel(2)(V ). As-
sume a synchronized method is used to collect NLDel(2)(u)
for every node u.

2. Build a local order π of V as follows: (Every node u initial-
izes πu = 0, i.e., unordered.)

(a) If node u has πu = 0 and d(u) ≤ 5, then u queries 2

each node v, from its unordered neighbors, the current
degree d(v). If node u has the smallest ID among all
unordered neighbors v with d(v) ≤ 5, node u sets

πu = max{πv | v ∈ NLDel(2)(u)}+ 1,

and broadcasts πu to its neighbors NLDel(2)(u).

(b) If node u receives a message from its neighbor v saying
that πv = k, it updates its d(u) = d(u) − 1 and also
updates the order πv stored locally. So d(u) represents
how many neighbors are not ordered so far.

If node u finds that d(u) ≤ 5 and πu = 0, it goes to
Step 2 (a).

When node u finds that d(u) = 0 and πu > 0, it can
go to step 3.

3. Build structures based on local order π as follows: (Initialize
all nodes unprocessed)

(a) If a unprocessed node u has the highest local order in its
unprocessed neighbors Nu in LDel(2)(V ), let k be the
number of processed neighbors 3 of u in LDel(2)(V ).
Node u divides its transmission range into k open sec-
tors cut by the rays from u to these processed neigh-
bors. Then divide each sector into a minimum num-
ber of open cones of degree at most α with α ≤ π/3.
For each cone, let s1, s2, · · · , sm be the ordered unpro-
cessed neighbors of u in NLDel(2)(u). For this cone,
node u first adds an edge usi, where si is the near-
est neighbor among s1, s2, · · · , sm. Node u then tells
s1, s2, · · · , sm to add all the edges sjsj+1, 1 ≤ j <
m. Node u marks itself processed, and tells all nodes
in NLDel(2)(u) that it is processed.

(b) If a unprocessed node v receives a message for adding
edge vv′ from its neighbor u, it adds edge vv′.

4. When all nodes are processed, the final network topology is
denoted by BPS2(UDG(V )) or BPS2(V ).

3.3 Analysis of Localized Algorithm
We first show that the algorithm does process all nodes. First

of all, the algorithm cannot stop at stage of ordering nodes locally.
This can be shown by contradiction. Assume that some nodes are
unordered. The graph formed by these unordered are planar, and
thus it contains some nodes with at most 5 unordered neighbors.
Among these nodes, the node with the smallest ID will perform step
2 (a), thus reducing the number of unordered nodes consequently.

Notice that the ordering computed by our method is not a total
ordering. Some nodes may have the same order. However, no two
neighboring nodes in LDel(2)(V ) receive the same order. Thus,
after all nodes are ordered, the algorithm will process all nodes.
Observe that the algorithm does not process two neighboring nodes
at the same time. Assume that there are two nodes, say u and v,
are processed at the same time. Remember that we process a node
only if it has the highest ordering among its unprocessed neighbors.

2If some unordered neighbor with d(v) ≤ 5 has smaller ID, we call
such query round a failed round. Node u performs a new round of
queries only if it finds that the number of its unordered neighbors
has been reduced (d(u) has reduced in step 2 (b)). So there are at
most 5 rounds of queries.
3There are at most 5 processed neighbors since graph LDel(2)(V )
is planar.



Thus, nodes u and v must receive the same order, i.e., πu = πv ,
which is impossible in our ordering method.

Additionally, remember that our algorithm checks if du ≤ 5 for
computing an ordering locally. Here number 5 can be replaced by
any integer larger than 5. Using larger integer may make the algo-
rithm run faster, but on the other hand, it worsens the theoretical
bound on the node degree.

It is not difficult to show that the constructed topology is still
connected and has bounded node degree. Proofs are similar with
BPS1(UDG(V )), which are omitted here due to space limit.

Notice that, the algorithms [5, 24] always add the edges in the
Delaunay triangulation to construct a bounded degree planar span-
ner for a set of points. Thus, the planarity of the final structure
is straightforward. The algorithm we proposed in Section 2 may
add some edges (such as edges sisi+1 added in step 4(b) of Algo-
rithm 1) that do not belong to the UDel(V ). To prove the planarity
of the structure BPS1(UDG(V )), we show that no two added
diagonal edges intersect. The property that edges, which possi-
bly intersect sisi+1 in the centralized algorithm, are all Delaunay
edges is crucial in the proof of Theorem 2. This property does
not hold anymore in the localized algorithm. We will show that
BPS2(UDG(V )) is a planar graph using a different approach.

