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Abstract—In this work, we address the problem of finding
experts using chains of social referrals and profile matching with
only local information in online social networks. By assuming
that users are selfish, rational, and have privately known cost
of participating in the referrals, we design a novel truthful
efficient mechanism in which an expert-finding query will be
relayed by intermediate users. When receiving a referral request,
a participant will locally choose among her neighbors some
user to relay the request. In our mechanism, several closely
coupled methods are carefully designed to improve the search
performance, including, profile matching, social acquaintance
prediction, score function for locally choosing relay neighbors,
and budget estimation. We conduct extensive experiments on
several datasets of online social networks. The extensive study
of our mechanism shows that the success rate of our mechanism
is about 90% in finding closely matched experts using only
local search and limited budget, which significantly improves the
previously best rate 20%. The overall cost of finding an expert by
our truthful mechanism is about 20% of the untruthful method
and only about 2% of the method that always selects high-degree
neighbors. The median length of social referral chains is 6 using
our localized search decision, which surprisingly matches the
well-known small-world phenomenon of global social structures.

Index Terms—Mechanism Design, Strategyproof, Referral We-
b, Localized Searching, Small World.

I. INTRODUCTION

Finding experts is common and useful in real life. So
far, there are two kinds of expert finding in industry and
literature. One is searching in a large database with the global
information. The other strategy is using a chain of social
referrals through acquaintances. Searching a referral chain can
help people find the experts who cannot be obtained by using
search engines. Moreover, there are limits as to the amount
and the kinds of information that a user is able or willing to
make available to the public [3]. E.g., many users of online
social networks have made their profiles unsearchable to public
or only visible to friends. Searching for some information or
experts thus becomes a matter of searching the social network
with a chain of personal referrals from the searcher (or called
initiator) to the expert.

Online social networks, like Facebook and LinkedIn, are
powerful resources for finding experts and constructing referral
chains due to the abundant personal information and the
homophily principle [6]. A lot of existing work have proved
that social networks are searchable through short pairwise

connections [15], [16]. For online social networks (OSN), our
analysis of Facebook dataset shows about 99% users are within
6 hops in average.

The social referral path is supposed to be done voluntarily in
existing work. The results along this line typically emphasize
that the completed paths tend to be short, thus ignoring the
fact that a vast majority of paths never reach their ultimate
targets [8]. It has been reported in [17] that the only parameter
governing the success of a search is not related to the topology
or search procedure, but the probability of termination at
each step. Most paths are terminated for the reason that
participants are not sufficiently motivated to relay messages.
Thus, taking user’s self-interest into consideration is necessary
for a successful chain of social referrals. So our research
focuses on similarity calculation and truthful local search
mechanism design, while considering users’ profit.

Our Main Contributions: In this work, we design a
truthful mechanism for expert finding by a chain of individuals
from the initiator to the expert, where each intermediate user
makes a decision using only local information. Our mechanism
also takes the users’ self-interest into account with a well-
designed payment strategy. We assume that each intermediate
user has a privately known cost of participating in the chain of
social referrals. We theoretically prove that our mechanism is
truthful, i.e., each intermediate user will maximize her utility
if she truthfully declared her cost and executed the search
procedure. We conduct extensive experiments to study the
performance of our mechanism. Our experimental results show
that the social referral path found by our mechanism is signifi-
cantly shorter than the one found by previous approaches. The
total cost of intermediate agents participating in the chain is
also much smaller than naive approaches such as using a high-
degree neighbor. Moreover, the success rate of our localized
search strategy is about 95.2%, which is significantly better
than the best reported success rate 20% [2], [12].

Paper Organization: The rest of the paper is organized as
follows. In Section II we present the network model for expert
finding and our similarity calculation method. In Section III
we present our truthful mechanism for finding experts using
chain of referrals. We report our evaluation results in Section
IV, review the related work in Section V and conclude the
paper in Section VI.

