How good is sink insertion?

Xiang-Yang Li and Yu Wang

Dept. of Computer Science, Illinois Institute of Technology, 10 W. 31st Street,
Chicago, IL 60616.

Abstract. Generating high quality meshes is one of the most important
steps in many applications such as scientific computing. Sink insertion
method is one of the mesh quality improvement methods that had been
proposed recently. However, it is unknown whether this method is com-
petitive to generate meshes with small number of elements. In this paper,
we show that, given a two-dimensional polygonal domain with no small
angles, the sink insertion method generates a well-shaped mesh with
O(n) triangles, where n is the minimum number of triangles generated
by any method with the same quality guarantee.

We also show that the sink insertion method more likely can not guar-
antee the same result for a three-dimensional domain, while the other
methods such as Delaunay refinement can achieve.
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1 Introduction

Mesh generation is the process of breaking a geometric domain into a collection
of primitive elements such as triangles in 2D and tetrahedra in 3D. It has plenty
of applications in scientific computing, computer graphics, computer vision, geo-
metric information system, and medical imaging. Some applications have a strict
quality requirement on the underlying meshes used. For example, most of the
numerical simulations require that the mesh is well-shaped. In addition, some
numerical simulations methods, for example, the control volume method, prefer
the mesh to be a Delaunay triangulation.

Recently, Edelsbrunner et. al [2, 3] proposed a new mesh improvement method
based on sink insertion. This new method guarantees to generate a Delaunay
mesh with a small radius-edge ratio. Edelsbrunner and Guoy (private communi-
cation) found that the sink insertion method tends to be more economical when
we want to add as many points as possible at the same time to refine the mesh
while maintaining the Delaunay property. It will also be useful in the software
environment with off-line Delaunay triangulation or parallel meshing. In stead
of dealing with all the circumcenters as many as the number of bad elements,
they deal with small number of sinks of these bad elements. From experiments,
they observe as many as 100 bad tetrahedra sharing the same sink. However,
unlike Delaunay refinement, it is an open problem whether the sink insertion



method generates an almost-good Delaunay mesh with O(n) simplex elements,
where n is the minimum number of d-dimensional simplex elements generated
by any other methods with the same radius-edge ratio quality guarantee.

In this paper, we show that the sink insertion method guarantees to generate
a well-shaped mesh with size O(n) in 2D. For a three-dimensional domain, unlike
the Delaunay refinement methods, the size optimality is not guaranteed because
of the existence of slivers in an almost-good Delaunay mesh. We give an example
that suggests that the sink insertion method may not guarantee to generate a
mesh with size O(n) for a three-dimensional domain.

The rest of the paper is organized as follows. In Section 2, we review the
sink insertion algorithm proposed by Edelsbrunner et. al. In Section 3, we prove
that the sink insertion method guarantees to generate a well-shaped mesh with
size O(n) for a two-dimensional PLC domain with no small angles. In section 4,
we discuss why the sink insertion method may not guarantee that the generated
mesh has size O(n) for a three-dimensional PLC domain. Section 5 concludes
the paper with further discussions.

2 Preliminary

A simplicial mesh is called almost good if each of its simplex elements has a
small radius-edge ratio, which is the circumradius divided by the shortest edge
length of the simplex. Hereafter we use p(7) to denote the radius-edge ratio of
a simplex 7. Several theoretical and practical approaches have been proposed
for generating almost-good Delaunay meshes. Assume the spatial domain that
does not have small angles is given in terms of its piecewise linear complex
boundary (PLC) [7]. It has been shown that the Delaunay refinement methods
[1,5,6] generate an almost-good Delaunay mesh with size O(n), where n is the
minimum number of elements for any mesh with the same radius-edge ratio for
the same geometric domain.

2.1 Sink

Edelsbrunner et al. [2, 3] defined the sink of a simplex ¢ in a Delaunay complex
by the following recursive approach.

Definition 1. [SINK] In a d-dimensional Delaunay complez, let ¢, be the cir-
cumcenter of a d-simplez o; let N' (o) be the set of d-simplices that share a d — 1
dimensional face with o. For each simplex 7 € N(o), let H, be the half space
containing T bounded by the d — 1 dimensional face shared by T and o. A point
z is a sink of o when

— 2 18 ¢y and it is contained in o; or
— z is a sink of T € N(0) and ¢, is contained in H,.

