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Abstract—In this work we design and develop Montage for
real-time multi-user formation tracking and localization by off-
the-shelf smartphones. Montage achieves submeter-level tracking
accuracy by integrating temporal and spatial constraints from
user movement vector estimation and distance measuring. In
Montage we designed a suite of novel techniques to surmount a
variety of challenges in real-time tracking, without infrastructure
and fingerprints, and without any a priori user-specific (e.g.,
stride-length and phone-placement) or site-specific (e.g., digital-
ized map) knowledge. We implemented, deployed and evaluated
Montage in both outdoor and indoor environment. Our experi-
mental results (847 traces from 15 users) show that the stride-
length estimated by Montage over all users has error within
9cm, and the moving-direction estimated by Montage is within
20o. For real-time tracking, Montage provides meter-second-level
formation tracking accuracy with off-the-shelf mobile phones.

I. INTRODUCTION

Tracking the spatial-temporal formation of multiple mobile
users plays an important role in many applications, e.g.,
real-time team-formation tracking for team-sports strategy
study, animal community monitoring for behavior analysis,
and virtual-reality interactive games. When users are outdoor,
localization and tracking could be solved by GPS. The accurate
indoor tracking/localization in realtime is still challenging and
has attracted considerable research efforts.

One category of existing methods are based on fingerprints,
e.g., [4], [6], [17], [23], [28], which achieve room-level (meter-
level) accuracy. Those methods, however, are typically labor
intensive and environment restrictive during fingerprint collec-
tion stage. Many dedicated systems with specialized hardware,
e.g. sensors and RFID [11], can achieve high accuracy, but are
not applicable for phones. Another category of approaches
are range-based using different metrics. The acoustic based
methods on commercial mobile handset address the issue of
meter-level pair-wise ranging, e.g., [18], [19]. Some other
solutions use code division multiple access (CDMA) acoustic
telemetry to simultaneously monitor the movements of numer-
ous individual users, e.g., [1], [8], [16]. Those schemes, how-
ever, require either accurate synchronization or a synchronized
hydrophone array which is quite difficult to be implemented
on commercial phones. Dead reckoning based approaches,
e.g. [2], suffer from accumulated errors. Most of the exiting
indoor tracking solutions need a pre-knowledge or at least
three anchors.

There are many challenges in achieving high accurate multi-
user tracking due to the highly dynamic and continuously
evolving movement pattern of mobile users. Acoustic-based
ranging can be used to obtain the frame snapshot of multi-user
formation. With commercial phones, the accurate acquisition
of audio tones is difficult due to the attenuation, distortion,

interference, and multi-path effect. Besides, for multiple dy-
namic users, the required small ranging delay and the narrow
available acoustic band make the multi-user ranging even
more difficult. As the detectable distance by the audio tone
is limited, the ranging results of some frame snapshots may
be ambiguous, leaving some users still nonlocalizable. Even
when ranging results can produce snapshots of team formation,
the continuous movements of individuals are hard to obtain
without anchor nodes. We need accurate information about the
moving distance and moving direction of users to combine
these scattered frames to achieve continuous tracking. The
movement continuity may also help to remove ambiguities
from each frame. Previous schemes estimate the moving
distance and direction by dead-reckoning [21]. But special
devices or pre-knowledge are usually required, e.g., [20], [27],
and absolute positions are also require to fix the accumulated
errors.

To address above issues, we propose Montage, to track
the realtime formation and movements of multiple users.
This design uses the coded acoustic signal for simultaneous
multi-user ranging and inertial sensors for accurate moving
distance/direction estimation. Combining the ranging results
and moving estimations, Montage provides meter-second-
level formation tracking with off-the-shelf mobile phones
and requires no pre-knowledge or synchronization services. It
achieves accurate localization using merely one anchor node.
The contributions of this work are as follows.

• We design coded audio tones with which the instanta-
neous distances among multiple mobile users are accu-
rately estimated when they generate tones simultaneously,
in the presence of high noise, multi-path effect and
Doppler Shift.

• We present innovative step stride-length and walking
direction estimation methods to achieve a very accurate
moving trace estimation without any priori knowledge
(such as the stride-length, phone-placement and indoor
map).

• We connect successive localization snapshots to refine the
range-based localization and generate continuous moving
traces, by leveraging the accurate moving distance and
direction estimation. It provides better disambiguation
and estimates the real trace of users without anchor nodes.

• We design, develop, and deploy Montage in both indoor
and outdoor environment to evaluate its performance. 847
traces from 15 volunteers are collected and analyzed.
The results show that the estimated stride-lengths over
a variety of users have errors within 8.9cm and the
mean error is 4.3cm. The estimated moving-direction is
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within 20o of the real direction. For real-time single-user
indoor tracking, the mean deviation of 847 traces is about
0.87 meter, and 90% deviations are less than 2 meters.
For real-time multiuser indoor experiment, the maximum
deviation is about 1m while the mean deviation is about
0.5m using both inertial sensors and acoustic ranging.

