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Abstract. Most of the recent works on algorithmic mechanism design exploit
the solution concept of dominant strategy equilibria. Suchwork designs a proper
payment scheme so that selfish agents maximize their utilityby truthfully reveal-
ing their types. It has been pointed out that these truthful mechanisms, the famous
among them being the VCG mechanisms, often incur high payments and fruglity
ratios. In this work, we exploit the solution concept of Nashimplementation to
overcome this problem. Our mechanisms induce a set of Nash equilibria so that
selfish agents have incentive to act based on a Nash equilibrium. We prove that
our mechanisms enjoy substantial advantages over the truthful mechanisms in
terms of payment and frugality.

1 Introduction

Algorithmic mechanism design has attracted much attentionof computer scientists
since the seminal work of Nisan and Ronen [13]. Following their results, most of the
works exploit the solution concept of dominant strategy equilibria [1, 3, 9–12]. Such
work devises a proper payment scheme to ensure that, for eachagent, truth-telling will
maximize its utility. The VCG mechanism [4, 5, 15] is probably the most famous rep-
resentative of the solutions enforcing truth-telling as the dominant strategy. We refer
to this class of mechanisms astruthful mechanisms. A number of reasons contribute to
the popularity of truthful mechanisms, including: (1) relieving each selfish agent from
second-guessing whether its declared type is its best choice; and (2) maximizing the
social efficiency of the outcome of the game.

In this paper, we introduce a different class of mechanisms which we callNash
Implementationmechanisms. Their key difference is that instead of hoping the agents
to reveal their types, the proposed mechanisms induce a set of Nash equilibria so that
agents maximize their profits by acting based onany of the induced Nash equilibria.
Moreover, given any of the induced equilibria, our mechanisms guarantee that the re-
sultant outcome would be the same as if every agent were telling the truth.

⋆ Part of the work was conducted when the author was visiting Microsoft Research Asia, Bei-
Jing. The research of the author was supported in part by RGC under Grant HKBU 2104/06E
and CERG under Grant PolyU-5232/07E.



It is noteworthy that, as opposed to our mechanisms, the conventional truthful mech-
anisms, except the dominant strategy equilibrium, may contain other Nash equilibria
which may lead to undesirable outcomes. To demonstrate thispossibility, consider the
following auction example. Suppose that agentsa andb have true typesta = 2 and
tb = 4, respectively. The VCG mechanism works by giving the item tothe highest
bidder (with tie-breaking rule that favorsa) and charging him the cost of the second
highest bid. As is well-known, the dominant-strategy equilibrium warrants that the item
is given to agentb. However, consider the following scenario. Agenta bids 10 and agent
b bids 1. This is also a Nash equilibrium, buta gets the item, which is not the desired
outcome.

We shall formalize the concept of Nash implementation mechanisms in Section 2.
Here we first explain our motivation. Truthful mechanisms aim at soliciting the true
types from the agents. Unfortunately, this is often achieved at a high cost. As has been
pointed out in [2, 8], the VCG mechanism may have to payΘ(n) times the cost of the
second shortest path in the unicast game. The over-payment phenomenon of truthful
mechanisms is more precisely captured by the notion of the frugality ratio [10, 14]. For
instance, Karlinet al. [10] proved certain lower bounds of truthful mechanisms, thus
implying that to acquire the true types from agents is often inherently costly.

To circumvent this over-payment problem, we relax the requirement of using the
dominant-strategy equilibrium to attain the desired outcome. We allow agents to scheme
together and to report their types, which correspond to a Nash equilibrium. The essence
of how to Nash implementation mechanisms boils down to how tocreate a proper in-
ducement so that agents profit by strategizing.

As we will show in the following sections, the most importantadvantages of Nash
implementation mechanisms are their smaller total payments and reduced frugality ra-
tios. Moreover, it is a more stable class of mechanisms in thesense that all Nash equi-
libria lead to the same desired outcome.

Our Results:To show how Nash implementation mechanisms work, we first present a
polynomial-time computable mechanismMLCPA for the unicast game. We prove that
its total payment is almost always smaller than that of the VCG mechanism; more gen-
erally, its payment is only slightly more than the cost of second shortest disjoint path,
while the VCG mechanism might payΘ(n) times as much. Moreover,MLCPA has a fru-
gality ratio2 + ǫ, while any truthful mechanisms has a frugality ratio at least Ω(

√
n).

