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Abstract. In this paper we consider the problem of efficiently constructing geodesic
t-spanners. We consider finding spanners on the surface of a 3 dimensional poly-
hedron. If Steiner vertices are allowed on the surface of thepolyhedron, then we
are able to construct sparset-spanners. If no Steiner vertices are allowed, then we
establish lower bounds on the maximum node degree, depending on the spanning
ratio t and also the total number of vertices of the polyhedron surface. We also
consider the case of the surface of a convex polytopeP with V vertices. Using its
vertex setP and Steiner points, we can construct at-spanner with a constant de-
gree and weightO(MST (U)), whereMST (U) is the minimum spanning tree
on the setU of vertices on convex polytope.

1 Introduction

Given an edge weighted graphG = (V, E, w), whereV is the set of vertices,E is the set
of edges, andw is a weight function withw(e) be the weight of an edgee, let dG(u, v)
denote the shortest distance from nodeu to nodev in graphG; let ω(G) be the sum of
the edge weights of edges inG. A subgraphH = (V, E′, w) of G, whereE′ ⊆ E, is
called at-spanner of graphG, if for anypair of nodesu andv, dH(u, v) ≤ t · dG(u, v).
The minimumt such thatH is a t-spanner ofG is called thestretch factorof H with
respect toG. An Euclidean graph is a graph where the weight of every edge(u, v) is
the Euclidean distance‖uv‖ between its end-nodes. Given a geometric regionΩ and a
setV of points inΩ, a geodesic graph is a graph where the weight of each edge(u, v)
with u, v ∈ V , is thegeodesic distancefrom u to v in the regionΩ.

For the case of geodesic spanners, our domain will be a3-dimensional simplicial
polygonal surfaceP that is formed ofm = O(n) triangles, and a setV of n nodes
on the surfaceP . While spanner construction has been well studied in general graphs
and in Euclidean spaces, this is the first study of constructing geodesic spanners on a
simplicial polygonal surface with some additional properties such as minimizing the
node degree and/or total edge length. Notice that constructing a t-spanner for a poly-
hedral surface using Steiner points was implicitly studiedin [28], in which Lanthieret
al. proposed a method with time complexityO(n3 log n). No additional properties like
degree or weight bounds are considered in that paper. Heren is the number of vertices
of the polyhedral surface. Another previous study of spanners involving geodesic dis-
tances in a 2-dimensional planar domain with obstacles can be found in [23]. Geodesic
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spanner graphs on the surface of the convex polyhedronP approximate the complete
geodesic graph on a set of nodes,U onP . The edges(u, v) have weight corresponding
to the geodesic shortest distance betweenu andv. Note that a number of methods were
proposed in the literature [2–4, 31, 40, 41, 43] to compute the exact, or to approximate
the geodesic distance between two nodes. In order to construct a spanner, we note that
distances on the surface of a polyhedron could be stretched due to the folds of the sur-
face. To capture this effect we definegeodesic dilation factorto measure the difference
between the distance on the geodesic surface and the Euclidean distance between two
points. We consider both non-convex and convex three dimensional polytopes (simpli-
cial 2-complex) in this paper.

A greedy algorithm has been used to construct spanners for various graphs [11,20–
22, 36]. Peleg and Schaffer [34] showed that, for anyt > 1, there exists a graphG =
(V, E) with |V | = n and an edge weight, such thatanyt-spanner of this graph needs at
leastn1+ 1

t+2 edges. Thus there are weighted graphs such that anyt-spanner has weight
at leastΩ(n

1
t+2 ω(MST)) by letting the weight of each edge be1. Althofer [5] proved

that the greedy method produces a sparset-spanner with at mostn1+ 2
t−1 edges; and

Regev [37] showed that more precisely it has at mostn1+ 2
⌊k⌋ + n edges if⌊k⌋ is even,

and at mostn1+ 2
⌈k⌉ + n edges if⌊k⌋ is odd. For arbitrary weighted graphs, Chandra

et al. [12] showed that the greedy algorithm constructs at-spanner of weight at most
(3+ 16t

ǫ2 )n
2+ǫ

t−1−ǫ ·ω(MST) for everyt > 1 and anyǫ > 0. Regev [37] proved that thet-

spanner constructed by the greedy algorithm has weight at most2e2 lnn·n
2

t−1 ·ω(MST)

whent ∈ [3, 2 logn + 1], and has weight at most(1 + 4 log2 n+2 log n
t+1−log n ) · ω(MST) when

t > 2 logn + 1, by studying the girth of the constructedt-spanner.
For the problem of minimizing the weight of at-spanner (MWSP) when given an

arbitrary weighted graphG, it was shown in [17] that MWSP is hard to approximate
within a factoro(log n) for any constant integert > 1. Given an arbitrary weighted
graphG, it is also NP-hard to find at-spanner with the minimum size [19, 26], or
even approximate the minimum sizet-spanner within factorO(2(1−ǫ) ln n) for anyǫ >
0, andt > 2 [19]. Finding at-spanner with minimum size is also NP-hard [44] for
various special graphs under some conditions oft. The problem of finding at-spanner
with a minimum maximum node degree is also NP-hard [27]: the problem of finding
a 2-spanner with minimum maximum node degree is at least as hardto approximate
as set cover. Thus, there is noO(lnn)-approximation algorithm for minimum degree
t-spanner problem unlessNP ⊂ DTIME(npolylog(n)). A probabilistic method was
presented in [27] to find a2-spanner whose degree is at mostÕ(∆1/4) times of the
optimum, where∆ is the maximum degree of original graphG.

Constructingt-spanners [1, 6–10, 12, 14–16, 21–24, 32, 33, 35, 38, 39, 42] for Eu-
clidean graphs has been extensively studied in the literature. Arya and Smid [8] first
proposed ao(n2) time method (with time complexityO(n logd n) for nodes ind-
dimension) to construct a bounded-degreet-spanner with total edge weightO(ω(EMST)).
An O(n log n) algorithm which uses an algebraic model together with indirect address-
ing has been obtained in [22].

For graphs that are neither general weighted graphs nor Euclidean graphs, several
results were also proposed for constructingt-spanners. Das [13] presented a method



to construct at-spanner with a bounded node degree for visibility graph, defined by
2-dimensional obstacles, in timeO(n log n) without constructing the visibility graph
first. A number of results (centralized methods or distributed methods) were proposed
in the literature [29,30] to construct varioust-spanners for unit disk graph.

