Simultaneous Refinement and Coarsening:
Adaptive Meshing with Moving Boundaries

*

Xiang-Yang Li Shang-Hua Teng Alper I"Jngiir

Abstract. In the numerical simulation of the combustion process and microsiructural evolution, we meed to
consider the adaptive meshing problem for a domain with a moving boundary, in which, the submesh in the region
behind the moving boundary needs to be coarsened while the submesh in the region ahead of the moving boundary
needs to be refined. In this paper, we present a unified scheme for simultaneously refining and coarsening a mesh.
Our method guarantees that the resulting mesh is well-shaped and 1s of a size that i1s within a constant factor of
the optimal possible. We also present several practical variations of our provably good algorithm.

keywords. adaptive meshing, coarsening, refinement, mesh generation, moving boundary, sphere-packing, Delaunay
triangulation.

1 Introduction

In the numerical simulation of many problems, we need to handle evolving meshes which change as a function of time
or the number of iterations of a numerical procedure. There are two basic scenarios where we need to adaptively and
dynamically generate proper evolving meshes:

o Adaptive refinement based on posterior error analysis: In the numerical simulation of time-independent
problems, we apply an iterative procedure which first generates a mesh based on a priori estimates of the local
mesh density, solves the numerical system defined on the initial mesh, and then based on the posterior error
analysis, adaptively refines the mesh and repeats the steps for the numerical solution and adaptive refinement.

¢ Dynarmic meshing with a moving boundary: In the numerical simulation of time-dependent problems such
as the combustion process and microstructural evolution, we need to consider the adaptive meshing problem for
a domain with a moving boundary, in which, as a function of time, the mesh need to be dynamically changed
to be effective for the next step simulation.

In both cases, submeshes in some parts of the domain need to be refined, while submeshes in some other parts need
to be coarsened. For example, the moving boundary of a time-dependent problem could divide the domain into two
regions: the front region and the back region. See Figure 1. During the simulation, numerical conditions in the front
region become stronger, requiring the submesh in the front region to be refined. In contrast, the submesh in the back
region needs to be coarsened. Therefore, we need to develop a unified framework for simultaneous mesh refinement
and coarsening.

In this paper, we present a sphere-packing based scheme that simultaneously refines and coarsens a mesh M. It
constructs the new mesh M’ as the following.

1. Based on a dynamic mesh density estimation procedure, compute the new spacing at each mesh point in M;

2. Determine the coarsening factor of each mesh point referred as a C-point whose new spacing is larger than the
previous one (such as for mesh points in the back region), and the refining factor of each mesh point referred
as an R-point whose new spacing is smaller than the previous one (such as for mesh points in the front region);

3. Properly scale up the spheres of all C-points and scale down the spheres of all R-points, and fill the gaps among
the shrunk spheres with new spheres of proper sizes;

4. From the sphere system, construct the point set of the new mesh;
5. Use Delaunay triangulation to generate the new mesh M'.

We will show that our method guarantees that the resulting mesh is well-shaped and is of a size that is within a
constant factor of the optimal possible. We also present some practical variations of the algorithms in section 5.

*Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801. Supported in part by an NSF
CAREER award (CCR-9502540), an Alfred P. Sloan Research Fellowship, and the U.S. Department of Energy through the University
of California under Subcontract number B341494 (DOE ASCI).

Back Region

Figure 1: Domain with a moving boundary.
2 The Evolving Mesh Problem

In this section, we define the Evolving Meshing Problem which is more general than the dynamic meshing problem
with a moving boundary. We will also introduce notion that will be needed in this paper.

A mesh M is a discretization of a domain 2 into a collection of simple elements. We consider unstructured triangular
meshes which have varying local topology and spacing, and in which each element is a simplex, i.e., a triangle in 2D
or a tetrahedron in 3D. The use of unstructured meshes is necessary for simulating irregular engineering problems,
such as the problems that are considered in this proposed project, with fewer mesh elements [2, 9, 11].

