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Abstract. Most of the recent works on algorithmic mechanism desigricetxp
the solution concept of dominant strategy equilibria. Swohk designs a proper
payment scheme so that selfish agents maximize their uiifityuthfully reveal-
ing their types. It has been pointed out that these truth&dmanisms, the famous
among them being the VCG mechanisms, often incur high patsvaerd fruglity
ratios. In this work, we exploit the solution concept of Nastplementation to
overcome this problem. Our mechanisms induce a set of Naslite so that
selfish agents have incentive to act based on a Nash equitibile prove that
our mechanisms enjoy substantial advantages over theuruttechanisms in
terms of payment and frugality.

1 Introduction

Algorithmic mechanism design has attracted much attentionomputer scientists
since the seminal work of Nisan and Ronen [13]. Followingrthesults, most of the
works exploit the solution concept of dominant strategyildeyia [1, 3,9-12]. Such
work devises a proper payment scheme to ensure that, foragpeft, truth-telling will
maximize its utility. The VCG mechanism [4,5, 15] is probatiie most famous rep-
resentative of the solutions enforcing truth-telling as ttominant strategy. We refer
to this class of mechanisms @athful mechanismsA number of reasons contribute to
the popularity of truthful mechanisms, including: (1) exling each selfish agent from
second-guessing whether its declared type is its best ehai@ (2) maximizing the
social efficiency of the outcome of the game.

In this paper, we introduce a different class of mechanishihvwe callNash
Implementatiormechanisms. Their key difference is that instead of hopegagents
to reveal their types, the proposed mechanisms induce & 8ktsh equilibria so that
agents maximize their profits by acting basedamy of the induced Nash equilibria.
Moreover, given any of the induced equilibria, our mechamsiguarantee that the re-
sultant outcome would be the same as if every agent weradethie truth.

* Part of the work was conducted when the author was visitingrddioft Research Asia, Bei-
Jing. The research of the author was supported in part by R@énGrant HKBU 2104/06E
and CERG under Grant PolyU-5232/07E.



Itis noteworthy that, as opposed to our mechanisms, thesrdional truthful mech-
anisms, except the dominant strategy equilibrium, mayaiormther Nash equilibria
which may lead to undesirable outcomes. To demonstrat@dsisibility, consider the
following auction example. Suppose that agen@ndb have true types, = 2 and
t, = 4, respectively. The VCG mechanism works by giving the itenth® highest
bidder (with tie-breaking rule that favorg and charging him the cost of the second
highest bid. As is well-known, the dominant-strategy efuilim warrants that the item
is given to ageni. However, consider the following scenario. Ageritids 10 and agent
b bids 1. This is also a Nash equilibrium, hugets the item, which is not the desired
outcome.

We shall formalize the concept of Nash implementation meidmas in Section 2.
Here we first explain our motivation. Truthful mechanismsait soliciting the true
types from the agents. Unfortunately, this is often actdeatea high cost. As has been
pointed out in [2, 8], the VCG mechanism may have to ggy:) times the cost of the
second shortest path in the unicast game. The over-payrhenomenon of truthful
mechanisms is more precisely captured by the notion of thgafity ratio [10, 14]. For
instance, Karliret al. [10] proved certain lower bounds of truthful mechanismsisth
implying that to acquire the true types from agents is oftdrerently costly.

To circumvent this over-payment problem, we relax the regyuent of using the
dominant-strategy equilibrium to attain the desired onteoWe allow agents to scheme
together and to report their types, which correspond to daNasiilibrium. The essence
of how to Nash implementation mechanisms boils down to hoaréate a proper in-
ducement so that agents profit by strategizing.

As we will show in the following sections, the most importadvantages of Nash
implementation mechanisms are their smaller total paysandl reduced frugality ra-
tios. Moreover, it is a more stable class of mechanisms irsémse that all Nash equi-
libria lead to the same desired outcome.