Our Results: For geodesic spanners, we introduce geodesic cones and partition the
space into geodesic cones. Using this space partition we getthe following results:

We develop an algorithm for computing a spanner graph for a set of nodesU ⊆ P
on a3-D polyhedral surfaceP . HereP is the set of vertices ofP . We construct a sparse
t-spanner with Steiner vertices fromP with O(γ(P)n/ǫ) edges in timeO(n2/ǫ + n3),
wheren = |P | andǫ > 0 is any small constant. Since this is the first result for con-
structingt-spanners for geodesic graphs, we have not attempted to optimize the time
complexity. Hereγ(P) is the dilation factor (defined later) of the polyhedron.

We also prove that, there is a polyhedral surfaceP and nodes’ placement ofU , such
that the maximum node degree of anyt-spanner, when no Steiner vertices are used in
the spanner, is at leastΩ(n1/t), for t > 1. Whent < 3, we show by example that the
maximum node degree of anyt-spanner without using Steiner nodes for this example is
at leastγ(P). Notice that in the worst case,γ(P) = Θ(n). We also show that traditional
greedy methods cannot build at-spanner with degree boundo(n), for anyt > 1.

For a surfaceP of a convex polyhedron, by using Steiner vertices, we develop an
algorithm to compute at-spanner for a set of nodesU on the surfaceP with a constant
maximum degree and weightO(MST (U)), whereMST (U) is the geodesic minimum
spanning tree on the setU of nodes on convex polytopes, where the distance between
two nodes is the geodesic distance between them.

The rest of the paper is organized as follows. We define some necessary terms and
concepts, and then present our methods for constructing geodesic spanners for general
polyhedron surfaces in section 2 and for convex polytopes insection 3. We conclude
our paper in section 4.

2 Geodesic Spanners For Arbitrary Polyhedral Surfaces
2.1 Terminology

Assume that we are given a polyhedral surfaceP in three-dimension. LetP be the set
of all vertices ofP andF be the set of all faces ofP . For simplicity, we assume that all
faces ofP are triangular faces. LetU be a set of nodes onP . In this paper, we always
assume thatU ⊆ P . For any two nodesu, v ∈ U , we let ΠP(u, v) be the shortest
geodesic path onP betweenu andv; and letdP(u, v) denote the geodesic distance
betweenu andv onP . In general, given an edge weighted graphG andu, v ∈ G, let
dG(u, v) be the shortest distance between nodesu andv in G.

In this paper, we will focus on constructing spanners for thecomplete weighted
graphKP(U, E) on the nodes inU with weight function,dP : E → R+. A graph
H = (V, E), with U ⊆ V , is a geodesict-spanner forU if dH(u, v) ≤ t · dP(u, v)
for every pair of nodesu, v ∈ U . Here the weight of each edgexy in H is the geodesic
distancedP(x, y) betweenx andy on the surfaceP . The geodesict-spannerH is said
to useSteiner verticesif U ⊂ V . The geodesict-spannerH is said to be onU (or



without using Steiner vertices) ifV = U . The geodesict-spannerH is said to have size
η if it has at mostη nodes and edges. Ageodesic minimum spanning treeof a set of
verticesU on a surfaceP is the minimum spanning tree of graphKP(U, E).

Our algorithm to construct a geodesict-spanner forKP(U, E) utilizes a new con-
cept calledgeodesic cones. Given a pointu and a regionR, we letPu(R, d) be the set
of all pointsp in regionR that are at geodesic distancedP(u, p) = d from nodeu.
For example, whenR is a 2-D planeR2, thenPu(R, d) is a circle centered atu with
radiusd. Geometric cones have been used widely to producet-spanners in Euclidean
space. An important property of the geometric coneC, which was used in obtaining
t-spanners, is that for any two pointsp1, p2 of Pu(C, d), ‖p1 − p2‖ ≤ ǫd for a small
constant0 < ǫ < 1. For example, for 2D geometric cones with angleθ, for any two
pointsp1, p2 ∈ Pu(C, d), ‖p1 − p2‖ ≤ 2 sin( θ

2 ) · d.

Definition 1 (pairwise-ǫ-neighbor property). Given a surfaceP and the distance
metric dP , a set of pointsX is said to satisfy the pairwise-ǫ-neighbor property with
respect to a nodeu if, for any two pointsp1, p2 ∈ Pu(X, d), we havedP(p1, p2) ≤ ǫ ·d.

Given a surfaceP , a setX of points onP is calledanǫ-geodesic conewith respect
to (w.r.t.) a nodeu, termedC(u) , if the following two conditions are satisfied:
1. Pu(X, d) satisfies the pairwise-ǫ-neighbor property with respect to a nodeu, and
2. if x ∈ X , then all points on a geodesic shortest pathdP(u, x) are inX .

Most of our results rely on constructing some special cone partition (or more pre-
cisely, cone covering) of space around every node inP . Notice that here a geodesic
cone could be in a finite region. For any nodeu in the polyhedral surfaceP , letF(u) =
{F1(u), F2(u), · · · , Fp(u)} be thep triangular faces incident onto nodeu. For each
faceFi(u) = △xuy of F(u), let δi(u) be the radian value of the internal angle∠xuy.
Let δ(u) =

∑

Fi(u)∈F(u) δi(u).

Definition 2 (Dilation Factor). Thedilation factorγ(u) of a nodeu in the polyhedral

surfaceP is defined asγP(u) =
∑

i
δi(u)

2π . We omit the subscriptP if it is clear from
the context. Thegeodesic dilation factor, γ(P), of the polyhedral surfaceP , is defined
asγ(P) = maxu∈P γ(u).

The dilation factor is a measure of the change in length of a “circle” on the surface
of the polytope as compared to its length on a planar surface.When the surfaceP is
planar, e.g. a single planar face, its geodesic dilation factor is γP = 1. In general the
dilation factor of a surface could be large and depends on thestructure of the surface.

To determine geodesic shortest paths we need following definitions and properties:
1. Edge-adjacent faces:Two facesf1 andf2 are said to beedge-adjacentif they share

a common edge, saye. F = {f1, f2 . . . fk) is called aface-sequence, if for every
1 ≤ i < k, facefi is edge-adjacent to facefi+1 with ei as the edge common tofi

andfi+1. The root of the face-sequence is the vertex inf1 that is not an endpoint
of e1. It is referred to asroot(F).

2. Planar Unfolding:Supposef andf ′ share an edgee. We define the planar un-
folding of facef ′ onto facef as the image off ′, denoted asImgf (f ′), when
f ′ is rotated about the line containinge onto the plane containingf such that
f ∩ Imgf (f ′) = e. The planar unfolding of the sequenceF is the planar unfolding



of facesf2, f3 . . . fk sequentially onto the facef1. We refer the unfolded image of
an edgee, with respect to the planar unfolding of the sequenceF , asU(F , e).

