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Abstract. A number of approaches, including cognitive radios, dynamic spec-
trum allocation, and spectrum auction, have been proposed and used to improve
the spectrum usage. A natural characteristic of spectrum usage is that requests for
spectrums often come in an online fashion. Thus, it is imperative to design effi-
cient and effective online dynamic spectrum allocation methods. Another chal-
lenge is that the secondary users are often selfish and prefer to maximize their
own benefits. In this paper, we address these two challenges by proposing SOFA,
strategyproof online frequency allocation method. In our protocol, a frequency
will be shared among a number of users, and secondary users are required to
submit the spectrum bid α time slots before its usage. Upon receiving an online
spectrum request, our protocol will decide whether to grant its exclusive usage,
within γ time slots. Assume that existing spectrum usage can be preempted with
some penalty. For various possible known information, we analytically prove that
the competitive ratios of our methods are within small constant factors of the op-
timum online method. Furthermore, in our mechanisms, no selfish users will gain
benefits by bidding lower than its willing payment.

1 Introduction

With the recent fast growing spectrum-based services and devices, the remaining spec-
trum available for future wireless services is being exhausted. The current fixed spec-
trum allocation scheme leads to significant spectrum white spaces where many allocated
spectrum blocks are used only in certain geographical areas and/or in brief periods of
time. A huge amount of precious spectrum, perfect for wireless communications that is
worth billions of dollars, sit there silently.

Subleasing is widely regarded as a potential way to share spectrum. Previous studies
(e.g., [15, 19, 20]) mainly assume that the information of all requests is known before
making allocation. This is true in some cases, but not true generally. In most applica-
tions, spectrum bidding requests often arrive online and the central authority (typically
a primary user) needs to quickly make a decision whether the requests are granted or
not. In this paper, we study this online model and propose online algorithms. We an-
alytically study competitive ratios of our algorithms. The competitive ratio of online
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algorithm is defined as the ratio between its performance and the performance of the
optimal offline algorithm for every possible input. To the best of our knowledge, we are
the first to study online spectrum allocation with cancelation and preemption penalty.

The main contributions of this paper are as follows. We show that best compet-
itive ratio achievable depends on penalty factor β and there are three regimes. For
each regime, we design algorithm with competitive ratio that matches the upper bound
asymptotically. We also design efficient auction mechanism. In our mechanism, to max-
imize its profit, no secondary user will bid lower than its actual valuation.

The rest of the paper is organized as follows. In Section 2, we define in detail the
problems to be studied. In Section 3, we present upper bounds of any online meth-
ods. We then present our solutions in Section 4 and analytically prove the performance
bounds. We present our mechanisms to deal with selfish users in Section 5. Finally we
review the related work in Section 6 and conclude the paper in Section 7.

2 Preliminaries

2.1 Network Model

Consider a wireless network system consists of some primary users and a central au-
thority who decides spectrum assignment on behalf of primary users. Some secondary
users V = {v1, v2, · · · , vn} want to lease the right to use a channel in some region for
some time period. We consider a simple scenario where only one channel is available.

Secondary users may reside at different geometry locations. Whether a secondary
user’s request conflict with others depends on their locations and time requirement. This
location-dependent conflict can be modeled by a conflict graph H = (V, E), where two
nodes vi and vj form an edge (vi, vj) if and only if they conflict with each other. We
will first study a simple case where the conflict graph is a complete graph.Then we will
show that our methods still have asymptotically optimum performance guarantees as
long as the conflict graph is growth-bounded by a polynomial function. A graph H is
growth-bounded by a function f , if for any node v ∈ H and any integer k > 0, the
number of independent nodes within k-hops of v is at most f(k).

2.2 Problem Formulation

A user from V = {v1, v2, · · · , vn} could ask for the usage of spectrum at different time
while time is slotted. Each request ei = (v, bi, ai, si, ti) is claimed by a secondary user
v at time ai, bids bi for the usage of the channel from time si to time si +ti. For most of
our discussions we will omit the user v when it is clear from the context, or not needed
in the notation. In other words, ei = (bi, ai, si, ti) denotes the ith request. Obviously,
ai ≤ si for all requests, which means requests can only bid for the future usage of
channel. Each user will ask for at most ∆ timeslots. We call ∆ the time ratio.