THEOREM 5. Graph BPS2(UDG(V )) is a planar graph.

PROOF. Notice that Algorithm 3 only adds the edges in LDel(2)(V )

or edge sisi+1 such that usi and usi+1 are edges of LDel(2)(V )

and si, si+1 are consecutive neighbors of u in LDel(2)(V ) and
∠siusi+1 < π/3. We call such edge sisi+1 the diagonal edge of
the graph LDel(2)(V ). Clearly, these diagonal edges cannot in-
tersect any edge from LDel(2)(V ). Thus, the only possible inter-
sections in BPS2(UDG(V )) are caused by some diagonal edges.
See Figure 7 (a) for an illustration of such two intersected diagonal
edges uy and vx. Assume that ∠uyv < ∠uxv. Then y is outside
of the circumcircle disk(u, v, x) of the triangle 4uvx.
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Figure 7: (a) Two diagonal edges uy and vx intersect. (b) z0

belongs to the sector ]uvy.

If the disk disk(u, v, x) does not contain a node from N2(x) ∪
N2(v) inside, then edge xv belongs to the graph LDel(2)(V ). This
is a contradiction to the fact that edges vu and vy are neighboring
edges in graph LDel(2)(V ). Thus, there must have some node, say
z, from N2(x) ∪N2(v) inside the disk disk(u, v, x).

If the node z is inside the region II, then z cannot be from N2(v).
Otherwise, we cannot find an empty circle passing through u and
v that is free of nodes of N2(u) ∪ N2(v) inside. This contradicts
to the fact edge uv belongs to the graph LDel(2)(V ). Thus, node
z must be from N2(x), but not from N1(x) (otherwise z ∈ N2(v)
again). Assume that there is a 2-hop path xwz connecting x and
z. We then show that w 6∈ disk(u, v, x). If node w is inside the
region I or III, then ‖uw‖ ≤ 1. Thus, any circle passing through u
and v will contain w or z inside. Since w ∈ N1(u) and z ∈ N2(u),

edge uv cannot belong to graph LDel(2)(V ). It is a contradiction.
Similarly, if node w is inside the region II, nodes x and w will cause
a contradiction to the fact uv ∈ LDel(2)(V ).

Thus node w /∈ disk(u, v, x). Then similar to the proof of
Lemma 4, we can show that it is impossible to have node z ∈
N2(x) in region II. Similarly, region I cannot contain any node
from N2(u) ∪ N2(x). Thus, only region III can possibly contain
some node z inside. Then ‖vz‖ ≤ 1. This is proved as follows: if
z is inside the triangle 4vux, it is obvious since the three sides of
this triangle have length at most 1; if z is inside the cap defined by
arc xv, ‖vz‖ ≤ ‖vx‖ since ∠vux < π/3.

Let c be the circumcenter of disk disk(u, v, x). Let D be a disk
passing through v with center on the segment vc. Clearly, D is
inside the disk disk(u, v, x). Among all such disks, we find the
largest disk D0 that is empty of node inside, i.e., the disk that
passing through some node z0, and node v. Then edge vz0 be-
longs to graph LDel(2)(V ). We then show that z0 must belong to
the sector ]uvy. If z0 is inside the cap cut by segment vy, then
any disk passing through v and y will contain u or z0 inside since
∠yuv + ∠yz0v > π. It contradicts to the existence of edge vy in
graph LDel(2)(V ). As shown in Figure 7 (b), if z0 belongs to the
sector ]uvy, and vz0 ∈ LDel(2)(V ), then y and u cannot be con-
secutive neighbors of v in LDel(2)(V ). It is a contradiction.

THEOREM 6. Graph BPS2(UDG(V )) is a t-spanner, where
t = max{π

2
, π sin α

2
+ 1} · Cdel.