The 31st Annual IEEE International Conference on Computer Communications: Mini-Conference

978-1-4673-0775-8/12/$31.00 ©2012 IEEE 2896



II. SYSTEM MODEL AND PRELIMINARIES

A. Problem Formulation Using Online Social Networks

A social network is modeled by a graph G = (V,E). By
profiling or data collection, each user vi ∈ V is associated with
an m-dimension profile vector Ai = ⟨a1i , a2i , ..., ami ⟩, which
represents her characteristics and social groups. Here the value
aji , represents a characterization of user i for the j-th attribute.
The link vivj ∈ E between vi and vj is the acquaintance
connection. User vi is called a neighbor of vj in the social
network G. We assume that each user only knows the profile
of her neighbors.

In this work, we study finding experts in social networks
via a chain of referrals by some intermediate users. Assume
that there is an initiator, say v0, who wants to find an expert,
characterized by a profile vector At = ⟨a1t , a2t , ..., amt ⟩. The
initiator will ask her neighbors to help her to find a matching
expert. The process will be iterated till the expert is found
or some termination conditions are met (e.g., the maximum
number of referrals, or the total cost incurred for search). The
output is a social referral path P(v0, vt) from the initiator v0
to a target user vt with the matching profile.

A major difference between the system model used in this
study and previous studies for finding friends/experts is that
here we assume that each user i has a cost ci for querying
her neighbors to get a target expert for some initiator. We
assume that the cost ci is privately known only to vi. The
initiator originally has a budget B for performing the task
of finding experts in the social network. We say that finding
experts using such a path P(v0, vt) is feasible if the total
cost requested by users on this path is at most the budget
B of the initiator. If we know the whole network and the
cost vector, the problem becomes the simple shortest path
problem. A truthful mechanism can also be designed in such
centralized approach [13]. However, in the practical social
network setting, following challenges need to be addressed
to solve this problem:

1) computing the profile similarity and acquaintance proba-
bility,

2) designing efficient referral strategy using only local in-
formation under the budget constraint, and

3) designing a payment mechanism to make participants tell
truth without any global information for lies checking.

B. Similarity and Acquaintance Probability

Similarity breeds connection: It has been well observed
that the shorter the social distance between two users, the
higher the probability that they are acquaintant to each other
or have a shorter network distance [6]. A social distance
is usually given as a metric of the similarity or relevance
between two users. There are some existing social distance
measurements, for example, organizational hierarchy distance
[16], or geographical distance. In this work, we use users’
profiles to estimate the probability of acquaintance.

Distance and similarity of attributes: The attribute could be
discrete categorical characteristics such as social group or gen-

der, or numerical characteristics such as age or vertex degree.
For each attribute ak, an attribute distance dkij = dk(aki , a

k
j )

is defined. For example, the distance of gender could be 0 for
two users of the same sex, and 1 otherwise. The distance of age
could be dk(x, y) = |x − y|. Based on the attribute distance,
the attribute similarity is given as skij = 1− dk

ij

max(i,j) d
k
ij

. The
similarity vector Sij between users vi and vj is defined as
Sij = ⟨s1ij , s2ij , · · · , smij ⟩.

The similarity of different attributes contribute differently
to acquaintance probability [9] . Some attributes are strong
evidences of acquaintance and some are weak. We model
the acquaintance probability of two users using the logistic
function about their profile similarity vector. Specifically, if
Ei,j is the event that the user vi and vj are acquaint, define
the probability

Pr (Ei,j | Sij = X) = logit−1(βX) =
1

1 + e−βX
. (1)

Here the function logit−1(y) = 1/(1+e−y) and the parameter
β is an m-dimensional vector to be studied later. Let r(X) be
the odds ratio when that similarity equals X , i.e., we define

r(X) =
Pr (Ei,j | Sij = X)

1− Pr (Ei,j | Sij = X)
(2)

Then for a vector X = (x1, x2, · · · , xm), we have

β ·X = β0 + β1x1 + ...+ βmxm = ln(r(X)) (3)

where β0 is the intercept, and βk describes the size of the con-
tribution of the similarity of attribute ak on the acquaintance
relationship. We define

profile similarity: sij = β · Sij ,

which is the weighted summary of all the attributes similari-
ties. For profile similarity, the larger the value, the closer the
two profiles, the higher the probability they are acquaintances.
Note that here the profile similarity could be negative values.

