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Abstract. Inthis paper we consider the problem of efficiently congtngcgeodesic
t-spanners. We consider finding spanners on the surface ofnaedisional poly-
hedron. If Steiner vertices are allowed on the surface optighedron, then we
are able to construct sparsspanners. If no Steiner vertices are allowed, then we
establish lower bounds on the maximum node degree, degeadithe spanning
ratio ¢ and also the total number of vertices of the polyhedron sarfée also
consider the case of the surface of a convex poly®@péth V' vertices. Using its
vertex setP and Steiner points, we can construgtspanner with a constant de-
gree and weighO(M ST (U)), whereM ST'(U) is the minimum spanning tree
on the selU of vertices on convex polytope.

1 Introduction

Given an edge weighted graph= (V, E, w), whereV is the set of verticed? is the set
of edges, and is a weight function withu(e) be the weight of an edge let d¢ (u, v)
denote the shortest distance from nad® nodev in graphG; let w(G) be the sum of
the edge weights of edges @ A subgraphH = (V, E’, w) of G, whereE’ C E, is
called at-spanner of grapty, if for anypair of nodes: andv, dy (u,v) < t-dg(u,v).
The minimumt such thatH is at-spanner of is called thestretch factorof H with
respect taZ. An Euclidean graph is a graph where the weight of every ddge) is
the Euclidean distandp.v|| between its end-nodes. Given a geometric redioend a
setV of points in{2, a geodesic graph is a graph where the weight of each edge
with u, v € V, is thegeodesic distanciom « to v in the region(?2.

For the case of geodesic spanners, our domain will Belemensional simplicial
polygonal surfacéP that is formed ofmm = O(n) triangles, and a sét of n nodes
on the surfacé”. While spanner construction has been well studied in g¢égesphs
and in Euclidean spaces, this is the first study of constrigaieodesic spanners on a
simplicial polygonal surface with some additional proptsuch as minimizing the
node degree and/or total edge length. Notice that consiguatt-spanner for a poly-
hedral surface using Steiner points was implicitly studref28], in which Lanthieret
al. proposed a method with time complexi®\(n* logn). No additional properties like
degree or weight bounds are considered in that paper.#&lsréhe number of vertices
of the polyhedral surface. Another previous study of spesim&olving geodesic dis-
tances in a 2-dimensional planar domain with obstacles edaund in [23]. Geodesic
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spanner graphs on the surface of the convex polyheBrapproximate the complete
geodesic graph on a set of nod&son P. The edgesu, v) have weight corresponding
to the geodesic shortest distance betweandv. Note that a number of methods were
proposed in the literature [2—4, 31, 40, 41, 43] to compuéeetkact, or to approximate
the geodesic distance between two nodes. In order to cahstgpanner, we note that
distances on the surface of a polyhedron could be stretaedtcthe folds of the sur-
face. To capture this effect we defigeodesic dilation factoto measure the difference
between the distance on the geodesic surface and the Earcliistance between two
points. We consider both non-convex and convex three diimealspolytopes (simpli-
cial 2-complex) in this paper.

A greedy algorithm has been used to construct spannersiiougagraphs [11, 20—
22,36]. Peleg and Schaffer [34] showed that, for any 1, there exists a grapf =
(V, E) with |[V| = n and an edge weight, such theatyt-spanner of this graph needs at
leastn'* 2 edges. Thus there are weighted graphs such that-gapginner has weight
at IeastQ(nH%w(MST)) by letting the weight of each edge beAlthofer [5] proved

that the greedy method produces a sparspanner with at most! 71 edges; and

Regev [37] showed that more precisely it has at mOStET + n edges if| k| is even,

and at mosk' T + 1 edges if| k| is odd. For arbitrary weighted graphs, Chandra
et al. [12] showed that the greedy algorithm constructsspanner of weight at most
2+

(3+ %)nHis -w(MST) for everyt > 1 and any > 0. Regev [37] proved that the
spanner constructed by the greedy algorithm has weight stt2adln n-nT «w(MST)

whent € [3,2logn + 1], and has weight at mogt + ‘“‘ﬁfﬁ%) - w(MST) when

t > 2logn + 1, by studying the girth of the constructedpanner.

For the problem of minimizing the weight oftaspanner (MWSP) when given an
arbitrary weighted grapty, it was shown in [17] that MWSP is hard to approximate
within a factoro(logn) for any constant integer > 1. Given an arbitrary weighted
graph@G, it is also NP-hard to find a-spanner with the minimum size [19, 26], or
even approximate the minimum sizspanner within facto©(2(1=<) ") for anye >
0, andt > 2 [19]. Finding at-spanner with minimum size is also NP-hard [44] for
various special graphs under some conditions dhe problem of finding a-spanner
with a minimum maximum node degree is also NP-hard [27]: tleblem of finding
a 2-spanner with minimum maximum node degree is at least asthaagproximate
as set cover. Thus, there is G4ln n)-approximation algorithm for minimum degree
t-spanner problem unles§ P ¢ DTIME(nP°¥!oe(")) A probabilistic method was
presented in [27] to find &@-spanner whose degree is at m&{tAl/‘*) times of the
optimum, whereA is the maximum degree of original grapgh

Constructingt-spanners [1, 6-10, 12, 14-16, 21-24, 32, 33, 35, 38, 39 ct X -
clidean graphs has been extensively studied in the litexafArya and Smid [8] first
proposed a(n?) time method (with time complexitﬁ(nlogd n) for nodes ind-
dimension) to construct a bounded-degrepanner with total edge weighf{w (EMST)).
An O(nlogn) algorithm which uses an algebraic model together with extiaddress-
ing has been obtained in [22].

For graphs that are neither general weighted graphs noideacl graphs, several
results were also proposed for constructirgpanners. Das [13] presented a method




to construct &-spanner with a bounded node degree for visibility grapfindd by
2-dimensional obstacles, in tim@(n log n) without constructing the visibility graph
first. A number of results (centralized methods or distdutnethods) were proposed
in the literature [29, 30] to construct variottspanners for unit disk graph.