To improve the spectrum usage and revenue, the central authority can post a require-
ment that all bids must be submitted in advance of a certain time slots. In this paper, we
assume that for every spectrum bid ei, si − ai ≥ α for a given value α. Hereafter, we
call α the advance factor. Intuitively, a larger advance factor α will give more advan-
tage to the central authority. We later will show that the performances of our methods



do not depend on α as long as α ≥ γ. Our system also put some condition on the cen-
tral authority. The central authority should make a decision within no more than γ time
slots. We call γ delay factor. γ ≤ α makes the system meaningful. If a request has been
rejected, it will never be reconsidered and accepted later.

When a request is accepted, the secondary user who issued the request will be
granted the usage of channel at the price of what he bids when the first price auction
is used here. When current usage of channel is terminated, penalty should be paid to
compensate the preemption. The penalty µ(b, `, t) is linear to the unfinished time ` ≤ t
of that request e(v, b, a, s, t), i.e., µ(b, `, t) = β `

t b for a constant β ≥ 0. Notice that the
cancelation is modeled as ` = t if the spectrum usage was not started at all. Here the
constant β ≥ 0 is the penalty factor.

As we stated before, all requests arrive on the fly, thus any information about the
future, e.g., the distribution of future bids, the arrival time, the start time and the required
time duration are unknown. The objective is to find an allocation which maximizes the
total net profit, i.e., the total profit minus the total penalties caused by preemption. As
we will see later that the performance of our methods and the lower bounds on the
performance is affected by penalty factor β, advance factor α and delay factor γ. For
certain parameters β, α and γ, we call it (β, α, γ) problem in this paper.

3 Performance Upper Bounds

3.1 Upper Bounds for (β = 1, γ, α) Problem

We first show the performance lower bound when the penalty factor β = 1. There are
two different cases. γ = o(∆) or γ = Ω(∆).
1. When γ = o(∆), i.e., lim γ

∆ = 0, we first show that there is no online algo-
rithm with competitive ratio more than 3

√
2(γ + 1)∆− 1

3 , then improve this bound
to

√
2(γ + 1)∆− 1

2 .
2. When γ = Ω(∆), we show that (1, α, γ) problem cannot have a competitive ratio

1− ε for an arbitrary ε > 0.
Due to space limit, in this section and following sections, long proofs are omitted. To
check the poofs, please see our technical report [21].

Theorem 1. There is no online algorithm with a competitive ratio more than 3
√

2(γ + 1)∆− 1
3

for (β = 1, γ, α) problem when γ = o(∆).

Theorem 2. There is no online algorithm with competitive ratio more than 1
c for (β =

1, γ, α) problem, where
√

2(γ + 1)∆− 1
2 < 1

c ≤ 3
√

2(γ + 1)∆− 1
3 for (β = 1, γ, α)

problem when γ = o(∆).

Theorem 3. There is no online algorithm with a competitive ratio ≥ 1 − ε for an
arbitrary small ε > 0, for (β = 1, γ, γ) problem when γ = Ω(∆).

All theorems in this section are proved by contradiction using adversary model. The
adversary generates a set of requests in an online fashion based on the previous decision
of online algorithm. The goal of the adversary is to make the competitive ratio of that
online algorithm as bad as possible.



3.2 Upper Bounds for (β > 1, γ, α) Problem

For (β > 1, γ, α) problem, we show that there is no online algorithm with competitive
ratio more than O((γ + 1)∆−1) when γ = o(∆); no online algorithm with competitive
ratio more than 1− ε for an arbitrary ε > 0 when γ = Ω(∆).

Theorem 4. There is no online algorithm with competitive ratio more than 2β(γ+1)
(β−1)2 ∆−1

for (β > 1, γ, α) problem, when γ = o(∆).

From the analysis in this section, we can see that the performance lower bounds do
not depend on the advance factor α. In other words, no matter how many time slots the
secondary users claim their requests in advance, the theoretical lower bounds will not
be improved asymptotically if the delay factor γ does not change.

