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Abstract—We propose a new geometric spanner for wireless ad hoc net-
works, which can be constructed efficiently in a distributed manner. It inte-
grates the connected dominating set and the local Delaunay graph to form
a backbone of the wireless network. Priori arts showed that both structures
can be constructed locally with bounded communication costs. This new
spanner has these following attractive properties: (1) the backbone is a pla-
nar graph; (2) the node degree of the backbone is bounded from above by a
positive constant; (3) it is a spanner for both hops and length; (4) it can be
constructed locally and is easy to maintain when the nodes move around; (5)
moreover, the computation cost of each node is at most

���������
	��
�
, where

�
is its 1-hop neighbors in the original unit disk graph, and the communica-
tion cost of each node is bounded by a constant. Simulation results are also
presented for studying its practical performance.

Keywords— Connected dominating set, clustering, Delaunay triangula-
tion, spanner, unit disk graph, localized algorithm, wireless ad hoc net-
works.

I. INTRODUCTION

Wireless ad hoc networks [1] draw lots of attentions in recent
years due to its potential applications in various areas. We con-
sider a wireless ad hoc network consisting of a set � of � wire-
less nodes distributed in a two-dimensional plane. Each wireless
node has an omni-directional antenna. This is attractive for a
single transmission of a node can be received by all nodes within
its vicinity. In the most common power-attenuation model, the
power required to support a link between two nodes separated
by distance � is ��� , where � is a real constant between � and �
dependent on the wireless transmission environment. Here we
ignore the overhead cost of each node to receive and process the
coming signal. By a proper scaling, we assume that all nodes
have the maximum transmission range equal to one unit. These
wireless nodes define a unit disk graph ����������� in which there
is an link between two nodes if and only if their Euclidean dis-
tance is at most one. The number of links in the unit disk graph
could be as large as  !�"�$#%� , i.e., the square order of the number
of network nodes.

Due to the nodes’ limited resource in wireless ad hoc net-
works, scalability is crucial for network operations. One effec-
tive approach is to maintain only a linear number of links using
a localized construction method. However, this sparseness of
the constructed network topology should not compromise too
much on the power consumptions on communications. In this
paper, we study how to construct a sparse network topology ef-
ficiently for a set of wireless nodes such that every route in the
constructed network topology is efficient. Here a route is effi-
cient if its length or hops is no more than a constant factor of the
minimum length or hops needed to connect the source and the
destination in the unit disk graph.

The movement of wireless nodes causes the network topol-

ogy to change constantly, which makes efficient routing in non-
static wireless ad hoc networks difficult and challenging. We
will assume that the nodes are static or can be viewed as static
during a reasonable period of time. For example, the sensors in
the sensor network do not move usually. Notice that, our algo-
rithms do not need to update the network topology when nodes
are moving as long as no link used in the final network topology
is broken. In other words, although the actual physical deploy-
ment of the network topology is no longer a planar graph when
nodes are moving, the logical network topology is still a planar
graph, which is crucial for some routing algorithm.

The simplest routing method is to flood the message, which
not only wastes the rare resources of wireless node, but also
diminishes the throughput of the network. One way to avoid
flooding is to let each node communicate with only a selected
subset of its neighbors [2], [3], [4], [5], or to use a hierarchi-
cal structure like Internet. Examples of hierarchical routing are
dominating set based routings [6], [7], [8], [9]. When each wire-
less node knows its geometry position and can quickly retrieve1

the geometry information about the destination node of a routing
request, several localized routing methods based on geometrical
forwarding [10], [2] are proposed to avoid the flooding. Re-
cently, Karp and Kung [10] proposed a new protocol, Greedy
Perimeter Stateless Routing (GPSR), which routes the packets
on a planar subgraph of UDG and guarantees the delivery of
the packet if there exists a path. Bose, et al. [2] also pro-
posed a similar method using Gabriel graph as planar subgraph.
Relative neighborhood graph is also used in broadcasting [11].
These methods maintain some planar subgraph such as the rel-
ative neighborhood graph (RNG) or Gabriel graph (GG) as un-
derlying network topology. The routing is based on geometry
forwarding heuristics and the right hand rule is used temporar-
ily when a local minimum occurs. It was known that the RNG
and GG are not good spanners for UDG [12], [13]. Recently,
Gao, et al. [14] proposed a new method to construct sparse
spanners. The method combines the node clustering algorithm
with a new routing graph, called Restricted Delaunay Graph
(RDG). Although their clustering algorithm [15] achieves a con-
stant approximation in expectation, the approximation constant
is too large for having any practical meaning. Additionally, the
method of constructing RDG is not communication effective.

Consequently, we focus on constructing a sparse network
&
For example, for sensor networks collecting environmental data such as tem-

perature, the data are typically sent to one specific node called sink. In this case,
we can assume that the sink node is static and its position is known to all other
nodes. The other way to get the location information of a node is to use GPS
and location service.
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topology, i.e., a subgraph of ��������� � , which has the follow-
ing desirable features.
Sparseness The topology should be a sparse graph, i.e., the
total number of links in this network topology is linear with the
total number of wireless nodes. This enables most of algorithms,
e.g., routing algorithm based on the shortest path, to run on this
topology more efficiently in term of both time and power con-
sumption.
Spanner We want the subgraph to be a spanner of ������� � �
in terms of both length and hops. Here a subgraph � ��� � is a
spanner of graph � for length if there is a positive real constant���

such that for any two nodes, the length of the shortest path
connecting them in � �

is at most
���

times of the length of the
shortest path connecting them in � . The constant

���
is called

the length stretch factor. In the same way, a subgraph � �
is

a spanner of a graph � for hops means that there is a positive
real constant

�
# such that the number of hops of the shortest

hops path in � �
is at most

�
# times of the number of hops of the

shortest hops path in � between any two nodes. The constant�
# is called the hops stretch factor. Similarly, we can define the

power stretch factor [12].
Bounded degree Because every wireless node has a limited
computational resources, storage, and more importantly, a lim-
ited power, the degree of each node in the constructed topology
should be bounded by a constant, so that each node only needs
to hold and process a constant number of neighbors.
Planarized The topology is a planar graph (i.e., no two edges
cross each other in the graph). Some routing algorithms, such
as right hand routing and Greedy Perimeter Stateless Routing
(GPSR) [10], require the topology be planar.
Efficient Localized Construction Due to the limited re-
sources of the wireless nodes, it is preferred that the underlying
network topology can be constructed and maintained in a local-
ized manner. Here a distributed algorithm constructing a graph
� is a localized algorithm if every node 	 can exactly decide all
edges incident on 	 based only on the information of all nodes
within a constant hops of 	 (plus a constant number of additional
nodes’ information if necessary). More importantly, we expect
that the time complexity of each node running the algorithm to
construct the underlying topology is at most  !��

������
 � , where

 is the number of 1-hop neighbors; in addition, the number of
messages sent by each node is at most a constant.