Numerical approximation errors depend on the guality of the mesh, while the time and the space requirements of
numerical algorithms are a function of the number of mesh elements. To properly approximate a continuous function,
in addition to the conditions that a mesh must conform to the boundaries of the region and be fine enough, each
individual element of the mesh must be well-shaped. A common shape criterion for elements is the condition that
the angles of each element are not too small, or the aspect ratio of each element is bounded [1, 2, 14]. In this paper,
we measure the quality of a triangular mesh by the radius-edge aspect ratio defined by Miller, Talmor, Teng, and
Walkington [9, 10]. The radius-edge aspect-ratio of a simplex is the ratio of the circum-radius to the length of the
shortest edge to of the simplex. A mesh M is a-well-shaped for a constant o > 1 if the radius-edge aspect-ratio
is bounded from above by a. In two dimensions, these definitions are equivalent in the sense that if a triangle is
bounded away from being an ill-shaped triangle under one aspect-ratio, it is bounded away under the others as well.

A spacing function specifies how fine a mesh should be at a particular region. Given a well-shaped mesh M over a
domain (2, there are several ways to describe its spacing function:

o [Edge-length function, elps] for each point z € Q, elp(z) is equal to the length of the longest edges of
all mesh simplex elements that contain = (note that points on the lower dimensional faces of a simplex are
contained in more than one element).

o [Nearest-neighbor function, nnas] Let z be a point in 2, there are two cases. (1) if z is a mesh point, then
nna(z) is equal to the distance of z to the nearest mesh point in M. (2) if = is not a mesh point, then nnp(z)
is equal to the distance to the second closest mesh point in M.

Lemma 1 ([9]) If M is an a-well-shaped, then there ezists constants ¢y and c2 depending only on o such that for
all point z € 1,
celp(z) < nny(z) < czeln(z).

As shown in [9, 12], the spacing function for a well-shaped mesh should be smooth in the sense that it changes slowly
as a function of distance. Formally, a function f is Lipschitz with a constant o if for any two points z, y in the domain,

|f(=) — f(¥)| < allz —yl|.

We now define the Evolving Mesh Problem.

Definition 1 (The Evolving Mesh Problem (EMP)) The input to the problem has two parts: (1) a well-shaped
mesh M and (2) a list of positive reals §, one for each mesh point, i.e., associated with each mesh point p is a real
number §(p), such thatl < §(p) < L for constants0 <1< 1 and L > 1. !

We would like to construct a new mesh M' with the following properties:

o For each mesh point p in M, nnyp(p) < §(p)nnm(p);
o M' is well-shaped; and

o the size of M' is as small as possible.

For each mesh point p € M, if §(p) > 1, then it is a C-point (where C stands for coarsening); if é(p) < 1, then it is a
R-point (where R stands for refinement). Our definition of the Evolving Mesh Problem allows some part of the mesh
to be coarsened while some other part to be refined.

To model the dynamic meshing problem with a moving boundary by EMP, we can define § as a function of the moving
boundary. For example, we can define the new spacing of a mesh point by applying a proper monotonic function to
the distance from it to the closest point on the moving boundary. EMP is more general in the sense that it does not
require any correlation in the change of § among mesh points.

EMP is very closely related with adaptive mesh generation. In the literature, adaptive mesh generation is rather a
general term. It has been used as adapting the mesh to the domain geometry or to the error analysis in the mesh
generation. Most often, it has been used to refer the problem for adaptive refinement based on new error bound.
While we would like to use EMP to emphasize the problem of simultaneously refinement and coarsening of a mesh.
The importance of our scheme is being able to handle these both cases that the domain geometry or the dynamic
error analysis might bring up.

3 An Adaptive Scheme for Evolving Meshes

The objective of our algorithm for the Evolving Mesh Problem is to use the structure of the current mesh M as
much as possible and as efficient as possible. First, for each mesh point p in M, we compute the value of nns(p).
Because M is well-shaped, it has a linear number of elements and edges in terms of the number of mesh points |M|
[9]. Therefore, nnps can be evaluated in O(|M]|) time.