A simple computation from Bayes theory shows that
r(X) =

Pr(Sij=X∧Ei,j)/Pr(Sij=X)

Pr(Sij=X∧Ẽi,j)/Pr(Sij=X)
=

|{(Vi,Vj)|Sij=X∧Ei,j}|
|{(Vi,Vj)|Sij=X∧Ẽi,j}|

.
So we can use logistic regression to derive the parameter β
by learning r(X) from the known part of a graph. With the
parameter β, we can predict the acquaintance probability in
an unknown graph given the profile vectors of two users.

In this work we present a method to learn the parameter β
locally for acquaintance probability calculation. Before a user
starts a search, she can create an ego network, in which the
node set Vi includes herself and all her direct friends, and the
edge set Ei consists of all the edges between vertices in Vi.
Then r(X) can be learned from the ego network. We compare
the acquaintance probability estimated by globally learned β
parameter and β parameter learned from ego networks. The
result shows that the ego networks provide sufficient evidence
on acquaintance.

III. STRATEGYPROOF MECHANISM DESIGN

In this section, we present our truthful mechanism for
finding experts in a social network using social referrals.
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A. Search Procedure

Before we present our mechanism, we first give an overview
of the five phases during our expert search procedure:

1) Initialization phase: The initiator v0 will stops the search
if the target is among her neighbors.

2) Bidding phase: The initiator v0 announces the search
task by giving the profile At of the target expert. Any her
neighbor vk who intends to participate the social referral
will declare a price dk, via a sealed-bid within a bounded
bidding time window.

3) Winner decision phase: User v0 chooses a winner
neighbor, say vw, as the next-hop vertex based on a
score function and pays a compensation dk to the chosen
neighbor vw.

4) Execution phase: The selected neighbor vw continues
the search task as a new initiator whose budget is B−dk

until an expert with a matching profile is found.
5) Bonus payment phase: Once the search is completed

successfully, the initiator will pay a bonus to every agent
in this social referral path.

B. Algorithmic Mechanism Design

We refer every selfish rational participant as an agent, who
intends to maximize her own utility only. For a searching
task, each agent vk has a private true cost ck to participate
in the referrals. When bidding for the task, an agent vk can
choose to declare a price dk, which could be the true cost
ck or any other valid cost. Let d = ⟨d1, d2, · · · dn⟩. We
define our expert finding mechanism as M = (O,p), which
is composed of an output function O(d) and an n-tuple
payment function ⟨p1(d), p2(d), · · · , pn(d)⟩. An output O
is a social referral path consists of a sequence of vertices, say
O = {vj1 , vj2 , · · · , vjl}, where vj1 is simply vi and vjl has a
matching profile with the sought target profile At if the search
is successful. The goal of the mechanism is to find a user, say
vjl such that the profile similarity between the target profile
At and the profile Ajl of user vjl is maximized (at least a
value ξ), while the total payment from the initiator is no more
than her budget, i.e., max sij , while

∑
vjk

∈O pjk ≤ B. When
the search fails, we denote the output as ϕ.

Each agent’s preferences are given by a valuation function:
νk(ci,O) = −ck if vk ∈ O, and 0 if vk /∈ O. The utility
function of the agent vk is

uk = pk(d) + νk(ck,O). (4)

The utility function is the objective function each agent aims
to optimize in the bidding phase.

In the winner decision phase, the decider needs to select
one from all participants as the next link. Without causing
ambiguity and to simplify the expression, here we use dk as
the normalized value of the declared price of vk and skt as
the normalized value of the profile similarity between vk and
vt. The score function for winner decision is defined as

ηk = f(dk, sk,t). (5)

f could be any function that entails: (1) ∂ηk/∂d
k ≥ 1 and

(2) ∂ηk/∂sk,t < 0. Any intermediate user could choose the
neighbor with the minimum η as the next link in the decision
phase.