The rest of the paper is organized as follows. We present
problem formation and baseline method in Section II, and
novel multiuser ranging with coded audio tones in Section III.
In Section IV we discuss our techniques of accurate estima-
tion of moving distance and direction. Our evaluation results
are presented in Section V. We review the related work in
Section VI and conclude the paper in Section VII.

II. OUR APPROACH

Assume that there is a group of n mobile users A =
{a1, . . . , an} in proximity. At time t, the location of user ai
at earth coordinate is P e

i (t) = (xe
i (t), y

e
i (t)). If we record

the location of user ai according to the time vector T =
{t0, t1, · · · , tM}, the moving trace of ai can be represented by
a sequence of locations {P e

i (t0), P
e
i (t1), · · · , P e

i (tM )}. For
simplicity of presentation, besides the earth coordinate system,
we introduce the translation coordinate system in which each
location has a constant offset from that of earth coordinate,
i.e., the origin of a translation coordinate system is moved
but the directions of both axes remain the same. For example,
let P e

1 (t0) = (xe
1(t0), y

e
1(t0)) be the origin of a translation

coordinate system, noted as P1(t0) = (0, 0). If the position of
ai at the translation coordinate is Pi(t0) = (xi(t0), yi(t0)),
then its earth location is P e

i (t0) = Pi(t0) + P e
1 (t0) =

(xe
1(t0) + xi(t0), y

e
1(t0) + yi(t0)).

A. Main Idea

Our goal is to design a scheme for precise mobile user
tracking without pre-deployed infrastructures. Our scheme
exploits coded acoustic signals to simultaneously measure
the distances among users. The ranging results expose multi-
users’ distances at a certain timestamp and thus indicate
a logical topology of the network. The logical structure,
normally, lacks orientation information and may not be rigid
[26]. The second component is the movement vectors detection
which leverages information from various sensors on the
smartphones. The movement vectors connect locations of the
same user at consecutive timestamps. With the ranging results
and movement vectors, Montage dynamically calculates the
distance vectors to measure the Euclidean distance between
different users. Using these vectors, we can easily reassemble
the real topology and continuously track users’ movement
traces. In Montage, the localization and tracking are at a
translation coordinate system in the absence of anchor nodes.
As the translation coordinate has a fixed offset from the
earth coordinate, given an arbitrary anchor point P e

i (tj), our
approach can determine the traces and locations at the earth
coordinate.

B. Baseline Approach for Localization

User ai moves from location P e
i (tu) to P e

i (tv) during
period tu to tv . The movement vector is

Mi(tu, tv) = P e
i (tv)− P e

i (tu) = Pi(tv)− Pi(tu),

which is independent of the coordinate system and only
determined by its magnitude/distance d and orientation θ.
The movement vector can also be represented by a two-
tuple (ruvi , θuvi ) in the polar coordinate system. Then, the
trace of a single user ai can be recorded by a sequence of
movement vectors {Mi(t0, t1),Mi(t1, t2), · · · }. At the time tu,
the distance vector between user ai and aj is defined as

Rij(tu) = P e
i (tu)− P e

j (tu) = Pi(tu)− Pj(tu).

The magnitude of the distance vector can be measured by the
ranging result between ai and aj , say rij(tu). As shown in
Fig. 1(a), Mi(t0, t1) and Mj(t0, t1) are movement vectors of
user ai and aj . Rij(t0) and Rij(t1) are distance vectors at
time t0 and t1.

Given ranging results, which are the magnitude of distance
vectors, only a formation of user locations can be derived at a
time if the topology is rigid. The orientation of the formation is
uncertain, thus we cannot derive the traces of users’ movement
from consecutive formations. The output of the trace detection
scheme is represented as a sequence of movement vectors for
each single user, but the locations of points in the trace are
undetermined. We propose to combine the ranging results and
movement vectors to localize all users at each sample time
and to acquire continuous user traces. Our approach is based
on the observation that the distance vectors and the movement
vectors meet the following equation:

Dij(tu+1) = Rij(tu+1)−Rij(tu) (1)
= Mj(tu, tu+1)−Mi(tu, tu+1).

Here Dij(tu+1) is defined as the difference vector. Let the
two-tuple of the difference vector Dij(t) be (dij(t), θij(t)). As
illustrated by Fig. 1(a), Dij(t1) is the difference vector. When
the movement vectors Mi(t0, t1) and Mj(t0, t1) are known,
Dij(t1) is determined. And, we have{

rij(t1) cos θij(t1)− rij(t0) cos θij(t0) = dij(t1) cos θij(t1)
rij(t1) sin θij(t1)− rij(t0) sin θij(t0) = dij(t1) sin θij(t1)

(2)

Given the ranging results rij(t0) and rij(t1), each solution
for θij(t0) and θij(t1) determines a possible assignment of
ai and aj’s positions at time t0 and t1. When rij(t1) +
rij(t0) > dij(t1) and rij(t1) − rij(t0) < dij(t1), there exist
two solutions. As illustrated in Fig. 1(a), both the position
groups {Pj(t0), Pj(t1)} and {Pj(t0)

′, Pj(t1)
′} satisfy the

constrains of distance vectors and movement vectors. When
rij(t1) + rij(t0) = dij(t1) or rij(t1) − rij(t0) = dij(t1),
there is only one solution, as shown in Fig. 1(a). There exists
a special case that the movement vector Mi(t0, t1) of user ai
and Mj(t0, t1) of user aj are equal, i.e. they move in the same
direction at the same speed. In this case, rij(t1) = rij(t0) and
there are infinite groups of solutions.

