
dBBlue: Low Diameter and Self-routing Bluetooth
Scatternet

Wen-Zhan Song Xiang-Yang Li Yu Wang Weizhao Wang
Dept. of Computer Science, Illinois Institute of Technology

10 W. 31st Street, Chicago, IL 60616

{songwen, wangyu1, wangwei4}@iit.edu, xli@cs.iit.edu

ABSTRACT
This paper addresses the problem of scatternet formation for single-
hop Bluetooth based ad hoc networks, with minimal communica-
tion overhead. We adopt the well-known structure de Bruijn graph
to form the backbone of Bluetooth scatternet, hereafter called dB-
Blue, such that every master node has at most seven slaves, every
slave node is in at most two piconets, and no node assumes both
master and slave roles. Our structure dBBluealso enjoys a nice
routing property: the diameter of the graph is O(log n) and we can
find a path with at most O(log n) hops for every pair of nodes with-
out any routing table . Moreover, the congestion of every node is
at most O(log n/n), assuming that a unit of total traffic demand
is equally distributed among all pair of nodes. We discuss in de-
tail a vigorous method to locally update the structure dBBlueusing
at most O(log n) communications when a node joins or leaves the
network. In most cases, the cost of updating the scatternet is ac-
tually O(1) since a node can join or leave without affecting the
remaining scatternet. The number of nodes affected when a node
joins or leaves the network is always bounded from above by a con-
stant. To facilitate self-routing and easy updating, we design a scal-
able MAC assigning mechanism for piconet, which guarantees the
packet delivery during scatternet updating. The dBBlue scatternet
can be constructed incrementally when the nodes join the network
one by one. Previously no method can guarantee all these proper-
ties although some methods can achieve some of the properties.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion, Network topology; G.2.2 [Graph Theory]: Network prob-
lems, Graph algorithms

General Terms
Algorithms, Design, Theory

Keywords
System design, Bluetooth networks, scatternet formation, single-
hop, low diameter, self-routing, de Bruijn graph.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DialM-POMC’03,September 19, 2003, San Diego, California, USA.
Copyright 2003 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

1. INTRODUCTION
Bluetooth [8] is a promising new wireless technology, which en-

ables portable devices to form short-range wireless ad hoc networks
based on a frequency hopping physical layer. Bluetooth ad-hoc
networking presents some technical challenges, such as schedul-
ing, network forming and routing. User mobility poses additional
challenges for connection rerouting and QoS services. It has been
widely predicted that Bluetooth will be the major technology for
short range wireless networks and wireless personal area networks.
This paper deals with the problem of building ad hoc networks us-
ing Bluetooth technology.

According to the Bluetooth standard, when two Bluetooth de-
vices come into each other’s communication range, one of them
assumes the role of masterof the communication and the other be-
comes the slave. This simple one hop network is called a piconet,
and may include more slaves. The network topology resulted by the
connection of piconets is called a scatternet. There is no limit on
the maximum number of slaves connected to one master, although
the number of active slaves at one time cannot exceed 7. If a mas-
ter node has more than 7 slaves, some slaves must be parked. To
communicate with a parked slave, a master has to unpark it, thus
possibly parking another active slave instead. The standard also
allows multiple roles for the same device. A node can be master
in one piconet and a slave in one or more other piconets. However,
one node can be active only in one piconet. To operate as a member
of another piconet, a node has to switch to the hopping frequency
sequence of the other piconet. Since each switch causes delay (e.g.,
scheduling and synchronization time), an efficient scatternet for-
mation protocol can be one that minimizes the roles assigned to the
nodes, without losing network connectivity.

While several solutions and commercial products have been in-
troduced for one-hop Bluetooth communication, the Bluetooth spec-
ification does not indicate any method for scatternet formation. The
problem of scatternet formation has not been dealt with until very
recently. The solutions proposed in literature can be divided into
single-hop and multi-hop solutions. Several criteria could be set
as the objectives in forming scatternet. First of all, the protocol
should create degree limited scatternets, to avoid parking any node.
Secondly, the number of piconets should be minimized to provide
faster routing. Thirdly, the formation and maintenance of scatternet
should have small communication overhead. Fourthly, the diameter
of the scatternet should be small, i.e., the maximum number of hops
between any two devices must be small. In this paper, we focus on
scatternet formation for single-hop ad hoc networks. In a single-
hop ad hoc network, all wireless devices are in the radio vicinity
of each other, e.g., electronic devices in a laboratory, or laptops in
a conference room. A single-hop network can be modeled by a
complete graph.

Previous literature on scatternet formation assumed that devices
are not able to communicate unless they have previously discov-
ered each other by synchronizing their frequency hopping patterns.
Thus, even if all nodes are within direct communication range of
each other, only those nodes, which are synchronized with the trans-
mitter, can hear the transmission. Synchronizing the frequency
hopping patterns is apparently a time consuming and pseudo-random
process [13]. In this paper we assume that the problem of discover-
ing all neighbors within transmission radius of a device is resolved
by separate Bluetooth protocol. One such protocol for discovering
all one hop networks is described in [13, 3], while a protocol that
provides two-hop information to every node is described in [12].
These protocols are applicable as the pre-phase of our scheme.

