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Abstract—Several localized routing protocols [1] guarantee the delivery
of the packets when the underlying network topology is the Delaunay tri-
angulation of all wireless nodes. However, it is expensive to construct the
Delaunay triangulation in a distributed manner. Given a set of wireless
nodes, we more accurately model the network as a unit-disk graph UDG,
in which a link in between two nodes exist only if the distance in between
them isat most the maximum transmission range.

Given a graph H, a spanning subgraph G of H is a t-spanner if the
length of the shortest path connecting any two pointsin G isno more than
t times the length of the shortest path connecting the two pointsin H. In
this paper, we present a novel localized networking protocol that constructs
aplanar 2.5-spanner of UDG, called thelocalized Delaunay triangulation,
as network topology. It contains all edges that are both in the unit-disk
graph and the Delaunay triangulation of all wireless nodes.

Our experiments show that the delivery rates of existing localized rout-
ing protocols are increased when localized Delaunay triangulation is used
instead of several previously proposed topologies. Thetotal communication
cost of our networking protocol is O(nlogn) bits. Moreover, the computa-
tion cost of each node u is O(d,, log d.,), where d,, isthe number of 1-hop
neighborsof u in UDG.

|. INTRODUCTION

In a wireless ad hoc network (or sensor network), assume
that all wireless nodes have distinctive identities and each static
wireless node knows its position information, either through a
low-power Global Position System (GPS) receiver or through
some other way. For simplicity, we also assume that all wire-
less nodes have the same maximum transmission range and we
normalize it to one unit. By a simple broadcasting, each node u
can gather the location information of al nodeswithin the trans-
mission range of u. Consequently, all wireless nodes S together
define a unit-disk graph UDG(S), which has an edge uv if and
only if the Euclidean distance ||uv|| between « and v islessthan
one unit.

One of the central challengesin the design of ad hocnetworks
is the development of dynamic routing protocols that can effi-
ciently find routes between two communication nodes. In recent
years, avariety of routing protocols[2], [3], [4], [5], [6], [7], [8]
targeted specifically for ad hocenvironment have been devel-
oped. For the review of the state of the art routing protocols, see
surveys by E. Royer and C. Toh [9] and by S. Ramanathan and
M. Steenstrup [10].

Several researchers proposed another set of routing proto-
cols, namely the localized routing, which select the next node
to forward the packets based on the information in the packet
header, and the position of its local neighbors. Bose and Morin
[1] showed that several localized routing protocols guarantee to
deliver the packets if the underlying network topology is the

Department of Computer Science, Illinois Institute of Technology, Chicago,
IL 60616. Email {xli, calinesc, wan}@cs.it.edu. The research of the second
author was performed in part while visiting the Department of Combinatorics
and Optimization of University of Waterloo, and partially supported by NSERC
research grants.

Gruia Cdlinescu*

Peng-Jun Wan*

Delaunay triangulation of all wireless nodes. They also gave
a localized routing protocol based on the Delaunay triangula-
tion such that the total distance traveled by the packet is no
more than a small constant factor of the distance between the
source and the destination. However, it is expensive to construct
the Delaunay triangulation in a distributed manner, and routing
based on it might not be possible since the Delaunay triangu-
lation can contain links longer than one unit. Then, several re-
searchers proposed to use some planar network topologies that
can be constructed efficiently in a distributed manner. Lin et al.
[11], Bose at al[12] and Karp et al. [13] proposed to use the
Gabriel graph. Routing according to the right hand rule, which
guarantees delivery in planar graphs [1], is used when simple
greedy-based routing heuristics fail.

Given agraph H, a spanning subgraph G of H isat-spanner
if the length of the shortest path connecting any two pointsin G
isno morethan ¢ timesthe length of the shortest path connecting
the two pointsin H. In this paper, we design a localized algo-
rithm that constructs a planar ¢-spanner for the unit-disk graph
UDG(S), such that some of the localized routing protocols can
be applied on it. We obtain a value of approximately 2.5 for the
constant ¢.

Given aset of points S, let UDel(.S), the unit Delaunay trian
gulation, be the graph obtained by removing all edgesof Del(.S)
that are longer than one unit. We first prove that UDel(S) isa
t-spanner of the unit-disk graph UDG(.S). Wethen give alocal-
ized algorithm that constructsagraph, called localized Delaunay
graph LDel™(S). We provethat LDel™) (S) is a t-spanner by
showing that it is also a supergraph of UDel(S). We then show
how to make the graph LDel!)(S) planar efficiently. The total
communication cost of our approach is O(nlogn) bits, which
is optimal within a constant factor.

Bose et al. [12] and Karp et al. [13] proposed similar algo-
rithms that route the packets using the Gabriel graph to guaran-
teethe delivery. Applying the routing methods proposedin [12],
[13] on the planarized localized Delaunay graph LDel™V(S), a
better performance is expected because the localized Delaunay
triangulation is denser compared to the Gabriel graph, but still
with O(n) edges. Our simulations show that the delivery rates of
several localized routing protocols are increased when the local -
ized Delaunay triangulation is used. In our experiments, several
simple local routing heuristics, applied on the localized Delau-
nay triangulation, have always successfully delivered the pack-
ets, while other heuristics were successful in over 90% of the
random instances. Moreover, because the constructed topology
is planar, alocalized routing algorithm using the right hand rule
guarantees the delivery of the packets from source node to the
destination when simple heuristics fail. The experiments also
show that several localized routing algorithms (notably, com-



pass routing [ 14] and greedy routing) also result in a path whose
length is within a small constant factor of the shortest path; we
aready know such a path exists since the localized Delaunay
triangulation is a t-spanner.

The remaining of the paper is organized as follows. In Sec-
tion Il, we review some structures that are often used to con-
struct the topology for wireless networks. In Section 11, we
show that the unit Delaunay triangulation UDel is a t-spanner,
where t = 1+2—\/57r. We also claim that ¢ can be reduced to
%gvr ~ 2.42. We define localized Delaunay triangulations
LDel™ (S) and study their properties in Section IV. Section
V presents the first localized efficient algorithm that constructs
aplanar graph, PLDel(S), which contains UDel(.S) as a sub-
graph. Thus, PLDel(S) is aplanar t-spanner. The correctness
of our algorithm is justified in the Appendix. We demonstrate
the effectiveness of the localized Delaunay triangulation in Sec-
tion VI by studying the performance of various routing proto-
cols on it. We conclude our paper and discuss possible future
research directionsin Section V1.