4 Online Spectrum Allocation Methods

4.1 Asymptotically Optimal Method for (β = 1, γ, α) Problem

Let Ra(t) be all requests submitted before time t. Based on the processing delay re-
quirement, we know that all requests in Ra(t) must be submitted during [t− γ, t), and
the requested starting time of these requests must be during [t− γ + α, t + α]. Among
all requests in Ra(t), let R(t) ⊆ Ra(t) be all requests whose starting times are during
[t, t + γ]. Recall that γ ≤ α. Our method only make decisions at time t using the infor-
mation from R(t), although a superset of requests Ra(t) is known. We will show that
our method can achieve a competitive ratio that is already asymptotically optimum.

For the set of currently known requests R(t), we will find some subsets using dy-
namic programming to optimize some objective functions. Our method will then make
decisions on whether to admit these subsets of requests under some conditions involv-
ing the currently running spectrum usages. We intorduce some notations first.

Definition 1. Candidate Requests Set: A strong candidate requests set at time t, de-
noted as C1(t), is a subset of requests from R(t) that has the largest total bids if C1(t)
is allowed to run without preemption from time t−γ +α to timeslots at most t+α+∆.
We abuse the notation little bit here by also letting C1(t) denote the profit made by C1(t).

For set C1(t), let P(C1(t), t′) denote the profit made from C1(t) if these requests are
admitted and then possibly being preempted at a time-slot t′ ∈ [t− γ + α, t + α + ∆].

A weak candidate requests set at time t, denoted as C2(t), is a subset of requests
from R(t) that has the largest total bids if C2(t) is allowed to run during time interval
[t − γ + α, t + α] (thus, these requests may be preempted by some requests started on
time-slot t + α + 1). We abuse the notation little bit here by also letting C2(t) denote
the profit made by C2(t).

In the rest of paper, we always use C1(t) (C2(t), respectively) to denote the strong
(weak, respectively) candidate requests set at time t. C1(t) and C2(t) can be solved by
dynamic programming in O(n3) time where n is the total number of requests.

At each time t, algorithm G should decide whether a request that arrived at time slot
t − γ will be accepted immediately. Starting time of such requests are in the interval



[t, t+α−γ]. Since γ ≤ α, at time t, we should know all requests whose start times are
from t to t+γ. Algorithm G takes the following inputs: a constant parameter c1 > 1, an
adjustable control parameter c2 > 0, delay requirement γ, advance factor α, time ratio
∆, Ra(t), R(t), C1(t), and C2(t). It works as follows.

Given Ra(t), if the channel will be empty at time t − γ + α, we find the strong
candidate requests set C1(t) with the maximum overall profit. We accept the request in
C1(t) with starting time t− γ + α, and we say that the channel is being used by candi-
date requests set C1(t). In other words, here we treat C1(t) as a large virtual spectrum
request, although at current time slot t we only admit the first spectrum request from
C1(t) while leave the admission decisions on other requests in C1(t) pending. Whether
these pending “admitted” requests will be actually admitted depend on future coming
requests. If future requests are better, we will preempt this virtual request C1(t), thus,
some of those pending admissions will not be issued at all.

If the channel will be used by a weak candidate requests set C2(t) at time t− γ + α
and this candidate requests set weakly preempted (exact definitions will be given later)
some other candidate requests set before, all requests from Ra(t) submitted at time
t − γ will not be admitted. Otherwise, assume the request to be run at time t − γ + α
is ej from some virtual candidate requests C1(t1), we find the candidate requests set
C1(t). The first request ei ∈ C1(t) such that si = t − γ + α will be accepted only if
C1(t) ≥ c1 · C1(t1). In other words, we use a strong request C1(t) to replace another
request C1(t1). We call it a Strong-Preemption. If strong-preemption cannot be applied,
we find the candidate requests set C2(t). The request ei ∈ C2(t) such that si = t−γ+α
will be accepted only if C2(t)+P(C1(t1), t−γ+α) ≥ c2 ·C(t1). In other words, we use
a weak candidate requests set C2(t). to replace another virtual weak candidate requests
set C1(t1). We call it a Weak-Preemption. In this case, all requests in C2(t) will be
accepted and the last request will be terminated at time t + α + 1 automatically.