A trade-off can be made between the sparseness of the topol-
ogy and the power efficiency. However, not all sparse sub-
graphs are good candidates for the underlying network topolo-
gies. There are two sets of structures used for wireless net-
works: flat structures, and hierarchical structures. The flat struc-
tures used previously include the relative neighborhood graph,
Gabriel graph, Yao structure, and the Delaunay triangulation.
On the other hand, the hierarchical structures used typically are
based on dominating set, or connected dominating set, or their
extensions such as 
 -dominating set [16].

In [10], Karp and Kung used two planar subgraphs: the rela-
tive neighborhood graph (RNG), and the Gabriel graph (GG).
However, Bose, et al. [13] proved that the length stretch factors
of these two graphs are � �"�$� and � ��� � � respectively. Recently,
some researchers [17], [18] proposed to construct the wireless
network topology based on Yao graph (also called � -graph). It

is known that the length stretch factor and the node out-degree
of Yao graph are bounded by some positive constants. But as Li,
et al. mentioned in [18], all these three graphs cannot guarantee
a bounded node degree, e.g., for Yao graph, the node in-degree
could be as large as  !� �$� . In [12], [18], Li, et al. further pro-
posed to use another sparse topology, Yao and Sink, that has both
a constant bounded node degree and a constant bounded length
stretch factor. It is a spanner for length or power, but not for
hops. It is easy to construct a configuration of a set of nodes,
for example, � nodes evenly distributed on a unit segment, such
that the Yao structure is not a hop spanner. In addition, all these
graphs, which are related with Yao graph, are not guaranteed to
be planar graphs.

Many researchers proposed to use the connected domination
set (CDS) as a virtual backbone for hierarchical routing in wire-
less as hoc networks [7], [19], [8], [20]. Efficient distributed
algorithms for constructing connected dominating sets in ad hoc
wireless networks were well studied [21], [22], [23], [24], [25],
[7], [8], [26]. The notion of cluster organization has been used
for wireless ad hoc networks since their early appearance. Baker
et al. [22], [23] introduced a “fully distributed linked cluster ar-
chitecture” mainly for hierarchical routing and demonstrated its
adaptivity to the network connectivity changes. The notion of
the cluster has been revisited by Gerla et al. [27], [28] for mul-
timedia communications with the emphasis on the allocation of
resources, namely, bandwidth and channel, to support the mul-
timedia traffic in an ad hoc environment. In [15], Gao, et al.
proposed a randomized algorithm for maintaining the discrete
mobile centers, i.e., dominating sets. They showed that it is
an  !���%� approximation to the optimal solution with very high
probability, but the constant approximation ratio is quite large.
Recently, Alzoubi, et al. [21] proposed a method to approximate
minimum connected dominating set (MCDS) within � whose
time complexity is  !�"�$� and message complexity is  !� ������� �$� .
Alzoubi [29] continued to propose a localized method that can
construct the MCDS using linear number of messages. Existing
clustering methods first choose some nodes to act as coordina-
tors of the clustering process, i.e., clusterhead. Then a cluster
is formed by associating the clusterhead with some (or all) of
its neighbors. Previous methods differ on the criterion for the
selection of the clusterhead, which is either based on the lowest
(or highest) ID among all unassigned nodes [23], [28], or based
on the maximum node degree [27], or based on some generic
weight [24] (node with the largest weight will be chosen as clus-
terhead). Notice that, any maximal independent set is always a
dominating set. Several clustering method essentially computes
a maximal independent set as the final clusterheads. We will use
any method that can build the MCDS efficiently, such as those
by Alzoubi [29], or by Baker [22], [23], and then build the local
Delaunay graph on top of the MCDS. Notice, local Delaunay
graph was recently proposed in [30]. We will show that the re-
sulting graph has all properties we listed before. In other words,
it is a hybrid sparse spanner for network topology.

The constructed backbone is not always a planar graph, while
the planarity is required by several geometry-based localized
routing algorithms. Then a localized Delaunay triangulation
(LDel) of CDS is set as the backbone of the network. We show
that the constructed backbone is a planar graph and each node
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has a bounded degree. All ordinary nodes are connected to their
dominators. We show that the constructed subgraph is spanner
for both length and hops and has at most  !� �$� edges. The to-
tal communication cost of this method is  !�"�$� , which is within
a constant factor of the optimum. Moreover, the communica-
tion cost of each node is bounded by a constant. The compu-
tation cost of each node is at most  !� 
 � � ��
 � , where 
 is the
number of its 1-hop neighbors. We also conduct experiments to
show that this topology is efficient in practice. To the best of
our knowledge, this is the first one to generate planar backbone
while the communication cost of each wireless node is bounded
by a constant. This is more attractive since the communications
in wireless networks are the most power consuming operations.

The rest of the paper is organized as follows. In Section II,
we provide preliminaries necessary for describing our new algo-
rithms, and briefly review the literature related to network topol-
ogy design issues. Section III presents our new spanner forma-
tion algorithms based on CDS and LDel graphs. In addition, we
prove some properties of the new spanner. Section IV presents
the experimental results. We conclude our paper in Section V
by pointing out some possible future research directions.

II. GEOMETRY DEFINITIONS AND NOTATIONS

In this section, we give some geometry definitions and no-
tations that will be used in our presentation later. We assume
that all wireless nodes are given as a set � of � points in a two
dimensional space. Each node has some computational power.
These nodes induce a unit disk graph ������� ��� in which there
is an edge between two nodes if and only if their distance is
at most one. Hereafter, we always assume that ��� ����� � is a
connected graph. We call all nodes within a constant

�
hops of

a node 	 in the unit disk graph ��� ����� � as the
�

-local nodes
or
�

-hop neighbors of 	 , denoted by ��� � 	 � , which includes 	
itself. We always assume that the nodes are almost-static in a
reasonable period of time.

Various proximity subgraphs of the unit disk graph can be
used in ad hoc wireless networks [10], [12], [17], [18], such as
the relative neighborhood graph, the Gabriel graph and the Yao
graph. None of these graphs is hop-spanner. In contrast, we use
a connected dominating set (CDS) as a virtual backbone of the
wireless network, and use localized Delaunay graph (LDel) to
make the backbone planar. See Figure 1 for an illustration of
when an edge is included in a graph defined.