Our Results: To show how Nash implementation mechanisms work, we firseea
polynomial-time computable mechanisi-“P for the unicast game. We prove that
its total payment is almost always smaller than that of th&S¥@echanism; more gen-
erally, its payment is only slightly more than the cost of@®t shortest disjoint path,
while the VCG mechanism might p&)(n) times as much. Moreovet-“P has a fru-
gality ratio2 + €, while any truthful mechanisms has a frugality ratio at te@s,/n).
We note that the frugality ratio of any Nash implementationthe unicast game is at
least2, thereforeM“CPA is almost optimal.

Considering the more general case of binary demand gamgwowe that a neces-
sary condition for the existence of Nash implementationlmeésms is that the social
choice function must be monotonic, i.e., a selected agdhsiili be selected if it de-
clares a smaller cost. This condition turns out to be the sasrfer the truthful mecha-
nisms. Finally, we present a general framework for desigmandomized Nash imple-
mentation mechanisms for binary demand games. We provetidtamework yields
a frugality ratio comparable to or significantly better ththe truthful mechanisms. For
example, in the vertex cover game, the frugality ratio of W&G mechanism i®©(d),
whered is the maximum degree in the graph. Our mechanism improvsesdh + e,
while 1 is clearly the lower bound.



Paper Structure: We review the definitions of mechanisms and introduce tlres&ary
notation in Section 2. Seciton 3 presents a Nash implenientatechanism for the uni-
cast game. Section 4 discusses the frugality ratio of thisash mechanism. Section 5
gives a general framework of Nash impelmentation for bingayne. Section 6 con-
cludes. Due to space constraint, some proofs are omitted Bee full version [6] for
details.

2 Preliminaries

A standard economic model for analyzing scenarios in whighagents act accord-
ing to their own self-interest is as follows. There aragents. Each agent for i €
{1,---,n}, has some private informatian, called itstype The set of» agents define
a type vectot = (t1,to, - ,t,), which is called therofile. An output specification
maps each type vectoro a set of allowed outputs. Ageiis preferences are given by
a valuation functiorv; that assigns a real numbef(t;, o) to each possible output
Given the actiom of all agents, theitility (often called theprofit) of agent; is denoted
asu;(a, t;). For a mechanisnM = (O, P), we assume that the utility of every agent
is quasi-lineari.e., u;(a, t;) = v;(t;, O(a)) + P;(a).

Definition 1. A mechanismM contains two functions: aputput function©® and a
payment functio®® = (Py,--- ,P,):
1. For each agent it has a set of strategies;. It can choose a strategy € A;.
2. For each strategy vectar= (ay,--- ,a,), i.€., agent plays strategy:; € 4, the
mechanism computes autputo = O(a) and a payment
P(a) = (P1(a), P2(a),- -, Pn(a)). The payment?; is the money given to each
participating agent If P; < 0, it means that the agent has to pag; to participate
in the action.

2.1 Truthful Mechanisms

By the well-knownrevelation principle we can focus our attention on only theect
revealing mechanismén which the types are part of the strategy spagefor each
agenti. In practice, it is natural that these mechanisms shouisfgdihe two properties
below:

— Incentive Compatibility (IC): Revealing the type; is a dominant strategyor
each agent. In other words, for each agemtand any actiom:, we need that
vi(t;, O(al’t;)) + Pi(alt;) > v;(t;, O(a)) + Pi(a). Here,a|'t; denotes that agent
i plays strategy; and each of the other agents# ¢ plays strategy:;.

— Individual Rationality (IR) : This is also called/oluntary Participation For each
agenti and any strategy vectar, it should haveu; (a|’t;, t;) > 0, i.e., agent has
a non-negative profit if it reveals its true typg

Definition 2. A direct revealing mechanism tsuthful (often referred to astrategy-
proof) if it satisfies IR and IC

With a truthful mechanism, the agents have no incentive Yadie from the truthful
declaration because their overall utility would be no gee#tan it would have been if
they had told the truth. Moreover, the output function guéeas that, given the declared
profile d and the actual type vector O(t) = O(d).