This paper addresses the problem of scatternet formation for
single-hop Bluetooth based ad hoc networks, with minimal com-
munication overhead. We adopt the well-known structure de Bruijn
graphto form the backbone of Bluetooth scatternet, hereafter called
dBBlue, such that every master node has at most seven slaves, ev-
ery slave node is in at most two piconets, and no node assumes
both master and slave roles. Our structure dBBluealso enjoys a
nice routing property: the diameter of the graph is O(log n) and
we can find a path with at most O(log n) hops between every pair
of nodes without any routing table. Moreover, the congestion of
every node is at most O(log n/n), assuming that a unit of total
traffic demand is evenly distributed among all pair of nodes. We
discuss in detail a vigorous method to locally update the structure
dBBlueusing at most O(log n) communications when a node joins
or leaves the network. In most cases, the cost of updating the scat-
ternet is actually O(1) since a node can join or leave without affect-
ing the remaining scatternet. The number of nodes affected when
a node joins or leaves the network is always bounded from above
by a constant. To facilitate self-routing and easy updating, we de-
sign a scalable MAC assigning mechanism for piconet, which can
guarantee the packet delivery even during updating. Our method
can construct the structure dBBlueincrementally when the nodes
join the network one by one. In addition, the structure formed by
our method can sustain the faults of 2 nodes and the network is
still guaranteed to be connected. If a node detects a fault of some
neighboring master node or bridge slave node, it can dynamically
re-route the packets and the path traveled by the packet is still at
most O(log n). Previously no method can guarantee all these prop-
erties although some methods can achieve some of the properties.

The rest of the paper is organized as follows. Section 2 presents
our new Bluetooth formation algorithms for single-hop ad hoc net-
works. We describe how to build a static scatternet of n nodes based
on de Bruijn graph and assign roles and labels to them. Section 3
proposes a vigorous method to locally and dynamically update the
scatternet topology when node joins or leaves the network. Section
4 describes the routing method for our de Bruijn based scatternet
which efficiently finds the next node need to go without any routing
table. The related works is discussed in section 5. We conclude our
paper in Section 6 by pointing out some possible future research
directions.

2. DBBLUE SCATTERNET CONSTRUCTION

2.1 de Bruijn Graph
Our dBBlue scatternet first builds a backbone based on the well-

known de Bruijn graph [5]. The de Bruijn graph, denoted by B(d, k),
is a directed graph with dk nodes. Assume that each node is as-
signed a unique label of length k on the alphabet {0, · · · , d − 1}.
There is an edge in B(d, k) from a node with label x1x2 · · ·xk to
any node with label x2 · · ·xky, where y ∈ {0, · · · , d − 1}. Fig-

ure 1 illustrates B(2, 3). It is well-known that the de Bruijn graph
enables self-routing intrinsically. The self-routing path from the
source with label x1x2 · · ·xk to the target with label y1y2 · · · yk is
x1x2 · · ·xk → x2 · · ·xky1 → x3 · · ·xky1y2 →· · · → xky1 · · · yk−1

→ y1 · · · yk. Observe that, we could find a shorter route by looking
for the longest sequence that is both a suffix of x1x2 · · ·xk and a
prefix of y1y2 · · · yk. Suppose that xi · · ·xk = y1 · · · yk−i+1 is
such longest sequence. The shortest path between the source and
the target is x1 · · ·xk → x2 · · ·xkyk−i+2 → x3 · · ·xkyk−i+2yk−i+3

→ · · · → xi−1 · · ·xkyk−i+2 · · · yk−1 → y1 · · · yk. Clearly, the
route between any two nodes is at most k hops, i.e., B(d, k) has
diameter k = logd n, where n = dk is the number of nodes of the
graph.

111

001 011

010

100 110

000 101

Figure 1: The de Bruijn graph B(2, 3).

The classical de Bruijn graph is balancedin the sense that the
labels of all nodes have the same length. The de Bruijn graph can
be generalized to any set of vertices whose labels form a univer-
sal prefix set. In [7], Fraigniaud and Gauron proposed a novel
method to construct an efficient topology for P2P network based
on the generalized de Bruijn graph defined on a universal prefix
set. “A universal prefix set is a setS of labels on an alphabet
Σ such that, for any infinite wordw ∈ Σ�, there is aunique
word in S, which is a prefix ofw. The empty set is also a uni-
versal prefix set.”[7] For instance, {00, 01, 100, 101, 110, 111} is
a universal prefix set on alphabet Σ = {0, 1}, but {00, 01, 10}
and {00, 01, 100, 1000, 101, 110, 111} are not. There is a directed
edge from node u = x1x2 · · ·xk to another node v in the general-
ized de Bruijn graph if x2 · · ·xk is the prefix of the label of node
v. A generalized de Bruijn graph is pseudo-balancedif the lengths
of the labels are different by at most one. For simplicity, we still
denote a pseudo-balanced de Bruijn graph on alphabet {0, 1} by
B(2, k) if the node labels have length at least k bits and at most
k + 1 bits. We also say that a node from B(2, k) is at level k if its
label has k bits.