Our Results: For geodesic spanners, we introduce geodesic cones aritibpattie
space into geodesic cones. Using this space partition wiagébdllowing results:

We develop an algorithm for computing a spanner graph fot afseodesl/ C P
on a3-D polyhedral surfac@. HereP is the set of vertices dP. We construct a sparse
t-spanner with Steiner vertices fromwith O(v(P)n/¢) edges in timed(n? /e + n?3),
wheren = |P| ande > 0 is any small constant. Since this is the first result for con-
structingt-spanners for geodesic graphs, we have not attempted tmiaptthe time
complexity. Herey(P) is the dilation factor (defined later) of the polyhedron.

We also prove that, there is a polyhedral surfRcand nodes’ placement éf, such
that the maximum node degree of angpanner, when no Steiner vertices are used in
the spanner, is at lea§t(n'/*), fort > 1. Whent < 3, we show by example that the
maximum node degree of amspanner without using Steiner nodes for this example is
atleasty(P). Notice that in the worst case(P) = ©(n). We also show that traditional
greedy methods cannot build-spanner with degree bouwth), for anyt > 1.

For a surfaceéP of a convex polyhedron, by using Steiner vertices, we dgvelo
algorithm to compute &spanner for a set of nodéson the surfacé with a constant
maximum degree and weigt{ M ST (U)), whereM ST (U) is the geodesic minimum
spanning tree on the st of nodes on convex polytopes, where the distance between
two nodes is the geodesic distance between them.

The rest of the paper is organized as follows. We define sommessary terms and
concepts, and then present our methods for constructindeganspanners for general
polyhedron surfaces in section 2 and for convex polytopeseation 3. We conclude
our paper in section 4.

2 Geodesic Spanners For Arbitrary Polyhedral Surfaces
2.1 Terminology

Assume that we are given a polyhedral surfaci three-dimension. LeP be the set
of all vertices of P andF be the set of all faces @?. For simplicity, we assume that all
faces ofP are triangular faces. Léf be a set of nodes dR. In this paper, we always
assume that/ C P. For any two nodes,v € U, we letIIp(u,v) be the shortest
geodesic path o betweenu andv; and letdp(u,v) denote the geodesic distance
betweernu andv onP. In general, given an edge weighted graplandu, v € G, let
d¢(u,v) be the shortest distance between nodesdv in G.

In this paper, we will focus on constructing spanners for¢bmplete weighted
graphXCp (U, E) on the nodes i/ with weight functiondr : E — RT. A graph
H = (V,E), withU C V, is a geodesi¢-spanner folJ if dgy(u,v) < t-dp(u,v)
for every pair of nodes, v € U. Here the weight of each edgg in H is the geodesic
distancedp(x, y) between: andy on the surfacé®. The geodesi¢-spanneif is said
to useSteiner verticesf U C V. The geodesi¢-spannerH is said to be oriJ (or



without using Steiner vertices) if = U. The geodesi¢-spannet is said to have size
n if it has at most; nodes and edges. geodesic minimum spanning treéa set of
verticesU on a surfacéP is the minimum spanning tree of grajih- (U, E).

Our algorithm to construct a geodesispanner foilC» (U, E) utilizes a new con-
cept calledgeodesic cone$iven a point: and a regiorR, we let P, (R, d) be the set
of all pointsp in region R that are at geodesic distande (v, p) = d from nodeu.
For example, whetk is a 2-D planeR?, then P, (R, d) is a circle centered at with
radiusd. Geometric cones have been used widely to prodesganners in Euclidean
space. An important property of the geometric céhavhich was used in obtaining
t-spanners, is that for any two poinis, p2 of P,(C,d), ||p1 — p2|| < ed for a small
constan®) < e < 1. For example, for 2D geometric cones with angléor any two
pointspy, po € Py (C,d), [lp1 — po|| < 2sin(§) - d.

Definition 1 (pairwise-e-neighbor property). Given a surfaceP and the distance
metricdp, a set of pointsX is said to satisfy the pairwiseneighbor property with
respect to a node if, for any two point®,,ps € P, (X, d), we havelp(p1,p2) < e-d.
Given a surfacéP, a setX of points orP is calledane-geodesic coneith respect
to (w.r.t.) a nodeu, termedC(u) , if the following two conditions are satisfied:
1. P,(X,d) satisfies the pairwise-neighbor property with respect to a nodeand
2. ifz € X, then all points on a geodesic shortest pdth(u, =) are in X.

Most of our results rely on constructing some special conmstjpa (or more pre-
cisely, cone covering) of space around every nod®iNotice that here a geodesic
cone could be in a finite region. For any nadi the polyhedral surfac®, let F(u) =
{Fi(u), Fa(u), -, Fp(u)} be thep triangular faces incident onto node For each
faceF;(u) = Axzuy of F(u), letd;(u) be the radian value of the internal angleuy.

Let8(u) = 3 (uyer(u) 8 (1)-

Definition 2 (Dilation Factor). Thedilation factory(u) of a nodeu in the polyhedral

surfaceP is defined agyp(u) = W We omit the subscrif® if it is clear from

the context. Thgeodesic dilation factory(P), of the polyhedral surfac®, is defined
asvy(P) = max,ep y(u).

The dilation factor is a measure of the change in length ofral&’ on the surface
of the polytope as compared to its length on a planar suriatten the surfac® is
planar, e.g. a single planar face, its geodesic dilatiotofés v» = 1. In general the
dilation factor of a surface could be large and depends ostthieture of the surface.

To determine geodesic shortest paths we need followingitiefis and properties:

1. Edge-adjacent faceJwo facesf; andf; are said to bedge-adjacerif they share

a common edge, say F = {f1, f2... fr) is called aface-sequencéf for every

1 <1 < k, facef; is edge-adjacent to fagg,; with e; as the edge common

and f; 1. The root of the face-sequence is the vertexiirihat is not an endpoint

of ey. Itis referred to asoot (F).