2.2 Nash Implementation Mechanisms

A Nash implementatiomechanismM is also composed of a pair of outcome function
O’ and a payment methdR. It is associated with another social choice funct@n
which maps a type vectarto a desirable outcome. The mechanistrshould guarantee
that its output functior®’ is “faithful” to the social choice functio®. We first define
what do we mean by “faithful.”

Definition 3. The output functior® and the social choice functio@®’ have the same
range but may not have the sardemain O’(d) equalsO(t), denoted by’ (d)=0(t),
if O,(d) = O;(t) for every agent.

Note that we allow the two functior®®@ andQ’ to have different domains. Therefore,
the declared profild = (d;, ds, - - - , d,,) could be something different from a declared
type vectort’, i.e., the mechanism may require an agent to declare somgedltier than
its own typet;. For example, as we will show in later sections, our mechmasidemand
agents to submitvo bids to join the auction.

Having the above definition, we can now formalize what coutgs a Nash imple-
mentation mechanism.

Definition 4 (Nash Implementation Mechanism).Given a social choice functiof?,
a mechanisroM = (O’, P) implements® in Nash equilibria if
1. M induces a mappin@ — D so that a type vectdr € T is mapped to a nonempty
subset of declared profilest(t) C D.
2. Every declared profild € M(t) is a Nash equilibrium; conversely, every declared
profile forming a Nash equilibrium is in the sét((¢).
3. Given any declared profild € M(t), O'(d)=0(t).

As mentioned earlier, we require that given any type vedtmre should exist at
least one Nash equilibrium for the declared profile. Morepgeery Nash equilibrium
induced by this type vector should ensure that the outcoruened by’ is the de-
sirable one as if everyone were behaving truthfully underaksociated social choice
functionO.

3 A Nash Implementation Mechanism for Unicast Using the Leas
Cost Path

We first review the unicast game. Assues a graph representing the network. Every
edgee; corresponds to a selfish agent and has a hiddencgdst routing. We need
to “buy” a routing path from a source nodeto a destination nodé This problem

is solvable by the VCG mechanism [13]. Specifically, the VCE&chmanism will pick
up the least cost path LCR ¢, d) (whered will be identical with the true costs, as
guaranteed by the mechanism), and pay each chosenegagelLCR(s, t,d) by the
amountPy(d) = |LCP(s, t,d|*o0)| — |LCP(s, ¢, d|*0)].

As Archer and Tardos [1] pointed out, the VCG mechanism iruthieast game can
be a costly solution. In certain cases, the paymest(is) times the actual cost of the
second shortest path frosto ¢. To rectify this problem, Immorlicat al.[8] proposed
the first-price auction mechanism, in which agents are pdidtewver the costs they



report if they are chosen finally. They point out that a Nashildgfium may not exist
under this mechanism, but stroagNash equilibria always do. Moreover, the payment
incurred by any strong-Nash equilibrium is never significantly more, and more ofte
less than that by the VCG mechanism. Our new mechanism isdctieLeast Cost
Path Auction(LCPA) mechanism, which is based on the work of Immorétal. [8].

The mechanismi-CPA = (OLCPA PLEPA) implements the functio®-“F in Nash
equilibria. The social choice functic®-“F has bid vectors as domain ag#“"(b) =
LCP(s, t, b), returning the shortest path with regard to the bid vebtofrhe mechanism
MUCPA requires two bidgb, b’) from the agents (hence the domain(fis composed
of two sets of bid vectors); it maps the actual cosi a nonempty set of Nash equilibria;
moreover, given anyb, b’) € MCPA(c), OLCPA((b, b')) = OLP(c).

The details aboutC™ are given in Algorithm 1. We explain the high-level idea
here. First, we compute a shortest path I(&R, b) based on the first bish. Then we
construct another bitl so that given any edge

~_ J b ife; € LCP(s,t,b);
hi = {bl- if ; & LCP(s. . b). (1)

In other words, for those edges which are already on the p@®#{4, ¢, b), they can
raise their second bid ib’ (but only to a certain extentas will be explained below).
Finally, we compute the shortest path LGR, h) and pay those chosen edges by the
values inh.