PROOF. We only need to show that for any edge uv ∈ UDel(V ),
there exists a path in BPS2(UDG(V )) between u and v with
length at most `‖uv‖. Then BPS2(UDG(V )) is a `·Cdel-spanner.
We prove the above claim. Consider an edge uv in UDel(V ). If
uv ∈ BPS2(UDG(V )), the claim holds. So assume that uv /∈
BPS2(UDG(V )).

Assume w.l.o.g. that πu > πv . It follows from the algorithm
that, when we process node u, there must exist a node x in the same
cone with v such that ‖uv‖ > ‖ux‖, ux ∈ BPS2(UDG(V )), and
∠xuv < α ≤ π/3. There is two cases: ux is in UDel(V ) or not.

Case 1: ux ∈ UDel(V ). We will show that no edges other
than Delaunay edges are added to u between ux and uv. Then
we can use the same proof in Theorem 3 to prove that there is a
path in BPS2(UDG(V )) to connect u and v with length at most
max{π

2
, π sin α

2
+ 1} · ‖uv‖.

Let w1, w2, · · · , wm be the sequence of Delaunay neighbors of
u in Del(V ) from v to x. See Figure 8 (a) as illustrations. First
all the neighbors wi should be inside the circumcircle disk(u, v, x)
of the triangle 4uvx, since otherwise any circle passing through u
and wi will contain either x or v inside which is a contradiction
with the fact uwi is Delaunay triangle. Then we prove all the edges
wiwi+1 are shorter than one unit.

Remember that ‖uv‖ ≤ 1, ‖ux‖ ≤ 1 and ∠xuv ≤ π/3,
then we have ‖xv‖ ≤ 1. If wi and wi+1 are both inside the
triangle 4vux or the cap cut by segment vx, ‖wiwi+1‖ < 1.
Therefore, the only case that edge wiwi+1 is longer than one unit
is shown in Figure 8 (b). Assume that ‖wiwi+1‖ > 1. Since
‖xwi+1‖ < 1 and ‖xwi‖ < 1, we have ∠wiwi+1x < π/2. Thus,
∠xuv +∠wiwi+1x < π/3+π/2 < π. It implies node x is inside
the circumcircle disk(u, wi, wi+1). This is a contradiction and fin-
ishes the proof of no long edges among all the edges wiwi+1.

Thus, we know all edges wiwi+1 ∈ UDel(V ), in addition, they
are also in LDel(2)(V ). Therefore we can not have an additional
edge uy added to LDel(2)(V ) in sector ]vux, since such edge
breaks the planar property of LDel(2)(V ). See Figure 8 (a) as
illustrations.

Case 2: ux /∈ UDel(V ). Assume ux is added to LDel(2)(V )
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Figure 8: (a) All the neighbors wi should be in the circumcir-
cle disk(u, v, x), and no edges other than Delaunay edges are
added to u between ux and uv; (b) No edge wiwi+1 can have
length longer than one.

in the sector ]w1uw2, where w1 and w2 are consecutive Delaunay
neighbors of node u. There are three cases for Delaunay edges w1u
and w2u. We prove that all of them do not exist by contradiction.

Subcase 2.1: both edges w1u and w2u are no more than one
unit, shown in Figure 9 (a). From the property of Delaunay, x
must be outside of the circumcircle disk(u, w1, w2) of the trian-
gle 4uw1w2. Thus, ∠uw1x + ∠uw2x > π. Any circle passing
though u and x will contain either w1 or w2 inside. Notice that
w1, w2 ∈ N1(u). It contradicts to the existence of edge ux in
LDel(2)(V ).
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Figure 9: All subcases in Case 2 do not exist.

Subcase 2.2: both edges w1u and w2u are longer than one unit,
shown in Figure 9 (b). Since ‖uw1‖ > 1 ≥ ‖ux‖, ∠uw1x < π/2.
Similarly, ∠uw2x < π/2. Then we have ∠uw1x + ∠uw2x <
π, which is a contradiction with x is outside of the circumcircle
disk(u, w1, w2).

Subcase 2.3: ux is added to LDel(2)(V ) when one of w1u and
w2u is shorter than one unit and the other is longer than one unit.
Assume that ‖w1u‖ > 1. See Figure 9 (c) as illustrations.