Il. PRELIMINARIES
A. Voronoi Diagram and Delaunay Triangulation

We begin with definitions of the Voronoi diagram and the De-
launay triangulation [15]. We assume that all wireless nodes are
given as aset S of n nodes in atwo dimensional space. Each
node has some computational power. We al so assume that there
are no four nodes of S that are co-circular. A triangulation of S
is a Delaunay triangulationdenoted by Del(S), if the circum-
circle of each of its triangles does not contain any other nodes
of S initsinterior. A triangle is caled the Delaunay triangle
if its circumcircle is empty of nodes of S. The Voronoi region
denoted by Vor(p), of anode p in S is the collection of two
dimensional points such that every point is closer to p than to
any other node of S. The Voronoi diagramfor .S is the union
of al Voronoi regions Vor(p), wherep € S. The Delaunay tri-
angulation Del(S) isaso the dual of the Voronoi diagram: two
nodes p and ¢ are connected in Del(SS) if and only if Vor(p)
and Vor(q) share acommon boundary. The shared boundary of
two Voronoi regions Vor(p) and Vor(q) ison the perpendicular
bisector line of segment pq. The boundary segment of a Voronoi
region is called the Voronoi edge The intersection point of two
Voronoi edge is called the Voronoi vertex Each Voronoi vertex
isthe circumcenter of some Delaunay triangle.

B. Spanner

Constructing a spanner of a graph has been well studied. Let
I (u, v) be the shortest path connecting v and v in a weighted
graph G, and || T1¢ (u, v)|| bethe length of T1¢ (u, v).

Thenagraph G isat-spanner of agraph H if V(G) = V(H)
and, for any two nodes v and v of V(H), |y (u,v)|| <
I (u,v)|| < t||Hg(u,v)|. With H understood, we also call
t the length stretch factoof the spanner G. There are sev-
eral geometrical structures which are proved to be t-spanners
for the Euclidean complete graph K (S) of a point set .S. For
example, the Yao graph [16] and the #-graph [17] have been
shown to be t-spanners. However, both these two geometrical

structures are not guaranteed to be planar in two dimensions.
Given a set of points S, it is well-known that the Delaunay tri-
angulation Del(S) is a planar t-spanner of the completed Eu-
clidean graph K (.S). Thisisfirst proved by Dobkin, Friedman
and Supowit [18] with upper bound 157 ~ 5.08 on t. Then
Kevin and Gutwin [19], [17] improved the upper bound on ¢ to
be 27 _ — %w ~ 2.42. The best known lower bound on ¢ is

3cos %

/2, which is due to Chew [20].

C. Proximity Graphs

Let S be a set of n wireless nodes distributed in a two-
dimensional plane. These nodes induce a unit-disk graph
UDG(S) inwhich thereis an edge uv if and only if ||uv| < 1.
Various proximity subgraphs of the unit-disk graph can be de-
fined [21], [22], [23], [24], [16].

For convenience, let disk(u,v) be the closed disk with di-
ameter uv, let disk(u,v,w) be the circumcircle defined by the
triangle Auvw, and let B(u,r) be the circle centered at u with
radiusr. Let z(v) and y(v) be the value of the z-coordinate and
y-coordinate of a node v respectively.

« The constrained relative neighborhood grapdenoted by
RNG(S), consists of all edgesuwv suchthat |juv|| < 1 andthere
isno point w € S suchthat [|uw| < ||uv]|, and ||lwy|| < ||uv]|.
« The constrained Gabriel graphdenoted by GG(S), consists
of al edges uv such that ||uv|| < 1 and disk(u,v) does not
contain any node from S.

« The constrained Yao graptvith an integer parameter & > 6,
denoted by Y_ka(S), is defined as follows. At each node w,
any k equal-separated rays originated at v define k cones. In
each cone, choose the closest node v to « with distance at most
one, if there is any, and add a directed link . Ties are broken
arbitrarily. Let YG(S) be the undirected graph obtained by

ignoring the direction of each link in Y‘ka(S).

Bose et al. [25] showed that the length stretch factor of
RNG(V) is a most n — 1 and the length stretch factor of
GG(V) is a most 2= Several papers [26], [27], [21]
showed that the Yao graph Y G (V') has length stretch factor at
most ﬁ However, the Yao graph is not guaranteed to be
planar. The relative neighborhood graph and the Gabriel graph
are planar graphs, but they are not a spanner for the unit-disk
graph. In this paper, we are interested in locally constructing a
planar graph that is a spanner of the unit-disk graph. In our ex-
periments, routing packets using several smple localized rout-
ing algorithms such as compass routing on this localized De-
launay triangulation was aways or aimost aways successful,
improving on routing on the Gabriel graph or the relative neigh-
borhood graph.

D. Localized Routing Algorithms

Let Vi (u) bethe set of nodes of S that are within & hops dis-
tance of  in the unit-disk graph UDG(S). A nodev € Ny (u)
iscalled the k-neighbor of the node ». Usually, here the constant
kis1 or 2, which will be omitted if it is clear from the context.
In this paper, we always assume that each node v of S knowsits
location and identity. Then, after one broadcast by every node,



each node v of S knows the location and identity information of
al nodesin Ny (u). The total communication cost of all nodes
to do s0isO(nlogn) bits.

A distributed algorithm is alocalized algorithmif it uses only
the information of al k-local nodes of each node plus the in-
formation of a constant number of additional nodes. In this pa-
per, we concentrate on the case k = 1. That is, a node uses
only the information of the 1-hop neighbors. A graph G can be
constructed locally in the ad hoc wireless environment if each
wireless node u can compute the edges of G incident on u by
using only the location information of all its k-local nodes. In
this paper, we design alocalized algorithm that constructs apla-
nar t-spanner for the unit-disk graph U DG(S) such that some
localized routing protocols can be applied on it.

Assume a packet is currently at node u, and the destination
nodeist. Severa localized routing algorithms that just use the
local information of w to route packets (i.e., find the next node
v of u) were developed. Kranakis et al. [14] proposed to use
the compass routing, which basically finds the next relay node
v such that the angle Zvut is the smallest among al neighbors
of w in agiven topology. Lin et al. [11], Bose et al. [12], and
Karp et al. [13] proposed similar greedy routing methods, in
which node « forwards the packet to its neighbor v in a given
topology which is closest to ¢. Recently, Bose at al.[28], [1],
[12] proposed several localized routing agorithm that route a
packet from a source node s to adestination node t. Specifically,
Bose and Morin [1] proposed alocalized routing method based
on the Delaunay triangulation. They showed that the distance
traveled by the packet is within a small constant factor of the
distance between s and ¢t. They aso proved that the compass
routing and the greedy routing method guarantee to deliver the
packet if the Delaunay triangulation is used.