To adhere to Nash implementation, our primary concern isda&arsure that
LCP(s,t,h) = LCP(s, t,c). Our main trick is to seek LCR, ¢, c¢) by the agents’ first
bid b. The difficulty lies in how to ensure thd = c. Our second concern is how
to guarantee that LGB, ¢, h) returns the same path. As mentioned above, the edges
on LCR(s,t,b) can alter the vectoh by raising their second bid, and they benefit
from doing so since they will be paid the amount based on 8egiond bid if they are
still chosen in LCPs, t,h). Hence, we need to find a way to curb the over-aggressive
behavior of the agents in their second bid.

To address the above two concerns, we introduce the folpwéward-and-punish
device. In the beginning, every agent is given a small amofipremium (Line 1).
They then will be asked to send a dummy packet with a certaibaiility (Line 2). We
refer to this stage as thwoadcast stagethis stage can be regarded as dealing out the
punishment to any agent who is not giving out its true codsiffiist bid. The following
lemma captures the reason why we can guarantee that theidifstib the same as the
actual cost.

Lemma 1. For each linke;, its utility to broadcasy;(b) = —p- c; + fi(s, t, b) strictly
decreases iffic;, +o0) and strictly increases ifi—oo, ¢;] onb;.

The edges on LCR, t,b) can raise their second bid to profit. The key idea is to
make sure that they can only raise their bids until a Nashlieguim is reached. Ex-
ceeding this point, the over-bidders will not be chosen m fihal path LCRs, ¢, h).
Moreover, they will be fined a certain amount (Line 6) becaofstheir over aggres-
sive behavior. Those final chosen edges are asked to prdwdeetvice and are paid
(Line 5). We refer to their actual service { t routing) as theunicast stageWhen



Al

gorithm 1 Least Cost Path Auction Routing Mechanigeft- CPA = ((OLCPA pLCPA)

Input: A networkG = (V, E), a sources € V, a destinationt € V, d = (b, b’) the declared
profile, and two adjustable parameterand-y.

Output: A mechanismM-CP,

Steps:

1

2:
3:

: SetP;™(d) = fi(s,t,b), wheref;(s,t,b) = 7 - [bu by =3 e, bi) — %1,
for each edge; € G, and b, is the maximum cost any edge can declare.

With probabilityp = 7- (n- b, — Y. b;), each edge is asked to send a dummy packet.
e, €G

Compute LCPs, ¢, b); break ties by lexicographic order. For each edgen LCH(s, t, b),

seth; = b}, seth; = b, for other edges.

: Compute LCPs,¢,h) and break ties according to the following rule: the edges on
LCP(s, t, b) have the highest priority while the other edges follow thedegraphic order.

: SetOy“™(d) = 1 andP“™(d) = Pr°™(d) + h; for each edge on LR, ¢, h); i.e. the
edges on LCB, ¢, h) will receive the payment and relay the packet.

: SetPrCPA(d) = Pre™(d) —~-|b} —b;| for each edge in LCR, t, b) but notin LCRs, ¢, h).

computing LCPs, ¢, b), we break ties by some lexicographic order (Line 3). But when
we compute LCPs, ¢, h), we give priority to those edges which are already chosen in
LCP(s,t,b). This artifice guarantees the existence of a Nash equitib(iLine 4)".

Nash Equilibria inM““PA We now build a set of bid vectors and prove that they contain
all the Nash equilibria induced byt-C™A,

Definition 5. (b, b’} is said to be @anonical formof the bid vectors if
1. b=c
2. For each edge; € LCP(s,¢,b), b; < b’ < |LCP(s,t,c|'c0)| — |LCP(s, ,c|'0)|

(which is indeed the payment edggegets under the VCG mechanism).