A subset � of � is a dominating set if each node 	 in � is
either in � or is adjacent to some node � in � . Nodes from �
are called dominators, while nodes not is � are called domina-
tees. A subset � of � is a connected dominating set (CDS)
if � is a dominating set and � induces a connected subgraph.
Consequently, the nodes in � can communicate with each other
without using nodes in �	�
� . A dominating set with mini-
mum cardinality is called minimum dominating set, denoted by
MDS. A connected dominating set with minimum cardinality is
denoted by MCDS.

A subset of vertices in a graph � is an independent set if
for any pair of vertices, there is no edge between them. It is a
maximal independent set if no more vertices can be added to it to
generate a larger independent set. It is a maximum independent
set (MIS) if no other independent set has more vertices.

u v u v

� � ��� � � � ����� �

u v

w

u v

w

x

�
��� � � � � �
���
�
��� �

Fig. 1. Definitions of various topologies. The shaded area is empty of nodes
inside.

We continue with definition of the Delaunay triangulation.
A triangulation of � is a Delaunay triangulation, denoted by����� ��� � , if the circumcircle of each of its triangles does not con-
tain any other vertices of � in its interior. We assume that there
are no four vertices of � that are co-circular. A triangle is called
the Delaunay triangle if its circumcircle is empty of vertices of
� . Keil and Gutwin [31], [32] showed the Delaunay triangu-
lation is a planar spanner with the length stretch factor as most��� ������ �! " � .

However, the main drawback of applying the Delaunay trian-
gulation in the ad hoc wireless environment is that it can not be
constructed locally. In [30], Li, et al. defined a new geometry
structure, called

�
-localized Delaunay graph (LDel � ), and they

presented a distributed algorithm to construct it efficiently. A
triangle # 	$�&% satisfies

�
-localized Delaunay property if its cir-

cumcircle, denoted by ')(+*-, �/.10324035 � , does not contain any ver-
tex from ��� � 	 �768�9� �:� �;68�9� �<% � inside and all edges of the
triangle # 	$�&% have length no more than one unit. Triangle
# 	$�&% is called a

�
-localized Delaunay triangle. An edge 	$�

is a Gabriel edge if the disk using 	4� as diameter does not con-
tain any vertex inside and = 	4�>=@? � . The

�
-localized Delaunay

graph over a vertex set � , denoted by A �9�3�CB+D3E �)� � , has exactly
all Gabriel edges and the edges of all

�
-localized Delaunay tri-

angles. Li, et al. [30] proved that local Delaunay triangulation
LDel � is a planar graph for

�GF � and has thickness � if
�
H � .

Here a graph � has thickness
�

if � can be decomposed into
�

planar graphs but not
� � � planar graphs.

Notice that, the definition of
�

-localized Delaunay graph
(LDel � ) by Li, et al. [30] is different from the definition of
Restricted Delaunay graph (RDG) by Gao, et al. [14]. Let
���
��� ��� � H �
��� �����JI ��� ����� � , i.e., the edges in Delaunay
triangulation with length at most one unit. Gao, et al. [14] called
any planar graph containing ���
��� � � � as a RDG. They gave a
method to construct a RDG. However, their method is not com-
munication efficient, nor computation efficient. The worst time
communication cost is equal to the number of links in the unit
disk graph, which could be  !�"� # � . The worst computation cost
of a node is  !� 
 � � , where 
 is the number of its 1-hop neighbors.
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III. NEW SPANNER FORMATION ALGORITHMS

We begin this section by proposing the localized planar back-
bone formation algorithms, based on the connected dominating
set and the localized Delaunay triangulation.

A. Formation of Backbone

Several efficient methods [29], [21], [22], [23], [28] for con-
structing CDS were developed. Previous algorithms for build-
ing CDS typically have two phases: clustering and finding con-
nectors (or called gateways). The clustering algorithm basically
finds a subset of nodes such that the rest of the nodes are visible
to at least one of the cluster-heads. By definition, any algorithm
generating a maximal independent set is a clustering method.
Various methods can then be used to connect the cluster-heads
to form a connected graph. For the completeness of presenta-
tion, we will review some priori arts on building CDS, MCDS,
and localized Delaunay graph. We will interchange the terms
cluster-head and dominator. The node that is not a cluster-head
is also called ordinary node or dominatee. A node is called white
node if its status is yet to be decided by the clustering algorithm.
Initially, all nodes are white. The status of a node, after the clus-
tering method finishes, could be dominator or dominatee.

A.1 Clustering

Many algorithms for clustering have been proposed in the lit-
erature [21], [29], [22], [23], [24], [7], [28], [25], [16], [33],
[34], [8]. All algorithms assume that the nodes have distinctive
identities (denoted by ID hereafter). We will typically review
the ones by Baker [22], [23] and Alzoubi [29]. For the sake
of general description of these priori arts, we will summarize
them using our own words. The methods typically use two mes-
sages IamDominator and IamDominatee, and have the follow-
ing procedures: a white node claims itself to be a dominator if
it has the smallest ID among all of its white neighbors, if there
is any, and broadcasts IamDominator to its 1-hop neighbors.
A white node receiving IamDominator message marks itself as
dominatee and broadcasts IamDominatee to its 1-hop neigh-
bors. The set of dominators generated by the above method is
actually a maximal independent set since no two adjacent nodes
will be marked as dominators. Here, we assume that each node
knows the IDs of all its 1-hop neighbors, which can be achieved
by requiring each node to broadcast its ID to its 1-hop neigh-
bors initially. This protocol can be easily implemented using
synchronous communications as did in [22], [23]. If the number
of neighbors of each node is known a priori, then this protocol
can also be implemented using asynchronous communications.
Here, knowing the number of neighbors ensures that a node
does get all updated information of its neighbors so it knows
that whether itself has the largest ID among all white neighbors.

After clustering, one dominator node can be connected to
many dominatees. However, it is well-known that a domina-
tee node can only be connected to at most five dominators in the
unit disk graph model. For the completeness of presentation, we
include a short proof here.

Lemma 1: For every dominatee node � , it can be connected
to at most 5 dominator nodes in unit disk graph model.
PROOF. For the sake of contradiction, assume that a node �

has 6 dominator neighbors. We know in the unit disk centered
at � there must have 2 dominator neighbors % and 	 , the angle� % � 	 is at most � � . So the distance between % and 	 must be no
more than one unit, which means that there is an edge between
% and 	 in UDG. This is a contradiction with the definition of
maximal independent set.