The payment function is pk(d) = dk + bk(d) if vk ∈
O and 0 otherwise. Here bk is the bonus paid to user vk in
the payment phase only when a feasible output is found. In
the decision phase, an agent vk is selected because it has the
smallest score ηk among all the neighbors of an intermediate
user. Let ηx be the second smallest score in that stage, and
we have ηx ≥ ηk. Then the value of bonus bk is defined as:

bk = ηx − ηk (6)

Once the target is found, the bonus will be paid to agents
in the social referral path from the remainder of the budget.
Since the budget is limited, there’s a chance that B is not
enough to cover the bonus. In this case, the bonus will be
paid to the agents in the descending order of the similarity
of their successor agents until the budget is used. Using the
bonus strategy we provide incentives for agents to maximize
their utilities by declaring the true cost as well as choosing the
next vertex with a higher similarity to the target. So an agent
could maximize her utility as well as optimize the objective
function.

Theorem 1: Our mechanism M is truthful. For all vk and
all dk, each agent’s strategy is to declare her true cost, i.e.
di = ci and truth-telling maximizes her utility.
Omitted.

Proof is omitted due to space limit. It is obvious that our
mechanism also satisfies the participation constraints, that is
whenever an agent is truth-telling, her utility is non-negative.

IV. EXPERIMENTS AND MEASUREMENT

A. Dataset

Here we use the real facebook data in MIT for our analysis
and experiments [10], [11]. In this dataset the isolated vertices
are ignored. There are 6440 users and 502504 friendship
edges. In this undirected graph, the mean node degree is
78.0286 and the median node degree is 56. The node degree
follows a power-law distribution. The graph diameter is 8 and
the average path length between two vertices is 2.72. 99%
vertices are reachable to each other within 6 hops.

B. Acquaintance Probability Prediction Using Profiles

We learn the β parameter for the 7 attributes in a dataset
by logistic regression. The detailed method is discussed in
Section II. With the β parameter, given two users’ profile
vector, we can calculate their profile similarity and estimate
their acquaintance probability. Figure 1 presents the real
acquaintance probability in MIT and Harvard via statistical
analysis and the acquaintance probability estimated by our
model via profile vector. It shows a good match between
the real probability and our estimation. So our similarity
calculation is an effective metric for acquaintance relationship.

2898



−8 −6 −4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Similarity

Ac
qu

ai
nt

an
ce

 P
ro

ba
bi

lity

 

 
Real Acquaintance Probability of MIT
Real Acquaintance Probability of Harvard
Estimated Acquaintance Probability of MIT
Estimated Acquaintance Probability of Harvard

Fig. 1. Acquaintance probability change with similarity in MIT and
Harvard Facebook datasets.
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Fig. 2. Path lengths of different local search strategies for 100 pairs of
randomly selected initiators and targets in MIT Facebook dataset. The
small subfigure is the result with linear axis.

TABLE I
SEARCH RESULTS OF HIGH DEGREE AND SIMILARITY BIAS STRATEGIES.

length constraint mean median success rate
HighDegree ∞ 126 12 99.8%

MaxSim ∞ 22 6 95.2%
HighDegree 100 17 7 80.6%

MaxSim 100 11.6 6 93.1%

C. Basic Max Similarity Search Strategy

The basic search strategy without paying intermediate users
gives us a baseline search performance of the our expert
finding mechanism.

If each user does not incur a cost for participating the
social referral web, several search strategies could be used
here: random walk, high degree [1], and high similarity (called
MaxSim) strategies in this work.

We select 1000 pairs of source and target from the MIT
dataset randomly, and run these three strategies to locally
find the chain of social referral with/without path length
constraint. Our extensive experiments show that the random
walk strategies performs the worst. Thus, we just compare
the results between high degree and high similarity strategies.
Figure 2 presents the path length distribution of search result
and Table I presents the mean length, median length and
successful rate of each strategy. Experiment results show that
our high similarity local search strategy outperforms the high
degree strategy in the mean length and median length greatly.
If there is a path length constraint, e.g. 100, the success rate
of the high degree strategy is reduced to 80.6%, while the
success rate of our high similarity strategy remains 93.1%.

We analyze the 48 failed searches (among 1000 search
requests) and find that they all have targets with low node
degrees, with a mean node degree 7.8. Meanwhile, they all
have a very small profile similarity between the initiator and
the target.