A simplex containing its own circumcenter is called a sink simplex. Edels-
brunner et al. [2,3] showed that there is no loop in the definition of sink among



all d-dimensional simplices by proving that the circumradius of the simplex 7
containing the sink of a simplex ¢ is not less than the circumradius of o. Notice
that if the circumcenter of a boundary simplex is not inside the domain, then
its sink is not defined by the above definition. For this case, we just define its
circumcenter as its sink. Given a boundary k-simplex o (k < d) contained in a
k-dimensional boundary polyhedron, its sink is defined by considering only that
boundary polyhedron.

The min-circumsphere of a k-simplex 7 in d-dimensions is the smallest d-
dimensional sphere that contains all vertices of 7 on its surface. When k& = d,
the min-circumsphere is also called the circumsphere. A point is said to encroach
the domain boundary if it is contained inside the min-circumsphere of a boundary
k-simplex, where k < d.

Let T be the set of tetrahedron in a 3-dimensional Delaunay mesh and 7 =
TU{7 }, where 7 represents the outside of the domain, called dummy element.
Edelsbrunner et al. [2] defined the flow relation < C T x T with 74 < 7y if

1. 7y and 75 share a common triangle v, and
2. the interior of 71 and the circumcenter ¢ of 71 lie on the different side of the
plane containing v.

If m < 7o, then 7 is called the predecessor of m5; and 7> is called the suc-
cessor of 1. Here predecessor and successor are only meaningful for a Delaunay
tetrahedron. The set of descendants of tetrahedron 7 is defined as

desc(t) = {7} U desc, <, (1), where descr<, (1) = U desc(p).
T<U

Notice that for a triangle, there is only one successor defined, while there are
only at most two successors defined for a tetrahedron. A sequence of tetrahedra
with 74 < 73 ... < 7, is called a flow path from 71 to 7,, denoted by 7 (71, 7s)-
See the left figure in Figure 1 for an illustration in 2D.

2.2 Sink Insertion Algorithms

Sink insertion method, proposed by Edelsbrunner et al. [2,3], inserts the sinks
of bad d-dimensional simplex elements instead of inserting their circumcenters
directly. A simplex element is bad if its radius-edge ratio is larger than a con-
stant p. For the completeness of the presentation, we review the sink insertion
algorithm for a three-dimensional domain.

Algorithm: SINK-INSERTION(gg)

Empty Encroachment: For any encroached boundary segment, add its mid-
point and update the triangulation. For any encroached boundary triangle,
add its sink and update the triangulation. If the sink to-be-added encroaches
any boundary segment, we split that segment instead of adding that sink.



Bad Elements: For any tetrahedron ¢ with p(c) > g9, find its sink s,. Assume
that s, is the circumcenter of a tetrahedron 7. Insert the sink s, to split 7 and
update the Delaunay triangulation. However, if s, encroaches a boundary
segment or triangle, we apply the following rules instead of adding s,.

Equatorial Sphere: For any boundary triangle p encroached by the sink s,,
add the sink s, of u. Update the triangulation accordingly. However, if s,
encroaches any boundary segment, we apply the following rule instead.

Diametral Sphere: For any boundary segment v encroached by the sink s, or
the sink s,, add the midpoint of v. Update the triangulation accordingly.

Recall that the insertion of the circumcenter of a bad d-simplex will imme-
diately remove the simplex. Inserting the sink of a bad tetrahedron may seem
counter-intuitive, because the sink of a d-simplex could be far away from it.
Consequently, the insertion of the sink may not remove the bad d-simplex im-
mediately. The termination of the algorithm may be in jeopardy. However, it
is proved that the circumradius of a tetrahedron ¢ is no more than that of the
tetrahedron 7 containing the sink of [2,4]. Then the proofs of the termination of
Delaunay refinement method [6] can be applied directly to prove the termination
of the sink insertion algorithm. If we select gg > 1, then the minimum distance
among mesh vertices after the sink insertion will not decrease, which implies the
algorithm’s termination. If there are boundary constraints, the constant gy has
to be increased to v/2 for 2D domain and 2 for 3D domain.