Since edge ux ∈ LDel(2)(V ), we know ‖xw1‖ > 1. Otherwise
w1 and w2 are in N2(u), then any circle passing though u and x
will contain either w1 or w2 inside. Since ‖uw1‖ > 1 and ‖ux‖ ≤
1, we have ∠uw1x < π/3. From x is outside the circumcircle
disk(u, w1, w2), we have ∠uw1x+∠uw2x > π. Thus, ∠uw2x >
2π/3, which implies ‖ux‖ > ‖uw2‖. Therefore, there is no edge
from UDel(V ) in downside of ux, which selects ux as the shortest
neighbor.

Then assume an edge uv ∈ UDel(V ) in upper-side is in the
same cone as ux and is longer than ux. Since ‖uv‖ ≤ 1, ‖ux‖ ≤ 1
and ∠vux < π/3, we have ‖vx‖ ≤ 1. Notice that w1 /∈ 4uvx
because of ‖uw1‖ > 1. Again from the property of Delaunay,
v and x must be outside of the circumcircle disk(u, w1, w2). It
implies that ∠vw1x + ∠vux > π. Thus, ∠vw1x > π − ∠vux >
2π/3. Then 1 ≥ ‖vx‖ > ‖xw1‖ > 1 causes a contradiction.
Therefore Subcase 2.3 shown in Figure 9 (c) does not exist also.

Consequently, it is impossible that any node u will add an edge
ux /∈ UDel as the shortest link to BPS2(UDG(V )) in a cone that
has some edges uv from UDel. Together with proof of Case 1, it
finishes our proof of spanner property of BPS2(UDG(V )).

THEOREM 7. Algorithm 3 uses at most O(n) messages, where
each message has O(log n) bits.

PROOF. Notice that it was shown in [8] that we can collect the 2-
hop neighbor information for all nodes using total C1 ·n messages.
Constant C1 here is at most 675. This constant can be improved by
a tighter analysis.

The communication cost of building LDel(2) is C2 · n since
every node only has to propose at most 6 triangles and each propose
is replied by two nodes. Constant C2 here is at most 18.

The second step (local ordering) takes C3 · n messages, since
processing every node u only causes following broadcasts: (1) node
u queries at most 5 times, when its d(u) is decreased and 1 ≤
d(u) ≤ 5; (2) some nodes v reply u’s queries, the total number of
this kind of replies is at most

∑
i = 15 times, where 1 ≤ i ≤ 5

and (3) node u claims its new order after it was ordered. Notice
that, since node u queries at most i ≤ 5 unordered nodes in its ith
query, only these i nodes reply it in that query round. Constant C3

here is at most 5 + 15 + 1 = 21.
The third step (bounded degree) also takes C4 · n messages, be-

cause every node only broadcasts two kind of messages: (1) tells
its neighbors to add some edges, and (2) claims that it is processed.
The total messages of telling neighbors to add some edges is 12n
since the total added edges is at most 3n from the planar property
of the final topology. Notice that each edge uv in the final topology
can be added due to at most 4 messages of adding edges (2 from
the endpoints u and v, 2 from the two nodes beside the edge uv).
Plus the second kind of messages (once per node), the constant C4

here is at most 12 + 1 = 13.
Thus, the total communication cost is bounded by O(n) where

the constant can be at most C1 + C2 + C3 + C4 = C1 + 18 +
21 + 13 = C1 + 52 = 675 + 52 = 727. Here most comes from
the slack analysis of collecting N2(u).

In addition, it is easy to show that the computation cost of each
node is at most O(d2 log d2), where d2 is the number of its 2-hop
neighbors in the original unit disk graph. This can be improved to
O(d1 log d1+d2), where d1 is the number of its 1-hop neighbors in
the original unit disk graph. The improvement is based on the fact
that we only need the triangles 4wuv in LDel(2)(V ) that has an-
gle ∠wuv ≥ π/3. All such triangles are definitely in LDel(1)(V ).
Thus, we can construct the Delaunay triangulation Del(N1(u)) of
N1(u) in the first step of Algorithm 2. Then check the candidate
triangles to see if they contain any node from N2(u) inside its cir-
cumcircle. If it does not, then it belongs to Del(N2(u)) also.