[11. GRAPH UDel(S) ISA SPANNER

In this section, we prove that UDel(S) is a spanner with
stretch factor ¢ = #w. We claim the stronger result that

UDel(S) isa %w-spanner, but omit the proof due to space
limitations.

Dobkin, Friedman and Supowit proved that, for any two
points « and v of a point set .S, the shortest path connecting «
and v in the Delaunay triangulation Del(.S) has length no more
than 1+2—‘/57r||uv||. However, it is not appropriate to require the
construction of the Delaunay triangulation in the wireless com-
munication environment because of the possible massive com-
munications it requires. Therefore, we consider the following
subset of the Delaunay triangulation. Let UDel(S) be the graph
by removing all edges of Del(.S) that are longer than one unit,
i.e., UDel(S) = Del(S) N UDG(S). Cdl UDel(S) the unit
Delaunay triangulation For the remainder of this section, we
will prove that UDel(S) is a t-spanner of the unit-disk graph
UDG(S).

Our proof is based on the remarkable proof by Dobkin et
al.[18]. They proved that the Delaunay triangulation is a t-
spanner by constructing apath I s (u, v) in Del(S) with length
no more 1”LQ—‘/57T||uv||. The constructed path consists of at most

two parts: oneis some direct DT paths, the other is some short-
cut subpaths.

Given two nodes v and v, let by = wu, b1, ba, -+, b1,
b, = v be the nodes corresponding to the sequence of Voronoi
regions traversed by walking from w to v aong the segment uv.
See Figure 1 for anillustration. If a Voronoi edge or a VVoronoi
vertex happensto lie on the segment uwv, then choose the Voronoi
region lying above uv. Assume that the line uv is the z-axis.
The sequence of nodes b;, 0 < i < m, defines a path from
to v. In general, they [18] refer to the path constructed this way
between some nodes » and v asthe direct DT pathfrom u to v.
Then Dobkin et al. proved the following lemma.

Fig. 1. Left: Thedirect DT path ub; babsbsv between u and v shown by dashed
lines; Right: The short cut from node b; to node b;.

Lemma 1:For dl ¢, 0 < ¢ < m, b; is contained within or on
the boundary of disk(u,v).

A stronger result is that al nodes b;, 0 < i < m, are on
the boundary of the union of al circles C;, 1 < i < m, where
C; = B(pi, |lp:b;||) and p; is the point on the z-axis that also
lies on the boundary between the Voronoi regions Vor(b;—1)
and Vor(b;). The boundary of the union of al circles C; has
length at most 7 - ||uv||; For details, see [18]. Thisimpliesthat if
adirect DT path always lies above (or below) uv, then itslength
isat most 7 - [[uvl|. If the direct DT path connecting v and v
is lying entirely above or entirely below the segment wwv, it is
called one-side¢isee [18].

The Lemma 1 also implies that the distance ||b;b, || between
any two nodes b; and b; isat most ||uwv||. Consequently, we have
the following corollary.

Corollary 2: All edges of the direct DT path connecting two
nodes s and ¢ have length at most ||st||.

The path constructed by Dobkin et al. uses the direct DT
path as long as it is above the z-axis. Assume that the path
constructed so far has brought us to some node b; such that
y(b;) > 0, b; # v, and y(b;11) < 0. Let j be the least inte-
ger larger than ¢ such that y(b;) > 0. Notice that here j exists
because y(b,,) = 0 by assuming that v isthe z-axis. Then the
path constructed by Dobkin et al. uses either the direct DT path
to b; or takes ashortcutas follows'. Construct the lower convex
hull 29 = b;, 21, - - -, z1—1, 21 = b; of thefollowing set of nodes:

{geS|x:i) <x(q) <x(b;) andy(q) >0
and ¢ liesunder b;b; }.

1 See [18] for more detail about the condition when to choose the direct DT
path from b; to b; and when to choose the shortcut path from b; to b;.



Notice that except zo and z;, al nodes zy, - - -, z;_; do not be-
longto {b1, ba, - - -, bym—1, b } @nd the edges of the convex hull
are not on the direct DT path from u to v. The shortcut path
consists of taking the direct DT path from z;, to z;; for each
0 <k <1—1,whichisshownto beononesideof line z; 21
if the shortcut path is chosen.

Dobkin et al. then proved that the length of the path traversed
from u to v haslength at most ”T‘/gwﬂuv”. Similar to the direct
DT path, we prove the following lemma.

Lemma 3:All edges of the shortcut path connecting two
nodes b; and b; have length at most |juv]|.
Proof: Figure 1 gives intuition on the proof that follows.
Let b}, b; be the projection points of nodes b; and b; on the z-
axis (segment uv), respectively. Then from the definition of 2z,
Z1, *++, Zi—1, 21, We know that z;,, 0 < k < [ liesinside or
on the boundary of the trapezoid b;b;0’;b;, which lies inside the
disk(u,v). Conseguently, edge zz11, foreach0 < k <1 -1
has length at most ||uv|. From Corollary 2, we know that all
edges of the direct DT path from z, to z;, 1 have length at most

||zk 251 |- Then thelemmafollows. |
Consequently, we have the following lemma.

Lemma 4:Let I1,(u, v) be the path constructed by Dobkin
et al. from u to v in the Delaunay triangulation. All edgesin
ILyss(u,v) have length at most |juv||.

Then the following theorem is straightforward.

Theorem 5:For any two nodes » and v of .S,

T upers)(u, v)|| < ! +2\/57T Mypacs) (u, v)]-

Proof: Assumellype(s)(u,v) = vovy - - - vp—1vp, Where
u = vg and v = vy, is the shortest path connecting « and v
in UDG(S). Then for each link v;v;41, 0 < i < h — 1, there
is apath Il pe;(s)(vi, viy1) in the Delaunay triangulation (con-
structed using the method proposed in [18]) Del(.S) with length
at most 1557 - [[vjv;41 ]| Notice that [[v;vi41]] < 1 and all
edgesinIlpe(s)(vi, vi+1) havelength at most ||v;v4 1 ||. There-
fore each path 115y (vi,vip1), 0 < 4 < h — 1, isdsoin
the graph UDel(S). Then the path formed by concatenating all
paths I pey(s)(vi, vig1), @ = 0,---,h — 1 has length at most

L5 | ypes) (u, v) | The theorem follows. [ |
Kevin and Gutwin [19], [17] showed that the Delaunay trian-
gulation is a t-spanner for a constant t = 27~ = #w ~

2.42. They proved this using induction on the order of the
lengths of all pair of nodes (from the shortest to the longest). We
can show that the path connecting nodes « and v constructed by
the method given in [19], [17] also satisfies that all edges of that
path is shorter than ||uv||. Due to space limitations, we omit the
proof. Consequently, we have:

Theorem 6: UDel(S) isa #w—spanner of UDG.