In this paper, we only consider the balanced or pseudo-balanced
binary de Bruin graph B(2, m). From now on, we always con-
sider binary de Bruijn graphs. Node labels in a pseudo-balanced de
Bruijn graph correspond to all the leaf nodes in a full binary tree, in
which the depth difference between any two leaf nodes is at most
one and each internal node has two children, Figure 2 illustrates the
correspondence between them. In the figure, the pseudo-balanced
de Bruijn graph is defined on the leaf nodes and directed edges.

In a pseudo-balanced de Bruijn graph B(2, k), each node has at
most 4 out-neighbors and 2 in-neighbors. To route a packet from
a node u with label x1x2 · · ·xs−1xs to another node v with la-
bel y1y2 · · · yt−1yt, where s, t ∈ [k, k + 1]. Node u will for-
ward the packet to its neighbor node with label x2 · · ·xs−1xs, or
x2 · · ·xs−1xsy1, or x2 · · ·xs−1xsy1y2. Notice that since the la-
bels of the nodes are a universal prefix set, we know that exactly
one of these three labels does exist. The following nodes keep for-
warding the packet similarly until it reaches node v. Consequently,
the diameter of pseudo-balanced de Bruijn graph is still O(log n).
In this paper, we propose a scalable scatternet structure based on

root

0000 0001 0010 0011

001000 011010 100 101 110 111

10 110100

10

Figure 2: The correspondence between full binary tree and
pseudo-balanced de Bruijn graph.

pseudo-balanced de Bruijn graph B(2, k).
In a pseudo-balanced de Bruijn graph B(2, m), two nodes are

called critical pair if they only differ in the least significant bit of
their labels. Let u0, u1, · · · , up be the sequence of nodes visited
by a traversal of all leaf nodes in the corresponding binary tree of
B(2, m). A node ui is called the successorof another node ui−1

and ui−1 is called the predecessorof another node ui. Here i − 1
takes value i − 1 mod p + 1. For example, in Figure 2, nodes
0010 and 0011 is a critical pair; node 010 is the successor of the
node 0011.

2.2 MAC Address Assignment for Piconet
Our method will construct a balanced (or pseudo-balanced) de

Bruijn graph B(2, m) as the backbone of the network. Here the
choosing of the integer m is discussed later. We will ignore the
direction of the edges in the de Bruijn graph B(2, m). Thus, every
node will have at most 4 (or 6 for pseudo-balanced de Bruijn graph
B(2, m)) edges incident.

Every node in the backbone of dBBlue scatternet will be as-
signed a master role. We will add a bridge slavenode for every
pair of master nodes that are connected in the backbone. Thus, ev-
ery master node will have at most sixbridge slave nodes so far. We
then add some free slave nodes to each master node, and call them
pure slavenodes.

Before we discuss in detail our scatternet construction methods,
we present our novel rule of assigning the MAC address in a pi-
conet. In our dBBlue scatternet, when we route a packet to a
destination node v, we only know the piconet ID of node v, say
y1y2 · · · yk, which is same as the label of its master node, and the
MAC address, say z1z2z3, of this node in that piconet. The detail
routing mechanism will be discussed in Section 4. When some
node joins or leaves the scatternet, we often have to reorganize
some piconets and thus re-assign the MACs of some nodes. Our
method of assigning MAC addresses in a piconet and reorganizing
the piconets guarantees that the new piconet (even the new MAC
address) can be found by a simple appending or deleting the least
significant bit, which keeps the label prefix of updating nodes un-
changed so that even the delivery of the packets on the way to those
updating nodes will not be interrupted.

In a piconet, MAC 000 is always reserved by the master node.
For simplicity, we omit the MAC address of a master node here-
after while representing its label, i.e., the master node with label
x1x2 · · ·xm−1xm actually has a label (x1x2 · · ·xm−1xm, 000) if
consistent labels with slave nodes are needed. Remember that, in a
pseudo-balanced de Bruijn graph, any node has 2 in-neighbors (ex-
cept 0m and 1m) and at most 4 out-neighbors, so MAC addresses
011 and 111 are always reserved for the two bridge slaves to in-
neighbors, MAC 010, 101, 001 and 110 are reserved for bridge