2. Planar Unfolding: Supposef and f/ share an edge. We define the planar un-
folding of face f" onto facef as the image off’, denoted admg,(f’), when

f' is rotated about the line containirgonto the plane containing such that

fNImg,(f’) = e. The planar unfolding of the sequengés the planar unfolding



of facesfs, f3 ... fr sequentially onto the fach . We refer the unfolded image of
an edges, with respect to the planar unfolding of the sequecasU (F, e).

3. Geodesic pathsA pathon P is a simple geodesic path if it is simple and can-
not be shortened by slight perturbations. Furthermoretta flaconnects an edge
sequencd’ if II comprises segments that join interior pointsFof
We can state the following lemmas about geodesic paths:

Lemma 1. [41]If IT is a geodesic path which connects the edge-sequErthen the
unfolded image off along the edge sequenégis a straight line segment.

Lemma 2. [31] The general form of a geodesic path is a path which goesutph an
alternating sequence of vertices and edge sequences saicthéhunfolded image of
the path along any edge sequence is a straight line segmelntha@nangle of the path
passing through a vertex is greater than or equadtarhe general form of an optimal
path is the same as that of a geodesic path except that no edggppear in more than
one edge sequence and each edge sequence must be simple.

Herethe angle of the path passing through a veriexdefined as the smaller of the
angles when measured through the surfaces on the left dmdsitgs of the path.

2.2 Constructingt-Spanner Using Steiner Vertices

In this section, given the polyhedral surfgBewith a set of vertices, a set of nodes
U C P and a parameter > 1, we first present a method to construct-spanner
H = (V, E) using some Steiner verticdse, U C V. Notice that here we will focus
on the casé” C P, i.e, Steiner vertices must be a subsetryfwhereP is the set of
vertices used to define the polyhedral surface.

If we can use arbitrary Steiner nodes, we can easily getpanner with the maxi-
mum degree boungl as follows. LetH’ be the union ofU| shortest path trees rooted
at every node ol/; for any nodev, let vy, vo, - -, v, be thek incident nodes ob
in the union of shortest path trees. We then define a compieteybtreeT’(v) with
at leastk leaf nodes and at mo&t: leaf nodes, rooted at, whose edge lengths are
arbitrarily small. This tred’(v) can be formed by at leag8t (and at mostik) Steiner
vertices. We then replace the star of each nodle H’, i.e., {(v,v;) | 7+ € [1,k]} by
T(v) U{(si,v;) | ¢ € [1, K]}, wheres; is theith leaf node of tred’(v). Clearly, such
modification will result a structure with degree at mdsand it only increase the dis-
tance between any pair of nodes by an arbitrarily small valuae 0. Obviously, the
total weight of the constructed spanner is almost optimuroesthe extra edges added
in T'(v) have weight almosb. In addition, the number of edges added is at midst
for a node with degreé&. Thus, the new spanner has edggg) times the number of
edges ofH’. Obviously, the number of Steiner nodes used in this apprisaat most
O(m), wherem is the number of edges in the polytopes. Thus, in the restegpéper,
we always assume that the Steiner verticesidrspanner are restricted to the gebf
vertices of the polytope.

Observe that when we compute the shortest geodesic patedm@vpair of nodes
u andwv, the path found, often uses multiple line segments fronedsfiit faces of the
surfaceP. We would like to clarify that the end-points of these segte@menot con-
sidered as Steiner nodes in this paper, although they arfeamotP.



Our method is to partition the space near every vetitex P by somee-geodesic
cones. Consider a vertexc P and all the triangular face$p (u) = {F1(u), Fa(u), - - -, Fp(u)},
whereF; (u) is a trianglev;uv; 41, wherev,, 1 isv,. We defing §(u)/e] conep (u) =
{C1(u), Ca(u), - -+, Crs(uy/e1 (u) }, where each of the cones has an angle at mest
/3, wheret(e) = % is the spanning ratio that can be achieved by the first phase
of our method. For the set of faceS(u), imagine that we cut the facds (v) and
F,(u) along the segmentwv; and “unfold” all faces inF(u) sequentially onF (u),
using successively the edges;,i = 1...p — 1. To construct the required cones we
desire to construct rays with apexon the faces”(u) such that when we unfold these
faces, the angle between any two consecutive rays on thédedfplane is at most
Using the unfolding, the cones @(u) are produced in the unfolded 2-d space by di-
viding the surrounding unfolded regiaitu) (which could have angle arbitrarily larger
than2r for non-convex polyhedron, and smaller th&mn for convex polyhedron) us-
ing planar cones (sectors) with an angle at moske., a cone, when unfolded, has a
shape of a sector. Observe that here a ¢@rie) may contain several triangular faces
of F(u) inside. We can then fold the faces back and this will givéi{s)/c] rays: two
consecutive rays define a cone. It is easy to show that (1)rpipaintz from F(u),
dp(z,u) = d(x,u); (2) for any two pointsc andy from F(u) that fall inside the same
cone andp(z,u) < dp(y,u), we havedp(z,u) + t(e) - dp(x,y) < t(e) - dp(y, u)
fort(e) = ;2 whene < /3.

1—2sin £
Note that here a con€;(u) only contains points fron# (u) now. We later will
show how to extend the cones to other triangular faceB by propagating each cone.
We next present our method to construct a geodespanner, without using Steiner
vertices, in phases:

1. Phase 1:t(e1)-Spanner ConstructionFirst, for every node: € U, we construct
a geodesic cone partitiorl» (u). The cone partition is achieved by a propagation
method which develops the cones starting V\ﬂéé?—)] conesCp(u) on the faces
F(u) containingu. The process is detailed in proced®®eopagateCones(u)
for each node, € U. The process is also repeated for Steiner verticed the
polyhedron encountered during the cone expansion fromsiode, i.e., we run
proceduréPropagateCones(u) for every node: of S and updates accordingly:
adding the encountered node= P to S if v ¢ U. These new vertices are termed
Steiner vertices, denoted sLet U’ be the union ot/ andS.

For eache-geodesic cone with apex node we add a (directed) edgey if v is
the closest node fror®, i.e,, first encountered node iR. This phase results in a
graphH'(U U S, A") where A’ is the set of edges added. We will prove tfiHtis
at(er)-spanner folU.