3 Good Grading Guarantee in 2D

This section is devoted to study the number of elements in the generated two-
dimensional mesh by analyzing the relation between the nearest neighbor func-
tion N () defined by the final mesh and the local feature size function Ifs() defined
by the input domain. Here N (z) is the distance from z to its second nearest mesh
vertex. A mesh vertex v is always the nearest mesh vertex of itself. Local feature
size Ifs(x) is the radius of the smallest disk centered at z intersecting two non-
incident input segments or input vertices. Both N() and Ifs() are 1-Lipschitz
function. A mesh is said to have a good grading if the nearest neighbor function
N() defined on the mesh is within a constant factor of Ifs().

We study the spacing relations among intermediate meshes by using similar
idea as Ruppert and Shewchuk did. With each vertex v, we associate an insertion
edge length e, equal to the length of the shortest edge connected to v immediately
after v is introduced into the Delaunay mesh. Here v may not have to be inserted
into the mesh actually. For the sake of convenience of analyzing, we also define
a parent verter p(v) for each vertex v, unless v is an input vertex. Intuitively,
for any non-input vertex v, p(v) is the vertex “responsible” for the insertion of
v. We discuss in detail what means by responsible here. If v is inserted as the
sink of a triangle o with p(c) > g9, then p(v) is the most recently inserted end
point of the shortest edge of o. If all vertices of o are original input vertices,
then p(v) is one of the end points of the shortest edge of o. If v is the midpoint



of an encroached segment, then p(v) is the encroaching vertex. For the sake of
simplicity, we always assume that the encroaching vertex is not an input vertex,
because Ruppert [5] and Shewchuk [6] showed that the nearest neighbor function
N() defined on the Delaunay mesh after enforcing the domain boundary is within
a constant factor of the local feature size function, i.e., N (v) ~ Ilfs(v). The parent
vertex p(v) of v does not need to be inserted into the mesh actually.

We then show that e, of any introduced mesh vertex v is related to that of
its parent vertex p(v). Here v may also not be inserted due to encroaching. For
a vertex v, as [6,4], we define the density ratio at point v as D,, = lfiﬂ Clearly,
D, is at most one for an input vertex v, and for newly inserted vertex v, D,
tends to become larger. Notice that D, is defined just immediately after v is
introduced to the mesh; it is not defined based on the final mesh.

Lemma 1. [RADIUS-VARIATION] Consider o triangle o. Let uw and e, be the
circumcenter and the circumradius of o. Assume that there is no triangle with a
large radius-edge ratio in desc(o) except possibly o itself. Assume triangle T # o
contains the sink of o inside. Let p be the predecessor of triangle 7. Let w and
ew be the circumcenter and circumradius of the triangle u. Then

S

€w — € —||w — ul|.

YT 4

PROOF. Let’s consider a triangle 73 = pgr and its successor 72 = pgs in desc(o),
where 75 # 7. Triangle 75 has a small radius-edge ratio from the assumption of
desc(o). Let ¢ and y be the circumcenter of 73 and 7» respectively. Let e, and
ey be the circumradius of 7y and 7» respectively. The right figure in Figure 1
illustrates the proof that follows. Let ¢ be the midpoint of the edge pq. Let

Fig. 1. Left: the descendants of a triangle pgr; Right: the relationship between the
circumradius e, of 71 = pqr, the circumradius ey of 7 = pgs and ||z — y||.

a = /cqx and B = /zqy. Assume that cq has a unit length. Then e, = 1/ cos(a),
ey = 1/ cos(a + 3), and ||z — y|| = tan(a + B) — tan(a). It is easy to show that

e —ez_sin(a-}-ﬁ)_ ) 3
eyl = cong) ot meoslatfan(y)




Assume we fix the value of a + 8 = 6y, then it is easy to show that

sin{a + g)

6 0
2 sin(fg) — cos(fp) tan(—=) = tan(—).
cos(5) 2 2
Let ps’ be a diameter of the circumcircle of the triangle pgs. It is easy to show
that ||g—s|| < |lg—s'|| = 2||c—y|| = 2ey sin(a + B). The triangle 7» = pgs has a
small radius-edge ratio implies that ||g—s|| > 2. Thus we have sin(a+ ) > 5.
It follows that ﬁ;:ZTI > tan(%) = ﬁi’ﬁ"ao > ﬁ. Using the triangle inequality,
it is easy to show that e, — e, > ﬁ”w — u|| by summing up the inequalities

for all triangle and successor pairs 71 and 75 in desc(o) with 75 # 7.