If the weak-preemption cannot be applied also, we accept the request in the previ-
ously used candidate requests set C(t1), whose start time is t − γ + α (if there is any)
or continue the request ej that will continue run through the time slot t− γ + α.

In following analysis, we show that algorithm G is asymptotically optimal if we
choose constant c1 and control parameter c2 carefully. To analyze the performance of
our method, we first give a definition candidate sequence.

Definition 2. Candidate Sequence: An candidate sequence is a sequence of candidate
requests sets C1(ti), C1(ti+1), · · · , C1(tj−1), C2(tj) or C1(ti), C1(ti+1), · · · , C1(tj−1),
C1(tj) which satisfies all of following three conditions.
1. C1(ti) does not preempt another candidate requests set;
2. C1(ti+1) strongly preempts C1(ti), C1(ti+2) strongly preempts C1(ti+1), · · · , C1(tj−1)

strongly preempts C1(tj−2);
3. C2(tj) weakly preempts C1(tj−1); or C1(tj) strongly preempts C1(tj−1) and is not

preempted by another requests set.

Here we use the indices of the first and last candidate requests set to denote a can-
didate sequence, e.g. S(ti, tj). According to the definition, we can decompose the so-
lution of algorithm G into multiple candidate sequences. Notice that each spectrum
request e will appear in exactly one candidate sequence. We use G(S(ti, tj)) to denote



Algorithm 1 Online Spectrum Allocation G
Input: A constant parameter c1 > 1, an adjustable control parameter c2 > 0, γ, α, ∆, Ra(t),
R(t), C1(t), and C2(t).
Current candidate requests set C from time t′ < t. Here C = C1(t

′) if C1(t
′) strongly preempted

others, or C = C2(t
′) if C2(t

′) strongly preempted others.
Output: whether requests submitted at time t − γ will be admitted and new current candidate
requests set C.
1: if C = C2(t

′) then
2: if t− t′ ≥ γ then
3: C = ∅;
4: else
5: Accept request ei ∈ C2(t) such that si = t− γ + α.
6: if C = C1(t

′) or ∅ then
7: if C1(t) ≥ c1 · C1(t

′) then
8: C = C1(t);
9: Accept request ei ∈ C1(t) such that si = t− γ + α.

10: else if C2(t) + P(C1(t
′), t) ≥ c2 · C1(t) then

11: C = C2(t);
12: Accept request ei ∈ C2(t) such that si = t− γ + α.
13: else
14: Accept request ei ∈ C1(t

′) such that si = t− γ + α.

the profit made on candidate sequence S(ti, tj) by algorithm G. And we use OPT[ti, tj ]
to denote the profit made by optimal offline algorithm on the requests whose starting
times are in interval [ti, tj ].

Lemma 1. For each candidate sequence S(si, sj) in the solution given by algorithm
G, we have

G(S(si, sj)) ≥ min(c1, c2)C1(sj−1)

Proof. C1(sj) either strongly preempted C1(sj−1) or weakly preempted C1(sj−1). In
first case, G makes at least C1(sj) ≥ c1 · C1(sj−1)). otherwise, G makes at least
P(C1(si−1), sj) + C2(sj) ≥ c2 · C1(sj−1). So our lemma holds for either case.

Lemma 2. For each candidate sequence S(si, sj) in the solution given by algorithm
G, for each i ≤ k < j, we have

OPT[sk, sk+1] ≤ (c1 + c2 +
c2√

(γ + 1)/∆
)C1(sk)

Lemma 3. For each candidate sequence S(si, sj) in the solution given by algorithm
G, we have

OPT[si, sj ] ≤ (c1 + 1 +
1

c1 − 1
)(c1 + c2 +

c2√
(γ + 1)/∆

)C1(sj−1)

Proof. Obviously OPT[si, sj ] =
∑j−1

k=i OPT[sk, sk+1]. From Lemma 2, we have OPT[si, sj ] ≤
(c1 + c2 + c2√

(γ+1)/∆
)
∑j−1

k=i C1(sk). Based on the condition of strong-preemption, we

have C1(sk) ≥ c1 · C1(sk−1) for all i ≤ k ≤ j. The lemma then follows.