2. Optional Phase 2: Further Degree Reductiomhe process described in this para-
graph is used tpossiblyfurther reduce the node degree. Again, we partition the
space around each nodgby cones of angle at mosf.

Repeat the following step for each node U US. In H'(UUS, A’), for each node

v, letI(v) be the set of incoming neighbors of nodd~or all nodes il (v), build a

tree rooted at node Let I)(v) be the set of nodes that already has been processed.
Initially, Ip(v) = {v}. A directed edgéu, v), whereu € I(v), is retained ifu is

the closest node in some cone of nadend we add: to the set/y(v). For each



Algorithm 1 PropagateCones)

1:

2:
3:

9:
10:
11:

© N gk

LetCp(u) be[d(u)/e1] cones around on the faceg € F(u) containingu (each
cone has an angle at mas).
for each con& in Cp(u) do
For each face’ = wvw inside the con&’, let uv’w’ be the portion of the face
that is completely contained insidé& Notice that here’w’ could be a segment
of vw. Let z(f) be the point on the segmentw’ that is closestfrom w, i.e.,
dp(z(f),u) = d(z(f),u) < d(y,u) for any pointy on the segment'w’.
Let d = min fintersected by cone’, fe 7 (u) AP (u,z(f)). Let f(C,u) (or simply f if
no confusion) be the face that has the paiff) such thadp (u, z(f)) is mini-
mized among all faces intersected®yi.e., dp (u, z(f(C,u))) = d.
if z(f(C,u))isavertexo from P then
Add v to S and add alirectededge(u, v) to the structurdd’ (U U S, A”).
If v is not markedrocessedrun procedur®ropagateCones(v).
else
Lete be the edge that contains the poif (C, «)) and f be the facef (C, u).
Extend con&” across facg, adjacent along and unfolded onto the sequence
Fy of unfolded faces byrocedure Unfold. Note: In this procedure we keep
unfolding faces until the closest pointéamong all points on segments defin-
ing polyhedral surfac®, sayz(C, d), is a vertex: from P. Then add an edge
uz and update geodesic distance:to
end if
end for
Mark nodeu processed.

newly added node in Iy(v), recursively add directed edges wherez ¢ Iy(v)
is the closest node toin some cone of;.
Let the final structure bé&l’(U U S, E’).

. Optional Phase 3: Further Edge Reductiorin this phase, edges i’ (U US, A”)

(or H'(U U S, E’)) are pruned to create the graphU U S, E) as follows: (1)
Sort the edgest’ in H'(U U S, A") in decreasing order of the geodesic length,
er,ea...eqy. Let E = A’. (2) Eliminate edge; from F if the edges inE \ ¢;
provide a path of length at most dp (u, v) for every pair of nodes andv from

U, wheret > 1 is the spanning ratio. (3) Eliminate unnecessary Steingices,
where a Steiner vertex is unnecessary if it is not on the shopiath ini between
any pair of nodes iit/.

The construction of the Geodesic Cone partition is givenlgofithm 1.

Observe that, in Algorithm 1, clearly poinf f (C, «)) has only two choices: either

it is some node» from P defining the original polyhedral surface, or it is inside gom
segmentww wherewvw is a face incident on.. Note that even if con€' contains
multiple triangular faces aof (u) inside, it is still possible that(f(C, v)) is not one of
the vertices in face$ (u). See Figure 3 for illustration of these two cases.



Additionally, in Algorithm 1, the sequende; of unfolding is not necessarily unique,
and we have to test all necessary sequences of unfoldinghBaxample illustrated
by Figure 3 (a), after we unfold the trianglevz, we should unfold both triangleyz
along the edgez, and the trianglewq along the edgew to find the closest vertex
from P that is inside the (extended) co6k Here in the example illustrated by Figure
3 (&), either the vertex or the vertexg, or both could be closer te than the vertex.
The actual unfolding of faces will use the continuous Dijashethod [31] as follows to
define theprocedure Unfold. For each con€’ and each vertex, we maintain an event
heap: the eventis the edgef face f that has a point, denoted aéf, ¢), that is closest
to the node.. When we unfold a facé represented by three vertices, w along some
edgee = (u,v), it will possibly introduce two new edges andes. We then add these
two new edges to the heap based on the distdrde;, «) to nodeu. We also add the
distance to the vertex. The top element of the heap is always the edge or vertex that
is closest to the vertex. Lete be the element in the top of the heap. We process the top
event represented hyby unfolding the face adjacent toas defined above. If the top
element of the heap is a vertexof P such that the distanagp (u, v) < dp(u,e’) for
every element’ in the heap, the procedure returns

2.3 Performance Bounds and Time Complexity
See appendix for proof of the following lemmas.

Lemma 3. The graphH (U U S, E) is at-spanner for nodes ily.

Lemma 4. The graphH’(UUS, A’) is at-spanner with a maximum out-degi@¢y(P)/e;)
wheret = —+1 .
1—2sin <+

By choosing:; = e; = ¢ for some small value, we have the following lemma.

Lemma 5. The graphH’(U U S, E’) after degree-reduction procedure is-@panner
with a maximum node degré¥(min(n, (v(P)/¢)*)) wheret = (;—55rr7a7)*

Lemma 6. Our algorithm constructsl (U U S, E) in O(n?/e + n?) time.

We can construct an example surface and nodes
placement (see Figure 1 for illustration) such that for
some small enough at-spanner (for some constant
t) will have the maximum degre@(y(P)) where
~v(P) = O(n) is thedilation factor of the surface.