slaves to out-neighbors if they exist, and 100 is reserved for the
7th slave (it must be a pure slave) if it exists. Figure 3 illustrates
all four possibilities for the piconet MAC address assignment ac-
cording to the number of out-neighbors in scatternet backbone.
In the figure, for simplicity, we use y1y2 · · · ym−1ym(y) to de-
note a node with label y1y2 · · · ym−1ym or y1y2 · · · ym−1ymy,
whichever exists in the network. Notice that a master node in
the constructed scatternet based on a pseudo-balanced de Bruijn
graph B(2, m) always has two incoming neighbors. For example,
a master node x1x2 · · ·xm in level m can have incoming neigh-
bor 0x1x2 · · ·xm−1 or 0x1x2 · · ·xm, but not both since the de
Bruijn graph is built upon a universal prefix set; similarly another
incoming neighbor is 1x1x2 · · ·xm−1(xm). Analogously, a mas-
ter node x1x2 · · ·xmxm+1 in level m + 1 has incoming neigh-
bors 0x1x2 · · ·xm−1(xm) and 1x1x2 · · ·xm−1(xm). On the other
hand, the number of out-neighbors of a node in the pseudo-balanced
de Bruijn graph B(2, m) could be 1, 2, 3, 4. Only the node at level
m could have 3 or 4 out-neighbors and only the node at level m+1
could have 1 out-neighbor (except nodes 0m and 1m if they exist).

...xm−11x1

0 ...xm−1x1 m(x)

m(x)

001

010

100

101

110

011

111

...xm+1...x
x

m+1
2x1x2

(a) One out-neighbor

m

m(x)

(x)

1...

x1x2 xm...
...x1 xm−1

...x1 xm−1

001

010

100

101

110

011

1111

x0
2 xm0...

x2 xm

(b) Two out-neighbors

(x)m

m(x)

xm...
...x1 xm−1

...x1 xm−1

x2 xm00...

x2 xm0... 1

001

010

100

101

110

011

1111 x

0

2 xm1...

x1x2

(c) Three out-neighbors

m(x)

(x)mxm−1

...x1 xm−1

x2 xm00...

x2 xm0... 1

x2 xm... 10

x2 xm... 11

001

010

100

101

110

011

1111

x
0

1x2 xm...
...x1

(d) Four out-neighbors

Figure 3: MAC address assignment for a piconet.

Table 1 summarizes the rule of assigning the MAC address to the
bridge slave nodes in a piconet. Their MAC addresses can be de-
cided uniquely according to the label bit difference between current
piconet and neighbor piconet IDs. For example, if the master u is
labeled x1x2 · · ·xs and its out-neighbor v is labeled x2 · · ·xsy1y2,
then the MAC addresses of their bridge slave is y1y2y2 assigned by
u, and x111 assigned by v. Remember that every bridge slave has
one MAC address in each of the two piconets it resides.

Table 1: The rule to assign MAC address to bridge slave nodes.

In-Neighbor Out-Neighbor
Node yx1 · · ·xr x2 · · ·xs x2 · · ·xsy1 x2 · · ·xsy1y2

x1 · · ·xs y11 010 y1y1y1 y1y2y2

Notice that, in bluetooth scatternet, the bridge slave nodes have
two independent piconet IDs and MAC addresses in two piconets
respectively. However, since the routing mechanism in de Bruijn
is directional, only their piconet ID and MAC address assigned by
their in-master is public and meaningful for routing, saying label
in the remaining paper, and the other one is only used for inter-
communication in a piconet. Figure 4 illustrates one piconet in
the scatternet. Here nodes u, I1, I2, O1 and O2 assume master
role and form the backbone for scatternet. These master nodes are
connected in the de Bruijn graph by bridge slaves v3, v7, v2 and
v5 respectively. Assume that node u has label x1x2 · · ·xm−1xm.
Nodes I1, I2 denote the two incoming neighbors of node u, which
has label 0x1x2 · · ·xm−1 and 1x1x2 · · ·xm−1 respectively. Nodes
O1, O2 denote the two outgoing neighbors of node u, which has la-
bel x2 · · ·xm−1xm0 and x2 · · ·xm−1xm1 respectively. Nodes v1,
v4, and v6 are the pure slave nodes of u in the scatternet. The label
of node vi (i ∈ {1, 2, 4, 5, 6}) is (x1x2 · · ·xm−1xm, i) where i is
the MAC address of node vi in this piconet, and v3 and v7 has pub-
lic label(0x1x2 · · ·xm−1, xmxmxm) and (1x1x2 · · ·xm−1, xmxmxm),
respectively, which is consistent with the prefix of I1 and I2 respec-
tively. Notice that the MACs of v3 and v7 in the piconet mastered
by node u are 3 and 7 respectively, which are used only by nodes
in this piconet and not broadcasted to the network.

2

v5

v1 v6v4

v3

v7 u

I 1

I 2 2O

O

v

1

Figure 4: An example of a static piconet (with nodes inside the
shaded region) formed by our method. Here a master node is
denoted by a square, a pure slave is denoted by a circle, and a
bridge slave is denoted by a triangle.