3. Geodesic paths:A path on P is a simple geodesic path if it is simple and can-
not be shortened by slight perturbations. Furthermore, a path Π connects an edge
sequenceE if Π comprises segments that join interior points ofE.
We can state the following lemmas about geodesic paths:

Lemma 1. [41] If Π is a geodesic path which connects the edge-sequenceE then the
unfolded image ofΠ along the edge sequenceE is a straight line segment.

Lemma 2. [31] The general form of a geodesic path is a path which goes through an
alternating sequence of vertices and edge sequences such that the unfolded image of
the path along any edge sequence is a straight line segment and the angle of the path
passing through a vertex is greater than or equal toπ. The general form of an optimal
path is the same as that of a geodesic path except that no edge can appear in more than
one edge sequence and each edge sequence must be simple.

Here the angle of the path passing through a vertexis defined as the smaller of the
angles when measured through the surfaces on the left and right sides of the path.

2.2 Constructingt-Spanner Using Steiner Vertices

In this section, given the polyhedral surfaceP with a set of verticesP , a set of nodes
U ⊆ P and a parametert > 1, we first present a method to construct at-spanner
H = (V, E) using some Steiner vertices,i.e., U ⊆ V . Notice that here we will focus
on the caseV ⊆ P , i.e., Steiner vertices must be a subset ofP , whereP is the set of
vertices used to define the polyhedral surface.

If we can use arbitrary Steiner nodes, we can easily get at-spanner with the maxi-
mum degree bound3 as follows. LetH ′ be the union of|U | shortest path trees rooted
at every node ofU ; for any nodev, let v1, v2, · · · , vk be thek incident nodes ofv
in the union of shortest path trees. We then define a complete binary treeT (v) with
at leastk leaf nodes and at most2k leaf nodes, rooted atv, whose edge lengths are
arbitrarily small. This treeT (v) can be formed by at least2k (and at most4k) Steiner
vertices. We then replace the star of each nodev in H ′, i.e., {(v, vi) | i ∈ [1, k]} by
T (v) ∪ {(si, vi) | i ∈ [1, k]}, wheresi is theith leaf node of treeT (v). Clearly, such
modification will result a structure with degree at most3, and it only increase the dis-
tance between any pair of nodes by an arbitrarily small valueδ > 0. Obviously, the
total weight of the constructed spanner is almost optimum since the extra edges added
in T (v) have weight almost0. In addition, the number of edges added is at most4k
for a node with degreek. Thus, the new spanner has edgesO(1) times the number of
edges ofH ′. Obviously, the number of Steiner nodes used in this approach is at most
O(m), wherem is the number of edges in the polytopes. Thus, in the rest of the paper,
we always assume that the Steiner vertices in at-spanner are restricted to the setP of
vertices of the polytope.

Observe that when we compute the shortest geodesic path between a pair of nodes
u andv, the path found, often uses multiple line segments from different faces of the
surfaceP . We would like to clarify that the end-points of these segments arenot con-
sidered as Steiner nodes in this paper, although they are notfrom P .



Our method is to partition the space near every vertexu ∈ P by someǫ-geodesic
cones. Consider a vertexu ∈ P and all the triangular faces,FP(u) = {F1(u), F2(u), · · · , Fp(u)},
whereFi(u) is a triangleviuvi+1, wherevp+1 is v1. We define⌈δ(u)/ǫ⌉ conesCP(u) =
{C1(u), C2(u), · · · , C⌈δ(u)/ǫ⌉(u)}, where each of the cones has an angle at mostǫ <

π/3, wheret(ǫ) = 1
1−2 sin ǫ

2
is the spanning ratio that can be achieved by the first phase

of our method. For the set of facesF(u), imagine that we cut the facesF1(u) and
Fp(u) along the segmentuv1 and “unfold” all faces inF(u) sequentially onF1(u),
using successively the edgesuvi, i = 1 . . . p − 1. To construct the required cones we
desire to construct rays with apexu on the facesF(u) such that when we unfold these
faces, the angle between any two consecutive rays on the unfolded plane is at mostǫ.
Using the unfolding, the cones inC(u) are produced in the unfolded 2-d space by di-
viding the surrounding unfolded regionδ(u) (which could have angle arbitrarily larger
than2π for non-convex polyhedron, and smaller than2π for convex polyhedron) us-
ing planar cones (sectors) with an angle at mostǫ, i.e., a cone, when unfolded, has a
shape of a sector. Observe that here a coneCi(u) may contain several triangular faces
of F(u) inside. We can then fold the faces back and this will give us⌈δ(u)/ǫ⌉ rays: two
consecutive rays define a cone. It is easy to show that (1) for any pointx from F(u),
dP(x, u) = d(x, u); (2) for any two pointsx andy fromF(u) that fall inside the same
cone anddP(x, u) < dP(y, u), we havedP(x, u) + t(ǫ) · dP(x, y) ≤ t(ǫ) · dP(y, u)
for t(ǫ) = 1

1−2 sin ǫ
2

whenǫ < π/3.

Note that here a coneCi(u) only contains points fromF(u) now. We later will
show how to extend the cones to other triangular faces onP by propagating each cone.

We next present our method to construct a geodesict-spanner, without using Steiner
vertices, in phases:
1. Phase 1:t(ǫ1)-Spanner ConstructionFirst, for every nodeu ∈ U , we construct

a geodesic cone partition,ΛP(u). The cone partition is achieved by a propagation
method which develops the cones starting with⌈ δ(u)

ǫ1
⌉ conesCP(u) on the faces

F(u) containingu. The process is detailed in procedurePropagateCones(u)
for each nodeu ∈ U . The process is also repeated for Steiner verticesS of the
polyhedron encountered during the cone expansion from nodes in U , i.e., we run
procedurePropagateCones(u) for every nodeu of S and updateS accordingly:
adding the encountered nodev ∈ P to S if v 6∈ U . These new vertices are termed
Steiner vertices, denoted asS. Let U ′ be the union ofU andS.
For eachǫ-geodesic cone with apex nodeu, we add a (directed) edgeuv if v is
the closest node fromP , i.e., first encountered node inP . This phase results in a
graphH ′(U ∪ S, A′) whereA′ is the set of edges added. We will prove thatH ′ is
a t(ǫ1)-spanner forU .