Theorem 1. [BOUNDED DENSITY RATIO| There are fized constants D1 > 1
and Do > 1 such that for any vertex v inserted or rejected as the sink of a
bad triangle, D, < Ds; for any verter v inserted or rejected as the midpoint
of an encroached boundary segment, D, < D;. Hence, there is a constant D =
max{Dy, D2} such that D, < D for all mesh vertez v.

PROOF. We prove this by induction. If v is an original input vertex, then the
length e, of the shortest edge connected to v is at least Ifs(v) from the definition
of Ifs(v). Thus D, = lfseﬂ < 1 and the theorem holds.

Then consider non—i;lput vertex v. We first consider inserting v as the sink
of a triangle o. Let u be the circumcenter of the triangle o. Notice that v is also
the sink of any triangle from desc(c). Without loss of generality, assume that
no triangle except o from desc(o) has a large radius-edge ratio. Assume v is the
circumcenter of a triangle 7. Notice that e, is equal to the circumradius of 7.

Case 1: the triangles o and 7 are the same. Notice that ¢ has a radius-edge
ratio at least gg, then parent p of vertex v is one of the end points of the shortest
edge pq of o. Here p could be the most recently inserted vertex or an original
vertex of o. Then ¢ is an original vertex or is inserted before p. In both cases,
we have e, < ||p—g¢||. Then e, < |lp—q|| < %. And e, = Ry > 0o - €p. Notice
that Ifs(p) < Dpe,, where D, is the density ratio bound of vertex p derived from
induction. Thus Ifs(u) < Ifs(p) + ||p — u|| < Dyep + €y < (% + 1)e,. It implies

that D, = lfzﬂ < % + 1. So a sufficient condition for bounding the density
ratio of vertex wu is

max(Dl 5 D2)

+1< D, (1)
Qo

Case 2: the triangles o and 7 are not the same. Let w be the circumcenter of
the predecessor triangle of 7. Similarly we define e,, as the circumradius of that
triangle. Then by previous lemma 1, we know that there is a constant § = ﬁ
such that e,, — e, > d||w — u||. Here w and u could be the same.

Subcase 2.1: vertices w and v are not close, i.e., ||[v—w|| > €ee,, where € = ﬁ.
Then similar to the previous lemma 1, e, — e, > 4||v — u]|. For point v, we have



Ifs(v) < ifs(u) + |Ju—v|| < Ufs(u) + Flev —ew) < (1+ % — §)eu + 3€y. Thus a
sufficient condition that D, = @ <Dyis (1+ % — 3)ey < (D2 — §)ey. From

eu < ey, this inequality is satisfied if 1 + % —3<Dy—%,and Dy — 1 > 0.
From D, < max(D;,D3), a sufficient condition that D, < D, is

max(Dl, DQ)

1
Dy > max(=,1+
2= (5 Qo

)- (2)

Subcase 2.2: vertices w and v are close, i.e., ||[v—w|| < €e,, where € = ﬁ. For

vertex w, similar to subcase 2.1, we have Ifs(w) < (1 + % — L)ey + }ew- Then
Ifs(v) < lfs(w) + ||v — w|| implies that Ifs(v) < (1 + % — Deu + tey + e, <
1+ % — Dey + (1 + €)e,. Thus, from e, < e,, a sufficient condition that