Generally, for each node (dominator or dominatee), there are
at most a constant number of dominators that are at most

�
units

away.
Lemma 2: For every node � , the number of dominators in-

side the disk centered at � with radius
�

-units is bounded by a
constant � � .
PROOF. Because any two dominators are at least one unit away,
the half-unit disks centered at dominators are disjoint with each
other. In addition, all such dominators should be in the disk
centered at � and with radius

�
. Then ��� is bounded by how

many disjoint half-unit disks we can park in the disk centered at

� with radius
�����  �� . See Figure 2. We have � � ? � B ���
	�� 
 E��

� B 	�� 
 E �
H

��� ��� �%� # using an area argument. When
��H �!0��!0-" , we have

� �9? � � 0/"��!0�� � .

1

k+0.5

k v

Fig. 2. For every node � , the number of dominators within � units is bounded
by a constant ��� .

The bounds on � � can be improved by a tighter analysis. The
above lemma implies that for every node � , the number of dom-
inators within

�
hops is bounded by a constant ��� .

Almost all clustering methods described before are similar
to this synchronous protocol. The difference of these previous
methods lyes in how to find gateways to connect these cluster-
heads. For example, the basic algorithm for constructing CDS
proposed in [27] does not guarantee that the constructed clusters
are connected. As it agreed, in some cases, it needs Distributed
Gateway (DG) to connect some clusters that are nonoverlapping.
But, how to choose the DGs is not specified in the paper. Ad-
ditionally, no performance guarantee is proved. In [22], [23],
they consider in detail of how to select the gateway nodes to
connect the clusters based on cases of overlapping clusters and
nonoverlapping clusters. Here, two clusters (headed by two dif-
ferent clusterheads) are said to be overlapping if there is at least
on common dominatee node; they are said to be nonoverlapping
if there is two dominatee nodes (one from each cluster) are con-
nected. However, they did not prove the message complexity
of their protocols, nor the approximation ratio of the generated
connected dominating set. Additionally, as they agreed, it may
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generate two or perhaps more gateway pairs for some nonover-
lapping clusters pair. On the other hand, Alzoubi et al. [6],
[29] proposed a localized method to find connectors using total
 !�"�$� messages and showed that the constructed CDS is within
a constant factor of optimum. This property enable us to build
a planar spanner in total linea number of messages, which is
crucial for wireless ad hoc networks since the communication is
the most energy-consumption operation. Actually, we will show
that the method by Baker et al. also has linear number of mes-
sages, and the size of the constructed structure is also within a
constant factor of optimum. We will discuss in detail of these
two methods, which will be the first phase of our hybrid method.

A.2 Finding Connectors

The second step of connected dominating set formation is to
find some connectors (also called gateways) among all the dom-
inatees to connect the dominators. Then the connectors and the
dominators form a connected dominating set.

Given a dominating set � , let ��� � � � be the graph connecting
all pairs of dominators 	 and � if there is a path in UDG connect-
ing them with at most � hops. Then graph ��� � � � is connected.
This observation is a basis of several algorithms [22], [23], [27],
[28] for CDS, although no proof was given in these previous re-
sults. It is natural to form a connected dominating set by finding
connectors to connect any pair of dominators 	 and � if they are
connected in ��� � � � . This strategy was used in several previous
methods, such as [21], [29], [22], [23], [28]. Let ������� � 	 0/� � be
the path connecting two nodes 	 and � in UDG with the smallest
number of hops. Let’s first consider how to connect two domina-
tors within � hops. The method by Alzoubi et al. [21], [29], [35]
choosed the connectors as follows: (1) If the path �	�
��� � 	 0-� �
has two hops, then 	 finds the dominatee node with the small-
est ID to connect 	 and � ; (2) If the path � �
��� � 	 0/� � has three
hops, then 	 finds the node, say % , with the smallest ID such
that % and � are two hops apart. Then node % selects the node
with the smallest ID to connect % and � . Thus, basically, node 	
will decide the next node on the path to connect to another node
� . Notice that, it is not obvious how a dominator node 	 can find
such node % as a connector efficiently. In addition to that, using
the smallest ID is not efficient because we may have to postpone
the selecting of connectors till the node collects the IDs of all its
one-hop neighbors. Instead of using the intermediate node with
the smallest ID, we can pick any node that comes first to the
notice of the node that makes the selection of connectors.

Notice that, the above approach is different from that one
adopted by Baker et al. [22], [23]. In their protocols, they let
the dominatee nodes to decide whether they will serve as the
connectors (gateways) or not. For example, if a dominatee node
finds that it is dominated by two nonadjacent dominators, say
	 and � , they it claims itself as a candidate of the connectors
for 	 and � . The node with the highest ID among nodes in the
intersection area covered by nodes 	 and � is chosen as the gate-
way node for the node pair 	 and � . In other words, they let the
nodes in this intersection area to elect the one with the high-
est ID, but no detailed protocol is given to do so. For the case
of nonoverlapping clusters, a pair of adjacent dominatees (one
from each cluster) need to claim them as the candidates for the
gateways of these two clusters. They always select the pair of

dominatees with the largest sum of identity numbers. In case of
a tie, the pair involving the node with the highest ID number is
chosen. However, unlike the case of overlapping clusters, here
we may end up with two or perhaps more gateway pairs. The
existence of one pair may not be known to both partners of the
other pair [22]. This cannot be avoided without increasing the
communications [22]. We modify the method by Baker et al.
using the framework by Alzoubi et al. and show that it does
approximate CDS using linear number of communications. We
then discuss in detail the approach to optimize the communica-
tion cost and the memory cost. It uses the following primitive
messages (some messages are used in forming clusters):
� IamDominator( 	 ): node 	 tells its � -hop neighbors that 	 is
a dominator;
� IamDominatee( 	 0/� ): node 	 tells its � -hop neighbors that 	
is a dominatee of node � ;
� TryConnector( 	 0-% 0/�$0
� ): node % proposes to its � -hop
neighbors that it could be one of the connectors to connect two
dominators 	 and � . Interger � specifies whether it is the first or
the second node on the path to connect two dominators 	 and � .
If 	$� are two hops apart, then set �

H �
.

� IamConnector( 	 0-% 0/�$0
� ): node % tells its � -hop neighbors
that it is the connector to connect two nodes 	 and � .

Notice that the message IamDominator( 	 ) is only broad-
casted at most once by each node; the message IamDomina-
tee( 	 0-� ) is only broadcasted at most five times by each node 	
for all possible dominators � from Lemma 1. From Lemma 2,
we know that TryConnector( 	 0-% 0/�$0
� ) are also broadcasted at
most a constant times by each node for all possible dominators
	 and � .