Theorem 5. Algorithm G is Θ(
√

γ + 1∆− 1
2 )-competitive when γ = O(∆).

Notice that algorithm G is Θ(1)-competitive when γ = ω(∆), which is also asymp-
totically optimal. Let n(t) be the cardinality of ea(t). We also have following theorem.

Theorem 6. Algorithm 1 takes O(n(t)3) to make decisions at a time instant t. Algo-
rithm 1 takes O((γ + ∆)n3) to make decisions on all n online requests.

4.2 Asymptotically Optimal Method for (β > 1, γ, α) Problem

In this subsection, we propose a greedy algorithm H for (β > 1, γ, α) Problem, where
H is asymptotically optimal.

Algorithm 2 Online Spectrum Allocation H
Input: A constant parameter c > 1+β, γ, α, ∆,Ra(t),R(t), C1(t). Previous current candidate
requests set C = C1(t

′) where t′ < t. Here C1(t
′) may be empty.

Output: whether requests submitted at time t − γ will be admitted and new current candidate
requests set C.
1: if C1(t) ≥ c · C1(t

′) then
2: C = C1(t);
3: Accept request ei ∈ C1(t) such that ai = t− γ.
4: else
5: Accept request ei ∈ C1(t

′) such that ai = t− γ.

Theorem 7. Algorithm H is (c−β−1)
c2

γ+1
∆+γ+1 competitive.

Theorem 8. MethodH is at least a
4(1+a)(1+β) -competitive (by choosing c = 2(1+β)),

when γ = a∆− 1.

4.3 General Conflict Graphs

Our algorithms can be easily extended for the case where the conflict graph has a
bounded growth. The details are omitted due to space limit. Assume the bounded one-
hop independent number of conflict graph H is λ. We have following theorem.

Theorem 9. Algorithm G′ is Θ(
√

γ + 1∆− 1
2 )-competitive for β = 1.

5 Dealing With Selfish Users

When each secondary user declares his request, he may lie on the bid, and time re-
quirement. We need to design rules such that each secondary user has incentives to
declare his request truthfully. Each secondary user i has its own private information
ti, including bi, ai, and ti. Let ai = (b′i, a

′
i, t

′
i) be the value he will report. For each



vector of actions a = (a1, a2, · · · , an), a mechanism M = (A, P ), computes a spec-
trum allocation A(a) = (A1(a),A2(a), · · · ,An(a)) and a payment vector p(a) =
(p1(a), p2(a), · · · , pn(a)). Each user i will be allocated Ai(a) and be charged pi(a).

Assume that no user will delay his/her spectrum request and a user will not lie about
ti and si. Consider a user i, assume the bids of all other users remain the same. Let bi

be the minimum bid that i has to bid to get admitted when its spectrum request is to be
processed at γ timeslots later. Let bi be the minimum bid that i has to bid to get admitted
and not get preempted later. Clearly, bi ≤ bi. bi and bi can be computed in polynomial
time since all other bid values are known. Then the final profit of user i is

utility(i) = f · bi − pi + µ(b′i, `
′
i, ti).

Here if i is rejected, we have f = 0, pi = 0, and µ(b′i, `
′
i, ti) = 0; if i is admitted and

later preempted, f = 1 − β
`′i
ti

and µ(b′i, `
′
i, ti) = β

`′i
ti

b′i, where `′i is the unserved time
of its spectrum request; if i is admitted and not preempted, f = 1 and µ(b′i, `

′
i, ti) = 0.