IV. LOCAL DELAUNAY TRIANGULATION

In this section, we will define a new topology, called loca
Delaunay triangulation, which can be constructed in alocalized

manner. We first introduce some geometric structures and no-
tations to be used in this section. All angles are measured in
radians and take values in the range [0, 7r]. For any three points
p1, p2, and ps, the angle between the two rays pp, and pips
isdenoted by Zp3p1p2 Or Zpopyps. The closedinfinite areain-
sidetheangle /psp1p2, asoreferred to asa sector, isdenoted by
Ap3p1p2. Thetriangle determined by py, p2, and ps is denoted
by Apipaps.

An edge uv is called Gabriel edgef ||uv|| < 1 and the open
disk using uv as diameter does not contain any node from S.
It is well known [15] that the constrained Gabriel graph is a
subgraph of the Delaunay triangulation. Recall that a triangle
Auvw belongs to the Delaunay triangulation Del(.S) if its cir-
cumcircle disk(u, v, w) does not contain any other node of .S in
its interior. Here we often assume that there are no four nodes
of S co-circumcircle. It is easy to show that nodes u, v and
w together can not decide if they can form atriangle Auvw in
Del(S) by using only their local information. We say a node
can see another node y if ||zy|| < 1. Thefollowing definition is
one of the key ingredients of our localized algorithm.

Definition 1: A triangle Auvw satisfies k-localized Delau-
nay propertyif theinterior of disk(u, v, w) doesnot contain any
node of S that is a k-neighbor of u, v, or w; and all edges of
the triangle Auvw have length no more than one unit. Triangle
Auvw is called ak-localized Delaunay triangle

Triangle Auvw is caled localized Delaunayif it is a k-
localized Delaunay triangléor someinteger k& > 1.

Definition 2: The k-localized Delaunay graplover a node
set S, denoted by LDel® (5), hasexactly al Gabriel edgesand
edges of all k-localized Delaunay triangles.

When it is clear from the context, we will omit the integer k
in our notation of LDel*) (S). Our original conjecture was that
LDel™ (S) is aplanar graph and thus we can easily construct
a planar ¢t-spanner of UDG(S) by using a localized approach.
Unfortunately, as we will show later, the edges of the graph
LDel™V(S) may intersect. While LDel™)(S) is a t-spanner,
its construction is a little bit more complicated than some other
non-planar t-spanners, such as the Yao structure [16] and the 6-
graph [17]. But we can make LDel™" (S) planar efficiently, a
result we describe later in this paper.

Notice that the k-localized Delaunay grapti.Del®) (S) over
a node set S satisfies a monotone property: LDel(k“)(S) is
always a subgraph of LDel® () for any positive integer k.

A. LDel™W(S) may be non-planar

The definition of the 1-localized Delaunay triangle does not
prevent two triangles from intersecting or prevent a Gabriel edge
from intersecting a triangle. Figure 2 gives such an example
with 6 nodes {u,v,w,z,y, z} that LDel™(S) is not a planar
graph. Here ||uv|| = 1. Triangle Auvw isa1-localized Delau-
nay triangle. If the node ~ does not exist, edge =y is an Gabriel
edge. The triangle Auvw intersects the Gabriel edge xy if z
does not exist, otherwise it intersects the 1-localized Delaunay
triangle Azxyz.



Fig. 2. LDel)(S) isnot planar.

B. LDel'®)(S) is at-spanner

Theorem 7:Graph UDel(.S) is asubgraph of the k-localized
Delaunay graph LDel®)(S).

Proof: We prove the theorem by showing that each edge
uv of the unit Delaunay triangulation graph UDel(.S) appears
in the localized Delaunay graph LDel*)(S). For each edge uv
of UDel(S), the following five cases are possible (see Figure 3
for illustrations).

Case 2.1 Case 2.2 Case3

2w

Case 4 Case5.1

Fig. 3. The neighborhood configuration of edge uv. Dashed lines (solid lines)
denote edges with length > 1(< 1).

Case5.2

Case 1: thereisatriangle Auvw incident on uv such that all
edges of Auvw have length at most one unit. Because the cir-
cumcircle disk(u, v, w) isempty of nodes of S, triangle Auvw
satisfies the k-localized Delaunay property and thus edge uv be-
longsto LDel™® ().

Case 2: each of the two triangles incident on uv has only one
edge with length larger than one unit.

Case 3: onetriangle Auwvw incident on uv has only one edge
with length larger than one unit and the other triangle Auvz has
two edges with length larger than one unit.

Case 4: each of the two trianglesincident on uv hastwo edges
with length larger than one unit.

We prove the cases 2, 3, and 4 together. Assume the two tri-
angles are Auvw and uvz. Let Hy, ,, be the half-plane that is
divided by uv and contains node w. Then edge wv is not the
longest edge in triangle Auwvw and thus the angle Zuwv < Z;
for an illustration, see Figure 4. This implies that the circum-
circle disk(u,v,w) contains disk(u,v) N Hyy .. Similarly,
the other half of disk(u, v) is contained inside the circumcircle
disk(u,v,z). Notice that both disk(u,v,w) and disk(u,v, z)
do not contain any node of S inside. It implies that disk(u, v)
isempty, i.e., edge uv is a Gabriel edge. Consequently, edge uv
will beinserted to LDel® ().

Case 5: thereis only one triangle incident on wv and it has at
least one edge with length larger than one unit. Similar to cases

Fig. 4. Gabriel edges.

2-4, we can show that disk (u, v) isempty and therefore edge uv
will beinserted to LDel*)(S) asa Gabriel edge. |

C. LDel™™(S), k > 2, is planar

The above proof implies that each edge uv of UDel(S) is
either a Gabriel edge or forms a 1-localized Delaunay triangle
with some edges from UDel(S). Any two edgesin UDel(S) do
not intersect. Thus, each possible intersection in LDel™ () is
caused by at least onelocalized Delaunay triangle. We begin the
proof that LDel™™ (), k > 2, is planar by giving some simple
facts and lemmas.