Based on the above calculation, each distance vector may
have one, two or infinite possible solutions. For the first case,
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Fig. 1. Baseline team formation tracking based on movement vector and ranging results.

the distance vector is determined. For the third case, we cannot
decide the value of distance vector and require further informa-
tion. The most common situation is that there are two possible
values for the distance vector with the same magnitude while
different orientations. In this case, we leverage the neighboring
information to eliminate the ambiguity. In the above example,
assume that user ai and aj both have ranging results to a third
user ak, then we can get the two possible solutions of Rik

and Rjk as well. Clearly, locations of the user ai, aj and ak
form a triangle (called ranging triangle), and thus theoretically
the value of three distance vectors must meet the following
equation.

Rij +Rjk −Rik = 0 (3)

As each vector has two potential solutions, there are 8
combinations in all. For example in Fig. 1(b)(1), the distance
vectors in solid lines meet the equation constraint and the
combination in dashed lines is a wrong answer because it
leads to two ambiguous locations of user aj . In practice, we
select the combination which minimizes the absolute value of
Equation (3).

C. Vector Based Multi-User Tracking

We will further discuss the full-featured user tracking ap-
proach. In the first step, we select an arbitrary ranging triangle
and determine the three distance vectors (edges) of this triangle
using the algorithm discussed in previous subsection. Here we
prefer to select the start triangle whose vertices have more
ranging neighbors. Then we put all three users in this triangle
into a set denoted as localized set which keeps all the distance
vectors as well.

In the second step, we iteratively add more users to the
localized set by determining distance vectors from the new
user to neighboring users in the localized set. As illustrated
in Fig. 1(b)(2), user am has ranging results with ai and aj .
According to the aforementioned baseline algorithm, we get
one or two possible solutions for each of Rim and Rjm. We
simply drop the results of zero solution or infinite solutions,
because the distance vector cannot be determined according
to them. For the two-solution case, based on the observation
that Rim, Rjm and Rij form a triangle, and theoretically we
have Rij + Rjm − Rim = 0. To address the ranging errors,
we will select the pair of Rim, Rjm values that minimizes
Rij + Rjm − Rim. After that, the distance vectors from two
users in localized set to am have been determined. We put
am into the localized set and keep both distance vectors. We

calculate the distance vectors from a pair of neighboring users
instead of separated ones to a new user, for the purpose of
avoiding cascading errors. The above process iterates until no
new user can be added. These vectors corresponding to users
in the localized set specify the relative locations of users and
if we assign location (e.g. at earth or translation coordinate
system) for any one of them, all the other users can be located
at the specified coordinate system.

Now we have localized all users (obtain distance vectors
and rebuild the topology) at time t0 and t1, in the coming
timestamp t2, the localization process can be significantly
simplified. Later in Section II-D we will show how to calculate
the distance vector based on Eq. (1). With knowing the value
of the distance vector in prior timestamp, Rij(t1) in the
example of Fig. 1(a), the distance vector Rij(t2) can be
directly calculated using Rij(t1) + Dij(t2). With this method,
Montage conducts localization in consecutive timestamps and
rebuilds topology snapshots over time.

After rebuilding the topology at translation coordinate for
each timestamp, we connect these topology snapshots and
form integrated user movement traces. As the movement vec-
tors connect locations among continuous timestamps, Montage
leverages them to connect consecutive topology snapshots and
locate users continuously at the same coordinate system to
provide movement traces. Here we select an arbitrary user
ai and set its position at time t0 as origin, then all other
users’ locations at time t0 can be determined. At time t1,
we calculate the new position of ai using its movement
vector. We can get different positions of ai through applying
different users’ movement vectors to connect the two topology
snapshots. In order to avoid the impact of measurement error
in single movement vector, we use the mean value as the new
position of ai. Then the topology can be determined at the
same coordinate system as t0. This process iterates until the
movement traces of all users are determined.

D. Design Issues

Three key issues need to be discussed in this approach. First,
the order of adding new user into the localized set can impact
the overall performance. In this work, we apply a width-first
approach to alleviate the accumulating errors. During each
iteration, we firstly select all users that have two ranging
neighbors in current localized set. After determine the distance
vectors for all these users, we add them to the localized set
and thus update the localized set.
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Second, the selected distance vectors can deviate from the
real value due to the measurement error, and thus lead to
ambiguous locations for a user, for example, user am in
Fig. 1(b)(2). To address this problem, we introduce an inte-
grated optimization algorithm to achieve a globally consistent
result. As the acoustic ranging is relatively accurate, we focus
on fine-tuning the orientation of distance vectors, which is
formalized as an optimization problem with constraints.

min
n∑

i,j=1,i̸=j

(δθ2i,j), s.t.,

Rij(rij , θij + δθi,j) +Rjk(rjk, θjk + δθj,k)

= Rik(rik, θik + δθi,k), ∀Rij , Rik, Rjk in a ranging triangle.