The payment pi is always the upfront charge from i for being admitted.
It is a forklore result that the allocation method in a mechanism must have the

monotone property. Here an allocation method A is monotone if a user i is granted the
spectrum usage under A with a bid ei = (bi, ai, ti), then user i will still be granted
under A if he increases bi, and/or decreases ti. First, our method (Algorithm 1) does
have the monotone property. In our algorithm, we need to find strong candidate requests
set, and weak candidate requests set by dynamic programming which can be shown
as monotone. Thus, we can design a mechanism using our algorithms (G and H) as
allocation methods as follwoing

{
Use Algorithm G or H as allocation method
charge an admitted user i a payment pi = bi

Theorem 10. In our mechanism using Algorithm G or H as the spectrum allocation
method, to maximize its profit, every secondary user will not bid a price lower than its
actual value.

Observe that, in our scheme, the only scenario that a secondary user can gain benefit
is when bi ∈ (bi, bi) and it bids a value b′i ∈ (bi, bi).

6 Literature Reviews

The allocation of spectrums is essentially combinatorial allocation problem, which have
been well studied [1,14]. Yuan et al. [18] used time-spectrum block to model spectrum
reservation in cognitive radio networks, and presented both centralized and distributed
protocols. Li et al. [15] designed efficient methods and truthful mechanism for various
dynamic spectrum assignment problems. Zhou et al. [19] propose a truthful and efficient
dynamic spectrum auction system to serve many small players. In [20], Zhou and Zheng
designed truthful double spectrum auctions where multiple parties can trade spectrum.
All these results are based on offline models.



Our problem is also similar to online job scheduling problems. Various online schedul-
ing problems focus on optimizing different objective functions. The most common ob-
jective function is makespan, which is the length of the schedule. Suppose that given m
identical machines, jobs arrive one by one and no preemption is allowed. A number of
results have been proved to improve the upper bounds [7, 12] and lower bounds [11].
Closing the gap between the best lower bound (1.88 [11]) and the upper bound (1.9201
[7]) is an open problem. All these results assume that preemption is not allowed and
they focus on minimizing makespan. Many authors [8, 16] also investigated the case
where preemption is allowed without penalty. Online scheduling problem in which we
pay penalty for rejecting jobs was first studied in [3] by Bartal et al. and improved later
in [10] by Hoogeveen et al..

For the model with deadline, it is usually impossible to finish all jobs. Thus, an-
other model aims to maximize the profit. In 1991, Baruah et al. [4] proved that no
online scheduling algorithm can make profit more than 1

(1+
√

D)2
times the optimal. Ko-

ren et al. [13] gave an algorithm matching the lower bound [4]. Hoogeveen et al. [9]
gave a 1

2 -competitive algorithm which maximizes the number of early jobs where pre-
emption with no penalty is allowed. Chrobak et al. [5] gave a 2

3 -competitive algorithm
which maximizes the number of jobs that have uniform length in the preemption-restart
model.

The work that is most similar to our work is a recent result by Constantin et al. [6]
in 2009. They proposed and studied a simple model for auctioning ad slot reservations
in advance. A seller will display a set of slots at some point T in the future. Until T ,
bidders arrive sequentially and place a bid on the slots they are interested in. The seller
must decide immediately whether or not to grant a reservation. Their model allows the
seller to cancel at any time any reservation made earlier with a penalty proportional to
the bid value. The major difference between our model and their model is that, in their
model, they only auction a set of ad slots for a fixed time-slot T , while in our model,
the bidders could bid the spectrum usage starting from any time-slot, and lasting for an
arbitrary duration. We also consider preemption during the spectrum usage.

7 Conclusions

In this paper, we studied online spectrum allocation for wireless networks. For a number
of variants, we designed efficient online scheduling algorithms and analytically showed
that the competitive ratios of our methods are within small constant factors of the op-
timum. Especially, when γ is around the maximum requested time duration ∆, our
algorithm results in a profit that is almost optimum. We also conducted extensive simu-
lations to study the performances of our methods and our results show that they perform
extremely well in practice.

We showed that no user will bid lower than its willing payment under our mecha-
nism. We would like to study the Nash Equilibriums of our mechanism and investigate
the price of anarchy of our mechanism. It remains open to design a mechanism in which
every secondary user cannot gain benefit by bidding untruthfully. It is also interesting to
extend our mechanism to deal the case when we know more information about requests,
such as the distributions of bids, timeslots requested, and arrival times.
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