Lemma 8:If an edge zy intersects a localized Delaunay tri-
angle Auvw, then z and y can not be both inside the circumcir-
cle disk(u, v, w).

Proof: For the sake of contradiction, assume that = and

y are both inside disk(u, v, w). Notice that disk(u,v,w) isdi-
vided into four regions by the triangle Auvw. Let uv, vw, and
wu be the three fan regions defined by edges uv, vw, and wu
respectively. First of all, neither = nor y can be inside the trian-
gle Auvw. Assumethat = isinsidethe region uv and y isinside
the region vw. Then one of the angles Zuwwv and Zvuw isless
than 7, which implies that one of the angle Zuzv and Zvyw is
larger than 7. Thus, either vy < vw < 1orve < vu < 1.
In other words, the disk(u, v, w) contains a node from Ny (v).
This contradicts that Auvw is a k-localized Delaunay triangle.
|

Lemma 9:If a Gabriel edge xy intersects a localized Delau-
nay triangle Auvw, then 2 and y can not be both outside the
circumcircle disk(u, v, w).

Proof: Let ¢ be the circumcenter of the triangle Auvw.
Then at least one of the u, v, and w must be on the different side
of line xy with the center ¢; Let's say u. If both x and y are
outside, then Zyuxr > 7. Thus, u isinside disk(x,y), which
contradicts that zy is a Gabriel edge. |

Theorem 10:Assume two triangles Auvw and Azyz intro-
duced to LDel®) (), k > 1, intersect, then either disk (u, v, w)
contains at least one of the nodes of {z, y, 2z} or disk(z,y, z)
contains at least one of the nodes of {u, v, w}.

See the appendix for the proof. The above theorem guaran-
teesthat if two k-localized Delaunay triangles Auvw and Axyz
intersect, then either disk(u,v,w) or disk(z,y, z) violates the
Delaunay property by just considering the nodes {u, v, w, z, ¥,
=z}. We then show that LDel'®(S) is aplanar graph.

Theorem 11:LDel®(S) is aplanar graph.
Proof: Notice that two Gabriel edges do not intersect.
Then every intersection must involves alocalized Delaunay tri-



angle. Assume that an edge zy of LDel'®(S) intersects a lo-
calized Delaunay triangle Auvw. Edge xy is either a Gabriel
edge or an edge of alocalized Delaunay triangle, say Axyz. If
xy isaGabriel edge, then Lemma 9 impliesthat either z or y is
inside the disk(u,v,w), say y. If zy is an edge of alocalized
Delaunay triangle Azyz, then Theorem 10 impliesthat either =
or y isinside the disk(u,v,w), say y. The triangle inequality
implies that

[zull + [lyoll < flzyll + [[uv] < 2.

The existence of the 2-localized Delaunay triangle Auvw im-
pliesthat y ¢ Ni(u) U Ni(v) U Ny(w). Thus, [|yv| > 1,
which implies that ||zu|| < 1. In other words, z € Nj(u).
Consequently, y € No(u) because of the path yxzu in the unit-
disk graph UDG(.S), which contradicts to the existence of 2-
localized Delaunay triangle Auvw. Thetheorem follows. N

We defined a sequence of localized Delaunay graphs
LDel™™(S), where 1 < k < n. All graphs are ¢-spanner of
the unit-disk graph with the following properties:

o UDel(S) C LDel™(8),forall 1 < k <n;

o LDel**V(8) C LDel™ (5),forall 1 < k < n;

o LDel'™(S) are planar graphsfor al 2 < k < n;

o LDel™(S) isnot aways planar.

D. LDel(S) has thicknesg

In this subsection, we claim that LDel'" (S) has thickness
two, or in other words, its edges can be partitioned in two planar
graphs. From Euler’s formula, it follows that a simple planar
graph with n nodes has at most 3n — 6 edges, and therefore
LDel™V(S) has at most 6n edges. Due to space limitations, we
omit the proof.

Theorem 12:Graph LDel!) (S) has thickness 2.

V. LOCALIZED ALGORITHM

In this section, we study how to locally construct a planar
t-spanner of UDG(S). We assume that the identity of a node
u can be represented by O(logn) bits and its location can be
represented by O(1) bits.

Although the graph UDel(S) is a t-spanner for UDG(S),
we do not know how to construct it locally. We can con-
struct LDel®(S), which is guaranteed to be a planar spanner
of UDel(S), but with a total communication cost of this ap-
proach is O(mlogn) bits, where m is the number of edgesin
UDG(S) and could be aslarge as O(n?). In order to reduce the
total communication cost to O(n log n) bits, we do not construct
LDel'®(S), and instead we extract a planar graph PLDel(S)
out of LDel™(59).

A. Algorithm

Recall that LDel™™(S) is not guaranteed to be aplanar graph.
We propose an algorithm that constructs LDel™)(S) and then
makes it a planar graph efficiently. The final graph still contains
UDel(S) asasubgraph. Thus, it is a t-spanner of the unit-disk
graph UDG(S).

In the following, the order of three nodesin atriangle isim-
meaterial.

Algorithm 1: Localized Unit Delaunay Triangulation

1. Eachwireless node u broadcasts itsidentity and location and
listens to the messages from other nodes.

2. Assume that node u gathered the location information of
Ny (u). 1t computes the Delaunay triangulation Del(Ny(u)) of
its 1-neighbors Ny (u), including u itself.

3. For each edge uv of Del(Ny(u)), let Avvw and Auvz be
two triangles incident on wv. Edge uv isa Gabriel edge if both
angles Zuwv and Zuzv are less than w/2. Node u marks al
Gabriel edgesiv, which will never be deleted.

4. Eachnodew findsall triangles Auvw from Del(Ny (u)) such
that all three edges of Auvw have length at most one unit. If an-
gle Zwuv > %, node u broadcasts amessage proposal(u, v, w)
to form a 1-localized Delaunay triangle Auvw in LDel™ (V),
and listens to the messages from other nodes.

5. When a node u receives a message proposal(u, v, w), u ac-
cepts the proposal of constructing Auvw if Auvw belongs to
the Delaunay triangulation Del(N;(u)) by broadcasting mes-
sage accept(u, v, w); otherwise, it rejects the proposa by
broadcasting message reject(u, v, w).

6. A node u adds the edges uv and uw to its set of incident
edges if the triangle Auvw is in the Delaunay triangulation
Del(N1(u)) and both v and w have sent either accept(u, v, w)
or proposal(u, v, w).