We now extend the spacing-function-based coarsening technique of Miller, Talmor, and Teng [7] to simultaneously
refine and coarsen a mesh. The algorithm of [7] does not directly apply to EMP. See the end of Section 4 for a
detailed discussion.

For each mesh point p in M, we define a local spacing function fy(z) as

fo(z) = d(p)nnum(p) + ||z — pll-
This spacing function increases with the distance, and has Lipschitz constant 1. The global spacing f(z) is then given
as
(2) = mip fo(z).

In other words, f is the lower envelope of all local spacing functions. It is easy to show that f is 1-Lipschitz [7].

Lemma 2 For any mesh point p, if §(p) < 1, then f(p) = é(p)nna(p); if 6(p) > 1, then nnm(p) < f(p) <
d(p)nnm (p).

Proof. By definition, f(p) = min(mingzp fq(p), fo(p)), and fp(p) = é(p)nnam(p). It suffices to show ming«y, fo(p) >
nna(p). For all g # p, fqo(p) = 8(g)nnnm(q) + |lg — pl| > |lg — p|| > nnm(p). The last inequality comes from the
definition of nnas. Hence, ming«p, fo(p) > nnn(p). If §(p) < 1, then f(p) = min(mingzp fq(p), fo(p)) = é(p)nnu(p).
Otherwise, f(p) < fo(p) = §(p)nnn(p), and §(p) * nnrm(p) > nnm(p) implies f(p) > nn(p). |

So for both cases, we have f(p) > [* nna(p), and hence nna(p) < f(p)/I.

!The constant I defines the maximum degree of the refinement. The smaller the value I, the more a certain region of the mesh can
be refined. In practice, [is a reasonably large constant, such as 1/4.

Figure 2: The distance ratio ||p — z||/mini<i<a||p — gi|| is at least tan(@), where # is the lower bound on the angle
of mesh elements.

Lemma 3 (Local Similarity) For each edge (p,q) € M, there ezists a constantcs which depends only on the aspect
ratio a of M and the lower bound!l of §, such that

f(p) < ca* f(q)-

Proof. f(p) < f(a) + [lp — 4all < f(a) + 1/e1 * nnum(q) < f(a) + f(q)/(L* 1) = f(g) * (1 + 1/(* c1)). The second
inequality follows from Lemma 1 that ||p —ql|| < el(g) < nnn(q)/c1. Hence f(p) < c3* f(q), whereca =1+1/(I*c1).
|

Similarly, for any point z in a triangle element g1g2gs, we have f(z) < ¢3f(qi), for i = 1,2, 3.

Lemma 4 Let q1g2q3 be a triangle element of M. Let p be a mesh point other than q1,q2,q3. Let z be a point inside
the triangle. Then there exists a constant c4, depending only on the smallest angle 6 of M, such that

[lp — z||/minicicsllp — gil| > e4.

Proof. There are two cases for the nearest point in the triangle to p:

e one of {g1,92,¢2}; In this case, we have ||p — z||/mini<i<s|lp — a:|| > 1.

e a boundary point other than ¢, g2 or g3. W.l.o.g., assume ¢1¢g> separates p from g3. Let zo be the closest
point on the segment gig2 to p. See Figure 2. If p is directly connected to g1 and g2 in the mesh, then
llp — zol|/|lp — gi|| > tan(@), where i = 1,2, and 6 is the lower bound on the element angle. Otherwise,
assume po is the mesh point other than g; directly connected to g1 and gz in the mesh. Either poq: separates
p from g2 or pog. separates p from g1 or both. W.l.o.g., assume pog: separates p from ¢i. Then we have
|lp — zol|/||p — gz|| > tan(@), which implies that ||p — zo||/mini<i<s||p — gi|| is at least tan(f). The lemma
follows from the fact that |[p — z|| > ||p — zo]|. T

In both cases, we have
llp — z||/||mini<i<s|lp — gil| > min(1,tan(6)).

Lemma 5 Let z be a point in a triangle element qiqz2qs of a well-shaped M. The following is true for the global
spacing function: there ezists a constant cs, depending only on the smallest angle 6 of M, and the lower bound !l on
6, such that

f(z)/mini<i<af(q:) > es.