3. D e eLlep(s,ib) Pi = ZejeSch(s,t,c) c;, where SLCRs, ¢, ¢) is the second shortest

s — t path disjoint from LCPs, ¢, c).

In Lemma 2 below, we prove that all canonical bid vectors éINash equilibria

and vice versa in Lemma 3 below. Moreover, canonical bidorscwill lead to the
outcome demanded byt-CPA,

Lemma 2. (Necessity) A canonical bid vectde, c’) is a Nash equilibrium for the
mechanism\-CPA, Moreover, such a bid vector guarantees that the final chgsehn

is

correct, i.e., LCPs, t,c) = LCP(s, t, h).

Lemma 3. (Sufficiency) Given a pair of bid vectofb, b’) which forms a Nash equi-

lib

rium, then it must be canonical. Moreover, such a bid segtiarantees that the final

chosen path is correct, i.e., LER ¢,¢) = LCP(s, ¢, h).

Combining Lemma 2 and Lemma 3, we derive the major resultisfdbction:

4

The idea of using the costs of edges to break ties so as torgaarthe existence of a Nash

equilibrium is mentioned by Immorlica [7, Page 66].



Theorem 1. MechanismM“PA implements the social choice functiGh®P in Nash
equilibria. The social choice functio®-C" selects the shortest parth frasrto t.

By Definition 5 and Lemmas 2 and 3, the following theorem is idifate.

Theorem 2. The total payment under the mechanigrttC™ is at moste more than
that of the VCG mechanism, wherean be arbitrarily small. In particular, the total
payment is at mostmore than the actual cost of the second shortest path disjoim
the shortest path.

Proof. The edges chosen in LCR ¢, h) = LCP(s,t,c) will be paid at most what
they would have received under the VCG mechanism, becaueeafecond part of
Definition 5. Moreover, by the third part of Definition 5, theollective payment will
be at most the cost of the disjoint second shortest path tibddily, we still have to pay
an extra premiuny; (s, t,b) to each agent To guarantee the total premium is smaller
thane, we setr < ¢/(n?b2). O

4  Frugality Ratio in MCPA

In this section, we show that the frugality ratio 61-CP is at most2 + ¢, while any
Nash implementation mechanism will have frugality at leash the unicast game.
HenceM““PA has an almost optimal ratio.

We first review the definition of a frugality ratio. Considebaary demand game
¢ = (&,.%), where a set of element§ comprise the agents, and a certain task can
be accomplished by feasibleteamf € .# of elements in§. Each element provides
a service and incurs a fixed cast € [0, oco) for performing that task. A mechanism
M needs to find a team to perform this task and pay each elemérd Belected team
a certain amount such that certain properties are satisfigd,individual rationality.

In [14], Talwar proposed to measure the overpayment for arpidemand game using
thefrugality, which is defined as the total payment of the mechanisig, Y CG) over
the total cost of theecond optimal teaymvhich is the best team that does not intersect
with the team chosen by the mechanism. The frugality notiaa thien generalized by
Karlin et al.[10] to the case where the second optimal disjoint team magxiet. We
review their definition here. In a binary demand game withnég& and feasible sets
F, let T, (c) be the feasible team with the optimal cost ar{d) be the solution of
the following problem.

v(c) = min Z x; subject to 2

e;€Tope(c)

1. x; > ¢; for every agent; € &;

2. ZeieTcpt(c)_F x; < ZejeF_Topt(c) Cj, VF € %;and
3. for everye; € T,,:(c), there is a teank’ € .# such thae; ¢ F and

e;€Topt(c)—F L= Zej €F—Tpt(c) Cj-

Definition 6. The frugality, denoted by, of a truthful mechanisniV for a given
game¥ is defined as)q = sup, % i.e., the maximum possible ratio of the total
payment by mechanis overu(c). The frugality of a gam& = (&, %) is defined

asd(s,7) = inf pq A1, Where the infimum is taken over all truthful mechanishts



We can extend the frugality definition for truthful mechangsto Nash implemen-
tation truthful mechanisms in a natural way as follows.