We first claim that the graph constructed by the above al-
gorithm is LDel™(S). Indeed, for each triangle Auvw of
LDelV(S), one of itsinterior angle is at least 7/3 and Auvw
isin Del(Ny(u)), Del(N1(v)) and Del(N;(w)). So one of
the nodes amongst {u, v, w} will broadcast the message pro-
posal(u, v, w) to form a 1-localized Delaunay triangle Auvw.

As Del(N;(u)) isaplanar graph, and aproposal is made only
if Zwuv > %, node u broadcasts at most 6 proposals. And each
proposal is replied by at most two nodes. Therefore, the total
communication cost is O(nlogn) bits. The above algorithm
also shows that LDelV(S) has O(n) edges, which we know
from Theorem 12. Putting together the arguments above, we
have:

Theorem 13:Algorithm 1 constructs LDel)(S) with total
communication cost O(n logn).

We then propose an algorithm to extract from LDel™V(S) a
planar subgraph.
Algorithm 2: Planarize LDel™(S)

1. Each wireless node u broadcasts the Gabriel edges incident
on u and the triangles Auvw of LDel™(S) and listens to the
messages from other nodes.

2. Assume node u gathered the Gabriel edge and 1-local De-
launay triangles information of all nodes from N, (u). For two
intersected triangles Auvw and Axyz known by u, node u re-
moves the triangle Auvw if its circumcircle contains a node
from{z,y, z}.

3. Each wireless node u broadcasts all the triangles incident on
u which it has not removed in the previous step, and listens to
the broadcasting by other nodes.

4. Node u keepsthe edge uv initsset of incident edgesif itisa
Gabriel edge, or if thereis atriangle Auvw such that u, v, and
w have all announced they have not removed the triangle Auvw
in Step 2.



We denote the graph extracted by the algorithm above by
PLDel(S). Note that any triangle of LDel™™(S) not kept
in the last step of the Planarization Algorithm is not a trian-
gle of LDel'®(S), and therefore PLDel(S) is a supergraph of
LDel™®(S). Thus, by using Theorem 7, we have:

UDel(S) C LDel®(S) C PLDel(S) C LDel™ (S)

Similar to the proof that LDel'®)(S) is a planar graph, we
can show that our agorithm does generate a planar graph
PLDel(S). Dueto space limitation, we omit the proof.

The total communication cost to construct the graph
PLDel(S) isaO(logn) timesthe number of edges of the graph
LDel™M (S), which by Theorem 12is O(n). Putting together all
the arguments above and Theorem 6, we have:

Theorem 14:PLDel(S) isplanar 43 _spanner of UDG(S),
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and can be constructed with total communication cost

O(nlogn).

V1. ROUTING

We discuss how to route packets on the constructed graph.
Recently, Bose and Morin [1] first proposed a localized routing
algorithm that routes a packet from a source node s to a destina
tion node ¢t. Here arouting algorithm is localized if each relay-
ing node decides to which node to forward the packet only based
on the following information: the source node s, the destination
node ¢, the current node « and al nodes of Ny (u). We only
use k = 1. Sometimes, the algorithm may use at most a con-
stant number of bits of additional information. Their algorithm
is based on the remarkable proof of Dobkin et al. [18] that the
Delaunay triangulation is a t-spanner of the complete Euclidean
graph. Bose and Morin [1] showed how to find another path lo-
cally with length no more than IT4(u, v). However their algo-
rithm has amajor deficiency by requiring the construction of the
Delaunay triangulation and the Voronoi diagram of all wireless
nodes, which could be very expensive in distributed computing.

Bose et al. [12] proposed another agorithm that routes the
packets using the Gabriel graph to guarantee the delivery. No-
tice that the Gabriel graph is a subgraph of PLDel(S). Thus, if
we apply the routing method proposed in [12] on the newly pro-
posed planar graph PLDel(S), we expect to achieve better per-
formance because PLDel(S) is denser than the Gabriel graph
(but still with O(n) edges). The constructed local Delaunay tri-
angulation not only guarantees that the length of the shortest
path connecting any two wireless nodes is at most a constant
factor of the minimum in the unit-disk graph, it also guarantees
that the energy consumed by the path is also minimum, as it
includes the Gabriel graph (see [29], [21]). Moreover, because
the constructed topology is planar, then a localized routing al-
gorithm using the right hand rule guarantees the delivery of the
packets from source node to the destination node.

We study the following routing agorithms on the graphs pro-
posed in this paper.

Compass Routind. et ¢ be the destination node. Current node
u finds the next relay node v such that the angle Zvut is the

Most Forwarding

Nearest Neighbor
Fig. 5. Shaded areais empty and v is next node.

Farthest Neighbor

smallest among all neighbors of v in a given topology. See[14].

Random Compass Routirlget v be the current node and ¢ be
the destination node. Let v; be the node on the above of line ut
such that Zv;ut isthe smallest among all such neighbors of w.
Similarly, we define v, to be nodes below line ut that minimizes
the angle Zvout. Then node w randomly choose vy or vs to
forward the packet. Seg[14].

Greedy RoutinglL et ¢ be the destination node. Current node
finds the next relay node v such that the distance ||vt|| is the
smallest among all neighbors of « in agiven topology. See[12].

Most Forwarding Routing (MFR)Current node « finds the next
relay node v such that ||v’¢|| is the smallest among all neigh-
bors of v in a given topology, where v’ is the projection of v on
segment ut. See[11].

Nearest Neighbor Routing (NNpiven a parameter angle «,
node v finds the nearest node v as forwarding node among all
neighbors of « in agiven topology such that Zvut < a.

Farthest Neighbor Routing (FNJ5iven a parameter angle «,
node « finds the farthest node v as forwarding node among all
neighbors of « in agiven topology such that Zvut < a.

Noticethat it is shown in [12], [14] that the compass routing,
random compass routing and the greedy routing guarantee to de-
liver the packets from the source to the destination if Delaunay
triangulation is used as network topology. They proved this by
showing that the distance from the selected forwarding node v
to the destination node ¢ is less than the distance from current
node u to t. However, the same proof cannot be carried over
when the network topology is Yao graph, Gabriel graph, relative
neighborhood graph, and the localized Delaunay triangulation.
When the underlying network topology is a planar graph, the
right hand rule is often used to guarantee the packet delivery
after simple localized routing heuristics fail [12], [11], [13].