Here Rij(rij , θij + δθi,j) denotes the vector Rij with mag-
nitude rij and direction θij + δθi,j . In the above optimization,
rij is a known value computed from acoustic ranging, θij is a
known value computed from Eq. (2) in Subsection II-B. δθi,j
is a variable to be computed. According to the optimization
results, we rotate each distance vector with angle δθ and finally
get a consistent localization result.

Third, we consider the situation that the new user only has
one ranging neighbor in the localized set. A special scenario
for this case is that there are only two users in the network
and we want to determine the relative position between them.
In the case of single ranging neighbor, we present a multi-
stage scheme using the temporal correlation among candidate
locations to eliminate ambiguities. Assume that at time t1,
we get two movement vectors Mi(t0, t1) and Mj(t0, t1) of
user ai and aj , we can calculate two possible solutions of
Rij(t0). Then at timestamp t2 the users report Mi(t1, t2)
and Mj(t1, t2). We have Mi(t0, t1) +Mi(t1, t2) +Rij(t2) =
Mj(t0, t1) +Mj(t1, t2) +Rij(t0).

If we put in the values of movement vectors and two
candidate values of Rij(t0), we get two solutions of Rij(t2).
As we have the ranging results of Rij(t2), we can distinguish
these two solutions and determine the right answer. In most
cases, the ranging metric works well and can successfully find
the right solution. However, two candidate solutions of Rij(t2)
may have the same length which cannot be distinguished.
To address this issue, we wait for some period and use
new movement vectors. Then users with at least one ranging
neighbor in the localized set can be included and the final
localized set contains all users that have at least one ranging
path to the initial triangle.

III. MULTI-USER RANGING BY CODED AUDIO TONES

The distance vectors among users provide information to
determine their locations in translation coordinates. When
users are all dynamic, it is difficult to estimate the orientation
of a distance vector at the earth coordinate. In our multi-user
tracking approach, as presented in the previous section, only
the magnitude of the distance vectors are required for multi-
user localization and tracking. There are some exiting works
dedicating to acoustic signal based accurate ranging between a
pair of mobile phones, e.g. the ETOA protocol [18]. But it is
still a challenging problem to measure the distances among

multiple mobile users. As users walking at a speed about
2m/s, i.e. a round of multi-user ranging must be completed
within a short period to capture the simultaneous locations of
multiple users at a high sampling rate. A Frequency Division
Multiplexing (FDM) seems a good solution to improve the
delay for multi-user ranging. The detectable frequency range
of most commercial mobile phones is 0 to 22kHz. The audio
signal with frequency below 15kHz is audible to people and
the frequency above 20kHz suffers a severe distortion and
attenuation, which leaves us a usable frequency range 15kHz
to 20kHz. When users are moving, the Doppler shift must
be taken into consideration. For example users are walking
at a speed 1.5m/s, and the emitted signal is 19kHz, at least
350Hz gap between two consecutive frequencies is required
to avoid the interference. Thus, there remain very limited
usable channels. Besides, a simple audio tone cannot resist
environment noises, e.g. the honk of a car. To address this
issue, we propose a method using coded audio tones to range
multiple users simultaneously.

A. Coded Audio Tones

In our scheme, to separate different users, a set of codes are
used to encode the audio tones. A code is a binary sequence
C = {C(0), C(1), C(2), . . . , C(N − 1)}, with N chips C(k).
These chips can have 2 values -1/1 (polar), i.e.’0’/’1’(logical).
each user ai owns a code Ci of the same length, then
modulates a carrier at frequency ωc with his/her code. The
transmitted audio tone of user ai is

T i(t) = Ci(t) · cos(ωct). (4)

1) Code Selection: Code selection has a large impact on
the performance of multi-user ranging. The coding method
of the audio tone should be deterministic to make sure every
user is able to independently generates the same code book.
The cross-correlation and out-of-phase auto-correlation must
be low enough to resist interference among multiple users and
self-interference due to multi-path propagation. Besides, the
code must have a proper period: long enough to discriminate
a large number of users, but short enough for small delay.

We leverage pseudo-noise (PN) codes [24] to design our
multi-user ranging approach. There are three typical PN
codes: maximal length sequence (m-sequence), Gold codes
and Kasami codes. All these sequences have the maximum
possible period N = 2r − 1. We choose Gold code as
it provides us a good tradeoff among auto-correlation and
aperiodic correlations.

2) Coded Tones Generation: Before the tracking starts, we
can detect the background noise of the current environment
and select the most clean frequency between 15kHz and 20kHz
as fc, via simple spectral analysis. Our extensive sampling
tests show that, frequency space between 15kHz and 20kHz
has less noise even in a very loud environment. Then we have
ωc = 2πfc.