We note that the frugality ratio of any Nash implementation for the unicast game is at
least2, thereforeMLCPA is almost optimal.

Considering the more general case of binary demand games, weprove that a neces-
sary condition for the existence of Nash implementation mechanisms is that the social
choice function must be monotonic, i.e., a selected agent will still be selected if it de-
clares a smaller cost. This condition turns out to be the sameas for the truthful mecha-
nisms. Finally, we present a general framework for designing randomized Nash imple-
mentation mechanisms for binary demand games. We prove thatour framework yields
a frugality ratio comparable to or significantly better thanthe truthful mechanisms. For
example, in the vertex cover game, the frugality ratio of theVCG mechanism isΘ(d),
whered is the maximum degree in the graph. Our mechanism improves this to 1 + ǫ,
while 1 is clearly the lower bound.



Paper Structure: We review the definitions of mechanisms and introduce the necessary
notation in Section 2. Seciton 3 presents a Nash implementation mechanism for the uni-
cast game. Section 4 discusses the frugality ratio of this unicast mechanism. Section 5
gives a general framework of Nash impelmentation for binarygame. Section 6 con-
cludes. Due to space constraint, some proofs are omitted here. See full version [6] for
details.

2 Preliminaries

A standard economic model for analyzing scenarios in which the agents act accord-
ing to their own self-interest is as follows. There aren agents. Each agenti, for i ∈
{1, · · · , n}, has some private informationti, called itstype. The set ofn agents define
a type vectort = (t1, t2, · · · , tn), which is called theprofile. An output specification
maps each type vectort to a set of allowed outputs. Agenti’s preferences are given by
a valuation functionvi that assigns a real numbervi(ti, o) to each possible outputo.
Given the actiona of all agents, theutility (often called theprofit) of agenti is denoted
asui(a, ti). For a mechanismM = (O,P), we assume that the utility of every agent
is quasi-linear,i.e., ui(a, ti) = vi(ti,O(a)) + Pi(a).

Definition 1. A mechanismM contains two functions: anoutput functionO and a
payment functionP = (P1, · · · ,Pn):
1. For each agenti, it has a set of strategiesAi. It can choose a strategyai ∈ Ai.
2. For each strategy vectora = (a1, · · · , an), i.e., agenti plays strategyai ∈ Ai, the

mechanism computes anoutputo = O(a) and a payment
P(a) = (P1(a),P2(a), · · · ,Pn(a)). The paymentPi is the money given to each
participating agenti. If Pi < 0, it means that the agent has to pay−Pi to participate
in the action.

2.1 Truthful Mechanisms

By the well-knownrevelation principle, we can focus our attention on only thedirect
revealing mechanisms, in which the types are part of the strategy spaceAi for each
agenti. In practice, it is natural that these mechanisms should satisfy the two properties
below:

– Incentive Compatibility (IC) : Revealing the typeti is a dominant strategyfor
each agenti. In other words, for each agenti and any actiona, we need that
vi(ti,O(a|iti))+Pi(a|iti) ≥ vi(ti,O(a))+Pi(a). Here,a|iti denotes that agent
i plays strategyti and each of the other agentsj 6= i plays strategyaj .

– Individual Rationality (IR) : This is also calledVoluntary Participation. For each
agenti and any strategy vectora, it should haveui(a|iti, ti) > 0, i.e., agenti has
a non-negative profit if it reveals its true typeti.

Definition 2. A direct revealing mechanism istruthful (often referred to asstrategy-
proof) if it satisfies IR and IC.

With a truthful mechanism, the agents have no incentive to deviate from the truthful
declaration because their overall utility would be no greater than it would have been if
they had told the truth. Moreover, the output function guarantees that, given the declared
profiled and the actual type vectort, O(t) = O(d).



2.2 Nash Implementation Mechanisms

A Nash implementationmechanismM is also composed of a pair of outcome function
O′ and a payment methodP. It is associated with another social choice functionO,
which maps a type vectort to a desirable outcome. The mechanismM should guarantee
that its output functionO′ is “faithful” to the social choice functionO. We first define
what do we mean by “faithful.”