We present our experimental results of various routing meth-
ods on different network topologies. Figure 6 illustrates some
network topologies discussed in this paper. Recall that Gabriel
graph, relative neighborhood graph, Delaunay triangulation,
LDel'®(S), and PLDel(S) are always planar graphs. The Yao
structure, Delaunay triangulation, LDel'®(S), and PLDel(S)
are dways at-spanner of the unit-disk graph. We use integer pa-
rameter k£ = 8 in constructing the Yao graph. In the experimen-
tal results presented here, we choosetotal n = 50 wirelessnodes
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Fig. 6. Various planar network topologies (except Yao).
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which are distributed randomly in a square area with side length
100 meters. Each node are specified by a random x-coordinate
value and arandom y-coordinate value. The transmission radius
of each wireless node is set as 30 meters. We randomly select
10% of nodes as source nodes; and for every source node, we
randomly choose 10% of nodes as destination nodes. The statis-
tics are computed over 10 different node configurations. Inter-
estingly, we found that when the underlying network topology
is Yao graph, LDel'® (S), or PLDel(S), the compass routing,
random compass routing and the greedy routing delivered the
packets in all our experiments. Table | illustrates the deliver
rates of different localized routing protocols on various network
topologies. For nearest neighbor routing and farthest neighbor
routing, we choose the angle o = 7/3. The LDel'®(S) and
PLDel(S) graphs are preferred over the Yao graph because we
can apply the right hand rule when previous simple heuristic
localized routing fails. Both [12] and [13] use the greedy rout-
ing on Gabriel graph and use the right hand rule when greedy
fails. Tablell illustrates the maximum ratios of ||TI(s, ¢)]/||st]|s
where II(s, t) isthe path traversed by the packet using different
localized routing protocols on various network topologies from
source s to destination ¢. In our experiment, we found that the
ratios || IL(s, ¢)|| /| st|| are small.

TABLEI
THE DELIVERY RATE OF DIFFERENT LOCALIZED ROUTING METHODS ON
VARIOUS NETWORK TOPOLOGIES.

| Yeo [ RNG | GG [ Del | LDe® | PLDd |

NN 98.7 | 449 | 83.2 ] 99.1 | 978 98.3
FN 97.5 | 49 | 81.7 | 92.1 97 97.6
MFR 98.5 | 785 | 96.6 | 95.2 | 96.6 99.7
Compass | 100 | 86.6 | 99.6 | 100 100 100
RndCmp | 100 | 91.7 | 99.9 | 100 100 100
Greedy 100 | 87.5 | 99.6 | 100 100 100

VIlI. CONCLUSION

It is well-known that Delaunay triangulation Del(S) is a t-
spanner of the completed graph K(S). In this paper, we first

TABLEII
THE MAXIMUM SPANNING RATIO OF DIFFERENT LOCALIZED ROUTING
METHODS ON VARIOUS NETWORK TOPOLOGIES.

\ | Yao | RNG | GG | Del | LDe® [ PLDd |

NN 1.9 2.1 1.9 | 1.7 1.8 1.9
FN 4.2 2.8 | 2.7 ] 5.2 3.4 3.1
MFR 4.8 | 32 | 24| 45 3.9 4.1
Compass | 3.3 29 | 28] 16 1.8 2.0
RndCmp | 2.7 | 3.0 | 24 | 1.7 2.0 1.8
Greedy 2.1 3.5 | 22|20 1.9 1.9

proved that the UDel(S) is a ¢-spanner of the unit-disk graph
UDG(S). We then gave alocalized algorithm that constructs a
graph, namely PLDel(S). Weproved that PLDel(S) isaplanar
graph and it is a t-spanner by showing that UDel(S) is a sub-
graph of PLDel(S). Thetotal communication cost of al nodes
of our agorithm is O(nlogn) bits. The computation cost of
each node u is O(d,, log d,,), where d,, is the number of 1-hop
neighbors of w in UDG. Our experiments showed that the de-
livery rates of existing localized routing protocols are increased
when localized Delaunay triangulation is used instead of several
previously proposed planar topologies.

We proved that the shortest path in PLDel(S) connecting any
two nodes v and v is a most a constant factor of the shortest
path connecting v and v in UDG. It remain open designing
a localized agorithm such that the path traversed by a packet
from u to v has length within a constant of the shortest path
connecting v and v in U DG.
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IX. APPENDIX

Lemma 15:1f an edge xy intersects alocalized Delaunay tri-
angle Auvw, then it intersects two edges of Auvw.

Proof: If it intersects one edge of Auvw, then either x
or y must be inside the triangle Auvw, say . Then zu <
max(uv, vw) < 1, which contradicts that Auwvw isalocalized
Delaunay triangle. |

Then we present the proof of Theorem 10.

Proof: There are three cases: triangles Auvw and Axyz
share two nodes (i.e., one edge), one node or do not share any
node.

Case 1. triangles Auvw and Azyz share one edge. We prove
that this case is impossible. For the sake of contradiction, as-
sume that it is possible and they share an edge uv. In other
words, we have two localized Delaunay triangles Auvw and
Auvz that intersect. Notice that Zuwv and Zuzv can not be
equal because we assume that no four nodes are co-circle. As-
sume that Zuwv < Zuzv. Then the circumcircle disk(u, v, w)
contains node z inside. Notice that node z € Nj(u). Thus,
triangle Auvw does not satisfy the localized Delaunay prop-
erty. It is acontradiction to the existence of triangle Auvw in
LDel™M(89).

Casel Subcase 2.1

Fig. 7. Two intersected triangles share an edge or a node.

Case 2: triangles Auvw and Azyz share one node. We also
prove that this case is impossible. For the sake of contradic-
tion, assume that it is possible and © = z. Then the existence
of the triangle Auvw implies that y and = must be outside of
disk(u, v, w) because both y and z are from N (u). Then there
are three subcases about the locations of the segment zy and 2.

Subcase 2.2 Subcase 2.3

Fig. 8. Two intersected triangles share a node.

Tamas Lukovszki, New Results on Geometric Spanners and Their Appli-

Subcase 2.1: none of the segments xy and xz intersects the
triangle Auvw. Then segment yz must intersect both wv and
uw. It can not intersect segment wv; otherwise, either w or v
isinside the triangle Azyz. Theright figure in Figure 7 illus-
trates the proof that follows. Let 2’ be the intersection point
of segment zy with disk(u,v,w), which is close to z. Let
y’ be the other intersection point of zy with the circumcircle
disk(u,v,w). Then Lzxy + Lyvz > L2'xy’ + Ly'vz' = 7.
It implies that node v is inside the circumcircle disk(zx,y, z).
Notice that zv = wv < 1. Therefore there exists a node from
Ni(x) that isinside disk(z,y, z), which contradicts that Azyz
isalocalized Delaunay triangle.