As will see later, our labeling rule makes the updating of the
scatternet topology and nodes’ labels much easier when new nodes
join the network or some existing nodes leave the network. For in-
cremental updating of the scatternet, there are two scenarios when
a new node joins the network. The first case is that there is a master
node who has free slot for a pure slave. We then directly assign

the newly joined node as the pure slave of that master node. The
second case is that no master node has free slot for a pure slave. We
then have to split some piconet and in turn create some free slots
for pure slaves. The splitting of a piconet is performed such that
the resulting backbone (formed by master nodes and bridge slaves)
is still a pseudo-balanced de Bruijn graph. When a piconet is aplit-
ted, the labels of some nodes have to be updated. While updating
the topology, it is possible that some packets are already on their
way to the destinations (via or toward this splitting piconet). Our
labeling rule makes sure that the packets can still be routed without
any interruption, only the local nodes are assigned new labels, and
the re-labeling are also conducted locally.

2.3 Static Scatternet Construction
Given n nodes currently distributed in the network, the section

gives an efficient algorithm to construct our de Bruijn based scat-
ternet dBBlue, which has low diameter and bounded node degree
property. In other words, we first study the construction of the scat-
ternet for a static n-nodes network, which will serve the base for
our dynamic construction.

Our method will construct a balanced de Bruijn graph B(2, m)
as the initial backbone of the network. We will choose integer m
such that 2m−1 < �n

6
� ≤ 2m. The choosing of m guarantees that

there are enough bridge slave nodes, which implies that no master
node serves as bridge slave.

Our method does not consider the detail of the neighbor discov-
ering process. We assume that every node already knows the exis-
tence of the other nodes.

ALGORITHM 1. Static DeBruijn-Based Scatternet

1. Assume that there is a leader already among these n nodes
S. The leader could be the node with smallest ID. We give
the tokento the leader and call it token node. Token node
randomly selects 2m nodes (including itself) into the mas-
ter set M which assumes the masterrole in final scatternet
topology, where 2m−1 < �n

6
� ≤ 2m and n is the number of

nodes in S. Let r0 = n − 3 · 2m, which is the total number
of nodes that can be assigned as pure slaves.

2. Token node assigns itself with label 0m, and each node in
M with a unique m bits label in the range from 0 · · · 01
to 1 · · · 11. The set of nodes M forms a de Bruijn graph
B(2, m) as the scatternet backbone.

3. Token node, with label x1 · · ·xm, selects 2 nodes 1 from
the remaining as its bridge slaves, and assigns them labels
(x1 · · ·xm, 010) and (x1 · · ·xm, 101) respectively. Here 010,
101 will also serve as the Medium Access Code (MAC) for
these two slaves in the piconet mastered by this token node.

Token node uses its bridge slave node (x1 · · ·xm, 010) to
connect with its out-neighbor x2x3 · · ·xm0 and the bridge
slave node (x1 · · ·xm, 101) to connect the out-neighbor node
x2x3 · · ·xm1.

4. Assume that the current token node has label with value i.
The token node selects t = min{3, ri−1} nodes 2 from the
remaining as its slaves and assigns them with labels (x1 · · ·xm, 001),

1There are two special nodes 0m and 1m, which only have 1 out-
neighbor, we then just use one bridge slave node to connect with its
out-neighbor.
2Node 0m and 1m may choose 5 nodes as its pure slaves since they
only have one in-neighbor and one out-neighbor.

(x1 · · ·xm, 100) and (x1 · · ·xm, 110) in the order if they ex-
ist. Let ri = ri−1 − t.

Then the tokenis passed to its successor.

5. Repeat the above steps (3) and (4) until all nodes in M are
processed. After all nodes have been processed, the current
token node passes the token back to node 0m again.

Once the initial topology construction is finished, the token node
t will be responsible for the following node joining and leaving
issues. Master nodes form the backbone of bluetooth scatternet,
and a piconet works like a node in de Bruijn graph.

111

001 011

010

100 110

000 101

Figure 5: dBBlue Bluetooth Scatternet.

Figure 5 illustrates a dBBlue scatternet containing 48 nodes based
on B(2, 3) graph.

THEOREM 1. In dBBlue scatternet, each master has no more
than 7 slaves and each slave assumes as bridge for at most2 pi-
conets. And the number of piconets is at most
n

3
� and at least�n

6
�.

Moreover, the computation cost isO(n) for static construction.

PROOF. From the topology construction, each master carries at
most 5 same prefix slaves, and at most 2 different prefix slaves from
its in-neighbors since each node in B(2, m) graph has at most 2 in-
neighbors, so each master has no more than 7 slaves. And, each
slave exists as a free slave or as the bridge between its same prefix
master u and one of u’s out-neighbors, so the degree of a slave node
is at most 2.

Let n = 6a − b, where b ∈ [0, 5] and 2m is the number of
masters. Then 2m−1 < �n

6
� ≤ 2m implies 2m−1 + 1 ≤ a ≤ 2m.

Thus, n = 6a−b ≥ 6(2m−1 +1)−b and n = 6a−b ≤ 6 �2m−b.
Consequently, 3 · 2m + (6 − b) ≤ n ≤ 6 · 2m − b, which implies
�n

6
� ≤ 2m ≤
n

3
�.

It is obvious that the total computation cost of constructing static
dBBlue scatternet is O(n).