Definition 3. The output functionO and the social choice functionO′ have the same
range, but may not have the samedomain,O′(d) equalsO(t), denoted byO′(d)⊜O(t),
if O′

i(d) = Oi(t) for every agenti.

Note that we allow the two functionsO andO′ to have different domains. Therefore,
the declared profiled = (d1,d2, · · · ,dn) could be something different from a declared
type vectort′, i.e., the mechanism may require an agent to declare something other than
its own typeti. For example, as we will show in later sections, our mechanisms demand
agents to submittwobids to join the auction.

Having the above definition, we can now formalize what constitutes a Nash imple-
mentation mechanism.

Definition 4 (Nash Implementation Mechanism).Given a social choice functionO,
a mechanismM = (O′,P) implementsO in Nash equilibria if:
1. M induces a mappingT → D so that a type vectort ∈ T is mapped to a nonempty

subset of declared profilesM(t) ⊆ D.
2. Every declared profiled ∈ M(t) is a Nash equilibrium; conversely, every declared

profile forming a Nash equilibrium is in the setM(t).
3. Given any declared profiled ∈ M(t), O′(d)⊜O(t).

As mentioned earlier, we require that given any type vector,there should exist at
least one Nash equilibrium for the declared profile. Moreover, every Nash equilibrium
induced by this type vector should ensure that the outcome returned byO′ is the de-
sirable one as if everyone were behaving truthfully under the associated social choice
functionO.

3 A Nash Implementation Mechanism for Unicast Using the Least
Cost Path

We first review the unicast game. AssumeG is a graph representing the network. Every
edgeei corresponds to a selfish agent and has a hidden costci for routing. We need
to “buy” a routing path from a source nodes to a destination nodet. This problem
is solvable by the VCG mechanism [13]. Specifically, the VCG mechanism will pick
up the least cost path LCP(s, t,d) (whered will be identical with the true costsc, as
guaranteed by the mechanism), and pay each chosen edgeei on LCP(s, t,d) by the
amountPk(d) = |LCP(s, t,d|k∞)| − |LCP(s, t,d|k0)|.

As Archer and Tardos [1] pointed out, the VCG mechanism in theunicast game can
be a costly solution. In certain cases, the payment isΘ(n) times the actual cost of the
second shortest path froms to t. To rectify this problem, Immorlicaet al. [8] proposed
the first-price auction mechanism, in which agents are paid whatever the costs they



report if they are chosen finally. They point out that a Nash equilibrium may not exist
under this mechanism, but strongǫ-Nash equilibria always do. Moreover, the payment
incurred by any strongǫ-Nash equilibrium is never significantly more, and more often
less than that by the VCG mechanism. Our new mechanism is called theLeast Cost
Path Auction(LCPA) mechanism, which is based on the work of Immorlicaet al. [8].

The mechanismMLCPA = (OLCPA,PLCPA) implements the functionOLCP in Nash
equilibria. The social choice functionOLCP has bid vectors as domain andOLCP(b) =
LCP(s, t,b), returning the shortest path with regard to the bid vectorb. The mechanism
MLCPA requires two bids〈b,b′〉 from the agents (hence the domain ofO′ is composed
of two sets of bid vectors); it maps the actual costc to a nonempty set of Nash equilibria;
moreover, given any〈b,b′〉 ∈ MLCPA(c), OLCPA(〈b,b′〉) = OLCP(c).

The details aboutMLCPA are given in Algorithm 1. We explain the high-level idea
here. First, we compute a shortest path LCP(s, t,b) based on the first bidb. Then we
construct another bidh so that given any edgei,

hi =

{

b′i if ei ∈ LCP(s, t,b);
bi if ei 6∈ LCP(s, t,b). (1)

In other words, for those edges which are already on the path LCP(s, t,b), they can
raise their second bid inb′ (but only to a certain extent, as will be explained below).
Finally, we compute the shortest path LCP(s, t,h) and pay those chosen edges by the
values inh.