Subcase 2.2: only one edge of zy and xz that intersects the
triangle Auvw. Let's say zz. Then segment yz must inter-
sect both edges vw and vu. Otherwise v is inside the triangle
Axyz, which contradicts the existence of triangle Axyz. The
left figure in Figure 7 illustrates the proof that follows. Let 2’
be another intersection point of segment uz with disk(u, v, w).
Let 3/ be the intersection point of segment yz with the circum-
circle disk(u, v, w), whichiscloseto y. Then Zzzy + Zyvz >
Lzay' + Ly'vz > ZLzxy + Ly'vd m. It implies that
node v is inside the circumcircle disk(x,y,z). Notice that
zv = uv < 1. Therefore there exists anode from N (z) that is
inside disk(x,y, z), which contradicts that Axyz isalocaized
Delaunay triangle.

Subcase 2.3: Both segments zy and zz intersect the triangle
Auvw. The right figure in Figure 7 illustrates the proof that
follows. Let 2’ be another intersection point of segment uz with
disk(u,v,w). Let y' be another intersection point of segment
uy with the circumcircle disk (u, v, w). Then Zwuv + Zwzu +



Loyu < Lwuwv+Lwz'u+ Zvy'v = Lwuwo+ Lwz'u+ Lvz'u =
m. Itimpliesthat (Zzwz + Zayz) + (Levy + Laxzy) = 31 —
(Lwuv + Lwzu + Zvyu) > 2. Then from the pigeonhole
principle, we haveeither LZzwz+ Zxyz > wor Lxvy+Lxzy >
. Consequently, the circumcircle disk(z,y, z) of the triangle
Axyz contains either w or v in its interior. This contradicts
to that Azyz isalocalized Delaunay triangle. From the above
analysis of case 2, two intersected triangles Auvw and Azyz
can not share one common node, say u = x, becausein al three
cases, y or z must bein theinterior of the circumcircle of Auvw
andy € Ny(u) or z € Ny(u).

Case 3: triangles Auvw and Axyz do not share any node.
Without loss of generality, assume that none of the nodes of
Axyz is contained inside the circumcircle disk(u, v, w). Itis
not difficulty to show that there are only two possible subcases
asillustrated by Figure 9. We then prove that disk(z,y, z) con-
tains at least one of the nodes of u, v, and w.

/y
Subcase 3.1
Fig. 9. All or four edges of two triangles intersect.

Subcase 3.2

Subcase 3.1: all edges of Axyz and Auvw are intersected
by some edges of the other triangle. Assume that the nodes
have the order as illustrated by the left figure in Figure 9. Then
it is easy to show that all angles Zwzu, Zxuy, Luyv, Lyvz,
Zvzw, Zzwz arelessthan 7. Notice that Zwzu + Zwvu <
because z is not inside the circumcircle disk(u,v,w). Simi-
larlly Zuyv + Zuwv < 7 and Lvzw + Zvuw < w. Therefore
Zwzu+ Luyv+ Lvzw < 3m— (Lwvu+ Zuwv+ Lvuw) = 27,
Noticethat Zwxu+ Zuyv + Zvzw+ Lauy + Lyvz + Lzwx =
47. Itimpliesthat Zzuy + Zyvz + Zzwa > 27. Then we know
that at least one of the nodes of u, v, and w is contained inside
thecircumcircle disk(z, y, z) (otherwise by symmetry, similarly
we would have Zzuy + Lyvz + Zzwz < 2m). We then prove
that subcase 3.1 isimpossible. For the sake of contradiction, as-
sumethat it is possible. Then from the proof of the subcase 3.1,
either disk(u,v,w) contains one of the nodes of x, y and z; or
disk(z,y, z) contains at least one of the nodes of u, v, and w.
Without loss of generality, assume that node x is contained in
the interior of disk(u, v, w). Then Lemma8 impliesthat both y
and z are outside of disk(u,v,w). The following Figure 10 il-
lustrates the proof that follows. The existence of triangle Auvw
impliesthat |zu|| > 1, ||zv|| > 1, and ||zw]|| > 1. Notice that
|lzy|| < 1and |zz|| < 1. Let c bethe circumcenter of the trian-
gle Auvw. Here ¢ can not be x because zu > 1, zy < landy
isoutside of thecircle. Noticethat the angle Zuzv < % because
uv must be the shortest edge of triangle Auav. Consider thefol-
lowing five segments lying in theinterior of the wedge uxv: xv,
xz, zw, zy, and zu. From the pigeonhole principle, there are at
least three such segments lying on the same side of the line zc.

Fig. 10. Subcase 3.1isimpossible.

More precisely, we have either zv, 2z and 2w are on the same
sideof zc or xw, zy and zu are on the same side of zc. Without
loss of generality, assumethat the first scenario happens. Thenit
is easy to provethat ||zz|| > min(zv, zw) > 1.This contradicts
to ||zz|| < 1. Theright figure of Figure 10 illustrates the proof
using that || zv||? = ||zc||?+||cv||>—2||zc||||cv||-cos(Lzev) ,and
llcv|l = |lez’|| = ||cw]|. Therefore, the assumption that subcase
3.1lis possible does not hold.

Subcase 3.2: one edge of each triangle is not intersected by
the edges of the other triangle. We then prove that disk(z,y, 2)
contains at least one of the nodes of w, v, and w. The right
figure of Figure 9 illustrates the proof that follows. Let 2’
be the intersection point of segment zz with the circumcir-
cle disk(u,v,w), which is close to z. Let 2’ be the intersec-
tion point of segment wz with the circumcircle disk(u, v, w).
Let z” and 3’ be the two intersection points of segment zy
with the circumcircle disk(u,v,w), where z” is close to «
and 3y’ isclose to y. Then Zzzu < Z2'2’u = Z2'wu <
Zrwu,and Lwyr < Zwy'z” = Zwur” < Zwuzx.Notice
that Zyzu + Zzuzx + Zuzw + Lzwy + Zwyz = 3w.Then
(Lyzx + Lywz) + (Lzyx + Lzuz) = 31 — (Lrzu+ Lwyx +
Luzw) > 31 — (Lrwu + Lwux + Luzw) = 27. SO either
Zyzx + Lywx > w or Lzyx + Zzux > w from the pigeonhole
principle. Consequently, disk(x, y, z) contains either node w or
node u. ]