Lemma 3: Each node has to send out at most a constant num-
ber of messages in forming a connected dominating set.

Each node uses the following link lists.
� Dominators: it stores all dominators of 	 if there is any. No-
tice that if the node itself is a dominator, no value is assigned for
Dominators.
� 2HopDominators: it stores all dominators � that are 2 hops
apart from 	 .

From Lemma 2, for each node 	 , there are at most ��� num-
ber of dominators � that are

�
hops apart from 	 . The size of

each list is bounded by � � and � # respectively. Then we are in
the position to discuss the distributed algorithm for finding con-
nectors, which are built on the framework of Baker [22], [23].
Assume that a maximal independent set is already constructed
by a cluster algorithm.

Algorithm 1: Finding Connectors
1. Every dominatee % broadcasts message IamDomina-
tee( % 0/� ) that % is a dominatee of � .
2. Every node � stores its two-hop away dominators from the
messages IamDominatee( % 0-� ) broadcasted by its neighbor % .
3. Every dominatee node % broadcasts to its 1-hop neighbors a
message TryConnector( 	 0/% 0-�40 � ) for every dominators pair 	
and � (stored at Dominators).
4. If node % has the smallest ID among all its neighbors that
sent TryConnector( � 	 0�� 0/�$0 � � ), then node % broadcasts Iam-
Connector( 	 0/% 0-�40 � ).
5. Every dominatee node % broadcasts to its 1-hop neighbors a
message TryConnector( 	 0-% 0/�$0 � ) for its dominator 	 and the
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2-hop away dominator � .
6. Similarly, if node % has the smallest ID among all its neigh-
bors that sent TryConnector( � 	 0�� 0/�$0 � � ), then node % broad-
casts IamConnector( 	 0-% 0/�$0 � ).
7. After receiving message IamConnector( 	 0/% 0/�$0 � ), every
dominatee node � broadcasts to its 1-hop neighbors a message
TryConnector( 	 0
� 0/�$0 � ) for the 2-hop away dominator 	 and
its dominator � .
8. Similarly, if node � has the smallest ID among all its neigh-
bors that sent TryConnector( � 	 0�� 0/�$0 � � ), then node � broad-
casts IamConnector( 	 0 � 0-�40 � ).

Notice that it is possible that, given any two nodes 	 and � ,
the path found by node 	 to connect � is different from the path
found by � to connect 	 . Additionally, there may have multiple
paths selected to connect two dominators 	 and � . We will show
that the number of connectors are bounded. This increases the
robustness of the backbone.

Notice that, for each two hops away dominators pair 	 and � ,
there are at most � nodes claiming it to be connectors for them.
This is because we can put at most put two nodes inside the lune
defined by 	 and � such that they cannot hear each other directly.
Notice, if two nodes can hear each other (i.e., neighbors), then
they cannot have the smallest ID among all its neighbors that
sent TryConnector( 	 0�� 0/�$0 � ).

For two dominators that are three hops away, it is obvious that
there are at most five nodes sent out IamConnector( 	 0�� 0/�40 � ).
Moreover, each such sent message will trigger at most another
five nodes to send out message IamConnector( 	 0�� 0-�40 � ). Thus,
there are at most � � connectors introduced for two dommina-
tors. Consequently, the total number of connectors introduced
is at most a constant factor of the number of domminators in
the graph. Previous reviewed localized clustering method can
approximate the MDS with constant � . So the above method
will generate a CDS whose size is within a constant factor of
the minimum. Additionally, it is obvious that the number of
communications by each node is bounded by a constant: there
are constant number of domminator pairs within two hops and
for each pair the communications is at most � . One for claim-
ing itself as connector candidate, and one for claiming itself (if
necessary) as connector.

The graph constructed by the above algorithm FindingCon-
nectors is called a CDS graph (or backbone of the network). If
we also add all edges that connect all dominatees to their dom-
inators, the graph is called extended CDS, denoted by CDS’. In
Figure 3, we presents an example of CDS’, where the solid lines
in the graph forms the CDS graph, the square nodes are domina-
tors or connectors, while the circular nodes are dominatees. The
set of dominators and connectors forms a connected dominating
set. Connected dominating set CDS induces a graph: two nodes
are connected if and only if their distance is no more than one
unit. The induced graph is called induced connected dominating
set graph (ICDS). Obviously the CDS is a subgraph of ICDS. If
we also add all edges that connect all dominatees to their dom-
inators, the graph is called extended induced CDS, denoted by
ICDS’. Later we will prove that both CDS’ and ICDS’ are the
hop and distance spanners; both CDS and ICDS have a bounded
node degree. Graphs ICDS and ICDS’ can be constructed using
only one message each node (to tell its neighbors it is whether

dominator, dominatee, or connector node) if CDS is constructed.

dominators

connecters
dominatees

Fig. 3. An example of backbone.

B. The Properties of Backbone

This subsection will show that the CDS’ graph is a sparse
spanner in terms of both hops and length, meanwhile CDS has a
bounded node degree.

Lemma 4: The node degree of CDS is bounded by a constant.
PROOF. Consider any node % , there are two cases: % is a
dominator node and % is a connector node.

For a dominator % , it can only be connected to some connec-
tors � , which must have some dominators 	 that are 1-hop or 2
hops away from � . From Lemma 2, we know that the number
of this kind of dominators 	 is bounded by � � . So the degree of
% is also bounded by a constant factor of � � since for each such
dominator � , there are at most a constant number of connectors
introduced and incident on 	 .

For a connector % , it can be connected to at most � domi-
nator nodes and to some connectors. Each of these connectors
� should be directly connected to some dominator � , then the
number of this kind of dominators � is bounded by � # . So the
degree of % is bounded by a constant.

The above lemma immediately implies that CDS is a sparse
graph, i.e., the total number of edges is  !� � � , where

�
is the

number of dominators. Moreover, the graph CDS’ is also a
sparse graph because the total number of the links from dom-
inatees to dominators is at most � �"�G� � � . Notice that we have
at most � � � dominatees, each of which is connected to at most
5 dominators. The node degree in CDS is bounded, however,
the degree of some dominator node in CDS’ may be arbitrarily
large.