Definition 7. The frugality, denoted by, of a Nash implementation mechanigvh
for a given gam¢/ is defined ag ( = sup, %, i.e., the maximum possible ratio of
the total payment of the mechaniswt overv(c). Hered is a Nash equilibrium under
M when the true cost vector of agentsisThe frugality of a gam& = (&, .%) based
on output method is defined as) (s # 0y = infar ¢ 01, Where the infimum is taken
over all Nash implementation truthfuhechanisms\ with respect to method. The
frugality of a game¥ = (&, .7) is defined a$ s, ) = inf pq P11, Where the infimum
is taken over all Nash implementation mechaniswts

We show below that-CPA achieves frugalit@+ ¢, and this ratio is almost optimal.
Before we proceed, we should point out that Kaginal. [10] proved that the VCG
mechanism has frugalit®)(n) andany truthful mechanism for the unicast game has
frugality 2(1/n). Clearly, Nash implementation mechanisms have bettenfityg

Theorem 3. The frugality of the mechanisi-C™ is 2 + ¢, and the frugality of any
Nash implementation mechanism based on LCP is at frast

5 Nash Implementation Mechanisms for Binary Demand Games

In this section, we give a general framework for a Nash imgetation mechanism.
Assuming a social choice functiaf°?* which returns the team with minimum cost,
Algorithm 2 gives a mechanism implemen®”¢ in Nash equilibria. Without loss of
generality, we assume that the given set sysiémz ) is upwards closed.e. for every
S € % and every supers@twith S C T C &, we havel’ € .%. To avoid triviality, we
assume that the systemmmnopoly-fregi.e., there is no element present in all feasible
teams. For any sét C &, letw(T,c) = >__ .+ c. be the weight of the teafi under
cost vectore.

The intuition for Algorithm 2 is similar to the Algorithm 1nithe beginning, every
agent is given a premium (Line 1). There is a chance that Ithwilrecruited into the
team (Line 2) even if it does not belong to the optimal teamnvse the final decision
based orh and punish the over-greedy bidders (Line 6).

ecT

Theorem 4. With probability1 — ¢, for arbitrarily small ¢, the mechanism°t im-
plementsD°Pt in Nash equilibria.

The proof can be obtained through Lemmas 4 and 5 below. Hemlyemention
that there is a small probability that the final recruitechtéa a superset of the optimal
team. To make sure the probability of this happening is sm#ilane, we maker <
€/(n?by,).

Similar to the mechanismM-CP for unicast game, any Nash equilibrium for the
mechanismM°“* has the following properties.

Lemma 4. If d = (b,b’) is a Nash equilibrium, then () = c; (2) b, = c; if i &
Topi(c) andb) > c; otherwise; (3) for any feasible ted w(T, b") > w(T,p(c), b’).



Algorithm 2 General Framework to Design Nash Implementation MechasfsmBi-
nary Demand Game

Input: A set system(&,.%), d = (b,b’) the declared profile, and two adjustable parameters
and-~y.

Output: A mechanism implementing1°“*in N ashequilibria.

Steps:
1: Setpgvi(d) = fi(s,t,b), wheref;(b) = 7- [bu < (n by — Zejegfei bj) — g] for each
agent.
2: With probabilityp = 7 - (n- b, — > b;), we select all elements and ask them to perform
e, €EE
the service.

3: Find the optimal teams and break ties by favoring teamis bigger sizes. After that, break
ties by lexicographic order. For every ageon T+ (b), seth; = b; otherwise seh; = b;.

4: Find the optimal teams dft,,: (h) and break ties according to the rule that teams containing
members inT,,.(b) have the highest priority and if two teams have the same chspse
the one that contains more agentgip:(b).

5. SetO¢“!(d) = 1 andP**(d) = P2**(d) + h; for each agent i, (h).

6: SetpP t(d) = Pui(d) — v - |b} — b;| for each agent off,,¢ (b) — Topi(h).