D, < D, is 1+%—% < Dy—1}—¢ and D, — 1 —e > 0. Consequently, we need

DQZmax(1+e+M,l+e). (3)
00 4

Case 3: vertex v is the midpoint of a segment that is encroached by a vertex
w. Here w is the sink of a triangle o with large radius-edge ratio. Assume that

the sink w is contained in triangle 7. Let u be the circumcenter of triangle o.
Subcase 3.1: vertices w and u are not same. From the analysis of case 2, we
have Ifs(w) < (1 + % — 1)ew + (5 + €)ew by substituting v by w in the results.
The vertex w is inside the circumcircle centered at v with radius e,. Therefore
ew < V2e,. From Ifs(v) < Ifs(w) +||w—u|| < (1+ % — et (% +v/2e+1)e,,

inequality D, < D; holds if 1 + % -3+ <Dy — \/5(% +¢€) —1and D; >

\/5(% + €) + 1. Consequently, a sufficient condition is that

D1Zma,x{2+\/§(%+e)—%+W,\/§(%+e)+l}. (4)

Subcase 3.2: vertices u and w are the same. We have Ifs(v) < Ifs(u)+||u—v|| <

1+ %)eu +e, < (14 %)ﬂev + e,. To prove D, < D1, we need

Vii+ 20y 1<, (5)
900

As conclusion, if we choose D; and D» as the follows,

1+v2(5 +e),

2+1 1 D
D; = max %; and Dgzmax(g +e,1+e+—1),
00(20+v2—1+/2¢5) %o
6(e0—1) ’
then all inequalities are satisfied. Notice here § = z.-, and € = 5.

The following theorem concludes that the generated mesh has a good grading,
i.e., for any mesh vertex v, N(v) is at least some constant factor of Ifs(v).



Theorem 2. [GOOD GRADING| For any mesh vertex v generated by the sink

insertion method, the edge incident on v has length ot least %.

The proof is omitted here. The values corresponding to D; and D, guaranteed
by the Delaunay refinement method [5, 6] are small: D, = @ is at least go—l—\/i
for a vertex v inserted as the circumcenter of a bad triangle and at least p £o 75

for a vertex v inserted as the midpoint of an encroached segment. For instance,
Ruppert claims that if the smallest angle is 10 degrees, then no edge is smaller
than % of the local feature size of either of its endpoints. To guarantee the
minimum angle 10 degrees, we need go = m = 2.88. Then ¢ ~ 0.087 and
€~ 0.174. So D; ~ 17.54 and D5 = 16.69. It then implies that no edge is smaller
than % of the local feature size of either of its endpoints in any mesh generated
by the sink insertion method. Therefore, the theoretical bound on the number
of elements of the mesh generated by sink insertion method is more likely larger
than that by the Delaunay refinement method.

Ruppert shows that the nearest neighbor value N(v) of a mesh vertex v of
any almost-good mesh is at most a constant factor of Ifs(v), where the constant
depends on the radius-edge ratio. The above Theorem 2 shows that the nearest
neighbor N(v) for the 2D Delaunay mesh generated by sink insertion is at least
some constant factor of Ifs(v). Then we have the following theorem.

Theorem 3. [LINEAR SI1ZE] The number of triangles in the 2D mesh generated
by the sink insertion method is within a constant factor of any Delaunay mesh
for the same domain, where the constant depends on the radius-edge ratios of
the meshes.

4 Discussions for 3D Domain

Shewchuk [6] showed that the Delaunay refinement method generates almost-
good meshes with a good grading guarantee in two and three dimensions. We had
showed that the sink insertion method also generates a almost-good mesh with a
good grading guarantee in two dimensions. Unfortunately, the proofs presented
here can not be directly applied to three dimensions. The reason is as follows. To
guarantee the size optimality of the sink insertion method, the nearest neighbor
function N() defined on the generated mesh must be within a constant factor
of the local feature size function Ifs(). Notice that Ifs(v) > e, > N(v), where
ey is the length of the shortest edge connected to v when vertex v is inserted.
Therefore, when a vertex v is introduced to the mesh, e, should be within a
constant factor of Ifs(v) to guarantee the good grading of the generated mesh.
In other words, we have to prove the existence of a constant D such that for
each vertex v inserted into the mesh, Ifs(v) < De,. Or more specifically, there
should exist three constants D1, D>, and D3 such that

— for each vertex v inserted as the circumcenter of a tetrahedron, Ifs(v) < Dse,;
— for v inserted as the circumcenter of a boundary triangle, Ifs(v) < Daey;
— for v inserted as the midpoint of a boundary segment, Ifs(v) < Die,.