After we construct the backbone CDS and the induced graph
CDS’, if a node 	 wants to send a message to another node � , it
follows the following procedure. If � is within the transmission
range of 	 , node 	 directly sends message to � . Otherwise, node
	 asks its dominator to send this message to � (or one of its
dominators) through the backbone. Then we show that CDS’
(plus all implicit edges connecting dominatees that are no more
than one unit apart) is a good spanner in terms of both hops and
length. In the following proofs, we use ����� ���&0 � � and � ��� ���&0 � �
to denote the shortest hop path and the shortest length path in a
graph � from node � to node

�
. Let � � � � and 	$� � � be the length

and the number of hops of path � respectively. The following
proof was similar to that presented by Gao, et al. [14]. However,
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our proof shows that, given any two nodes � and
�
, there is a

unique path such that its length is no more than a constant factor
of � � ��������� � ��0 � � � , and its hops is no more than a constant factor
of 	$� � �
���������&0 � � � .

Lemma 5: The hops stretch factor of CDS’ is bounded by a
constant � .
PROOF. Assume the shortest hop path from � to

�
in UDG

is � ������� � �&0 � � H � � � #    ��� , where � � H � and ��� H �
, as

illustrated by Figure 4. We construct another path in CDS’ from
� to

�
and the number of hops of this path is at most � � � � .

uk

vk

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5 v6

Fig. 4. CDS’ is a hop-spanner.

For each node � � in the path � ����� ��� �&0 � � , let 	 � be its domi-
nator if � � is not a dominator, else let 	 � be � � itself. Notice that
there is a 3-hop path 	 � � � � � � � 	 � � � in the original UDG. Then
from Algorithm 1, we know there must exist one or two con-
nectors connecting 	 � and 	 � � � . Obviously, nodes 	 � and 	 �
are connected by a path ��� ����� � 	 � 0 	>� � in CDS’ using at most
� � hops. It implies that nodes � and

�
are connected by a path

� � ����� � ��0 � � (link � 	 � followed by � � ���	� � 	 � 0 	 � � , followed by
link 	 � � ) with at most � � � � hops in CDS’. Thus, the hops
stretch factor of CDS’ is bounded by � (with an additional con-
stant � ).

Lemma 6: The length stretch factor of CDS’ is bounded by a
constant



.

PROOF. Given any two nodes � and
�

such that ��� � � ����
 � , we
will show that the path ��� ���	� ���&0 � � constructed in the proof of
Lemma 5 has length at most



times the length of � ������� ���&0 � � .

First, for any path � , � � � � ? 	$� � � , because the length of ev-
ery link is no more than one unit. From Lemma 5, we also know
that 	$� ��� ����� ���&0 � � � ? � � � � , where

�
is the minimum number

of hops needed to connect � and
�
, i.e.,

� H 	$� � �
����� ���&0 � � � .
Then

� � ��� ����� � ��0 � � � ? 	$� ��� ����� ���&0 � � � ? � � � �! 
Notice that, in the shortest path ���
����� ���&0 � � H % � % #    %�� , the
sum of each two adjacent links % ��� � % � and % � % � � � must be
larger than one; otherwise we can use link % ��� � % � � � instead of
% ��� � % � % � � � to find a shorter path from the triangle inequality
= % ��� � % � � � =@? =�% ��� � % � = � =�% � % � � � = . Therefore,

� � � ������� � ��0 � � ��
�� 	 � � ������� � ��0 � � �������  
Notice that 	 � ��������� ���&0 � � � F 	 � � �
���������&0 � � � H �

. So
���

�)� � ��������� ���&0 � � � � � . Then,

� � ��� ����� � ��0 � � � ? � � � ��? 
 � � ��������� ���&0 � � � � 

.

Consequently, the length stretch factor of CDS’ is bounded by



(with an additional constant


). Here, we are only interested in

nodes � and
�

with = � � =�
 � .
Similarly, we can show that ICDS has a bounded node degree.

As CDS’ is a subgraph of ICDS’, the hop and length stretch
factors of ICDS’ are also at most � and



respectively.

Several routing algorithms require the underlying topology be
planar. However, the backbone CDS can be a non-planar graph.
Notice in the formation algorithm of CDS, we do not use any
geometry information. The resulting CDS maybe non-planar
graph. Even using some geometry information, the CDS still
is not guaranteed to be a planar graph. Here we give a counter
example illustrated by Figure 5. The lengths of link 	 � 	 # , 	 # 	 � ,

v3

1

1

1

11 1

u1

u2

u3

u4

v1 v2 v4

Fig. 5. CDS could be nonplanar.

	 � 	 � , � � � # , � # � � , � � � � are all one unit, while the lengths of link
	 # � # and 	 # � � are longer than one. For dominator nodes 	 � and
	 � , there is only one 3-hop path 	 � 	 # 	 � 	 � . So the link 	 # 	 �
must be in CDS. For the same reason, � # � � must be in CDS.
Clearly, 	 # 	 � intersects � # � � .
C. Local Delaunay Triangulation on Induced Graph CDS’

Several localized routing heuristics have been proposed re-
cently for wireless ad hoc networks. Some routing algorithms
such as GPSR [10], [2] require the underlying network topology
to be planar. However, we know that CDS is not guaranteed to
be a planar graph, so do its supergraphs CDS’, ICDS and ICDS’.
Thus, we cannot directly apply the geometry forwarding based
routing algorithms on the backbone CDS or any of its super-
graphs. When each node knows its geometry position, however,
we can apply the Localized Delaunay Triangulation [30] on top
of the ICDS graph to planarize the ICDS graph without losing
the spanning properties. Herafter, we assume that each wireless
node knows absolute or relative positions of itself and each of
its neighbors. However, a broad variety of location dependent
services will become feasible in the near future. Although the
commercial Global Position System (GPS) has accuracy around
ten meters, the modern systems have accuracy up to three me-
ters [36]. Indoor location systems are based on the proximity
of fixed objects with known coordinates (e.g. sensors), measur-
ing angle of arrival and time delays of signals. Active Badge
system, for example, has accuracy within 9 cm of their true po-
sition [36], with the work in progress to improve accuracy. If
no indoor or outdoor location service is available, the distance
between neighboring nodes can be estimated on the basis of in-
coming signal strengths or time delays.

C.1 Review of Local Delaunay Triangulation

For the completeness of the presentation, we review the al-
gorithms proposed in [30] to construct the local Delaunay trian-
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gulation. For a set of nodes � , the algorithm first constructs a
graph of A ����� B�� E ��� � and then makes it planar efficiently using
the second algorithm.