Before we present our main results in Theorem 5 below, wefirsiduce the notion
of the worst and best Nash equilibria for binary demand gar@essider the linear
program (2); interestingly, each solution that satisfiésahstraints corresponds to a
subvector ob’ in a Nash equilibrium.

Lemma 5. There exists an one-to-one mapping between the feasibitososatisfying
the constraints of linear program (2) and of a Nash equilibriunal for the mechanism
Mout,

Recall that the main part of payment is the sum of the bidsérstibvector. Thus,
for convenience of presentation, we call each solution rtiéts all constraints of the
linear program (2) &E bid Thus, the solution to linear program (2) is th@nimum
NE bid denoted byX™", Next, we introduce a counterpart of the linear program (2).
Let o(c) be the solution of the following linear program:

o(c) = max Z x; subject to (3)

ei€Topt

1. x; > ¢; for each agent; € &;

2. ) €Ty (0)-T %i < Deser—T,,.(c) v VI € F;and
3. Foreveng; € T,,.(c), thereisdl’ € .# suchthae; ¢ T andzeieTopt(c)_T T

ZejeT—Topt(c) G-
The solution to linear program (3) imaximum NE bidsdenoted byX™#*. The

. . . . >, o TP L
ratio of the maximum and minimum NE bids js= =<i€%ert® " __ \yhijch is called

€; €ETopt(c) Ti
NE ratio. Interestingly, NE ratio always equals the ratio betweeanpitice of stability
over theprice of the anarchyLet OPT'(c) be the globally optimum solution. Recall



that the price of stability is defined q% i.e., the ratio of the value of the largest

Nash equilibrium over the optimum solution. The price ofrahg is defined a%czc,

i.e., the ratio of the value of the smallest Nash equilibriower the optimum solution.
Next, we show a relationship between the Nash equilibriuchtha frugality of a Nash
implementation mechanisms.

Theorem 5. Let M°“t = (O', P) be the mechanism computed by Algorithm 2. Then
its frugality is A + ¢, where is the NE ratio and is a positive number depending on
parameterg and~.

Proof. From Lemma 5, ifd is a Nash equilibrium of\°“t, thenb’ satisfies all the
constraints of linear program (3). Thul,, . ()b < ¢ er,,.(c) % - Recall
that the total payment is

P) =Y fib)+ Y i< > el yroa?

e;€Topi(c) e;€Topt(c)

:(1+e) Z .”L'Iinaxz(l-f—E)')\' Z x;nin.

e;€Topt(c) ei€Topt(c)
This proves the theorem. a

Recall that in order to compute the NE ratipwe need to solve linear program (2),
which is still an open problem even for some special binampaed gamesg.g, the
shortest path game. However, we are able to get tight bouirttie dNE ratio for some
binary demand games using different approaches. Beforehawe how to bound the
NE ratio, we define some terms first.

We call a feasible teari’ a base-teanif removing any elements frorfi' makes it
unfeasible. Given a teaffi C T whereT is a base team, we say that tedncovers
T, throughT if (T — T3) | T is also a feasible tearff; covers an element through
T if there exists affy C T such thak; € Ty andT; coversT; throughT.

Ateam set7 is ateam-covenf a base-teardt’ if for each elemeng; € T', there ex-
ists atean¥; € .7 such thafl; coverse; throughT'. A team cover7 of T'is aminimal
team cove(MTC) of T'if (1) 7 — T; is not a team cover df for anyT; € .7; and (2)
forany teani; € .7 ande; € T, (7 —T;) | J(T; —e;) is not a team cover. Given a base
team?" and its minimal team cove¥’, the degree of an element e T is the number of
different teams in7 that covers:; throughT', denoted by degT’,.7). The maximum
degree off’ and 7 is ded™* (T, .7") = max,,cr deg(T, 7); the minimum degree of
T and .7 is ded™™(T,.7) = min,,cr deg(T,.7). The degree raticof 7" and .7 is
ar(T, 7) = % and degree ratio of gan# is dr(¢) = maxr, o dr(T, 7).
Theorem 6. Assume we are given a fixed cost veatoMe haveh < dr(c). Here
dr(c) = max 7 dr(T,p(c), ) where7 is a minimal team-cover 6f,,;(c).