In this paper we always assume a bluetooth piconet consists of at
most 7 slaves and 1 master. If future bluetooth technology allows
a master to bring more slaves, say p, our scatternet construction
method can adapt easily as follows. The scatternet backbone will be
still based on B(2, m) de Bruijn graph. However, m is chosen such
that 2m−1 < � n

p−1
� ≤ 2m. In other words, every master node will

carry p−4 pure slaves and 4 bridge slaves to connect to its two out-
neighbors and two in-neighbors in the de Bruijn graph B(2, m).
It is not difficult to show that using de Bruijn graph B(2, m) will
create a scatternet with less piconets than using B(d, m′) for d > 2
since each master node will carry less pure slaves in the later case.
On the other hand, the scatternet based on B(d, m′) for d > 2 does
provide a better fault tolerance since the degree of each master node
is increased to 2d.

3. DYNAMIC SCATTERNET UPDATING

In this section we describe a vigorous method to locally update
the scatternet topology dynamically when node joins or leaves the
network. Considering each piconet as an abstract node in the de
Bruijn graph, our goal is to maintain a scalable pseudo-balanced de
Bruijn graph.

3.1 Token Based Updating
First consider the case when a node wants to join the network.

We have to assign a role for this newly joined node. There are sev-
eral possible scenarios about the existing scatternet. (1) the existing
scatternet has a master node that has free slave slots, then we can
simply assign this newly joined node as the pure slave of this mas-
ter node. (2) all master nodes in the existing scatternet already have
7 slaves, we then have to expand the backbone of the scatternet to
incorporate this newly joined node. In other words, we have to split
some piconet to two such that the two new piconets will have some
free pure slave slots to hold this newly joined node.

Several methods can be used to implement the above scheme. To
make the updating efficient, we should be able to quickly find the
master node with empty slot for pure slave if there is any. One ap-
proach is to keep the current scatternet compact and assign a special
node the tokenin a way such that all master nodes with label less
than the token node do not have empty slot, and all master nodes
with label larger than the token node do have empty slot. When
a new node joins the network, we can simply assign it the empty
pure slave slot and then update the token node if necessary. This ap-
proach is efficient for node joining but suffers more cost for node
leaving. When a node leaves the network, we have to update the
scatternet to keep the scatternet compact. Thus, we possibly have
to move some nodes to fill the slot emptied by this left node.

The other approach is not to compact the scatternet. When a
node leaves, we do nothing if the backbone of the scatternet is un-
touched. However, this approach suffers a large cost when node
joins the network since we have to find where to put the newly
joined node. One method is to use the broadcast method to travel
the whole scatternet to find the master node with free pure slave
slot. This may perform better if only a few of the existing piconets
have free slots. The other method is to randomly select a master
node and check if it has free slot. If it does not, we then select
another random master node until one such master node is found.
This approach performs better if the majority of the piconets have
free slots. We omit the detail of performance analysis here, which
will be presented in the full version of the paper.

In this paper, we will adopt the compact approach. Before we
present the detail of our methods of updating the scatternet, we first
study the possible status of the scatternet, which will be recorded
in the token node.

When a new node requests joining the network, there are three
possible scenarios to be discussed.

1. Current backbone is a balanced de Bruijn graph. Figure 6
illustrates an example. The token is held by the master node
with the smallest label among all master nodes that have less
than 5 same-prefix slaves. In this status, the master node with
the token has some free slot for newly joined node and so do
all master nodes with larger labels.

2. Current backbone is pseudo-balanced de Bruijn graph B(2, m)
under expandingstatus, i.e., many nodes join the scatternet.
Figure 7 illustrates an example. The token is held by the
first master node with less than 5 same-prefix slaves in level
m + 1 if it exists, otherwise the first master node in level m
holds the token. In this status, all master nodes in level m
and m + 1 do not have free slots except the last two master

token

i−1 i i+1

Figure 6: Token in balanced de Bruijn graph.

nodes in level m + 1. In other words, at most two master
nodes have free slots.

level m
token

ii−1

i+1

level m+1

Figure 7: Token in pseudo-balanced de Bruijn graph under ex-
panding status.

3. Current backbone is a pseudo-balanced de Bruijn graph B(2, m)
under shrinking status, i.e., many nodes leave the scatternet.
Figure 8 illustrates an example. The token is held by the
master node in level m with the smallest label. In this status,
each master node in level m + 1 and level m has 4 and 2
same-prefix slave nodes respectively.

level m+1

i+1

i−1

i

token

level m

Figure 8: Token in pseudo-balanced de Bruijn graph under
shrinking status.

Those statuses balanced, expanding, shrinking will be recorded
in the token data structure.

3.2 Node Joining
When a new node joins the network, there are three cases.

1. Token status is balanced, that is to say, current backbone is a
balanced de Bruijn graph. See Figure 6 for an illustration.