To adhere to Nash implementation, our primary concern is to make sure that
LCP(s, t,h) = LCP(s, t, c). Our main trick is to seek LCP(s, t, c) by the agents’ first
bid b. The difficulty lies in how to ensure thatb = c. Our second concern is how
to guarantee that LCP(s, t,h) returns the same path. As mentioned above, the edges
on LCP(s, t,b) can alter the vectorh by raising their second bid, and they benefit
from doing so since they will be paid the amount based on theirsecond bid if they are
still chosen in LCP(s, t,h). Hence, we need to find a way to curb the over-aggressive
behavior of the agents in their second bid.

To address the above two concerns, we introduce the following reward-and-punish
device. In the beginning, every agent is given a small amountof premium (Line 1).
They then will be asked to send a dummy packet with a certain probability (Line 2). We
refer to this stage as thebroadcast stage; this stage can be regarded as dealing out the
punishment to any agent who is not giving out its true cost in its first bid. The following
lemma captures the reason why we can guarantee that the first bid b is the same as the
actual costc.

Lemma 1. For each linkei, its utility to broadcastgi(b) = −ρ ·ci + fi(s, t,b) strictly
decreases in[ci,+∞) and strictly increases in(−∞, ci] onbi.

The edges on LCP(s, t,b) can raise their second bid to profit. The key idea is to
make sure that they can only raise their bids until a Nash equilibrium is reached. Ex-
ceeding this point, the over-bidders will not be chosen in the final path LCP(s, t,h).
Moreover, they will be fined a certain amount (Line 6) becauseof their over aggres-
sive behavior. Those final chosen edges are asked to provide the service and are paid
(Line 5). We refer to their actual service (s − t routing) as theunicast stage. When



Algorithm 1 Least Cost Path Auction Routing MechanismMLCPA = (OLCPA,PLCPA)

Input: A networkG = (V, E), a sources ∈ V , a destinationt ∈ V , d = 〈b,b′〉 the declared
profile, and two adjustable parametersτ andγ.
Output: A mechanismMLCPA.
Steps:

1: SetPLCPA
i (d) = fi(s, t,b), wherefi(s, t,b) = τ ·

h

bu · (n · bu − P

ej∈G−ei
bj) − b2i

2

i

,

for each edgeei ∈ G, and bu is the maximum cost any edge can declare.
2: With probabilityρ = τ · (n · bu − P

ei∈G

bi), each edge is asked to send a dummy packet.

3: Compute LCP(s, t,b); break ties by lexicographic order. For each edgeei on LCP(s, t,b),
sethi = b

′

i, sethi = bi for other edges.
4: Compute LCP(s, t,h) and break ties according to the following rule: the edges on

LCP(s, t,b) have the highest priority while the other edges follow the lexicographic order.
5: SetOLCPA

i (d) = 1 andPLCPA
i (d) = PLCPA

i (d) + hi for each edge on LCP(s, t,h); i.e. the
edges on LCP(s, t,h) will receive the payment and relay the packet.

6: SetPLCPA
i (d) = PLCPA

i (d)−γ ·|b′i−bi| for each edge in LCP(s, t,b) but not in LCP(s, t,h).

computing LCP(s, t,b), we break ties by some lexicographic order (Line 3). But when
we compute LCP(s, t,h), we give priority to those edges which are already chosen in
LCP(s, t,b). This artifice guarantees the existence of a Nash equilibrium (Line 4)4.

Nash Equilibria inMLCPA We now build a set of bid vectors and prove that they contain
all the Nash equilibria induced byMLCPA.

Definition 5. 〈b,b′〉 is said to be acanonical formof the bid vectors if:
1. b = c.
2. For each edgeei ∈ LCP(s, t,b), bi ≤ b

′
i ≤ |LCP(s, t, c|i∞)| − |LCP(s, t, c|i0)|

(which is indeed the payment edgeei gets under the VCG mechanism).
3.

∑

ei∈LCP(s,t,b) b
′
i =

∑

ej∈SLCP(s,t,c) cj , where SLCP(s, t, c) is the second shortest
s − t path disjoint from LCP(s, t, c).

In Lemma 2 below, we prove that all canonical bid vectors willbe Nash equilibria
and vice versa in Lemma 3 below. Moreover, canonical bid vectors will lead to the
outcome demanded byMLCPA.