Algorithm 2: Localized Delaunay Triangulation
1. Each wireless node 	 broadcasts its location and listens to
the messages from other nodes.
2. Assume that every wireless node 	 gathers the location infor-
mation of � � � 	 � . Node 	 computes the Delaunay triangulation����� � � � �/.�� � of its � -neighbors � � � 	�� , including 	 itself.
3. Node 	 finds all Gabriel edges 	$� and marks them as Gabriel
edges. Notice that here = 	$� = ? � , and the disk using 	$� as
diameter is empty.
4. Node 	 finds all triangles # 	4� % from

�9�3� � � � �/.�� � such that
all three edges of # 	$� % have length at most one unit. If angle� % 	$� F � � , node 	 broadcasts a message proposal( 	 0-�40-% ) to

form a 1-localized Delaunay triangle # 	4� % in A ����� B�� E �)��� and
listens to the messages from other nodes.
5. When node � receives a message proposal( 	 0-�40-% ), � ac-
cepts the proposal of constructing # 	4� % if # 	$�&% belongs to
the Delaunay triangulation

����� � � � � 2 � � by broadcasting mes-
sage accept( 	 0/�$0/% ); otherwise, it rejects the proposal by
broadcasting message reject( 	 0/�$0/% ). Similarly does node % .
6. Node 	 accepts the triangle # 	4� % if both nodes � and %
accept the message proposal( 	 0/�$0/% ). Similarly do node � and
% .

It is easy to show that the total communication cost of the
above algorithm is  !� �$� , where � is the number of total input
nodes. The computation cost of each node is  !� 
 � � ��
 � (from
computing the Delaunay triangulation of � � � 	�� ). It was proved
in [30] that the above algorithm does generate A ����� B�� E ��� � . It
was also proved in [30] that if two � -Delaunay triangles �����
and 	$� % intersect, then either the circumcircle of ����� contains
one of the vertices in � 	 0/�$0/%	� or the circumcircle of 	$� % con-
tains one of the vertices in � � 0
� 0���� . We then make this graph
A ���3� B�� E ��� � planar as follows.

Algorithm 3: Planarize A �9�3� B�� E �)� �
1. Each wireless node 	 broadcasts the Gabriel edges incident
on 	 and the triangles # 	$�&% of A ����� B�� E �)� � and listens to the
messages from other nodes.
2. Assume node 	 gathered the Gabriel edges and 1-localized
Delaunay triangles information of all nodes from � � � 	 � . For
two intersected triangles # 	$�&% and # ����� known by 	 , node 	
removes the triangle # 	$� % if its circumcircle contains a node
from � � 0
� 0
��� .
3. Each wireless node 	 broadcasts all remaining triangles inci-
dent on 	 and listens to the broadcasting by other nodes.
4. Node 	 keeps all triangles # 	$� % if both � and % have trian-
gle # 	$�&% remaining.

It was proved that the A �9�3� B�� E ��� � has thickness � , i.e., it can
be decomposed to two planar graphs. Thus, it has at most


 �
edges. Then it is easy to show that the total communication cost
of planarizing A ���3� B�� E ��� � is  !�"�$� .
C.2 Properties of � �
��� ��� ��� � �

Applying Algorithm 2 and Algorithm 3 on ICDS, we get
a planar graph called � �
��� ��� ��� � � . Moreover, we will
prove that ICDS has a bounded node degree and so does

� � � � ��� ��� � � . It was proved in [30] that � �
��� � � � is a span-
ner if � is a unit disk graph. Notice that ICDS is a unit
disk graph defined over all dominators and connectors. Conse-
quently, � �
��� ��� ��� � � is a spanner in terms of length. So here
we first give a proof that � �
��� ��� ��� � � has a bounded hops
stretch factor.

Lemma 7: The hops stretch factor of � �
��� ��� ��� � � is
bounded by a constant.
PROOF. It was proved before that ICDS is a hop-spanner be-
cause ICDS contains CDS as a subgraph and CDS is a hop-
spanner. Thus, we only have to show that for any link 	4� in
ICDS, there is a path in � �
��� ��� ��� � � connecting 	 and � us-
ing a constant number of hops.

It was proved in [30] that the length stretch factor of � �
��� � � �
is at most �  �� for any unit disk graph � . Therefore, we know that
there is a path in � � � � ��� ��� � � with length at most �  �� to con-
nect 	 and � . Then all nodes in that path are inside the disk cen-
tered at 	 with radius �  �� . There are two types of nodes inside
this disk: dominators or connectors. Inside this disk, obviously
there are at most a constant number � # � 


� � 
 of dominators,
which is from Lemma 2. We then show that there are at most a
constant number of connectors inside the disk also.

For connectors, it either is connected to a dominator node in-
side the disk or is connected to a dominator node outside the
disk, but the distance of that dominator node to 	 is at most �! �� .
From Lemma 2, we know the number of dominators that can
connect to a connector inside that disk is at most � � � 
 . Notice
that there are at most � � connectors connected to a dominator
node. Thus, there are at most � � ��� � � 
 connectors inside the
disk.

Then the total number of links in a path connecting 	 and � in
graph � �
��� ��� ��� � � is bounded by the number of dominators
and connectors inside that disk, which is at most � � � � � � 
 � � # � 


�
" � � 
 " � � 
 . Then we know that � �
��� ��� ��� � � is a hop-spanner.
Notice that although � � �
� � � 
 � � # � 
 is very large here, the bound
can be reduced by using more careful analysis.

Notice that � �
��� ��� ��� � � has thickness � implies that the
average node degree is at most � � . Using the same technique,
we can prove the following lemma.

Lemma 8: The node degree of ICDS is bounded by a constant
� � � � � .
PROOF. For any dominator node � , it can only connect to con-
nectors, which are introduced by some dominator nodes within
� hops of � . There are at most � � such dominators, each of them
can introduce at most � � connectors.

For a connector node � , it can connect to both connectors and
at most � dominators. The connectors are introduced by some
dominator nodes within � hops of � . There are at most � # such
dominators, each of them can introduce at most � � connectors.

Thus, the node degree in ICDS is bounded by � � � � � due to
� � � � � 
 � # � � �

� � .

It immediately implies that the graph � �
��� ��� ��� � � has a
bounded node degree � � � � � . Notice that this implies that the
number of messages sent by the dominator node or connector
node is bounded by a constant also.



9

IV. SIMULATIONS

After building the planar backbone of the networks, we can
run Dominating-Set-Based Routing [8] on it. When route a
message on the planar backbone (such as � �
��� ��� ��� � � ), we
can use some other variant routing algorithms, such as Greedy
Perimeter Stateless Routing (GPSR) [10], [2]. Because the rout-
ing on planar graphs was already studied, we will concentrate on
studying the structural properties of the constructed planar back-
bone � �
��� ��� ��� � � . We want to study the stretch factors, the
maximum and average node degree of the graph, and the com-
munication cost to build these structures.