(a) The token node x1...xm has less than 7 slaves. Then
it simply adds the joining node into its slave set and
assigns it a label (x1 · · ·xm, y1y2y3), where y1y2y3 is
one of the un-assigned MAC address in {001, 100, 110}.
If the token node now has 7 slaves, then it passes the to-
ken to its successor.

(b) The token node is fully occupied by slaves. This could
happen only when all master nodes in the scatternet
have 7 slaves. Then the token is passed back to node
0m if it is not at node 0m. Change the token status
to expanding and call Method 1 to split the current pi-
conet mastered by the token node into two parts and

add the joining node as a new pure slave with label
(x1 · · ·xm0, 001).

2. Token status is expanding, that is to say, current backbone is
a pseudo-balanced de Bruijn graph under expanding status.
See Figure 7 for an illustration.

(a) If the token node is in level (m+1), i.e., with (m+1)-
bits label x1...xm+1, the it must has less than 7 slaves.
It simply adds the joining node into its slave set and
assigns it a label (x1 · · ·xm+1, y1y2y3), where y1y2y3

is one of the un-assigned labels in {001, 100, 110}. If
the token node now has 7 slaves, then passes the token
to its successor.

(b) If the token node is in level m, i.e., with m-bits la-
bel x1...xm. This could happen only when all master
nodes in the scatternet has been fully occupied by 7
slaves. Call Method 1 to split the current piconet mas-
tered by this token node into two piconets, and add the
joining node as a new slave with label (x1 · · ·xm0, 001).

3. Token status is shrinking, that is to say, current backbone
is a pseudo-balanced de Bruijn graph under shrinking sta-
tus. See Figure 8 for an illustration. In this case, token node
surely has exactly four slaves (see node leaving for more de-
tails). We first add the joining node as the slave of the token
node and assign it one of the un-assigned MAC addresses
in {001, 100, 110}. Call Method 1 to split current piconet
into two piconets, and pass token to the successor in level
m. If the current token node is 1m, then set token status to
balanced and pass the token to master node 0m+1. In other
words, we basically undo the updating (piconets merging)
caused by the previous node leaving event.

We then present our algorithm that split one piconet mastered by
node x1 · · ·xm to two new piconets mastered by nodes x1 · · ·xm0
and x1 · · ·xm1 respectively.

METHOD 1. Piconet split due to node joining

1. Token node u = x1 · · ·xm promotes its slave node v =
(x1 · · ·xm, 100) as the master for a new piconet. We change
the label (x1 · · ·xm, y1y2y3) of a pure slave node or a out-
neighbor bridge slave node by simply appending y2 in the
MAC address, i.e., the new label is (x1 · · ·xmy1, y2y3y2).
Two new piconets have master node with labels x1 · · ·xm0
and x1 · · ·xm1 respectively. The detail of labeling and role
updating is as follows:

(a) (x1 · · ·xm, 000) ⇒ (x1 · · ·xm0, 000), which assumes
master role in first piconet.

(b) (x1 · · ·xm, 001) ⇒ (x1 · · ·xm0, 010), which assumes
a bridge slave role in first piconet.

(c) (x1 · · ·xm, 010) ⇒ (x1 · · ·xm0, 101), which assumes
a bridge slave role in first piconet.

(d) (x1 · · ·xm, 100) ⇒ (x1 · · ·xm1, 000), which assumes
master role in second piconet.

(e) (x1 · · ·xm, 101) ⇒ (x1 · · ·xm1, 010), which assumes
a bridge slave role in second piconet.

(f) (x1 · · ·xm, 110) ⇒ (x1 · · ·xm1, 101), which assumes
a bridge slave role in second piconet.

Notice this label extension still preserves their prefix. Thus,
after the piconet splitting, the message delivery will not be
interrupted at all because old addresses are still reachable
since the new label has same prefix. In addition, the nodes
with new labels with the corresponding MAC addresses will
serve the bridge slave role in the two newly created piconets.
Figure 9 illustrates the change while piconet splitting.

m... 0,101

x1 xm... 1,010

x1 xm... 0,010

x1 xm... 1,101

x1 xm... 0,001

x1 xm... 0

x1 xm... 1

x1 xm...

x1 xm... ,001

x1 xm... ,010

x1 xm... ,100

x1 xm... ,101

x1 xm... ,110

Joining

v

v

u

x
u

1 x

Figure 9: Piconet splits due to node joining.

2. Then, both u and v need reselect the bridge slaves to connect
with its in-neighbors and out-neighbors if needed. Simul-
taneously, both u and v’s neighbors need reselect its same-
prefix bridge slaves to connect with u and v. The selection
still follows the rule described in Section 2.2, Figure 3 il-
lustrates all possible scenarios. Since the master nodes in
the new piconets are in level m + 1, each of them has at
most 2 out-neighbors in the pseudo-balanced de Bruijn graph
B(2, m). Thus, we have enough bridge slave nodes for each
new piconet. The in-neighbor master nodes yx1x2 · · ·xm−1(xm),
where y = 0 or 1, of node u and v in the de Bruijn graph
have to change one of its pure slave to bridge slave to con-
nect with node u or v. Notice this update is only restricted to
local regions, so the update is totally localized.