Lemma 2. (Necessity) A canonical bid vector〈c, c′〉 is a Nash equilibrium for the
mechanismMLCPA. Moreover, such a bid vector guarantees that the final chosenpath
is correct, i.e., LCP(s, t, c) = LCP(s, t,h).

Lemma 3. (Sufficiency) Given a pair of bid vectors〈b,b′〉 which forms a Nash equi-
librium, then it must be canonical. Moreover, such a bid vector guarantees that the final
chosen path is correct, i.e., LCP(s, t, c) = LCP(s, t,h).

Combining Lemma 2 and Lemma 3, we derive the major result of this section:

4 The idea of using the costs of edges to break ties so as to guarantee the existence of a Nash
equilibrium is mentioned by Immorlica [7, Page 66].



Theorem 1. MechanismMLCPA implements the social choice functionOLCP in Nash
equilibria. The social choice functionOLCP selects the shortest parth froms to t.

By Definition 5 and Lemmas 2 and 3, the following theorem is immediate.

Theorem 2. The total payment under the mechanismMLCPA is at mostǫ more than
that of the VCG mechanism, whereǫ can be arbitrarily small. In particular, the total
payment is at mostǫ more than the actual cost of the second shortest path disjoint from
the shortest path.

Proof. The edges chosen in LCP(s, t,h) = LCP(s, t, c) will be paid at most what
they would have received under the VCG mechanism, because ofthe second part of
Definition 5. Moreover, by the third part of Definition 5, their collective payment will
be at most the cost of the disjoint second shortest path. Additionally, we still have to pay
an extra premiumfi(s, t,b) to each agenti. To guarantee the total premium is smaller
thanǫ, we setτ ≤ ǫ/(n2b2

u). ⊓⊔

4 Frugality Ratio in MLCPA

In this section, we show that the frugality ratio ofMLCPA is at most2 + ǫ, while any
Nash implementation mechanism will have frugality at least2 in the unicast game.
HenceMLCPA has an almost optimal ratio.

We first review the definition of a frugality ratio. Consider abinary demand game
G = (E ,F ), where a set of elementsE comprise the agents, and a certain task can
be accomplished by afeasibleteamf ∈ F of elements inE . Each elemente provides
a service and incurs a fixed costce ∈ [0,∞) for performing that task. A mechanism
M needs to find a team to perform this task and pay each element inthe selected team
a certain amount such that certain properties are satisfied,e.g., individual rationality.
In [14], Talwar proposed to measure the overpayment for a binary demand game using
the frugality, which is defined as the total payment of the mechanism (e.g., VCG) over
the total cost of thesecond optimal team, which is the best team that does not intersect
with the team chosen by the mechanism. The frugality notion was then generalized by
Karlin et al. [10] to the case where the second optimal disjoint team may not exist. We
review their definition here. In a binary demand game with agentsE and feasible sets
F , let Topt(c) be the feasible team with the optimal cost andυ(c) be the solution of
the following problem.

υ(c) = min
∑

ei∈Topt(c)

xi subject to (2)

1. xi ≥ ci for every agentei ∈ E ;
2.

∑

ei∈Topt(c)−F xi ≤
∑

ej∈F−Topt(c)
cj , ∀F ∈ F ; and

3. for everyei ∈ Topt(c), there is a teamF ∈ F such thatei 6∈ F and
∑

ei∈Topt(c)−F xi =
∑

ej∈F−Topt(c)
cj .

Definition 6. The frugality, denoted byφM, of a truthful mechanismM for a given
gameG is defined asφM = supc

P(c)
υ(c) , i.e., the maximum possible ratio of the total

payment by mechanismM overυ(c). The frugality of a gameG = (E , F ) is defined
asφ(E ,F) = infM φM, where the infimum is taken over all truthful mechanismsM.



We can extend the frugality definition for truthful mechanisms to Nash implemen-
tation truthful mechanisms in a natural way as follows.

Definition 7. The frugality, denoted byφM, of a Nash implementation mechanismM
for a given gameG is defined asφM = supc

P(d)
υ(c) , i.e., the maximum possible ratio of

the total payment of the mechanismM overυ(c). Hered is a Nash equilibrium under
M when the true cost vector of agents isc. The frugality of a gameG = (E ,F ) based
on output methodO is defined asφ(E ,F ,O) = infM φM, where the infimum is taken
over all Nash implementation truthfulmechanismsM with respect to methodO. The
frugality of a gameG = (E , F ) is defined asφ(E ,F) = infM φM, where the infimum
is taken over all Nash implementation mechanismsM.