Then we need choose the parameter r to generate a set
of Gold codes. r determined the period 2r − 1 of the codes
and the size 2r + 1 (r ̸≡ 0 mod 4) of the code set. The
supported sample rate of most commercial mobile phones is
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44100Hz. When each chip is s samples long, the length of the
audio tone is s

44100 (2
r − 1) seconds. On one side, the longer

the period, the greater the delay; on the other side, tracking n
users requires 2r−1 > n. Considering both the delay and user
number requirements, a proper r and s can be determined. For
example, when n = 20, then the selection r = 5 and s = 100
will produce 72 ms audio tones.

After the set of Gold codes and the length of a chip are
determined, each user ai is assigned a unique code from the set
and generate his/her own tones according to Equation (4). As
soon as received a ranging command via a radio channel, each
user emits his/her coded tone. For a continuous tracking task
with a update interval δt, each user emits his/her coded tone
periodically for every δt after the first emission. For different
applications, δt varies from tens of milliseconds seconds to
tens of seconds.

3) Coded Tones Acquisition: For an emitted tone T i(t), the
received signal R(t) comprises T i(t), the interfering tones I(t)
and white noise n(t). Then we have R(t) = T i(t) + I(t) +
n(t). When the receiver captures a sequence of acoustic signal,
he/she uses a narrow frequency bandpass filter to clean most of
the background noise and get T ′(t). For example, in a walking
scenario, the passband could be [fc−500, fc+500]. To recover
the code stream, the receiver multiplies T ′(t) by the reference
carrier cos(ωct). Then T ′(t) ·cos(ωct) = 0.5Ci(t)+0.5Ci(t) ·
cos(2ωct) + (I(t) + n(t)) · cos(ωct). After the multiplication,
a lowpass filter is used to remove the ωc and 2ωc component
and get C ′(t).

If multiple users emit tones simultaneously, C ′(t) is the
sum of all their codes. To acquire the code of user ai, a
sliding window, whose size is s

44100 (2
r − 1), is used to detect

the peak of the correlation between Ci(t) and the C ′(t) in
the window. When a peak exceeding a threshold is detected,
the start sample of the current window will be stamped as
the arrival time of ai’s tone. Then collecting the time line of
all participants, the range between each pair of user can be
calculated according to [18].

IV. MOVEMENT VECTOR DETECTION

Movement vector is the key to connect successive localiza-
tion snapshots to achieve disambiguated multi-user tracking.
There are two major categories of methods for determining
the user’s movement vector with a commercial smart phone.
One category uses the integration of horizontal acceleration,
which is impractical due to the large error caused by double
integration of sensor drift and noise. The other category detect
the steps of user by pattern recognition and use the multipli-
cation of step number and average step length to estimate the
distance. Those methods require some user measurements and
inputs in advance, which can hardly adapt to different users
and different paces of the same user. Without the help of GPS,
there are no effective accurate methods to detect the moving
orientation of a user with the off-the-shelf smart phone, e.g.,
the error spans about 60◦ in [20].

A. Understanding the Acceleration
Considering a user could hold the phone in any position, we

convert the realtime acceleration from the phone coordinate
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Fig. 3. The raw vertical acceleration and filtered vertical acceleration when
a user walks at different paces.

system to the earth coordinate system,i.e. north, east, gravity.
In this work, we use the earth coordinate system as an inertial
coordinate system for localization.

To understand the cause of the error of existing distance and
orientation estimation approaches, we analyze the accelerom-
eter data from a commercial smart phone. We observed the
following phenomena. Even when the phone is static, there
exists huge drifts of acceleration at three orientations, which
cause more than 10 cm displacement within 10 seconds by
double integration. The drift is much severer when the phone
is in a mobile status, exceeding a meter in 10 seconds. As
shown in Fig. 2(a), the various springs of acceleration of
walking are caused by diverse walking habits of different
persons, or changing paces of the same person, or different
positions and attitudes of the phone. A very important cause is
that the acceleration of walking is not only caused by moving
forwards, but also by waggling left and right as well as the
vertical movement. Fig. 2(b) presents the spectrum distribution
of walking accelerations at three orientations. It shows that
there is a great energy from the movement perpendicular
to the walking orientation, whose frequency is half of the
walking frequency. The perpendicular component could result
in great error of the integration and the misunderstanding of
the moving orientation.

These observations inspire us to design a method achieving
a good movement vector estimation we need first extract the
pure acceleration caused by walking from raw acceleration
values. A simple way is to filter the acceleration using a
bandpass filter with a narrow window of the walking frequen-
cy, here we use pb = [ 3fw4 , 3fw