2. Optional Phase 2: Further Degree ReductionThe process described in this para-
graph is used topossiblyfurther reduce the node degree. Again, we partition the
space around each nodev, by cones of angle at mostǫ2.
Repeat the following step for each nodev ∈ U∪S. In H ′(U ∪S, A′), for each node
v, letI(v) be the set of incoming neighbors of nodev. For all nodes inI(v), build a
tree rooted at nodev. Let I0(v) be the set of nodes that already has been processed.
Initially, I0(v) = {v}. A directed edge(u, v), whereu ∈ I(v), is retained ifu is
the closest node in some cone of nodev, and we addu to the setI0(v). For each



Algorithm 1 PropagateCones(u)
.

1: Let CP(u) be⌈δ(u)/ǫ1⌉ cones aroundu on the facesf ∈ F(u) containingu (each
cone has an angle at mostǫ1).

2: for each coneC in CP(u) do
3: For each facef = uvw inside the coneC, let uv′w′ be the portion of the face

that is completely contained insideC. Notice that herev′w′ could be a segment
of vw. Let x(f) be the point on the segmentv′w′ that isclosestfrom u, i.e.,
dP(x(f), u) = d(x(f), u) ≤ d(y, u) for any pointy on the segmentv′w′.
Let d = minf intersected by coneC,f∈F(u) dP(u, x(f)). Let f(C, u) (or simplyf if
no confusion) be the face that has the pointx(f) such thatdP(u, x(f)) is mini-
mized among all faces intersected byC, i.e., dP(u, x(f(C, u))) = d.

4: if x(f(C, u)) is a vertexv from P then
5: Add v to S and add adirectededge(u, v) to the structureH ′(U ∪ S, A′).
6: If v is not markedprocessed, run procedurePropagateCones(v).
7: else
8: Let e be the edge that contains the pointx(f(C, u)) andf be the facef(C, u).

Extend coneC across facef , adjacent alonge and unfolded onto the sequence
FU of unfolded faces byprocedure Unfold. Note: In this procedure we keep
unfolding faces until the closest point tou among all points on segments defin-
ing polyhedral surfaceP , sayx(C, d), is a vertexz from P . Then add an edge
uz and update geodesic distance toz.

9: end if
10: end for
11: Mark nodeu processed.

newly added nodeu in I0(v), recursively add directed edgesxu wherex 6∈ I0(v)
is the closest node tou in some cone ofu.
Let the final structure beH ′(U ∪ S, E′).

3. Optional Phase 3: Further Edge ReductionIn this phase, edges inH ′(U ∪S, A′)
(or H ′(U ∪ S, E′)) are pruned to create the graphH(U ∪ S, E) as follows: (1)
Sort the edgesA′ in H ′(U ∪ S, A′) in decreasing order of the geodesic length,
e1, e2 . . . em′ . Let E = A′. (2) Eliminate edgeei from E if the edges inE \ ei

provide a path of length at mostt · dP(u, v) for every pair of nodesu andv from
U , wheret > 1 is the spanning ratio. (3) Eliminate unnecessary Steiner vertices,
where a Steiner vertex is unnecessary if it is not on the shortest path inH between
any pair of nodes inU .

The construction of the Geodesic Cone partition is given in Algorithm 1.

Observe that, in Algorithm 1, clearly pointx(f(C, u)) has only two choices: either
it is some nodev from P defining the original polyhedral surface, or it is inside some
segmentvw whereuvw is a face incident onu. Note that even if coneC contains
multiple triangular faces ofF(u) inside, it is still possible thatx(f(C, u)) is not one of
the vertices in facesF(u). See Figure 3 for illustration of these two cases.



Additionally, in Algorithm 1, the sequenceFU of unfolding is not necessarily unique,
and we have to test all necessary sequences of unfolding. Forthe example illustrated
by Figure 3 (a), after we unfold the trianglevwz, we should unfold both trianglevyz
along the edgevz, and the trianglezwq along the edgezw to find the closest vertex
from P that is inside the (extended) coneC. Here in the example illustrated by Figure
3 (a), either the vertexy or the vertexq, or both could be closer tou than the vertexz.
The actual unfolding of faces will use the continuous Dijkstra method [31] as follows to
define theprocedureUnfold. For each coneC and each vertexu, we maintain an event
heap: the event is the edgee of facef that has a point, denoted asx(f, c), that is closest
to the nodeu. When we unfold a facef represented by three verticesu, v, w along some
edge,e = (u, v), it will possibly introduce two new edgese1 ande2. We then add these
two new edges to the heap based on the distancedP(ei, u) to nodeu. We also add the
distance to the vertexw. The top element of the heap is always the edge or vertex that
is closest to the vertexu. Let e be the element in the top of the heap. We process the top
event represented bye by unfolding the face adjacent toe as defined above. If the top
element of the heap is a vertexv of P such that the distancedP(u, v) ≤ dP(u, e′) for
every elemente′ in the heap, the procedure returnsv.

2.3 Performance Bounds and Time Complexity

See appendix for proof of the following lemmas.

Lemma 3. The graphH(U ∪ S, E) is a t-spanner for nodes inU .

Lemma 4. The graphH ′(U∪S, A′) is at-spanner with a maximum out-degreeO(γ(P)/ǫ1)
wheret = 1

1−2 sin
ǫ1
2

.

By choosingǫ1 = ǫ2 = ǫ for some small valueǫ, we have the following lemma.

Lemma 5. The graphH ′(U ∪ S, E′) after degree-reduction procedure is at-spanner
with a maximum node degreeO(min(n, (γ(P)/ǫ)2)) wheret = ( 1

1−2 sin(ǫ/2) )
2.

Lemma 6. Our algorithm constructsH(U ∪ S, E) in O(n2/ǫ + n3) time.

vi
u0

ui

ui+1

Fig. 1. An example of a sur-
face and the set of nodesU =
{u0, u1, · · · , un}. Here u0vi

defines a valley betweenu0ui

andu0ui+1, d = dP(ui, u0).

We can construct an example surface and nodes
placement (see Figure 1 for illustration) such that for
some small enought, a t-spanner (for some constant
t) will have the maximum degreeΩ(γ(P)) where
γ(P) = Θ(n) is the dilation factor of the surface.
The basic idea of the example is as follows: There is a
setU of n nodesu1, u2, · · · , un. There are two trian-
gular facesuiu0vi andviu0ui+1 betweenui andui+1

such that the geodesic distance betweenui andui+1

is larger than(t−1)·d+η, for t < 3, i ∈ [1, n−1], for
a small constantη > 0. Actually, we can place these
two triangular facesuiu0vi andviu0ui+1 such that
the geodesic distance betweenui andui+1 is 2d − δ
for any0 ≤ δ < 2d. A nodeu0 at distanced from



these nodes will then have to be connected directly to
all these nodes to ensure that it is at-spanner. Observe
that, whent ≥ 3, the preceding example does not im-
ply that we have to connectu0 with every nodeui,
i ≥ 1. This is because the geodesic distance between
ui anduj is at mostdP(ui, u0) + dP (u0, uj) ≤ 2d.
In this case, we can omit some edgesu0ui without
violating thet-spanner property fort ≥ 3.