We show below thatMLCPA achieves frugality2+ǫ, and this ratio is almost optimal.
Before we proceed, we should point out that Karlinet al. [10] proved that the VCG
mechanism has frugalityΘ(n) andany truthful mechanism for the unicast game has
frugality Ω(

√
n). Clearly, Nash implementation mechanisms have better frugality.

Theorem 3. The frugality of the mechanismMLCPA is 2 + ǫ, and the frugality of any
Nash implementation mechanism based on LCP is at least2.

5 Nash Implementation Mechanisms for Binary Demand Games

In this section, we give a general framework for a Nash implementation mechanism.
Assuming a social choice functionOopt which returns the team with minimum cost,
Algorithm 2 gives a mechanism implementsOopt in Nash equilibria. Without loss of
generality, we assume that the given set system(E ,F ) is upwards closed, i.e. for every
S ∈ F and every supersetT with S ⊆ T ⊆ E , we haveT ∈ F . To avoid triviality, we
assume that the system ismonopoly-free, i.e., there is no element present in all feasible
teams. For any setT ⊆ E , let w(T, c) =

∑

e∈T ce be the weight of the teamT under
cost vectorc.

The intuition for Algorithm 2 is similar to the Algorithm 1. In the beginning, every
agent is given a premium (Line 1). There is a chance that it will be recruited into the
team (Line 2) even if it does not belong to the optimal team. Wemake the final decision
based onh and punish the over-greedy bidders (Line 6).

Theorem 4. With probability1 − ǫ, for arbitrarily small ǫ, the mechanismMout im-
plementsOopt in Nash equilibria.

The proof can be obtained through Lemmas 4 and 5 below. Here weonly mention
that there is a small probability that the final recruited team is a superset of the optimal
team. To make sure the probability of this happening is smaller thanǫ, we makeτ ≤
ǫ/(n2bu).

Similar to the mechanismMLCPA for unicast game, any Nash equilibrium for the
mechanismMout has the following properties.

Lemma 4. If d = 〈b,b′〉 is a Nash equilibrium, then (1)b = c; (2) b
′
i = ci if i 6∈

Topt(c) andb
′
i ≥ ci otherwise; (3) for any feasible teamT , w(T,b′) ≥ w(Topt(c),b

′).



Algorithm 2 General Framework to Design Nash Implementation Mechanisms for Bi-
nary Demand Game

Input: A set system(E , F ), d = 〈b,b′〉 the declared profile, and two adjustable parametersτ

andγ.
Output: A mechanism implementingMoutinNashequilibria.
Steps:

1: SetPout
i (d) = fi(s, t,b), wherefi(b) = τ ·

h

bu · (n · bu − P

ej∈E−ei
bj) − b2i

2

i

for each

agenti.
2: With probabilityρ = τ · (n · bu − P

ei∈E

bi), we select all elements and ask them to perform

the service.
3: Find the optimal teams and break ties by favoring teams with bigger sizes. After that, break

ties by lexicographic order. For every agenti onTopt(b), sethi = b
′

i; otherwise sethi = bi.
4: Find the optimal teams onTopt(h) and break ties according to the rule that teams containing

members inTopt(b) have the highest priority and if two teams have the same cost,choose
the one that contains more agents inTopt(b).

5: SetOout
i (d) = 1 andPout

i (d) = Pout
i (d) + hi for each agent inTopt(h).

6: SetPout
i (d) = Pout

i (d) − γ · |b′i − bi| for each agent onTopt(b) − Topt(h).

Before we present our main results in Theorem 5 below, we firstintroduce the notion
of the worst and best Nash equilibria for binary demand games. Consider the linear
program (2); interestingly, each solution that satisfies all constraints corresponds to a
subvector ofb′ in a Nash equilibriumd.

Lemma 5. There exists an one-to-one mapping between the feasible solution satisfying
the constraints of linear program (2) andb′ of a Nash equilibriumd for the mechanism
Mout.