2 ], where fw is the walking
frequency. The filtering eliminates the high-frequency noise
from the vibration of the phone and the low-frequency noise
from the left and right waggling. Fig. 3 presents example raw
vertical acceleration data and filtered acceleration data when
the user moves at different paces. As we can see, the filter
also removes the large zero-frequency component, i.e. gravity
component.
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But the walking frequency varies for different people and
different paces. It seems that no fixed bandpass filter is
suitable for all acceleration data and an adaptive bandpass
filter is required. Simply applying realtime FFT and frequency
analysis to the vertical acceleration could help us to determine
the adaptive pass band, but will bring heavy computation cost.
In Montage, we split the bandpass filtering into two phases to
realize adaptively filtering: First, we apply a low-pass filter
whose passband is below 5 Hz to get the smooth vertical
acceleration, since the walking frequency of people is usually
below 5 Hz. Our experiments show that, the 5Hz low-pass
filter removes springs of the vertical acceleration perfectly,
which leads to a highly accurate steps detection using simple
pattern recognition. The hit rate of our step detection algorithm
exceeds 95% for different people walking at different paces.
With the step detection result, given the sample rate of
the accelerometer, the current walking frequency fw can be
determined by counting the sample number of the current step.
Second, the passband is obtained by pb = [ 3fw4 , 3fw

2 ]. Then the
bandpass filter is applied to the raw acceleration data. When a
user walks at a steady speed, the filter needs no change. When
the change of walking frequency exceeds a threshold, fw

4 , the
filter is updated.

B. Magnitude of Movement Vector

To estimate the moving distance, we combine dead reck-
oning and the stride length based approach. The challenges
come from the changing stride length of different people at d-
ifferent paces. We propose an adaptive stride length estimation
method, which requires no user input and no knowledge from
digitalized map. Combining the accurate step detection and
the stride length estimation, the moving distance is obtained
automatically.

Given one step, our adaptive stride length estimation is
based on two principles:

1) As shown in Fig. 4, the vertical bounce β (i.e., the
maximum vertical displacement of user’s hip in one step
walking) of a walking person is directly correlated to his/her
stride length through an almost equal angle ϕ. Here ϕ is half
of the angle between two legs when both feet touch the floor
during walking. When a person walking at a constant pace,
the angel is constant. So we can estimate the stride length by
2 cotϕβ. Here the bounce β can be computed from double
integration of the vertical acceleration a − avg, where a is
current vertical acceleration and avg is the historical average
vertical acceleration of this user.

2) For the same person at greater paces, the angle increases.
From Fig. 3, we notice that when the pace increases, the ratio
max−min
avg−min of the acceleration raw data increases with the stride

length. Here max and min is the historical maximum and

minimum acceleration data of this user. The spring pattern of
the raw acceleration also changes the ratio, as presented in
Fig. 3(a), which reflects the difference of different person’s
step.

Assume that there are T acceleration samples
{a1, a2, · · · , aT } within a step. Combining these two
principles, we adaptively estimate the moving distance d as
d = k

√
max−min
avg−min

∑T
j=1

∑j
t=1(at − avg). Here the parameter

k is a constant for the same person. In our approach, an
initial value of k is given according to the average value of
people. Then, according to the online localization with the
ranging result, k is calibrated for the first several rounds and
fixed for each user respectively.

C. Orientation of Movement Vector

We use the filtered horizontal accelerations along the east
and north axes at the earth coordinate system, as shown in
Fig. 5(a), to estimate the orientation of each step. The steps
are detected based on the vertical acceleration as we mentioned
before. Assume that there are T acceleration samples within
a step, the horizontal accelerations within a step are aH =

{aH
1 , aH2 , · · · , aHT }, each aHi =

√
aE
i
2
+ aNi

2. Here aE
i is the

east component of the i-th acceleration sample, and aNi is
the corresponding north component. The maximum horizontal
acceleration max{aH1 , aH

2 , · · · , aHT }, is detected for each step,
let its index be κ. The orientation of aHκ is closest to the
moving orientation of this step. As presented in Fig. 5(c), the
ratio of aEκ and aNκ is the tangent of the angle between north
and the step orientation. As mentioned in [20], even knowing
the moving orientation by arctan(aEκ /aNκ ), it is still difficult
to determine the forward and backward orientation. To address
this issue we notice that the forward acceleration companies
the rising edge of the vertical acceleration, as illustrated in
Fig. 5(a). With our approach, the orientation of each step can
be determined within 20◦ error range. And the orientations of
successive steps zigzag around the walking orientations, e.g.
Fig. 5(c). So, a simple Kalman filter can be applied to get the
moving orientation of several steps.

V. ANALYSIS AND EVALUATION

We implement Montage on Android phones and examine
the performance with extensive experiments in this section.

A. Coded Tone Based Ranging

For the coded tone based multi-user ranging, the delay
mainly consists of three parts: the time for tone emission,
the time for tone transmission, and the time of coded tone
acquisition. The transmission time is decided by the distance,
which is usually tens of milliseconds for indoor application.
The emission time is determined by the the length of the
audio tone, which is s

44100 (2
r − 1). In the experiments, we

select the set of Gold codes with r = 7 as the codebook,
19 kHz as the carrier frequency, and the chip length is 40
samples. As a result, the length of a coded tone is 115 ms,
so is the sliding detection window. The step of the sliding
window is 4 samples. We test the ranging performance with 4
users. Each user selects a unique code from the set. To exam
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Fig. 5. Determine the real-time walking direction.

(a) Tone acquisition of 4 users in
a round of ranging.