Proof. From the definition of f, there exists a mesh point p such that f(z) = §(p) * nnm(p) + ||z — p||- If p is one
of g1,92,43, then

f(z) = é(p)nnm(p) + ||z — pl| > 6(p)nna(p) > mini<ics f(gi)-
Otherwise, let g be the g; with the minimum distance to p. We have f(g) < é(p)*nna(p)+|lg—p||. If ||z—p|| > ||g—p]|,
then

f(z) = 6(p) * nnu(p) + ||z — pl| > £(q)-

Otherwise, 7(z)/7(a) > (8(p) + nnae(p) + llo — pl1)/(8(p) * mnae(p) + lla — o) > llz — pll/lla — pl > cs. The
last inequality is given in Lemma 4. In both cases, we have f(z)/f(g) > min(1,cs). From Lemma 3, we have
f(g)/mini<i<a f(g:) > 1/ca. Hence

f(z)/mini<i<af(q:) > min(l,cs)/es = min(1,tan())/ca.

Let B(z,r) be the sphere of radius r centered at point z. We will use the following notion of sphere packing [7, 15]
in our algorithm.

Definition 2 (8-Packing) Let 8 a positive real constant. A set S of spheres is a 8-packing with centers P of Q
with respect to a spacing function f if

o For each point p of P, B(p, f(p)/2) € S;
o The interiors of any two spheres s1 and sz in S do not overlap; and
o For each point g € 1, there is a sphere in S that overlaps with B(q, * f(q)/2).

To construct the mesh points for M', we first use the following procedures to generate a B-packing of £ with respect
to f by using as many mesh points from M as possible. Here 8 is a constant to be given later. The mesh M’ is the
Delaunay triangulation of the centers of the resulting $-packing.

Algorithm Functional-Refining-Functional-Coarsening

1. Let S1 = {B(p, f(p)/2)lp € M};

2. For each triangle element ¢t = (g1g2qs) in M, let g be the mesh point g; with the smallest f(g;). Let
b: be the smallest box that contains ¢t. We divide b; into a set of uniform cells with the side length
cs * £(q)/(2v/2), where cs is a constant given in Lemma 5. See Figure 3. Choose a random point in

every cell that intersects ¢t for a nonempty area, and for each such a point z, define a sphere with
center z and radius f(z)/2. ? Let S2 be the set of these spheres;

3. Let 8’ = 5; USs;

4. Order the sphere in S’ as the following: all spheres whose centers are on the boundary come first,
followed by all other spheres in S; in the order of increasing radii, followed by all spheres in S in
the order of increasing radii;

5. We say two spheres s; and sz in S’ are conflictingif their interiors overlap. The conflicting relation
defines a Conflict Graph (CG) over S'. Let S be the set of spheres which form the Lezical-First
Mazimal Independent Set (MIS) of CG;

6. Let M' be the mesh defined by the constraint Delaunay Triangulation of centers of S.

The lexical-first MIS is defined as the following. The initial MIS is empty. Then we add a sphere with the smallest
index that does not conflict with any spheres of the existed MIS until no sphere can be added. The intuition is that
we try to conform the boundary, and use as many spheres as possible. In addition the smaller sphere has higher
priority to be chosen.

The basic idea of Functional-Refining-Functional-Coarsening FRFC is to first compute a maximum spacing
function that satisfies the new spacing requirement of the Evolving Mesh Problem. We then make use of the point
set of M to construct a sphere packing with respect to the spacing function, and hence the point set of the new mesh.
Then the new mesh is obtained by using Delaunay triangulation. The maximality of the spacing function f is given
in the following lemma.

2In practice, we can use (f(g) +||z — q||)/2 to approximate the radius f(z)/2. Note that csf(q) < f(z) < f(q)+|lz—4q|| < esf(g) <
cs/esf(z). In other words, (f(g) + ||z — q||)/f(z) has constant lower and upper bound. Hence, it is reasonable to use f(g) + ||z — q||
to approximate f(x).

Sao) _w Lo
.

~a! !
< "
J —

e |

Figure 3: Sampling points in a triangle element.