Recall that the main part of payment is the sum of the bids in the subvector. Thus,
for convenience of presentation, we call each solution thatmeets all constraints of the
linear program (2) aNE bid. Thus, the solution to linear program (2) is theminimum
NE bid, denoted byXmin. Next, we introduce a counterpart of the linear program (2).
Let ̺(c) be the solution of the following linear program:

̺(c) = max
∑

ei∈Topt

xi subject to (3)

1. xi ≥ ci for each agentei ∈ E ;
2.

∑

ei∈Topt(c)−T xi ≤
∑

ej∈T−Topt(c)
cj , ∀T ∈ F ; and

3. For everyei ∈ Topt(c), there is aT ∈ F such thatei 6∈ T and
∑

ei∈Topt(c)−T xi =
∑

ej∈T−Topt(c)
cj .

The solution to linear program (3) ismaximum NE bids, denoted byXmax. The

ratio of the maximum and minimum NE bids isλ =

P

ei∈Topt(c) xmax
i

P

ei∈Topt(c) xmin
i

, which is called

NE ratio. Interestingly, NE ratio always equals the ratio between the price of stability
over theprice of the anarchy. Let OPT (c) be the globally optimum solution. Recall



that the price of stability is defined as̺(c)
OP T (c) , i.e., the ratio of the value of the largest

Nash equilibrium over the optimum solution. The price of anarchy is defined as υ(c)
OP T (c) ,

i.e., the ratio of the value of the smallest Nash equilibriumover the optimum solution.
Next, we show a relationship between the Nash equilibrium and the frugality of a Nash
implementation mechanisms.

Theorem 5. LetMout = (O′,P) be the mechanism computed by Algorithm 2. Then
its frugality isλ + ǫ, whereλ is the NE ratio andǫ is a positive number depending on
parametersτ andγ.

Proof. From Lemma 5, ifd is a Nash equilibrium ofMout, thenb
′ satisfies all the

constraints of linear program (3). Thus,
∑

ei∈Topt(c)
b′i ≤ ∑

ei∈Topt(c)
xmax

i . Recall
that the total payment is

P(d) =
∑

ei

fi(b) +
∑

ei∈Topt(c)

b′i ≤
∑

ei∈Topt(c)

xmax
i + τ · n2b2

u

= (1 + ǫ) ·
∑

ei∈Topt(c)

xmax
i = (1 + ǫ) · λ ·

∑

ei∈Topt(c)

xmin
i .

This proves the theorem. ⊓⊔

Recall that in order to compute the NE ratioλ, we need to solve linear program (2),
which is still an open problem even for some special binary demand games,e.g., the
shortest path game. However, we are able to get tight bounds of the NE ratio for some
binary demand games using different approaches. Before we show how to bound the
NE ratio, we define some terms first.

We call a feasible teamT a base-teamif removing any elements fromT makes it
unfeasible. Given a teamT1 ⊆ T whereT is a base team, we say that teamT2 covers
T1 throughT if (T − T1)

⋃

T2 is also a feasible team.T2 covers an elementei through
T if there exists anT1 ⊆ T such thatei ∈ T1 andT2 coversT1 throughT .

A team setT is ateam-coverof a base-teamT if for each elementei ∈ T , there ex-
ists a teamTi ∈ T such thatTi coversei throughT . A team coverT of T is aminimal
team cover(MTC) of T if (1) T −Ti is not a team cover ofT for anyTi ∈ T ; and (2)
for any teamTi ∈ T andej ∈ T , (T −Ti)

⋃

(Ti−ej) is not a team cover. Given a base
teamT and its minimal team coverT , the degree of an elementei ∈ T is the number of
different teams inT that coversei throughT , denoted by degi(T, T ). The maximum
degree ofT andT is degmax(T, T ) = maxei∈T degi(T, T ); the minimum degree of
T andT is degmin(T,T ) = minei∈T degi(T, T ). The degree ratioof T andT is

dr(T, T ) =
degmax

(T,T )

degmin
(T,T )

and degree ratio of gameG is dr(G ) = maxT,T dr(T, T ).

Theorem 6. Assume we are given a fixed cost vectorc. We haveλ ≤ dr(c). Here
dr(c) = maxT dr(Topt(c), T ) whereT is a minimal team-cover ofTopt(c).