Observe that, after each node u collects the 2-hop neighbors
N2(u) (Step 1 of Algorithm 2), our algorithms can be performed
asynchronously. However, collecting N2(u) need synchronized
communication since otherwise, a node cannot determine if it in-
deed already collected N2(u).

4. EXPERIMENTS
In this section we measure the performance of the new bounded

degree and planar spanner by conducting some experiments. In our
experiments, we randomly generate a set V of n wireless nodes and
its UDG(V ), and test the connectivity of UDG(V ). If it is con-
nected, we construct different localized topologies from V , includ-
ing our new topologies (BPS1(V ) and BPS2(V )), some well-
known planar topologies (Gabriel graph GG(V ), relative neigh-
borhood graph RNG(V ) and localized Delaunay triangulations



LDel(V )), and some bounded degree spanners (Yao graph Y G(V )
and Yao and Sink Y G∗(V )). Then we measure the sparseness, the
power efficiency and the communication cost of these topologies.
In the experimental results presented here, we generate 50 random
wireless nodes in a 10 × 10 square; the number of cones is set
to 8 when we construct Y G(V ) and Y G∗(V ); the angle param-
eter α = π/3 when we construct BPS1(V ) and BPS2(V ); the
transmission range is set as 3. We generate 100 vertex sets V (each
with 50 vertices) and then generate the graphs for each of these 100
vertex sets. The average and the maximum are computed over all
these 100 vertex sets. Figure 10 gives all seven different topologies
for the unit disk graph illustrated by the first figure of Figure 10.
It shows that all these topologies except Y G(V ) and Y G∗(V ) are
planar.

UDG(V ) RNG(V ) GG(V )

LDel(2)(V ) Y G(V ) Y G∗(V )

BPS1(V ) BPS2(V )

Figure 10: Different topologies from the same UDG(V ).

4.1 Node Degree
The node degree of the wireless networks should not be too large.

Otherwise a node with a large degree has to communicate with
many nodes directly. This increases the interference and the over-
head at this node. The node degree should neither be too small:
a small node degree usually implies that the network has a lower
fault tolerance and it also tends to increase the overall network
power consumption as longer paths may have to be taken. Thus,
the node degree is an important performance metric for the wire-
less network topology. The node degrees of each topology are
shown in Table 1. Here davg/dmax is the average/maximum node
degree. It shows that BPS1(V ) and BPS2(V ) have much less
number of edges (average node degrees) than LDel(V ), Y G(V )
and Y G∗(V ). In other words, these graphs are sparser, which is
also verified by Figure 10. Recall that theoretically, only Y G∗(V ),
BPS1(V ) and BPS2(V ) have bounded node degree (both for in-
degree and out-degree). In [22, 23], Li et al. gave an example to
show that RNG(V ), GG(V ), Y G(V ) and LDel(V ) could have
large node degree (in-degree for Y G(V )). Notice that in our ex-
periments since the wireless nodes are randomly distributed in 2-d

space, the maximum node degree of these graphs are not as big as
the example. It is proved that node degree of Y G∗(V ) is bounded
from above by (k + 1)2 − 1 (in-degree is at most k(k + 1), out-
degree is at most k), where k = 8 is the number of cones. In this
paper, we prove that BPS1(V ) and BPS2(V ) have bounded node
which is at most 19 + d 2π

α
e = 25 when α = π/3. All these the-

oretical bounds of node degree can be shown from the maximum
node degrees in Table 1.

Table 1: Node degrees & stretch factors of different topologies.
davg dmax tavg tmax ρavg ρmax

UDG 16.84 35 1.000 1.000 1.000 1.000
RNG 2.28 5 1.316 4.141 1.057 2.932
GG 3.36 8 1.119 2.024 1.000 1.000
LDel 5.25 11 1.048 1.406 1.000 1.000
Y G 8.10 19 1.041 1.721 1.002 1.445
Y G∗ 4.81 11 1.070 1.990 1.003 1.459
BPS1 4.43 9 1.074 1.841 1.004 1.678
BPS2 4.46 10 1.072 1.841 1.003 1.663