» The basic idea of the example is as follows: There is a
v SetU of nnodesuy, us, - - -, u,. There are two trian-
u;,,Qular facesi;ugv; andv;ugu, 11 between; andu;
such that the geodesic distance betwegandu,; 1
is largerthar{t—1)-d+n, fort < 3, € [1,n—1], for
a small constany > 0. Actually, we can place these
two triangular faces:;ugv; andv;uou;+1 such that
the geodesic distance betwegnandu; ;1 is 2d — §
forany0 < ¢ < 2d. A nodeuy at distancel from

Fig.1. An example of a sur-
face and the set of nodés =
{up,u1, -+ ,un}t. Here wugv;
defines a valley betweetyu;
anduou”l, d= dp(ui, UQ).



these nodes will then have to be connected directly to
allthese nodes to ensure that it isgpanner. Observe
that, whent > 3, the preceding example does notim-
ply that we have to conneety with every nodeu;,
1 > 1. This is because the geodesic distance between
u; andu; is at mosidp (u;, ug) + dp (ug, u;) < 2d.
In this case, we can omit some edges:; without
violating thet-spanner property far > 3.
We further study reducing the weight of the structure. Cinaed al. [11] proved
that for any metric spac&/, and everyn-vertex complete grapty on this metric, if
(1) there is anD(g(n)) time algorithm that builds @-spanner forG with O(f(n))
edges, whergf(m)/2 > f(m/2) andg(m)/2 > g(m/2) for anym > 0, and (2)
there exists arO(h(n)) time algorithm that can build a spanning tréefor G with
weight O(1)w(MST), then there exists a@(max(g(n), h(n),nlogn)) time method
which builds a(t + ¢)-spanner witfO( f(n)) edges and weigr@(@ logn)w(MST).
Notice that for geodesic metric, we have methods vfith) = O(y(P)n) andg(n) =
O(n3+n?/e). Our method for constructing a structui implies the following lemma.

Lemma 7. We can construct a geodegispanner for any polyhedral surfag@ such
that the total weight of the structure@(~(P) log n)w(MST) intimeg(n) = O(n?/¢).

Observe that with the optional degree-reduction phasee?rithning time of the
method becomeg(n) = O(n®+n?/¢). Notice that the method by Chandra [11] cannot
preserve the degree bound of the final structure. We leagesifiature work to design a
t-spanner structure with bounded degt¥e (7)), and total weigh©O (v (P) log n)w(MST),
or study whether it is possible to construg¢tspanner with weigh® (~(P)+log n)w(MST).

2.4 Geodesic Spanners Without Using Steiner Vertices

We now study, given the polyhedral surfa@gand its set of vertice®), a set of nodes
U C P, and a numbet > 1, how to construct a-spannertd = (U, E) without us-
ing Steiner vertices. Our objective is to constru¢tgpanner with small node degree
and small total edge weight. A more general question is\otlg: given a complete
weighted grapltz with positive edge weights satisfying the triangular inality, con-
struct at-spannerd C G with small maximum degree and small total edge weight
w(H). Surprisingly, we could not find any results, except [27]the literature that
provide any degree bound ort-@panner for an arbitrarily weighted graph.

We first show by example that, for any algorithm that condtra¢-spanner, there
are inputs such that the constructedpanner will have a maximum degree at least
Q2(n*) for nodes placed on a surface, wheris the size of/.

Lemma 8. For anyt > 1, there is a surfacé on a set of node®, and a set of nodes
U C P, such that the maximum node degree in &spannerd = (U, E) without
using Steiner vertices is at Iea(é})% , Wwheren = |U|. For anyt > 1, there is a surface
P on a set of node®, and a set of nodds C P, such that the weight of artyspanner
is at Ieastnt%z/2 times of MST.



Whent < 3, the placement the trianglesugv;, 1 <14 < n—1, and triangle®; uou; 1,

1 < < n-—1, ensures that the geodesic distadg& u;, u;11) is 2dp (ug, u;) — 0 (for

small0 < § < (3 —t)dp(uo,u;)) anddp (ug, u;) = dp(ug,u;) fori # j. Thus, we
have to conneat to every node; sincedp (ug, u;)+dp(uj, u;) > 3dp(ug, u;)—9 >

tdp (uo, u;) for every nodes; andt < 3.

Lemma 9. For anyt with 1 < ¢ < 3, there is a surfacé on a set of node®, and a
set of node$/ C P, such that the maximum node degree in &spannerd = (U, E),
without using Steiner vertices or all Steiner vertices agstricted toP, is at least
~v(P) = ©(n), wheren = |U|.

Thus, generally, to get @spanner, which does not use any Steiner vertices or can
only use Steiner vertices frofd, with a maximum node degregn), we must focus on
¢ > 3. In this case, Lemma 8 shows that the maximum degree is at(as ).

Notice that the traditional greedy method (sorting edgefaneasing order as
e1,ea, -, e, andadding an edge = (u, v) only if the added edges from, es, - - ,e;-1
do not have a-spanner path connectingandv) will still produce a structure with max-
imum node degree for the example illustrated in the proof of Lemma 8.

We also show that the following greedy method cannot producspanner with
a bounded degred at all. The method is as follows: Let be the final added edges
and A = 0 initially; We sort edges in the complete graph Bnin increasing order,
and we add an edge = (u,v) to A only if (1) there is a-spanner path connecting
u andv using previously added edgels and (2) the degrees afandv in the partial
graph formed by edges iA are at mostA — 1. We construct a network example as
follows: U is formed of two set$/; andU,, both haveA + 1 nodes and is a copy of the
node placement illustrated by Figure 1. The distance betwgeeandU, is very large
compared with the radius @f; andUs. Then this simple greedy method will not build
any edges betwedrt, andUs. Thus the final structure is disconnected.

Bounds on total edge weighifhe preceding lemmas build lower bounds on the max-
imum node degree and total edge weight that we can achiewanfarbitrary input of
polyhedral surfacé® and a set of node§. It is hard to approximate the minimum
weightt-spanneri(e., finding at-spanner with the minimum total edge weight) within
a factoro(log n) for a general weighted graph [17] for any integer 1. Thus, it is
hard to construct &spanner with total weight(log n)w(MST).