We further study reducing the weight of the structure. Chandra et al. [11] proved
that for any metric spaceM , and everyn-vertex complete graphG on this metric, if
(1) there is anO(g(n)) time algorithm that builds at-spanner forG with O(f(n))
edges, wheref(m)/2 ≥ f(m/2) andg(m)/2 ≥ g(m/2) for any m > 0, and (2)
there exists anO(h(n)) time algorithm that can build a spanning treeT for G with
weightO(1)ω(MST), then there exists anO(max(g(n), h(n), n log n)) time method
which builds a(t+ ǫ)-spanner withO(f(n)) edges and weightO(f(n)

n log n)ω(MST).
Notice that for geodesic metric, we have methods withf(n) = O(γ(P)n) andg(n) =
O(n3+n2/ǫ). Our method for constructing a structureH ′ implies the following lemma.

Lemma 7. We can construct a geodesict-spanner for any polyhedral surfaceP such
that the total weight of the structure isO(γ(P) log n)ω(MST) in timeg(n) = O(n2/ǫ).

Observe that with the optional degree-reduction phase 2, the running time of the
method becomesg(n) = O(n3+n2/ǫ). Notice that the method by Chandra [11] cannot
preserve the degree bound of the final structure. We leave it as a future work to design a
t-spanner structure with bounded degreeO(γ(P)), and total weightO(γ(P) log n)ω(MST),
or study whether it is possible to construct at-spanner with weightO(γ(P)+log n)ω(MST).

2.4 Geodesic Spanners Without Using Steiner Vertices

We now study, given the polyhedral surfaceP (and its set of verticesP ), a set of nodes
U ⊆ P , and a numbert > 1, how to construct at-spannerH = (U, E) without us-
ing Steiner vertices. Our objective is to construct at-spanner with small node degree
and small total edge weight. A more general question is following: given a complete
weighted graphG with positive edge weights satisfying the triangular inequality, con-
struct at-spannerH ⊆ G with small maximum degree and small total edge weight
ω(H). Surprisingly, we could not find any results, except [27], inthe literature that
provide any degree bound on at-spanner for an arbitrarily weighted graph.

We first show by example that, for any algorithm that constructs at-spanner, there
are inputs such that the constructedt-spanner will have a maximum degree at least
Ω(n

1
t ) for nodes placed on a surface, wheren is the size ofU .

Lemma 8. For anyt > 1, there is a surfaceP on a set of nodesP , and a set of nodes
U ⊆ P , such that the maximum node degree in anyt-spannerH = (U, E) without
using Steiner vertices is at least(n

2 )
1
t , wheren = |U |. For anyt > 1, there is a surface

P on a set of nodesP , and a set of nodesU ⊆ P , such that the weight of anyt-spanner
is at leastn

1
t+2 /2 times of MST.



Whent < 3, the placement the trianglesuiu0vi, 1 ≤ i ≤ n−1, and trianglesviu0ui+1,
1 ≤ i ≤ n− 1, ensures that the geodesic distancedP(ui, ui+1) is 2dP(u0, ui)− δ (for
small0 < δ < (3 − t)dP (u0, ui)) anddP(u0, ui) = dP(u0, uj) for i 6= j. Thus, we
have to connectu0 to every nodeui sincedP(u0, uj)+dP(uj , ui) ≥ 3dP(u0, ui)−δ >
tdP(u0, ui) for every nodeuj andt < 3.

Lemma 9. For anyt with 1 < t < 3, there is a surfaceP on a set of nodesP , and a
set of nodesU ⊆ P , such that the maximum node degree in anyt-spannerH = (U, E),
without using Steiner vertices or all Steiner vertices are restricted toP , is at least
γ(P) = Θ(n), wheren = |U |.

Thus, generally, to get at-spanner, which does not use any Steiner vertices or can
only use Steiner vertices fromP , with a maximum node degreeo(n), we must focus on
t ≥ 3. In this case, Lemma 8 shows that the maximum degree is at least Ω(n

1
t ).

Notice that the traditional greedy method (sorting edges inincreasing order as
e1, e2, · · · , em and adding an edgeei = (u, v) only if the added edges frome1, e2, · · · , ei−1

do not have at-spanner path connectingu andv) will still produce a structure with max-
imum node degreen for the example illustrated in the proof of Lemma 8.

We also show that the following greedy method cannot producea t-spanner with
a bounded degree∆ at all. The method is as follows: LetA be the final added edges
andA = ∅ initially; We sort edges in the complete graph onU in increasing order,
and we add an edgeei = (u, v) to A only if (1) there is at-spanner path connecting
u andv using previously added edgesA, and (2) the degrees ofu andv in the partial
graph formed by edges inA are at most∆ − 1. We construct a network example as
follows: U is formed of two setsU1 andU2, both have∆+1 nodes and is a copy of the
node placement illustrated by Figure 1. The distance between U1 andU2 is very large
compared with the radius ofU1 andU2. Then this simple greedy method will not build
any edges betweenU1 andU2. Thus the final structure is disconnected.

Bounds on total edge weight:The preceding lemmas build lower bounds on the max-
imum node degree and total edge weight that we can achieve foran arbitrary input of
polyhedral surfaceP and a set of nodesU . It is hard to approximate the minimum
weightt-spanner (i.e., finding at-spanner with the minimum total edge weight) within
a factoro(log n) for a general weighted graph [17] for any integert > 1. Thus, it is
hard to construct at-spanner with total weighto(log n)ω(MST).

A simple greedy algorithm can construct at-spanner whose total edge weight is
at mostO(ln n · n

2
t−1 ) · ω(MST) whent ∈ [3, 2 logn + 1] [37]. This currently best

known result is still far from the previous lower bound we knew: the ratio of the best
known achievable upper bound on weight over the best known lower bound on weight is

lnn·n
t+3

(t−1)(t+2) for t ∈ [3, 2 logn+1]. For arbitraryt > 1, results by Khuller [25] show
that we can construct at-spanner in timeO(n2), when we already have the geodesic
distances between every pair of nodes inU , with weight at mostn(1 + 2

t−1 )ω(MST ).
Observe that for arbitrary weighted graph, whent < 2, in the case of a complete graph
where each edge has a weight1, anyt-spanner must be the complete graph itself. The
spanner thus has total edge weightn · ω(MST ). Unfortunately, it is not clear how to
design a geodesic graph such that the weight of each edge is1.