Assume that we insert a vertex v as a sink of a tetrahedron o, and v is the
circumcenter of a tetrahedron 7. Notice that the structure of desc(o) is a DAG
whose node out-degree is at most 2. Consider a tetrahedron 7 from desc(o).
Without loss of generality, we assume that there is no tetrahedron in m (o, 7)
with a large radius-edge ratio except tetrahedron o itself. In three dimensions,
the fact that a tetrahedron has a small radius-edge ratio does not guarantee that
the tetrahedron has no small angles. Slivers are the only tetrahedra that have a
small radius-edge ratio but their aspect ratio could be arbitrarily large. Let u and
e, be the circumcenter and the circumradius of o. Let e, be the circumradius of
the tetrahedron 7. It is possible that e, is almost the same as e, even vertex v is
far away from u. Consequently, ﬁ;:fjﬁ could not be bounded from below by any
constant. Figure 2 gives an example of a configuration such that

[[o—u]]

be arbitrarily small. This, together with the fact that Ifs(v) could be as large as
Ifs(u) + ||v — u|| implies that D, = lfseﬂ could be much larger than D, = lf‘zﬂ
Therefore we can not bound the dens;ty D, using the relation between D, and
D, even assuming that the density D,, of vertex u is bounded by a constant Djs.

Figure 2 is constructed as follows. Let sliver pggorosg be a successor of the
tetrahedron o, which is not shown in the left figure of Figure 2. Assume that the
circumcenter of the sliver pogoroso is on the different side of the plane Hy, s,
passing pg, ro and sg with sliver pggorose. One of the successor of sliver pggoroso
is constructed by lifting vertex go to a new position ¢; such that tetrahedron
Poq1ToSo 18 a sliver and its circumcenter is on the different side of the plane
Hpq.50 Passing po, 1 and so with the tetrahedron pggirose. Then we lift the
node r¢ to 71 to construct a sliver successor pogi7r1So of tetrahedron pogiToso
whose circumcenter is on the different side of the plane Hyq,r, with pogi71s0.
We then construct a sliver successor poqi7151 of pog171 50 by lifting sg to s;. Sliver
successor p;g17181 is constructed by lifting py to a new position p;. The above
procedure could be repeated many rounds if pogorgse is carefully configured and
every lifting is carefully chosen. The middle figure in Figure 2 give the sliver
pattern used in constructing this example. It is easy to show that using only the
tetrahedron 7 also can not bound the density ratio D, = lfiﬂ Assume that p
is a vertex of the shortest edge of tetrahedron 7; see the right figure in Figure 2.

Then we have D, < 1+ %Dp. Here the situation D, = 1 + %Dp could be

Fig. 2. Left: all sliver descendants; Right: the sink simplex does not help.



achieved if 7 is a regular tetrahedron. It implies that the upper bound for D,
could be always larger than that for D,,. However, we doubt that these situations
can really happen in practice.

5 Conclusion

In this paper, we show that the sink insertion method guarantees to generate
a two-dimensional mesh with good grading. On the other hand, we also give
an example of three-dimensional local mesh configuration to show that the sink
insertion method may fail to generate a mesh with size O(n), where n is the
minimum number of the mesh elements with the same radius-edge ratio quality.

As reported by the experimental results (Guoy and Edelsbrunner, private
communication), the sink insertion method usually generates meshes whose sizes
are not much larger than that by Delaunay refinement method. However, it is
interesting to see if we can theoretically prove the good grading guarantee of the
sink insertion method or give an example of three-dimensional domain such that
a sequence of sink insertions will generate a mesh whose size is larger than O(n).
Notice Li [4] recently gave a new refinement-based algorithm that generates well-
shaped three-dimensional meshes with size O(n). Li [4] also proposed a variation
of the sink insertion method, which inserts a point near the sink and its insertion
will not introduce small slivers compared to 7 instead of inserting the sink of a
tetrahedron 7 with large radius-edge ratio or sliver. This variation guarantees
to generate well-shaped 3D Delaunay meshes. However, it is open whether this
variation will have a good grading guarantee. It is interesting to see what is the
mesh size relation between two meshes generated by the sink insertion method
and this variation proposed in [4].
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