A simple greedy algorithm can construct-gpanner whose total edge weight is
at mostO(Inn - n%) -w(MST) whent € [3,2logn + 1] [37]. This currently best
known result is still far from the previous lower bound we Wn¢he ratio of the best
known achievable upper bound on weight over the best knowerlbound on weight is

Inn-n @00 fort € [3,2logn+1]. Forarbitraryt > 1, results by Khuller [25] show
that we can constructaspanner in timeJ(n?), when we already have the geodesic
distances between every pair of node#/inwith weight at most(1 + 25 )w(MST).
Observe that for arbitrary weighted graph, when 2, in the case of a complete graph
where each edge has a weightanyt-spanner must be the complete graph itself. The
spanner thus has total edge weightw (M ST'). Unfortunately, it is not clear how to
design a geodesic graph such that the weight of each edge is



3 Geodesic Spanners for Convex Polytopes

In this section, we study constructing geodesic spanneis $et of nodes on a convex
polytope, and the distance is measured by geodesic dist@ocapproach is to approx-
imate a convex polytope by a constant number of 2D planahpaisimilar to [18].
LetP be a convex polytope, with a set of polygonal fages-or any subset’ C F
of faces, letV'(F) = {Ny | f € F'} be the set of normals to the faces whéfgis the
normal to facef. Consider the angular representation of the normals: eachai N is
represented by a paif v, ¢n) in the Spherical coordinates system, whéke ¢ €
[0, 27] are the angle of the normal vector from thexis (called the colatitude or zenith)
and the angle from the-axis. The basic idea of our method for building the spanser i
to partition the convex polygonal surfageinto a constant number of convex patches
such that each patch is almost flag( the difference between the normals of any two
faces in the patch is a small constant). Note that the pateae®nstruct may overlap.

Definition 3. A ¢-patch ofP is a set of facesl” C F such that (1)F' forms a continu-
ous region; (2) the patch at, i.e.,¥(F) = sup; ,c p max (|0, — O, |, |on; — dn,|) <
0, i.e., the difference between any two normals is boundeddmystant.

A §-partition of P, denoted ag\p, is a partition of the set of faces such that each
partition is aj-patch. Here @-patch is not necessarily convex.

Definition 4. A é-planar projection,='(F') of ad-patchF is the projection of points in
F onto a plane P, with normalNp such thatNp € N (F).

A linear convex patcltz is a connected closed subset of points with a piecewise
linear boundary such that itsplanar projectior= (G) is convex.

Definition 5. A convex extensiofi(F') of a §-patch F' is a minimal piece-wise linear
convex patch, a collection of polygonal faces, that corgtdinwith the property that
V(E(F)) —¥(F) <.

It is not difficult to show that the following property holdgrfa convex surfac®.

Property 1. Low-distortion projection propertizet « andv be two points on a-patch,
F. Thendp(u,v) > d(u,v) > dp(u,v)/(1 + 2 - ) whered(u, v) is the Euclidean
distance between andv on =(F') anddp(u, v) is the geodesic distance ¢h

3.1 Algorithm

Our method for constructing a spanner for convex polytoges ifollows:

1. Find ad-partition, denoted ag\p = {Fy, F»,--- F,}, of P. HereF; C Fis a
subset of faces that formdapatch. Then we construct a convex-extensi¢ai»)
as follows. For each-patchF; in the d-partition, we perform the following steps:
(a) Find ad-planar projection=(F;) of F; to some plane with a norma¥y <

N(F,).
(b) Find the convex hull'H (= (F;)) of =(F;).



(c) Find the inverse of the projection, i.e., fidd=(F;)) such that itso-planar
projection isC H (Z(F;)).

2. For every-patch inAp do the following

(a) Foreach, € Up, construct a-cone partition of the surface as in the previous
section 2. LeC(u) be the cone partition produced. Note that since the differ-
ence between normals is small, a simple method of projecting partitions
of a plane suffices in this case.

(b) Let Ur be the set of all nodes if' For nodeu € F, let Z(u) be the set
of the intersection segments of all cones with the bounda&iff’). In each
intersection regiorC N 0E(F') whereC € C(u), we add a Steiner point if
the coneC that created the region contains a shortest path from the apg
u, of the cone to some other node¢ Up, i.e., outside of the)-patch. Note
that this Steiner pointis also added to the neighbosipgtch, which the cone
C intersects. Let the set of added Steiner pointsShéu). Let the set of all
Steiner points o be Sp = Uy e, Sr(u).

(c) Find a projectiorE(F) of F' to some hyperplane perpendicular to the normal
of aface inF.

(d) Find an Euclidean-spanner grapt/r(=(Vr), =(Ar)) of a constant maxi-
mum degree and of weigli?(M ST (Vr)) for the set of verticesZ (Vr), in
Z(F) whereVp = Up USkr. Z(Ar) is the set of edges created in the spanner
graph. This can be done by several methods in the litera@re [

3. Letthe spannerbE (U, A) = Upca, Hr(Vr, Ar), where each edder, v) in Ap
corresponds to an edg€ (u), =(v)) and is weighted by shortest geodesic distance
betweeru andv.

It remains to determine &partition and the convex extensions. Given the range of
anglesy and¢ we do the following
1. Partition the domaif0, 2] of # and¢ equally into2r /e ranges of size, indexed
by (i,7),1 < i,j < 2w /e which indicates that € [(i — 1) - ¢,i-¢] and¢ €
[(—1)-e.j-el:
2. For every tuple of rangés, j) let F' = Uf such thatly, € [(i — 1) - ¢,i - €] and
(be € [(] - 1) W 6]'
The preceding approach clearly creates a constant numbepaithes because of
the monotonicity of the normals for a convex polytope. dhgatchF’ is obtained from
the convex hull of points oft” on the polyhedrofP.

Lemma 10. The convex extension ofigpatch /' is also ad-patch.
Note that our spanner uses Steiner points.
Lemma 11. H(U, A) is at-spanner of the set of nodé&son P.

We now compare the weight of the spanner with the minimum sipgrtreeM ST (U)
of the set of point$/ on the surface oP.

Lemma 12. H(U, A) has a constant maximum degree and we@tt/ ST(U)).

Lemma 13. The construction of thespannerH (U, A) requiresO((1/¢)?(n? logn +
Tr(n))) steps wherél'z(n) is the time required by any algorithm to compute a 2-
dimensionat-spanner.