0 2 4 6 8 10 12
−50

0

50

100

150

Distance (m)

E
rr

or
 (c

m
)

(b) Ranging error when there are 4 users.

Fig. 6. Coded tone based 4 users ranging.

the interference-resistance property, we design the experiment
that will result in larger interference by dividing 4 users into
two groups and changing the distance between groups. All
users emit their tones as soon as they received a start signal
through Wi-Fi. The arrival time of each coded tone is detected
by sliding its code to locate the maximum correlation peak.
Fig. 6(a) shows the coded tone acquisition result by one of the
users in a round of ranging. And Fig. 6(b) presents the ranging
results in the hall of an office building. And the delay is less
than 200 ms. The result shows that, our coded tone based
ranging method achieves sub-meter accuracy when users are
about 10 meters apart.

B. Movement Vector Determine

We now test the accuracy of our stride length estimation
method adaptive for different phone placements, different
paces and different persons. First, we examine the impact of
phone placement on the accuracy of stride length estimations.
In the experiments, two persons(a male and a female), walk
while the phones are hold in hand, placed in the chest pockets
and pants pockets. From the experiments, we find that the
patterns of acceleration vary greatly when the placement of
the phone changes. The results show that the mean error of
each stride estimated by Montage doesn’t exceed 4 cm for all
three placements.

For the same person, we also test the stride length estimation
for changing paces. In this experiment, a user walks from slow
to fast for 20 steps (with stride length increases). Fig. 7(a)
illustrates that the real-time estimated stride length adapts the
changing paces, and the accumulated error is only 0.2m.

Then we examine the stride length estimation accuracy for
different persons. 15 participants in the experiments, including
4 female and 11 male persons. Their heights vary from 1.56m
to 1.82m and their average stride lengths vary from 53cm to
83cm. Each participant carries the phone arbitrarily and walks
at arbitrary paces. Fig. 7(b) shows the average error of the the

North
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Ground Truth

Start

(a) Outdoor single user tracking
result.

North

East

Ground Truth

Start

(b) Indoor single user tracking re-
sult.

Fig. 8. Compare between outdoor and indoor single users’s tracking result
by movement vectors.

estimated stride length for each person. The maximum error
is 9cm, and the mean error is 4cm.

We also examine the accuracy of the forward orientation
estimation. Fig. 7(c) shows the error of the estimated orien-
tations while the walking orientation changes from −180◦ to
180◦. The mean error of detected orientation by our methods
is ±10◦, with 90% errors are within ±20◦, which greatly
outperforms the existing orientation estimation work.

C. Single User Tracking

With the real-time magnitude and orientation estimated
by our approach, a single user’s trace can be tracked by a
series of movement vectors. First, we conduct an experiment
to compare the indoor and outdoor tracking performance.
A user first walks freely in an outdoor garden for 125m
and then walks along a similar shape trace in our office,
which is 76m. She repeat both traces 10 times. Fig. 8(a)
and Fig. 8(b) show the average outdoor and indoor tracking
results compared with the ground truth, respectively. For the
outdoor tracking, the greatest deviation to the ground truth
is only about 1.6m, and the mean deviation is only about
0.36m. For the indoor tracking, the largest deviation of is
about 2m and the mean deviation is about 0.96m. Since we
use the information of magnetic field sensor to convert the raw
acceleration to the earth coordinate system, the result shows
that due to the electromagnetic interference in the office, the
tracking deviation is greater than that of outdoor.

To get robust evaluation results of movement-vector-based
single user tracking, we have 15 volunteers (4 female and
11 male) installed Montage in their smart phones to col-
lect traces. Since there is no GPS signal indoor, to get
the ground truth we mark 25 optional traces with diverse
lengths, directions and shapes on the floor of our office, which
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Fig. 9. Single users’s tracking result by movement vectors.

covers 1600 square meter area. Volunteers can walk along
any combinations of these traces with free paces and arbitrary
phone positions. 847 traces from 15 volunteers are collected.
For every step, there is a tracking location, and about 32,000
locations in total. We analyze the deviation of each tracking
location, and Fig. 9(a) presents the CDF of the deviation. The
result shows that, the mean deviation is about 0.87 meter, with
90% tacking location have a deviation less than 2 meters. We
also explore the deviation change with the distance to the start
point, Fig. 9(b) shows that within the initial 20 steps (about 16
meters), the deviation won’t exceed 0.5 meter. The deviation
increases with the distance to start point and won’t exceed 2
meters for 90% time within 140 steps (about 110 meters). But
we notice that, a small portion of large deviations (about 3
meters) occur around 60 steps, and we consider the reason as
the scale of our office makes most turns happen between 50
and 70 steps.

Both the outdoor tracking result and extensive indoor track-
ing results show that, with only inertial sensors of an off-the-
shelf mobile phone, our method can achieve a highly accurate
tracking result of walking people. To compare with the state-
of-art methods in [2], which achieve a tracking error of 6.9%,
Montage achieves a tracking error of about 2.5%.