Fig. 6. A Unit Disk Graph.

In our experiments, we randomly generate a set � of � wire-
less nodes on a � � ��� by � � ��� square, i.e., randomly and uni-
formly choosing nodes’ � -coordinate and � -coordinate values.
The transmission radius of all wireless nodes is an experimen-
tal parameter. We then generate the ������� ��� , and test the
connectivity of ������� � � . If it is connected, we construct dif-
ferent topologies from � , such as CDS, CDS’, ICDS, ICDS’,
LDel(ICDS), and so on. Then we measure the stretch factors,
degree bound of these topologies, and the communication cost
to construct them. Given � , we generate � � vertex sets � of
size � and then generate the graphs for each of these � � ver-
tex sets. The average and the maximum are computed over all
these vertex sets. Figure 7 gives all different topologies defined
in this paper for the unit disk graph illustrated by Figure 6. The
transmission radius of each node here is set as � � � .

In following Table I, ��� and � � are the average and the maxi-
mum length stretch factor over all nodes and all graphs respec-
tively; 	�� and 	 � are the average and the maximum hop stretch
factor over all graphs respectively. Additionally, 
�� and 
	� de-
note the average and the maximum node degree, � is the average
number of edges over all graphs. Here, the maximum node de-
grees of CDS’, ICDS’, and LDel(ICDS’) are large because the
backbone nodes have many links to the dominatee nodes when
the graph is dense. As we expected, they are almost equal to
the maximum node degree of the unit disk graph. The maxi-
mum node degree of the backbone graph such as CDS, ICDS,
and LDel(ICDS) does not depend on the node density. Graph
LDel(ICDS) has the lowest maximum degree because it removes
the some crossing links in other graphs.

We further conduct some experiments to study the relations
of the spanning ratios and the communication cost with the
node density, the diameter of the original unit disk graph. The

� � ����� � � ����� �
connectordominatee dominator

� � � � ��� � ��� � � � �
connectordominatee dominator dominatee dominator connector

� ��� � ��� � � �
��� ��� ��� � ����� �
Fig. 7. Different Network topologies.


 � 
 � � � � � 	 � 	 � �
UDG 21.4 42 - - - - 1069
RNG 2.37 4 1.32 4.49 3.62 16 119
GG 3.56 9 1.12 2.08 2.58 8 178
LDel 5.56 12 1.05 1.44 1.95 5 276
CDS 1.09 16 - - - - 54.4
CDS’ 3.34 41 1.27 5.04 1.37 3.5 170
ICDS 1.72 16 - - - - 85.8
ICDS’ 4.03 41 1.23 4.17 1.32 3 201
LDel(ICDS) 1.20 9 - - - - 60.0
LDel(ICDS’) 3.51 38 1.23 4.20 1.40 4 176

TABLE I

TOPOLOGY QUALITY MEASUREMENTS.
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variation of the diameter of the graph is achieved by vary-
ing the transmission radius. Figures 8, 9, and 10 illustrate
the relations of the node degree, the spanning ratio, and the
communication cost with the node density. Here transmis-
sion range is always set as


 ���
. Remember that we generate

nodes in a � � ��� by � � ��� square region. The communication
cost is computed based on the number of messages each node
needs to send. Here the messages could be IamDominator,
IamDominatee, 2HopsPath( 	 0/% 0/� ), 3HopsPath( 	 0-% 0
� 0/� ),
proposal( 	 0/�$0/% ), accept( 	 0/�$0/% ), reject( 	 0/�$0/% ), and so on.
We found that the maximum communication cost of each node
(around � � messages) to build CDS, or ICDS is considerablly
smaller than our theoretical upper bound. We also found that the
difference between the maximum communication cost of each
node to build LDel(ICDS’) and the communication cost to build
CDS is almost fixed. Notice that the difference is actually the
cost of building local Delaunay graph on top of the ICDS. This
is due to the fact that the maximum degree of the ICDS graph is
always bounded by a constant and the communications to build
LDel by a node depends on its degree. Each node has to process
the proposal messages sent by its neighbors, which implies that
the number of accept and reject messages sent by a node are
related to its degree.
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Fig. 8. The relation of the graph degree with the node density.

Figures 11, and 12 illustrate the relations of the spanning ra-
tios, and the communication costs with the transmission radius
of the node. Here the number of the wireless nodes is fixed as
� � � .
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Fig. 9. The relation of the spanning ratios with the node density.

V. SUMMARY AND FUTURE WORK

In this paper, we present a new algorithm to construct a sparse
spanner for network backbone: the local Delaunay triangulation
over the connected dominating set graph CDS. A communica-
tion efficient distributed algorithm was presented for the con-
struction of a connected dominating set, whose size is guar-
anteed to be within a constant factor of the minimum. We
show that CDS is efficient for both length and hops and has at
most  !�"�$� edges while each node has a bounded degree. Then
we apply the localized Delaunay graph (LDel) on the induced
graph ICDS to generate a planar graph without sacrificing the
constant hop and length stretch factor properties. We showed
that the constructed topology � �
��� ��� ��� � � has all the desir-
able features we listed in Section I. This topology can be con-
structed locally and is easy to maintain when the nodes move
around. The computational complexity of each node is bounded
by  !� 
 � � ��
 � , where 
 is the number of � -hop neighbors. All
our algorithms have the message complexity  !�"�$� . Moreover,
we showed that the number of messages sent by each node is
bounded by a constant. We also conducted extensive simula-
tions to study the spanning ratios of these structures and the
communication cost to construct them when the nodes are ran-
domly placed in a square region. Notice that, recently, Gao, et
al. also proposed a similar method. However, their algorithms
are not communication nor computation efficient. In addition, it
is difficult to implement their clustering method.
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Fig. 10. The relation of the communication cost with the node density.

There are many interesting open problems left for further
study. Remember that, we use the following assumptions on
wireless network model: omni-directional antenna, single trans-
mission received by all nodes within the vicinity of the trans-
mitter, all nodes have the same transmission range, nodes being
static for a reasonable period of time. The problem will be-
come much more complicated if we relax some of these assump-
tions, although some preliminary follow-up works [37], [38],
[39] were done recently. Another interesting open problem is to
study the dynamic updating of the planar backbone efficiently
when nodes are moving in a reasonable speed. Further future
work is to lower the constant bounds given in this paper using a
more tighter analysis.
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