Notice thatl'z(n) = O(n log n) for anyd-dimensional nodes. We also observe that
our method of constructingspanner also works for anitdimensional convex surface
(where the cone must be small enough with an angle with (1 4 ¢)¢ < t).

4 Conclusion

In this paper, we studied the spanner construction for ggodeaphs for a set of nodes
U placed on a 3-dimensional surfaPg and for geodesic graphs on convex polytopes.
Our main contributions are

1. apolynomial-time algorithm to build a spartsspannei (UUS, E) with O(v(P)n)
edges when we can use Steiner vertices. We also present setiheds to reduce
the node degree. For the case when the use of Steiner véstiestricted, we show
lower bounds on the maximum node degree of @aganner.

2. a polynomial-time algorithm that builds a bounded degrspanner with weight
O(w(MST)) for geodesic graphs on convex polytopes. The spanner usesgrst
vertices.

For general polygonal surfaces, it is interesting to desigrefficient method to con-
struct a sparse-spanner without using Steiner vertices such that it cameseta non-
trivial degree bound when> 3. Given a weighted graph with edge weights satisfying
the triangular inequality and constant> 3, we would like to construct &spanner
whose maximum node degree is asymptotically minimum (inctfter ofO(n'/*) or
O(nP0/M)y).
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Appendix

Proof of lemma 3

ProoF Order all the edges in the complete grdph (U, E) in the increasing order
of the geodesic shortest distances between the end-pdhesproof is by induction
on the distances. Let andv be two vertices frontV with shortest geodesic distance
dp(u,v) = d. Assume that the geodesic palfp(u,v) = u «w v e Uy e
-« v, Wherev;, 1 < ¢ < g are vertices of?, andv,, is v. Herev; «~ v;11 is the
shortest geodesic path connecting nodesndv; 1, which is a piece-wise linear path
passing through a number of triangular faces. SupposeithatC whereC' € C(u),

i.e.

, the starting segment «~~ v, of the geodesic shortest paffy(u,v) from u to



Fig. 2. A Planar unfolding example.

(a) close pointis on a segment  (b) closest point is a vertex

Fig. 3. An example of propagating cone to other faces.



v lies in the cone’. Let w be the closest, in order of geodesic distancey,tfrom
amongst all other nodes in the cone. Then our algorithm wlitl the edgesw. It is
easy to show thatlp(w,v;) < dp(u,v1) < dp(u,v). Then by induction there is
a path inH’(U U S, A") betweenu andw and betweenv andv; of geodesic length
at mostdp (u,w) andt(er) - dp(w,v1), respectively. It is not difficult to show that
this path has length at modfp (u, w) + t(e1) - dp(w,v1) < t(e1) - dp(u,vy), where
t(er1) = m Similarly, we can prove that there is a pathfifi(U U S, A”)
betweerny; andv; ;1 with length at most(e;1) - dp (v, viq1).

Consequently, the shortest pdtiu, v) in H'(U U S, A”) from u to v that usesw
has length at mosi g (u, v) < Z?;ol t-dp(vi,vir1) = t(er)dp(u,v) wherevg is u.
Observe that if the grapH’ (U U S, A’) has a path of length at magk; )dp (u, v), the
graphH (U U S, E)) will obviously also preserve at least one such path. In otfeeds,
graphH (U U S, E) is at(e;)-spanner. We can choosgsuch that(e;) = t if Phase 2
is not executed.

Note that, if we run the optional procedure to further redtilee node degree, a
directed edgew in H'(U U S, A’) may now be replaced by a path with geodesic length
atmostt(ey) = mdp(m v), depending on the angte of the cones. In this case,
to ensure the final structure as-apanner, we have to choose the anglandes of the
cones to satisfy = t(¢1) - t(e2). This finishes the proof.

Proof of Lemma 4

PrROOF To show the degree bound, consider the edgég i/ U .S, A’). Ourt-spanner
construction method (Algorithm 1) will add at maistlirected edge in each coféu)
for every nodeu. Thus the total number of directed outgoing edges incident @
bounded by the number of conegitw), which isO(v(P)/e1).

Proof of Lemma 5

PROOF Observe that in the degree-reduction procedure, eachmedk participate
in the degree-reduction steps of a nadéand only if we have a directed edde, v),
thusw will participate in at most degree-reduction@f~(P)/¢1) nodes. Note that, for
each degree reduction procedure, we will add at rigst{P)/e>) additional edges to
nodeu. By choosing:; = ¢5 = ¢ for some small value, we have the lemma.

Proof of lemma 6

PrROOF The first phase of the algorithm constru€tél /¢) cones from each vertex in
P. Propagation of these cones requires maintenandgeintervals on each edge of
the polyhedral surfac®. Extending the cone requiré¥(1) steps at each edge. Thus,
it will take time O(n?/¢) to construct grapttl’ (U U S, A’). The second phase of the
algorithm requires computing shortest paths for every paiertices and removing
redundant nodes. This can be done in tif@*) using all pairs shortest path method.



Proof of lemma 8

PROOF. Notice that Peleg and Schaffer [34] showed that @epanner of some arbi-
trary weighted graph needs at least 7> edges. Thus, for arbitrary weighted graph,
the maximum degree node degree of arspanner is at Ieam‘ﬁ%/z Unfortunately,
their example (the weight of each edgeljscannot be realized using geodesic dis-
tance. Here we construct an example in 3-dimension as fsellGigure 1 illustrates
such an example. There is a nodg at the origin and» other nodes:; with coor-
dinate (sin((¢ — 1)), cos((i — 1)), 0). Additional n — 1 nodesv; with coordinate
(sin((i — 1 + 1/2)a),cos((i — 1 + 1/2)a), 1) are placed also. The polyhedral sur-
face P is composed of nodes;, 0 < i < n andwv;, 1 < i < n — 1, and triangles
uugu; 1 < i < m — 1 and triangles;upu;11, 1 < i < n — 1. We want to con-
struct at-spanner for the set of nodés = {ug,u1,us, - ,u,}. It is not difficult

to show that the geodesic distandg (u;, u;) satisfiesl < dp(u;, u;) < 2 for ev-
ery pair of nodes:; andu;. Assume that we havespannetd = (U, E) for U with
the maximum degre® + 1. Then consider the breadth-first-spanning tree rooted at
nodeug. Clearly, the deptth of the BFS tree should satisfy th@?zo DI > n,ie,

Dg_l;l > n. Further, consider any nodewith depthh in H, then the hop-distance
betweenuy andv in H is at leasth. Thus, the distancké < dg(ug,v) < 2h. Since
H is at-spanner, we havdy (ug,v) < tdp(ug,v) = t. Thus,h < ¢. Consequently,
D' > DM > (D — 1) + 1. Thus,D > (2)7,i.e, D = 2(n¥).