Lemma 6 (Maximality) Let g be any spacing function of Lipschitz constant 1 over the domain Q that satisfies the
condition g(p) < §(p)nnn(p) for all mesh point p in M. Then for any point g in 2, not necessarily a mesh point of
M, g(q) < f(q)-

Proof. Let g,(z) = g(p) + ||z —pl||,9'(z) = min(gp(z)). Then ¢g'(z) < f(z), for all z. Now assume P, is the point that
drives z to get the smallest value for ¢', i.e., g'(z) = gr, (z) = g(Pz) + || P. — z||. Note that g(z) < g(Ps) + || Pz — z||
because g is 1-Lipschitz function. Then we have Vz,g(z) < ¢'(z) < f(z). |

Therefore, let M" be any mesh that satisfies the condition of the Evolving Mesh Problem. We have for any point g
in Q, nna(g) < f(g), because nnpy is 1-Lipschitz function, and nnpm(p) < §(p)nna(p).

Lemma 7 (Number of Sample Points) The number of sampled points in a triangle element g1g2q3 is bounded by

2v/2/(cs + 1).

Proof. Note that the number of cells generated in the triangle element is no more than nnas(g:) * Zﬁ/(C5 * f(qi)).
The lemma follows from Lemma 2. [|

Lemma 8 (Dense Sample) For any point = in the domain, the sphere B(z, f(z)/2) contains at least one point
from S U S3.

Proof. It is sufficient to show a stronger statement that is B(z, f(z)/2) contains at least one cell generated during
the sampling procedure. Let ¢ = gi1g2g3 be the triangle element that contains z. Let ¢ be a mesh point ¢; with the
smallest f(g:), i = 1,2,3. The side length of the cell generated during the sampling procedure is ¢s * f(q)/(2v/2),
where cs is given in Lemma 5. If the radius of the sphere is at least the diagonal of the cell, i.e., f(z)/2 > cs5 * f(g)/2,
then the sphere will contain a cell. This is true by Lemma 5 that f(z) > cs * f(g). |

The following lemma is from Miller et al [5].

Lemma 9 Let P be a set of points in domain Q). Let g be an o-Lipschitz function defined on Q. Let S =
{B(p,g(p))lp € P}. If for any point z € §, B(z,g(z)) contains at least one point from P, then the mazimal-
independent-set of the conflict graph of S is (3 + a)/(1 — a)-packing.

Theorem 1 The S returned by the FRFC algorithm is a 7-packing.

Proof. Note that the spacing function f/2 used for spheres is 1/2-Lipschitz. The lemma follows from Lemma 9. 1

Let T' be a collection of spheres. The ply of a point z, denoted by ply(z,T'), is the number of the spheres in I' that
contains z.

Lemma 10 (Constant Ply) For S' = S; U S,, there ezists a constant cg such that for any point z € (Q,
ply(z, ") < cs.

Proof. Let C(z) be the set of the centers of the spheres in S’ that contain z. For any point ¢ € C(z), we have
2|z — ¢|]| < f(c). Note that f(c) < f(z) + ||z — c|| because f is 1-Lipschitz function. Hence ||z — c|| < f(z), i.e.,
point ¢ is in B(z, f(z)). Let t = (g1g2g3) be a triangle element that contains z. Consider the set of triangles, N(t)
(stands for neighbors), that are incident to t. The size of N(t) is at most 47/6, where 6 is the minimum angle of the
mesh. Let E(t) (stands for exteriors) be {t'|t' N B(z, f(z)) # 0 and t' ¢ N(t) U {t}}. It is sufficient to show that
the size of E(t) is bounded by a constant. Let pipsps be a triangle in E(t) that contains a point ¢ € C(z). We have
cs* f(pi) > f(c) > 2x||z —c||. The first 1nequahty is from Lemma 3. Note that Lnna(p;) > §(pi) *nnam(pi) > f(pi)-
From Lemma 4, we have ||z — c|| > cq * ming; (||c — gj||). Let g be the point with the minimum nna(g;), j=1,2,3.
Hence, ||z — ¢|| > c4 * nna(g). So nnar(pi) > f(pi)/L > f(c)/(L *c3) > (2¢c4/(L % c3)) * nnm(g). By a volumn
argument, f(z) < c3 * f(g) < ¢3 * L * nnps(q) implies that the number of triangles in E(t) is bounded by a constant.
Lemma follows from the fact that the number of points in each triangle is bounded by a constant. |