Proof. From the definition ofbmin, for everyei ∈ Topt(c), there exists aTi ∈ F such
thatei 6∈ Ti and
∑

ej∈Topt(c)−Ti
xmin

j =
∑

ej∈Ti−Topt(c)
cj . LetT ′

i = Ti −Topt(c) andFi = Topt(c)−



Ti. ThenT = {T ′
i : ei ∈ Topt(c)} is a team-cover ofTopt(c). Let T ⋆ be any min-

imal team-cover that is a subset ofT . Without loss of generality, we assumeT ⋆ =

{T ′
1, . . . , T

′
k}. Thus, dr(c)·∑ej∈Topt(c)

xmin
j ≥ ∑k

i=1

∑

ej∈Fi
xmin

j =
∑k

i=1

∑

ej∈T ′

i
cj .

On the other hand,T ′
i coversFi throughT ,

∑

ej∈Fi
xmax

j ≤ ∑

ej∈T ′

i
cj . Thus,

∑

ej∈Topt(c)

xmax
j ≤

k
∑

i=1

∑

ej∈Fi

xmax
j ≤

k
∑

i=1

∑

ej∈T ′

i

cj ≤ dr(c) ·
∑

ej∈Topt(c)

xmin
j .

Therefore,λ ≤ dr(c), which proves the theorem. ⊓⊔

frugality VCG mechanismMinimum frugality Nash Implementation
ratio Truthful mechanism mechanismMout

Matroid Game 1 1 1 + ǫ
Unicast Game Θ(n) Ω(

√
n) 2 + ǫ

Vertex Cover Game Θ(d) Ω(
√

d) 1 + ǫ
Edge Cover Game Θ(n) Ω(n) d − 1 + ǫ

Table 1. Summary of the frugalities for some binary demand games. Here, d is the maximum
degree of a vertex in the given graph.

Next we show how to find the NE ratio via an example of the vertexcover game. In
the vertex cover game, given a graphG = (V,E) and each vertexvi has a costci, we
need to find a subsetS ∈ V such that each edge has at least one vertex inS. Here every
vertex is an element and a base-team is a minimum vertex cover. For the vertex cover
game, we have the following lemma regarding dr(c).

Lemma 6. For the vertex cover game, given a fixed cost vectorc, we have dr(c) = 1.

By definition, the NE ratioλ is at least1. From Theorem 6 and Lemma 6,λ ≤ 1.
Thus, the NE ratio of a vertex set cover game is exactly one.

Theorem 7. For the vertex cover game, the frugality of the Nash implementation mech-
anism computed by Algorithm 2 is1+ǫ and the frugality of the VCG mechanism isn−1,
wheren is the number of the vertices. For any truthful mechanism, the frugality is at
leastΩ(

√
n).

The frugality ratio of the edge cover game under various mechanisms is summarized
in Theorem 8 below.

Theorem 8. Given a graphG with maximum degreed, the frugality ratio of the Nash
implementation mechanism computed by Algorithm 2 isd−1+ǫ and the frugality ratio
of the VCG mechanism isn− 1. Any truthful mechanism has the frugality ratio at least
Ω(n)

Table 1 summarizes the frugality ratios of several binary demand games under three
different mechanisms: the VCG mechanism, the minimum frugality ratio truthful mech-
anism and our Nash implementation mechanismMout defined by Algorithm 2. We
point out that sometimes the frugality ratio does not fully capture the over-payment of a
mechanism. For example, even though the VCG mechanism has a comparable frugality
ratio to Algorithm 2, the actual payment of the former can beΘ(n) times the latter. For
example, consider the following spanning tree game. Given acycle with only one edge
having cost 1 while the others having cost 0. The VCG mechanisms paysn − 1 while
our mechanism only1 + ǫ.



6 Discussions

In this paper, we propose a class of mechanisms which implement social choice func-
tions in Nash equilibria. Instead of relying on dominant strategy equilibria, these mech-
anisms aim at ensuring that any attainable Nash equilibriumwill lead to the desirable
outcome. We show that these mechanisms enjoy advantages over truthful mechanisms
in terms of reduced payments and better frugality ratios.
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