3 Geodesic Spanners for Convex Polytopes

In this section, we study constructing geodesic spanners for a set of nodes on a convex
polytope, and the distance is measured by geodesic distance. Our approach is to approx-
imate a convex polytope by a constant number of 2D planar patches, similar to [18].

LetP be a convex polytope, with a set of polygonal facesF . For any subsetF ⊆ F
of faces, letN (F ) = {Nf | f ∈ F} be the set of normals to the faces whereNf is the
normal to facef . Consider the angular representation of the normals: each normalN is
represented by a pair(θN , φN ) in the Spherical coordinates system, whereθN , φN ∈
[0, 2π] are the angle of the normal vector from thez-axis (called the colatitude or zenith)
and the angle from thex-axis. The basic idea of our method for building the spanner is
to partition the convex polygonal surfaceP into a constant number of convex patches
such that each patch is almost flat (i.e., the difference between the normals of any two
faces in the patch is a small constant). Note that the patcheswe construct may overlap.

Definition 3. A δ-patch ofP is a set of faces,F ⊆ F such that (1)F forms a continu-
ous region; (2) the patch isflat, i.e.,Ψ(F ) = supf,g∈F max

(

|θNf
− θNg

|, |φNf
− φNg

∣

∣) ≤
δ, i.e., the difference between any two normals is bounded by aconstant.

A δ-partition ofP , denoted as∆P , is a partition of the set of facesF such that each
partition is aδ-patch. Here aδ-patch is not necessarily convex.

Definition 4. A δ-planar projection,Ξ(F ) of a δ-patchF is the projection of points in
F onto a plane,P , with normalNP such thatNP ∈ N (F ).

A linear convex patchG is a connected closed subset of points with a piecewise
linear boundary such that itsδ-planar projectionΞ(G) is convex.

Definition 5. A convex extensionE(F ) of a δ-patchF is a minimal piece-wise linear
convex patch, a collection of polygonal faces, that contains F with the property that
Ψ(E(F )) − Ψ(F ) ≤ ǫ.

It is not difficult to show that the following property holds for a convex surfaceP .

Property 1. Low-distortion projection property:Letu andv be two points on aδ-patch,
F . ThendP(u, v) ≥ d(u, v) ≥ dP(u, v)/(1 + 2 · δ) whered(u, v) is the Euclidean
distance betweenu andv onΞ(F ) anddP(u, v) is the geodesic distance onF .

3.1 Algorithm

Our method for constructing a spanner for convex polytope isas follows:
1. Find aδ-partition, denoted as∆P = {F1, F2, · · ·Fp}, of P . HereFi ⊆ F is a

subset of faces that form aδ-patch. Then we construct a convex-extensionE(∆P )
as follows. For eachδ-patchFi in theδ-partition, we perform the following steps:
(a) Find aδ-planar projection,Ξ(Fi) of Fi to some plane with a normalN ∈

N(Fi).
(b) Find the convex hullCH(Ξ(Fi)) of Ξ(Fi).



(c) Find the inverse of the projection, i.e., findE(Ξ(Fi)) such that itsδ-planar
projection isCH(Ξ(Fi)).

2. For everyδ-patch in∆P do the following
(a) For eachu ∈ UF , construct aǫ-cone partition of the surface as in the previous

section 2. LetC(u) be the cone partition produced. Note that since the differ-
ence between normals is small, a simple method of projectingcone partitions
of a plane suffices in this case.

(b) Let UF be the set of all nodes inF For nodeu ∈ F , let I(u) be the set
of the intersection segments of all cones with the boundary∂E(F ). In each
intersection regionC ∩ ∂E(F ) whereC ∈ C(u), we add a Steiner point if
the coneC that created the region contains a shortest path from the apex, say
u, of the cone to some other nodev 6∈ UF , i.e., outside of theδ-patch. Note
that this Steiner point is also added to the neighboringδ-patch, which the cone
C intersects. Let the set of added Steiner points beSF (u). Let the set of all
Steiner points onF beSF = ∪u∈UF

SF (u).
(c) Find a projectionΞ(F ) of F to some hyperplane perpendicular to the normal

of a face inF .
(d) Find an Euclideant-spanner graphHF (Ξ(VF ), Ξ(AF )) of a constant maxi-

mum degree and of weightO(MST (VF )) for the set of vertices,Ξ(VF ), in
Ξ(F ) whereVF = UF ∪SF . Ξ(AF ) is the set of edges created in the spanner
graph. This can be done by several methods in the literature [9].

3. Let the spanner beH(U, A) = ∪F∈∆P HF (VF , AF ), where each edge(u, v) in AF

corresponds to an edge(Ξ(u), Ξ(v)) and is weighted by shortest geodesic distance
betweenu andv.

It remains to determine aδ-partition and the convex extensions. Given the range of
anglesθ andφ we do the following
1. Partition the domain[0, 2π] of θ andφ equally into2π/ǫ ranges of sizeǫ, indexed

by (i, j), 1 ≤ i, j ≤ 2π/ǫ which indicates thatθ ∈ [(i − 1) · ǫ, i · ǫ] andφ ∈
[(j − 1) · ǫ, j · ǫ].

2. For every tuple of ranges(i, j) let F = ∪f such thatθNf
∈ [(i − 1) · ǫ, i · ǫ] and

φNf
∈ [(j − 1) · ǫ, j · ǫ].

The preceding approach clearly creates a constant number ofδ-patches because of
the monotonicity of the normals for a convex polytope. Theδ-patchF is obtained from
the convex hull of points onF on the polyhedronP .

Lemma 10. The convex extension of aδ-patchF is also aδ-patch.

Note that our spanner uses Steiner points.

Lemma 11. H(U, A) is a t-spanner of the set of nodesU onP .

We now compare the weight of the spanner with the minimum spanning treeMST (U)
of the set of pointsU on the surface ofP .

Lemma 12. H(U, A) has a constant maximum degree and weightO(MST (U)).

Lemma 13. The construction of thet-spannerH(U, A) requiresO((1/ǫ)2(n2 log n +
TE(n))) steps whereTE(n) is the time required by any algorithm to compute a 2-
dimensionalt-spanner.



Notice thatTE(n) = O(n log n) for anyd-dimensional nodes. We also observe that
our method of constructingt-spanner also works for anyd-dimensional convex surface
(where the cone must be small enough with an angleO(ǫ) with (1 + ǫ)d < t).