D. Multi-user Tracking

Combing movement vectors and ranging results, we can
track the team formation and movement of multiple users.
In our experiments, 4 users walk randomly in a the 1600
square meter office. Their movement vectors are detected
in real time and distances between every pair of users are
calculated periodically. Each time their ranges are obtained,
our localization approach introduced in Section II is applied to
calculate their locations at a translation coordinate, which takes
the initial location of a randomly chosen user as the origin, and
calibrate the estimated movement vectors accordingly. Fig. 10
illustrates a fragment of 4 users’ team formation tracking. As
shown in Fig. 10(a), with estimated movement vectors, the

 

 

user1
user2
user3
user4

(a) Fragments of 4 users’ movement vectors.

(b) A fragment of indoor tracking results of 4 users.

Fig. 10. A fragment of four users’s tracking result.

traces of each user can be obtained. However, without anchor
nodes we cannot know the team formation of 4 users. Combing
the ranging results and the movement vectors, the locations of
4 users are determined. Fig. 10(b) presents the detected team
formation with three rounds of ranging results. When the No.4
user knows the location of his start point (the entrance of the
office), the other three users’ absolute locations are determined
as illustrated on the floor plan, which matches the ground
truth surprisedly well. In our experiments, in which each user
walked for about 1000m in the office, the mean deviation
of the estimated trace to the ground truth is about 0.5m and
the largest deviation is about 1m. This result shows that with
the help of ranging, Montage enables formation detection and
improves tracking accuracy. With only one anchor position,
Montage enables accurate indoor localization for multiple
users.

VI. RELATED WORK

One popular line of mobile handset indoor localization is
fingerprinting. Some systems exploit fingerprints of wireless
signals to achieve room-level user localization and tracking.
For example, Horus [28] designs a WLAN localization system
with a meter-level accuracy. [23] presents a GSM indoor
localization system that achieves a median accuracy of 4 m.
EZ [6] uses the RSSI to indoor APs and yields a median
accuracy of 2-7 m with no pre-deployment effort. There are
other types of fingerprints or landmarks used to achieve room-
level localization, e.g., [4], [7], [12], [14], [22], [25]. Most
fingerprinting based localization methods cost an effort for
site-survey. Some recent systems have incorporated survey by
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users,e.g. [27]. But they still face the problem that different
locations may have similar fingerprints.

Some schemes perform localization by estimating distances
to anchor nodes based on RSSI, time-of-arrival (TOA), time-
difference-of-arrival (TDOA) and angle-of-arrival AoA. Peng
et al. [18] proposed ETOA with centimeter-level accuracy
acoustic-based pair-wise ranging method. [19] presents a
solution for achieving high speed 3D continuous pair-wise
localization using two microphones and one speaker on the
phone. Liu et al. [13] uses acoustic ranging estimates among
peer phones as constraints to reduce the significant errors
of WiFi-based method. Centaur [15] fuses RF and acoustic
ranging based localization techniques into a single systematic
framework based on Bayesian inference. Most of the acoustic
based ranging approaches are designed for a pair of users.
Some work [18] uses a TDMA scheme for multi-users rang-
ing, that results long delay and lack of identification when
tracking multiple users. [3] proposes a FDMA based solution
to estimate the number of mobile devices present in an area,
however when users are moving, the FDMA methods may
fail due to the Doppler effect. Many work,like [16] and [8] ,
propose CDMA based systems using a high frequency acoustic
signal and a hydrophone array to enable simultaneous sub-
meter tracking of multiple targets. [1] proposes an ultrasonic
multicode despreader allowing simultaneous acoustic ranging
in real time by embedded sensors. These methods require
synchronization or hydrophone array which is quite difficult
to implemented on the off-the-shelf mobile phones. Besides,
anchor nodes are necessary for positioning too.

Several inertial navigation approaches are proposed to track-
ing the move trace of a single user. [9] and [10] provide
good survey of inertial positioning systems for pedestrians.
Most of them use step-and-heading-based dead-reckoning,
e.g. [21],with special devices and absolute position fixes are
required to correct dead-reckoning output. Some work use
the inertial sensors of smartphones with indoor maps to
track users as they traverse indoor, e.g., [20]. [2] provides
single pedestrian tracking using mobile phones to achieve a
tracking error of 6.9%. There are other works dedicated to
mobile phone based indoor localization/tracking, e.g. Virtual
Compass [5] and OIL [17]. Most of the exiting indoor tracking
methods need a pre-knowledge or at least three anchors, and
are infeasible to provide the realtime multi-user formation.

VII. CONCLUSION

In this paper, we proposed Montage for realtime multi-user
team formation tracking with no anchor node and provide
multi-user localization with merely one anchor node. We
designed coded acoustic tones for supporting tracking of multi-
users with small latency and designed innovative techniques
to accurately estimate the moving distance and directions with
off-the-shelf smartphones. No pre-setting or pre-knowledge is
required by Montage. Our extensive evaluations (847 traces
from 15 users) showed that Montage achieved meter-second-
level accuracy. A future work is to investigate whether Doppler
effects will result in better performance for multi-user tracking.
as we can estimate the relative distance and direction between
two users using Doppler effects caused by mobility.
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