Proof. From the definition ob™i", for everye, € Topt(c), there exists &; € .# such

thate; ¢ T; and
Zej ETopt(c)—T; I;mn = Zej ET;—Tope(c) G- LetT] = T; — Tope(c) andF; = Tope(c) —



T;. Thend = {T] : e; € Ty (c)} is a team-cover of,,;(c). Let 7* be any min-

imal team-cover that is a subset 6f. Without loss of generality, we assunig* =
min k min k

{T1,...,T;}. Thus, d(C)'ZejeTopt(c) x> D ZejeFi Ty = Dz Zej et G-

On the other hand[] coversF; throughT', 5-, ., @7 < 3°. cqv ¢;. Thus,

k k
Z x;-“ax < Z Z x;-“ax < Z Z ¢; < dr(c) - Z x;-nin.

e;€ETopt(c) i=1e;EF; =1 e; €T/ e; €ETopt(c)
Therefore \ < dr(c), which proves the theorem. O
frugality VCG mechanismMinimum frugality [Nash ITmplementatign
ratio Truthful mechanism mechanism\1°+
Matroid Game T T T+e
Unicast Game O(n) 2(y/n) 2+€
Vertex Cover Game  O(d) 2(V/d) T+e
Edge Cover Game O(n) 2(n) d—1+¢
Table 1. Summary of the frugalities for some binary demand gamese Heis the maximum

degree of a vertex in the given graph.

Next we show how to find the NE ratio via an example of the vectmrer game. In
the vertex cover game, given a gragh= (V, E') and each vertex; has a cost;, we
need to find a subsét € V such that each edge has at least one vertéx Here every
vertex is an element and a base-team is a minimum vertex.désethe vertex cover
game, we have the following lemma regardingegr

Lemma 6. For the vertex cover game, given a fixed cost vectave have dfc) = 1.

By definition, the NE ratio\ is at leastl. From Theorem 6 and Lemma &,< 1.
Thus, the NE ratio of a vertex set cover game is exactly one.

Theorem 7. For the vertex cover game, the frugality of the Nash impleatem mech-
anism computed by Algorithm 2is-¢ and the frugality of the VCG mechanismis 1,
wheren is the number of the vertices. For any truthful mechanism,fthgality is at

least2(\/n).

The frugality ratio of the edge cover game under various ragidms is summarized
in Theorem 8 below.

Theorem 8. Given a graphG with maximum degreé, the frugality ratio of the Nash
implementation mechanism computed by Algorithmd24id + € and the frugality ratio

of the VCG mechanismis— 1. Any truthful mechanism has the frugality ratio at least
2(n)

Table 1 summarizes the frugality ratios of several binampded games under three
different mechanisms: the VCG mechanism, the minimum fiygatio truthful mech-
anism and our Nash implementation mechanisft“! defined by Algorithm 2. We
point out that sometimes the frugality ratio does not fullpture the over-payment of a
mechanism. For example, even though the VCG mechanism lasacable frugality
ratio to Algorithm 2, the actual payment of the former cardie ) times the latter. For
example, consider the following spanning tree game. Giveytke with only one edge
having cost 1 while the others having cost 0. The VCG mechajzays: — 1 while
our mechanism only + e.
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Discussions

In this paper, we propose a class of mechanisms which impiesaoeial choice func-
tions in Nash equilibria. Instead of relying on dominanattgy equilibria, these mech-
anisms aim at ensuring that any attainable Nash equilibridliiead to the desirable
outcome. We show that these mechanisms enjoy advantagesuidul mechanisms
in terms of reduced payments and better frugality ratios.
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