We now analyze the time complexity of the algorithm. The time to compute the global spacing function f is
O(|M|log(|M|)). Notice that the mesh point p; that defines f(p) has the property that for all mesh point pr € M:

8(pj) * nnam(p;) + |lp; — 2| < 8(px) * nnar(pe) + [|px — pll-

That is, p; is contained in the additively weighted Voronoi cell of p;j. Fortune [3] shows how to apply the sweep-line
technique to compute the additively weighted Voronoi diagram in O(|M|log(|M]|)) time.

The time complexity of step 1 of the algorithm FRFC is O(|M|log(|M]|)). During step 2, the number of the points
sampled at any triangle element gig2gs is bounded by nnas(g;) * 2/2/(cs * f(g:)). Lemma 2 implies that the number

of sampled points is at most 24/2/(cs * 1). Hence, the time complexity of step 2 is also O(|M|log(|M|)). Note that
the time complexity is O(|M]|), if we use (f(qg) + ||z — g||)/2 to approximate f(z). The time to sort all the spheres
during step 4 is O(|M|log(|M|)). Because the maximum ply of any point in © with respect to S1 U Sz is bounded
by a constant (Lemma 10), we can apply the sphere-separator based divide-and-conquer algorithm [6] to construct
the conflict graph in O(|M|log |M|) time. In addition, we know that the conflict graph has at most O(|M|) number
of edges. Computing the maximal-independent-set of the conflict graph then takes Q(|M|) time. The Delaunay
triangulation takes O(|M'|log(|M'|)) time, where |M'| is linear in |M]|, because the total number of the sampled
points is linear in |M|. Therefore, the time complexity of FRFC is O(|M|log(|M|)).

4 Size and Quality

We now show that FRFC returns a mesh M’ that is well-shaped, and is of a size that is within a constant factor of
the optimal possible. We will use the following structure theorem of Miller, Talmor, and Teng [7] which states an
equivalent relationship between (3-sphere packing and well-shaped meshes.

Theorem 2 (Sphere Packing and Well-Shaped Meshes) 1. For any positive constant 3, there ezists a con-
stant o depending only on 8 such that if f is a spacing function of Lipschitz constant 1 over a domain) and S is
a B-sphere packing with respect to f, then the Delaunay triangulation M of the centers of S is an o well-shaped
mesh; in addition, for each point p in Q, nna(p) = O(f(p)), where the constant in © depends only on 8.

2. For any positive constant o, there ezists a constant 8 depending only on o such that if M is an o well-shaped
mesh, then the set of spheres

S = {B(p,nnnm(p)/2) : for all mesh point p € M},

1s a B-packing with respect to nnas/2.

Therefore, there exists a constant a such that the mesh M returned by the algorithm is a-well-shaped. Note that
the point set S returned by the algorithm is 7-packing with respect to f/2. The size optimality follows from the fact
that f is a maximum spacing function that satisfles the condition of the Evolving Mesh Problem, (see Lemma 6),
and the following lemma of [7].

Lemma 11 (Size of a Well-shaped Mesh) If M is an a-well-shaped mesh of n elements, then

dA
n:@(/ —).
o NPy

First, notice the number of the spheres in S is bounded by

dA
@(o F)7

by a simple volume argument. Because f is point-wise larger than the nn function of any well-shaped mesh that
satisfies the Evolving Mesh Problem. It follows that size M is within a constant factor from the best possible.
Therefore,

Theorem 3 (Main) FRFC constructs a well-shaped mesh that satisfies the spacing condition given by §. In addition,
its size is optimal within a constant factor.