4 Conclusion

In this paper, we studied the spanner construction for geodesic graphs for a set of nodes
U placed on a 3-dimensional surfaceP , and for geodesic graphs on convex polytopes.
Our main contributions are
1. a polynomial-time algorithm to build a sparset-spannerH(U∪S, E) with O(γ(P)n)

edges when we can use Steiner vertices. We also present some methods to reduce
the node degree. For the case when the use of Steiner verticesis restricted, we show
lower bounds on the maximum node degree of anyt-spanner.

2. a polynomial-time algorithm that builds a bounded degreet-spanner with weight
O(ω(MST )) for geodesic graphs on convex polytopes. The spanner uses steiner
vertices.

For general polygonal surfaces, it is interesting to designan efficient method to con-
struct a sparset-spanner without using Steiner vertices such that it can achieve a non-
trivial degree bound whent ≥ 3. Given a weighted graph with edge weights satisfying
the triangular inequality and constantt ≥ 3, we would like to construct at-spanner
whose maximum node degree is asymptotically minimum (in theorder ofO(n1/t) or
O(nO(1/t))).
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Appendix

Proof of lemma 3

PROOF. Order all the edges in the complete graphKP(U, E) in the increasing order
of the geodesic shortest distances between the end-points.The proof is by induction
on the distances. Letu andv be two vertices fromU with shortest geodesic distance
dP(u, v) = d. Assume that the geodesic pathΠP(u, v) = u ! v1 ! v2 !

· · · ! va wherevi, 1 ≤ i ≤ a are vertices ofP , andva is v. Herevi ! vi+1 is the
shortest geodesic path connecting nodesvi andvi+1, which is a piece-wise linear path
passing through a number of triangular faces. Suppose thatv1 ∈ C whereC ∈ C(u),
i.e., the starting segmentu ! v1 of the geodesic shortest pathΠP(u, v) from u to
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v lies in the coneC. Let w be the closest, in order of geodesic distance, tou, from
amongst all other nodes in the cone. Then our algorithm will add the edgeuw. It is
easy to show thatdP(w, v1) < dP(u, v1) ≤ dP(u, v). Then by induction there is
a path inH ′(U ∪ S, A′) betweenu andw and betweenw andv1 of geodesic length
at mostdP(u, w) and t(ǫ1) · dP(w, v1), respectively. It is not difficult to show that
this path has length at mostdP(u, w) + t(ǫ1) · dP(w, v1) ≤ t(ǫ1) · dP(u, v1), where
t(ǫ1) = 1

1−2 sin(ǫ1/2) . Similarly, we can prove that there is a path inH ′(U ∪ S, A′)

betweenvi andvi+1 with length at mostt(ǫ1) · dP (vi, vi+1).
Consequently, the shortest pathP (u, v) in H ′(U ∪ S, A′) from u to v that usesw

has length at mostdH(u, v) ≤
∑a−1

i=0 t · dP(vi, vi+1) = t(ǫ1)dP(u, v) wherev0 is u.
Observe that if the graphH ′(U ∪S, A′) has a path of length at mostt(ǫ1)dP (u, v), the
graphH(U ∪ S, E) will obviously also preserve at least one such path. In otherwords,
graphH(U ∪ S, E) is at(ǫ1)-spanner. We can chooseǫ1 such thatt(ǫ1) = t if Phase 2
is not executed.

Note that, if we run the optional procedure to further reducethe node degree, a
directed edgeuv in H ′(U ∪S, A′) may now be replaced by a path with geodesic length
at mostt(ǫ2) = 1

1−2 sin
ǫ2
2

dP(u, v), depending on the angleǫ2 of the cones. In this case,

to ensure the final structure as at-spanner, we have to choose the angleǫ1 andǫ2 of the
cones to satisfyt = t(ǫ1) · t(ǫ2). This finishes the proof.

Proof of Lemma 4

PROOF. To show the degree bound, consider the edges inH ′(U ∪S, A′). Ourt-spanner
construction method (Algorithm 1) will add at most1 directed edge in each coneC(u)
for every nodeu. Thus the total number of directed outgoing edges incident on u is
bounded by the number of cones inC(u), which isO(γ(P)/ǫ1).

Proof of Lemma 5

PROOF. Observe that in the degree-reduction procedure, each nodeu will participate
in the degree-reduction steps of a nodev if and only if we have a directed edge(u, v),
thusu will participate in at most degree-reduction ofO(γ(P)/ǫ1) nodes. Note that, for
each degree reduction procedure, we will add at mostO(γ(P)/ǫ2) additional edges to
nodeu. By choosingǫ1 = ǫ2 = ǫ for some small valueǫ, we have the lemma.

Proof of lemma 6

PROOF. The first phase of the algorithm constructsO(1/ǫ) cones from each vertex in
P . Propagation of these cones requires maintenance of1/ǫ intervals on each edge of
the polyhedral surfaceP . Extending the cone requiresO(1) steps at each edge. Thus,
it will take time O(n2/ǫ) to construct graphH ′(U ∪ S, A′). The second phase of the
algorithm requires computing shortest paths for every pairof vertices and removing
redundant nodes. This can be done in timeO(n3) using all pairs shortest path method.



Proof of lemma 8

PROOF. Notice that Peleg and Schaffer [34] showed that anyt-spanner of some arbi-
trary weighted graph needs at leastn1+ 1

t+2 edges. Thus, for arbitrary weighted graph,
the maximum degree node degree of anyt-spanner is at leastn

1
t+2 /2. Unfortunately,

their example (the weight of each edge is1) cannot be realized using geodesic dis-
tance. Here we construct an example in 3-dimension as follows. Figure 1 illustrates
such an example. There is a nodeu0 at the origin andn other nodesui with coor-
dinate(sin((i − 1)α), cos((i − 1)α), 0). Additional n − 1 nodesvi with coordinate
(sin((i − 1 + 1/2)α), cos((i − 1 + 1/2)α), 1) are placed also. The polyhedral sur-
faceP is composed of nodesui, 0 ≤ i ≤ n andvi, 1 ≤ i ≤ n − 1, and triangles
uiu0vi 1 ≤ i ≤ n − 1 and trianglesviu0ui+1, 1 ≤ i ≤ n − 1. We want to con-
struct at-spanner for the set of nodesU = {u0, u1, u2, · · · , un}. It is not difficult
to show that the geodesic distancedP(ui, uj) satisfies1 ≤ dP(ui, uj) ≤ 2 for ev-
ery pair of nodesui anduj . Assume that we havet-spannerH = (U, E) for U with
the maximum degreeD + 1. Then consider the breadth-first-spanning tree rooted at
nodeu0. Clearly, the depthh of the BFS tree should satisfy that

∑h
j=0 Dj ≥ n, i.e.,

Dh+1−1
D−1 ≥ n. Further, consider any nodev with depthh in H , then the hop-distance

betweenu0 andv in H is at leasth. Thus, the distanceh ≤ dH(u0, v) ≤ 2h. Since
H is a t-spanner, we havedH(u0, v) ≤ tdP(u0, v) = t. Thus,h ≤ t. Consequently,
Dt+1 ≥ Dh+1 ≥ n(D − 1) + 1. Thus,D > (n

2 )
1
t , i.e., D = Ω(n

1
t ).