The result by Peleg and Schaffer [34] also implied that the #dge weight of any
t-spanner for the example constructed above is at leﬁtﬂ times of the weight of
minimum spanning tree for any> 1 since the weight of MST is at leasthere and

anyt-spannet has at least '+ edges.

Proof of property Low-distortion projection property

Property 2. Low-distortion projection propertiet« andv be two points on a-patch,
F. Thendp(u,v) > d(u,v) > dp(u,v)/(1 + 2 - ) whered(u, v) is the Euclidean
distance between andv on =(F') anddp(u, v) is the geodesic distance &h

PROOF Consider the geodesic path between the two pairgadv. We first provide
an upper bound on its length. Consider the planes, orthdg¢mtize normalsV () and
N(v), at the points: andv, termedl"(u) andT (v), respectively. The shortest geodesic
path fromu to v when unfolded onto the plariE(u) is a straight line. Let’ be the
unfolded image ob. Consider the length of the straight line’ in comparison tQuv|
Since the faces reside ondgpatch, the angle between) anduv’ is almostd. Thus
|uv| > |uv’|(1 — 8). Comparing with the projection afv onto the plane gives an error
with factor(1 + 2 - 9).



Proof of Lemma 10

PrROOF W.l.0.g assume that the faces®fare triangles. Let. andv be two vertices
on the convex hull of thé-patch. Let the straight line-segment v) lie on a faceA on
the convex extension but which is not part of thpatch. LetB andC' be the faces on
the d-patch on which the verticasandw reside. SincéP is convex the normal tal is
a vector with anglex whose value lies in the cone defined by the vectband 3, the
normals to the face® andC, respectively.

Proof of lemma 11

PROOF Because of theow-distortion projection propertythe spanner ofx'(F') de-
fines a spanner oR' also: the spanning ratio ofi depending on the spanning ratio of
the spanner o& (F)). It suffices to show that the spanner property is truexfer F; and

v € Fy, wherel; andF; are two different patches. Consider the shortest path legtwe
nodesu andv, residing in a cone i@ (). For this cone a Steiner vertex,is added to
the boundary Q& (F'). This Steiner pointis also present in the neighboring paising
standard arguments &+ ¢) approximate path can be obtained from the path between
u andp and then fronp to v. By induction on the rank of geodesic distances between
pairs of vertices, both these paths are within a fatter (1 + ¢) of the optimum. The
combined path is alsotafactor path between andv, sincep is contained in thél +¢)
cone with apex.. Then the constructed subgraph is a spanner. Observe treanner
does use Steiner points.

Proof of lemma 12

PROOF

The degree bound follows from the degree bound provideddiZtitlidean spanner
construction.

To bound the weight, considerdapatch,F', comprising a set of points = Up U
Sr. Let the spanner edges, restrictedRpbe Hr(Vr, Ar). First, construct a TSP
tour, T', from M ST (U) on the surface of using a shortcut of the Eulerian tour of
the MST. Shortcut the tour to obtaifi-, a tour restricted to the patdi. The weight
of the Euclidean spanndip(Vp, Ar) on Z(F) is O(MST(Z(Vr)). Furthermore,
MST (Vi) < MST(Z(VE))(1 + 6).

We now need to relatq®/ ST (Vr) to Tr whereVy = UrpUSFk. Clearly, M ST (Vr) <
MST(Ur) + MST(Sr) + w(E) whereE is some special edge joining some paint
in Ur to the corresponding Steiner nofe (added due ta) and M ST (Ur) < T.
The Steiner points all lie on the boundaryiofand are constructed by adding a pointin
each con&' € C(u). There ar@)(v/¢) cones inC(u).

Consider a con€’. The geodesic distances withifi are closely related to the
straight line distance between two points and so for easadagnstanding we will con-
sider the cones as defined by straight lines andthatch a planar surface. Consider
the set of Steiner point§(u, «) generated by the set of cones

{C(u) | w € Ur, coneC(u) in one single directiomr, each cone of angle



Fig. 4. We bound the length of minimum spanning tree of nodds;inJ Sr. Here the
nodess; on the boundary oE(F') are Steiner nodes. Hereis the longest distance
between Steiner nodes on boundary and the original inpues)aténoted aSr, inside
the patch=(F"); y is the longest distance between notlgs



Let the sel/r be of diametey and let the maximum distance of pointdlip from
the set of Steiner points e Since the Steiner pointSy, are generated from points in
Ur using the cone, the points 8y are atmosy + (y + ) - ¢ < (y+x)(1 +¢) distance
apart. Consider the spanning tree&¥ obtained by joining the points in sequence
along the boundary of'. This distance is bounded [y(y + =) from the fact that the
boundary of the patch is convex. Moreover letbe an edge obtained from joining a
nodeu in Uy to a corresponding Steiner pointdiy» generated by a shortest path from
uto anodew ¢ F. This implies thatv(E) < M ST (Tr). Moreoverz < y + w(E).
ThusM ST (Vr) < MST(Up)+ MST(Sr) + w(E) = O(Tr) = O(MST(U)).

Proof of Lemma 13

PrROOF. The algorithm constructs the cone partition(ity ¢)? steps. Computation of
the shortest path between each pair of vertices reqaifes log n) steps [40]. Further,
for each of thel /e? §-patches, the algorithm requirés (n) steps wherd'z(n) is the
time required by any algorithm to compute a planapanner. Note that finding the
convex extensions and the projections can be performedhvifie time bounds stated.