The key to our algorithms in maintaining the well-shaped condition is to make sure that the shape condition does not
deteriorate from M to M'. This is why we add new sampling points to regions near C-points to ensure the constant
B in B-packing is maintained. Miller et al[7, 8] showed that in their coarsening algorithm that no new point is needed
for coarsening. However, to do so, they need to use the original finest mesh directly to generate the coarsening mesh
at each level. In other words, if the original mesh is My, then mesh point of M, are used to build the conflict graph
to generate the mesh points for M;. If they simply use mesh points of M;_;, then mathematically, they can not
guarantee the mesh points of M;_; are dense enough for the well-shaped condition through the quality of the packing
for M;. For EM P, because of the mixed refinement, the original mesh does no longer provide fine enough sample
points to guarantee the packing condition. Hence, new points has to be added. Our objective here is to add as small
number of new points as possible, and meanwhile, by using as simple procedures as possible. In practice, for the
moving boundary problem, there is no need to add new sample points to the back region of the moving boundary.
We can use the algorithm of Miller et al [7, 8] to coarsen the back region.

5 Practical Variations

The § values decompose the mesh M into a collection of components of maximal submeshes where the § values of all
mesh points in each submesh are either larger than 1 (type C-submeshes), or smaller than 1 (type R-submeshes). In
practice the number of such submeshes is bounded by a small constant. For example, this number in most problems
with a moving boundary is 2 (one for the front-end of the moving boundary, one for the back-end). As observed in
Section 3, we need to insert Steiner points in the submeshes that are required for refinement. From submeshes to be
coarsened, we often need to remove some original mesh points. A practical variation of our scheme is to first refine the
R-submesh by any adaptive refinement algorithm, such as quad/octree refinement and Delaunay refinement. Then
we apply the one-level coarsening algorithm of Miller, Talmor, and Teng [7]. We now present a detailed procedure
for the case where Delaunay refinement is used. Recall that the standard Delaunay refinement procedure contains
three rules [12, 13]:

1. splitting boundary subsegment whose diametral sphere contains a mesh point other than its end-points in its
interior by adding a Steiner point at its midpoint;
2. splitting a boundary subfacet whose equatorial sphere contains a non-coplanar mesh point by adding a Steiner

point at its circum-center. However, if the new point would cause any subsegment of the subfacets to split,
apply rule one to these subsegments instead.

3. splitting any simplex that does not satisfies the well-shape condition by adding a Steiner point at its circum-
center. However, if the addition of this circum-center would cause any subsegment or subfacet to split, then
apply rules 1 and/or 2 instead.

We add a fourth rule, which states as: splitting any simplex in which the nn-spacing of any one of its mesh points is
more than its delta-value times its nn-spacing by adding a Steiner point at its circum-center. However, if the addition
of this circum-center would cause any subsegment or subfacet to split, then apply rules 1 and/or 2 instead.

Algorithm Delaunay-Refining-Functional-Coarsening
Input: A well-shaped mesh M and a list of positive reals §.

1. Apply rules 1, 2, 3, 4 until all constraints on the spacing and shape at each mesh point are satisfied.
Call the resulting mesh M;.

2. Apply the one-level coarsening method of Miller, Talmor, and Teng [7] to M with coarsening factors
given in § to My to construct M.

The following theorem follows directly from the main theorem of Ruppert [12] for 2D and of Shewchuk [13] for 3D
and the coarsening result of Miller et al [7].

Theorem 4 Delaunay-Refining-Function-Coarsening (DRFC) consiructs a well-shaped mesh that satisfies the
spacing condition given by 4.

One of the shortcomings of DRFC is that it may construct a mesh that is larger than necessary. The reason is that in
the refinement, we did not remove any original mesh point. In FRFC, we may replace some original mesh points in
the R-submeshes by new Steiner points, which potentially reduce the mesh size. However, DRFC is in general more
efficient.

When the lower bound ! on § is very small, the number of points introduced in each triangle could be very large,
although it is a constant. Especially for the coarsening regions, (e.g., backend of a moving boundary), this is
undesirable. In practice, we have a few alternatives:

e Do not add any points to triangles all of whose mesh points are C-points.