The result by Peleg and Schaffer [34] also implied that the total edge weight of any
t-spanner for the example constructed above is at leastn

1
t+2 /2 times of the weight of

minimum spanning tree for anyt > 1 since the weight of MST is at leastn here and
anyt-spannerH has at leastn1+ 1

t+2 edges.

Proof of property Low-distortion projection property

Property 2. Low-distortion projection property:Letu andv be two points on aδ-patch,
F . ThendP(u, v) ≥ d(u, v) ≥ dP(u, v)/(1 + 2 · δ) whered(u, v) is the Euclidean
distance betweenu andv onΞ(F ) anddP(u, v) is the geodesic distance onF .

PROOF. Consider the geodesic path between the two pointsu andv. We first provide
an upper bound on its length. Consider the planes, orthogonal to the normalsN(u) and
N(v), at the pointsu andv, termedT (u) andT (v), respectively. The shortest geodesic
path fromu to v when unfolded onto the planeT (u) is a straight line. Letv′ be the
unfolded image ofv. Consider the length of the straight lineuv′ in comparison to|uv|
Since the faces reside on aδ-patch, the angle betweenuv anduv′ is almostδ. Thus
|uv| ≥ |uv′|(1 − δ). Comparing with the projection ofuv onto the plane gives an error
with factor(1 + 2 · δ).



Proof of Lemma 10

PROOF. W.l.o.g assume that the faces ofP are triangles. Letu andv be two vertices
on the convex hull of theδ-patch. Let the straight line-segment(u, v) lie on a faceA on
the convex extension but which is not part of theδ-patch. LetB andC be the faces on
theδ-patch on which the verticesu andv reside. SinceP is convex the normal toA is
a vector with angleα whose value lies in the cone defined by the vectorsβ andβ′, the
normals to the facesB andC, respectively.

Proof of lemma 11

PROOF. Because of theLow-distortion projection property, the spanner onΞ(F ) de-
fines a spanner onF also: the spanning ratio onF depending on the spanning ratio of
the spanner onΞ(F ). It suffices to show that the spanner property is true foru ∈ F1 and
v ∈ F2, whereF1 andF2 are two different patches. Consider the shortest path between
nodesu andv, residing in a cone inC(u). For this cone a Steiner vertex,p, is added to
the boundary ,∂E(F ). This Steiner point is also present in the neighboring patch. Using
standard arguments, a(1 + ǫ) approximate path can be obtained from the path between
u andp and then fromp to v. By induction on the rank of geodesic distances between
pairs of vertices, both these paths are within a factort = (1 + ǫ) of the optimum. The
combined path is also at-factor path betweenu andv, sincep is contained in the(1+ǫ)
cone with apexu. Then the constructed subgraph is a spanner. Observe that our spanner
does use Steiner points.

Proof of lemma 12

PROOF.
The degree bound follows from the degree bound provided by the Euclidean spanner

construction.
To bound the weight, consider aδ-patch,F , comprising a set of pointsV = UF ∪

SF . Let the spanner edges, restricted toF , be HF (VF , AF ). First, construct a TSP
tour, T , from MST (U) on the surface ofP using a shortcut of the Eulerian tour of
the MST. Shortcut the tour to obtainTF , a tour restricted to the patchF . The weight
of the Euclidean spannerHF (VF , AF ) on Ξ(F ) is O(MST (Ξ(VF )). Furthermore,
MST (VF ) ≤ MST (Ξ(VF ))(1 + δ).

We now need to relateMST (VF ) toTF whereVF = UF∪SF . Clearly,MST (VF ) ≤
MST (UF ) + MST (SF ) + w(E) whereE is some special edge joining some pointu
in UF to the corresponding Steiner nodeSF (added due tou) andMST (UF ) ≤ TF .
The Steiner points all lie on the boundary ofF and are constructed by adding a point in
each coneC ∈ C(u). There areO(γ/ǫ) cones inC(u).

Consider a coneC. The geodesic distances withinF are closely related to the
straight line distance between two points and so for ease of understanding we will con-
sider the cones as defined by straight lines and theδ-patch a planar surface. Consider
the set of Steiner points,SF (u, α) generated by the set of cones

{C(u) | u ∈ UF , coneC(u) in one single directionα, each cone of angleǫ}
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Fig. 4. We bound the length of minimum spanning tree of nodes inUF ∪ SF . Here the
nodessi on the boundary ofΞ(F ) are Steiner nodes. Herex is the longest distance
between Steiner nodes on boundary and the original input nodes, denoted asUF , inside
the patchΞ(F ); y is the longest distance between nodesUF .



Let the setUF be of diametery and let the maximum distance of points inUF from
the set of Steiner points bex. Since the Steiner points,SF , are generated from points in
UF using the cone, the points inSF are at mosty+(y+x) ·ǫ ≤ (y+x)(1+ ǫ) distance
apart. Consider the spanning tree ofSF obtained by joining the points in sequence
along the boundary ofF . This distance is bounded byO(y + x) from the fact that the
boundary of the patch is convex. Moreover letE be an edge obtained from joining a
nodeu in UF to a corresponding Steiner point inSF generated by a shortest path from
u to a nodew /∈ F . This implies thatw(E) ≤ MST (TF ). Moreover,x ≤ y + w(E).
ThusMST (VF ) ≤ MST (UF ) + MST (SF ) + w(E) = O(TF ) = O(MST (U)).

Proof of Lemma 13

PROOF. The algorithm constructs the cone partition in(n/ǫ)2 steps. Computation of
the shortest path between each pair of vertices requiresO(n2 log n) steps [40]. Further,
for each of the1/ǫ2 δ-patches, the algorithm requiresTE(n) steps whereTE(n) is the
time required by any algorithm to compute a planart-spanner. Note that finding the
convex extensions and the projections can be performed within the time bounds stated.