D. Search with a Payment Mechanism

In this section, we study the search performance and budget
requirement (i.e., the minimum payment needed for having a
successful search) of our truthful mechanisms with payment.
We consider two distributions of the real cost ck: the uniform
distribution in the range [0, 100]; the normal distribution with

TABLE II
SEARCH PERFORMANCE OF 3 MECHANISMS.

Uniform distribution of costs
mechanism mean length median length success rate
MaxSim 11.4 5 89%

SumScore 14.3 6 82%
ProdScore 26.5 19.5 68%

Normal distribution of costs
mechanism mean length median length success rate
MaxSim 11.4 5 89%

SumScore 15.1 6 87%
ProdScore 18.9 12 83%

TABLE III
AVERAGE COST PER-HOP FOR MECHANISMS SUMSCORE AND

PRODSCORE.

Uniform distribution of costs
mechanism declaration bonus total
SumScore 6.1 3.2 9.3
ProdScore 2.8 1.6 4.4

Normal distribution of costs
mechanism declaration bonus total
SumScore 32.3 3 35.3
ProdScore 28.9 2.5 31.4

mean µ = 50 and variance σ = 10. We compare the budgets
with different cost distributions of one untruthful and two basic
truthful search mechanisms:

1) Mechanism MaxSim: A neighbor with the maximum
similarity to the target will be selected without consider-
ing the declared price, and the mechanism will pay the
user her declared price. We estimate the lowest budget of
this untruthful mechanism by assuming that every user
declares the true cost.

2) Mechanism SumScore: This is a truthful search mech-
anism as presented in Section III. The score function is
ηk = dk + (1 − sk,t), which satisfies requirements for
score function.

3) Mechanism ProdScore: This mechanism is similar to the
mechanism SumScore, except that the score function is:
ηk = dk × (1− sk,t). This mechanism is also truthful.

We randomly select 100 pairs of initiators and targets from
the MIT dataset. Table II summarizes the search performance
and Table III plots the average cost per hop in the social
referral chain. Figure 3 and Figure 4 presents the required
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Fig. 3. The required budget v.s. different path length for three
mechanisms with uniform cost distribution.
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Fig. 4. The required budget v.s. path length for three mechanisms with
normal cost distribution.

budget changing with the referral chain length.
Since Mechanism MaxSim is cost independent, it has the

best search performance, but requires a much larger budget,
which could be potentially unbounded when users lie about
their cost. In fact, any other cost-independent/untruthful mech-
anisms, e.g. high degree mechanism, will suffer a large path
cost. We found that Mechanism SumScore creates shorter
paths with higher cost, while mechanism ProdScore achieves
small average cost per-hop, but often found longer paths. Both
mechanisms SumScore and ProdScore can find cheap and
short paths to the target and produce similar overall path cost.
We also notice that the bonus will not incur significant extra
pay, but it does motivate users to declare their true cost.

V. RELATED WORK

Given a description of a desired expertise, there are two
kinds of expertise finding problem without using payment:
(1) global expert finding: finding a person (e.g., [18]) or a
group of ranked persons (e.g., [5]), similar enough to the
desired one in a global database. (2) chain of social referrals:
searching a desired person via a chain of acquaintance links
using local acquaintance information in a social network, e.g.
the small world routing [14]. Many research results were
devoted to study various challenging small world routing
problems, e.g., [4] [16], and ranking of closeness, e.g., [7].
These efforts focus on designing and analyzing local search
algorithms to find short paths, with a hypothesis that people
will participate voluntarily. It has been well documented that
in the small world experiments most paths were terminated
because participants are not sufficiently motivated to relay
messages [8]. Thus, we need design a mechanism that takes
into account not only the participation cost of intermediate
users, but also the selfish nature of these intermediate users.

VI. CONCLUSION

In this work, we addressed the local social referral problem
in a large scale social network by taking users’ self-interests
into consideration and designed a truthful mechanism that
reduces the length of social referral chain, reduces the cost
of social referrals, and improves the success rate, compared
with previous efforts. There are several interesting questions
not fully studied in this work. For example, we need to design
a truthful mechanism when the initiator wants to find a group
of target experts.
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