4.2 Spanner Properties
Besides bounded node degree, the most important design met-

ric of wireless networks is perhaps the power efficiency, as it di-
rectly affects both the node and the network lifetime. So while
our new topologies increase the sparseness, how does it affect the
power efficiency of the constructed network? We then define power
stretch factor for measuring the power efficiency. A subgraph G′

is a power spanner of a Graph G if there is a positive real con-
stant ρ such that for any two nodes u and v, the minimum power
consumed by all paths between u and v in G′ is at most ρ times
of the minimum power consumed by all paths between them in
G. The constant ρ is called the power stretch factor. Here we as-
sume the total transmission power consumed by path v0, v1, ..., vk

is
∑k

i=1 ||vi−1vi||β , where the power attenuation constant β is a
real constant depended on the wireless environment. In our sim-
ulations β = 2. Table 1 also summarizes our experimental re-
sults of the length and power stretch factors of all these topolo-
gies. Here, tavg/tmax is the average/maximum length stretch fac-
tor; ρavg/ρmax is the average/maximum power stretch factor. It
is not surprise that the average/maximum power stretch factors of
BPS1(V ) and BPS2(V ) are at the same level of those of the
Y G(V ) and Y G∗(V ) while they are planar and much sparser.

4.3 Communication Cost
In Section 3 we proved that the localized algorithm construct-

ing BSP2(V ) uses at most O(n) messages. We found that when
the number of wireless nodes increases the average messages used
by each node for constructing BPS2(V ) is still in the same level.
In this experiment, we generate from 50 to 300 random wireless
nodes in a 10× 10 square and run our localized algorithm to build
BSP2(V ). The average and the maximum are computed over 20
vertex sets. All other parameters and settings are same with pre-
vious experiments. Table 2 summarizes our experimental results
of the node degree, length and power stretch factors, and commu-
nication costs of BPS2(V ). Here, davg(UDG)/dmax(UDG) is
the average/maximum node degree for the original unit disk graph;
tot msgavg/tot msgmax is the average/maximum total messages
cost for constructing BPS2(V ); nod msgavg/nod msgmax is the
average/maximum messages cost in each node during the construc-
tion. Notice that here we do not count the messages used in build-
ing LDel(2)(V ), since in [21] it was proved that the communi-



cation cost of building LDel(2)(V ) is O(n). In other words, we
only consider the messages used in the second and third steps of
Algorithm 3. The first two rows of Table 2 show the network be-
comes more and more dense while the number of wireless nodes
increases. Experimental results of communication costs on each
node show that the localized method does not cost more messages
on each node even the graph becomes more dense. Simulations
in Table 2 also show that the performances of our new topology
BPS2(V ) are stable when number of nodes changes.

Table 2: Performances and communication costs of BPS2(V ).
num of nodes 50 100 150 200 250 300
davg(UDG) 16.52 34.99 51.81 68.15 85.87 103.85
dmax(UDG) 29 62 94 114 140 175
davg 4.19 4.39 4.54 4.60 4.58 4.63
dmax 8 9 11 11 9 9
tavg 1.094 1.101 1.100 1.098 1.099 1.096
tmax 1.958 1.968 1.949 1.978 1.995 1.977
ρavg 1.017 1.012 1.012 1.009 1.009 1.010
ρmax 1.918 1.937 1.900 1.932 1.916 1.937
tot msgavg 393 812 1229 1655 2076 2498
tot msgmax 398 821 1244 1670 2090 2512
nod msgavg 7.86 8.12 8.19 8.27 8.30 8.32
nod msgmax 12 13 15 14 16 14

5. CONCLUSION
In this paper, we proposed both centralized and localized algo-

rithms to construct planar spanners with bounded node degree for
wireless ad hoc networks. The centralized algorithm can be imple-
mented in time O(n log n). The localized algorithm can be imple-
mented using O(n) messages under the broadcast communication
model for wireless networks. The basic idea of this new method
is to use (localized) Delaunay triangulation to make planar spanner
graph, then apply some ordered Yao graph to bound the node de-
gree. It is carefully designed to not lose all good properties when
combining them. As we know, this is the first localized algorithm to
construct bounded degree and planar spanner. We also conducted
experiments to show this topology is efficient in practice compared
with other well-known topologies for wireless ad hoc networks.

Centralized algorithm can also be extended to bound the total
edge length to be within a constant factor of Euclidean minimum
spanning tree, see [24]. It is open how to bound the total edge
length of BPS2(UDG(V )) in a localized manner.
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