¢ Add only the barrycenter and/or midpoints of the edges rather than generating random quasi-uniform points
based on the local grid.

Talmor [15] showed in her thesis that in practice no new point is needed for the region to be coarsened repeatly. We
will conduct more experiments to verify this point in the context of EMP.

6 Conclusion

In this paper, we present a unified approach for coarsening and refining evolving meshes. One application and
motivation of our work is for solving time-dependent problems with a moving boundary. In our future work, we will
explore the structure of the moving boundary and level sets to speed up the coarsening and refinement procedure.
We will also work on incorporate our algorithm into some standard mesh generation software. We will present some
experimental results during the conference to show the effectiveness of our algorithm and its practical variations. In
addition, all of the lemmas and theorems are applied to three dimensions if the aspect-ratio is used as shape criterion
of the well-shaped mesh. However, this does not prohibit the existence of slivers.

In the context of parallel implementation of the Evolving Mesh Problem, the need of mesh evolution could introduce
load imbalance among processors, where the load measures the amount of work required by solving the Evolving Mesh
Problem itself as well as by numerical calculations thereafter. We need to develop a mesh distribution estimation
algorithm to incorporate with the dynamic load balancing scheme developed in [4].

References

[1] I. Babuska and A.K. Aziz. On the angle condition in the finite element method. SIAM J. Numer. Anal.,
13(2):214-226, 1976.

[2] M. Bern, D. Eppstein and J. R. Gilbert. Provably good mesh generation. In 31st Annual Symposium on
Foundations of Computer Science, IEEE, 231-241, 1990.

(3]
[4]

[10]
[11]
[12]
[13]

[14]
[15]

S. Fortune. A sweep line algorithm for Voronoi diagrams. Algorithmica, 2:153-174, 1987.

X.-Y. Li and S.-H. Teng. Dynamic load balancing for parallel adaptive mesh refinement. In 5th International
Symposium on Solving Irregularly Structured Problems in Parallel, Berkeley, 144-155, 1998.

G. L. Miller, D. Talmor, S.-H. Teng. Data Generation for Geometric Algorithms on Non-Uniform Distributions.
International Journal of Computational Geometry and Applications, accepted and to appear, 1998.

G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Automatic mesh partitioning. In A. George, J. Gilbert,
and J. Liu, editors, Sparse Matriz Computations: Graph Theory Issues and Algorithms, IMA Volumes in
Mathematics and its Applications. Springer-Verlag, pp57-84, 1993.

G. L. Miller, D. Talmor, S.-H. Teng. Optimal coarsening of unstructured meshes. In Journal of Algorithms,
invited and accepted to a special issue for SODA 97.

G. L. Miller, D. Talmor, S.-H. Teng. Optimal Good Aspect Ratio Coarsening for Unstructured Meshes. In 8th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp 538-547, January 1997. ACM-SIAM.

G. L. Miller, D. Talmor, S.-H. Teng, and N. Walkington. A Delaunay based numerical method for three di-
mensions: generation, formulation, and partition. In Proc. 27th Annu. ACM Sympos. Theory Comput., pages
683-692, 1995.

G. L. Miller, D. Talmor, S.-H. Teng, and N. Walkington. On the radius-edge condition in the control volume
method. SIAM J. on Numerical Analysis, accepted and to appear, 1998.

S. A. Mitchell and S. A. Vavasis. Quality mesh generation in three dimensions. Proc. ACM Symposium on
Computational Geometry, pp 212-221, 1992.

J. Ruppert. A new and simple algorithm for quality 2-dimensional mesh generation. In Third Annual ACM-SIAM
Symposium on Discrete Algorithms, 83-92, 1992.

J. R. Shewchuk. Tetrahedral mesh generation by Delaunay refinement. In 14th Annual ACM Symposium on
Computational Geometry, 86-95, 1998.

G. Strang and G. J. Fix. An Analysis of the Finite Element Method, Prentice-Hall, 1973.
D. Talmor. Well-Spaced Points for Numerical Methods. Ph.D thesis, Carnegie Mellon, 1997.