3. Finally, the token is still kept by the master node x1...xm0,
whose previous label is x1...xm.

3.3 Node Leaving
If a node leaves elegantly, it should first notify the token node

before leaving. If a master/slave node leaves because unexpected
reason such as power off, all of its neighborhood will detect it soon
and notify the token node. Our method does not consider the detail
of the exception detection process, we assume the token node can
detect the node leaving in short time.

When the token node detects the node leaving, then there are
three cases to be addressed again:

1. Token status is balanced, that is to say, current backbone is a
balanced de Bruijn graph. Here two cases need be discussed:

(a) If the token node does have pure slave node, then the
token node requests one pure slave to replace the posi-
tion of the leaving node, including the label;

(b) If the token node u has no pure slave nodes, then it
passes the token to its predecessor, say node v. There
are two scenarios also, which as discussed as follows.

i. If node v has pure slaves, then it requests one pure
slave to replace the position of the leaving node.

ii. If node v also has no pure slaves. This could hap-
pen only when v = 1m, and all master nodes have
only 2 slaves serving bridge slave role. Token node

v changes the token status to shrinking, and call
Method 2 to merge its corresponding critical pair,
then ask one pure slave to replace the position of
the leaving node.

2. Token status is expanding, that is to say, current backbone is
a pseudo-balanced de Bruijn graph under expanding status.

(a) If the token node is in level m, i.e., with m-bits la-
bel x1...xm. This could happen only when all mas-
ter nodes in the scatternet has been fully occupied by
7 slaves. The token need be passed the predecessor,
which will ask one pure slave node to replace the posi-
tion of the leaving node.

(b) If the token node is in level (m+1), i.e., with (m+1)-
bits label x1...xm+1. If the token node does have pure
slave node, then the token node requests one pure slave
to replace the position of the leaving node, otherwise
two cases need be discussed here:

i. The least significant bit of the token node’s label
is 1. The token will be passed to be passed the
predecessor, which will ask one pure slave node to
replace the position of the leaving node.

ii. The least significant bit of the token node’s label
is 0. It first merges its corresponding critical pair
by calling Method 2, then requests one pure slave
to replace the position of the leaving node. Now
if the current token node is 0 · · · 0, then it changes
the token status to balanced and passes the token
to its predecessor 1 · · · 1.

3. Token status is shrinking, that is to say, current backbone is
a pseudo-balanced de Bruijn graph under shrinking status.

(a) If the token node is not 0 · · · 0, then it passes the token
to its second predecessor with least significant bit 0 in
level (m + 1), which will call Method 2 to merge its
critical pair piconet and ask one pure slave to replace
the position of the leaving node.

(b) If the token node is 0 · · · 0, then it changes the token
status to balanced and passes the token to node 1 · · · 1,
which will ask one pure slave to replace the position of
leaving node.

One special case is that token node leaves. In this case, the token
node will promote one of its pure slaves to replace it, i.e., be the
master node and the new token node. If no new pure slave exits,
similarly, we have to ask some pure slave node from its predecessor
to replace its role. When the token node did not leave elegantly, it
is more complicated and we need fault tolerance about the token
node, which is out of the scope of this paper.

We then describe our method to merge two piconets that are mas-
tered by a critical pair.

METHOD 2. Piconet merge due to node leaving

1. Assume that token node u = x1 · · ·xm0 requests merging
with its sibling master node v = x1 · · ·xm1. The new pi-
conet has master node with label x1 · · ·xm. Notice that node
u and node v each has at most 2 out-neighbors in the de
Bruijn graph. The label change will be achieved by simply
deleting the least significant bit as follows:

(a) (x1 · · ·xm0, 000) ⇒ (x1 · · ·xm, 000), which is the
master node in the new piconet.

(b) (x1 · · ·xm0, 010) ⇒ (x1 · · ·xm, 001), which is a pure
slave node or the bridge slave node to connect master
node x1 · · ·xm00 if it exists.

(c) (x1 · · ·xm0, 101) ⇒ (x1 · · ·xm, 010), which is the
bridge slave node to connect master node x1 · · ·xm0(1),
whichever exists.

(d) (x1 · · ·xm1, 000) moves to replace the leaving node
position.

(e) (x1 · · ·xm1, 010) ⇒ (x1 · · ·xm, 101), which is the
bridge slave node to connect master node x1 · · ·xm1(0),
whichever exists.

(f) (x1 · · ·xm1, 101) ⇒ (x1 · · ·xm, 110), which is a pure
slave node or the bridge slave node to connect master
node x1 · · ·xm11 if it exists.

Notice this label shrink still preserves the label prefix. Thus,
after the piconets merging, the message delivery will not
be affected at all because de Bruijn graph uses prefix based
routing, old addresses are still reachable by the same pre-
fix. The piconets mergence will not cause any routing prob-
lem although the node label shrink is not acknowledged by
other nodes. At the same time, the sibling master node v =
x1 · · ·xm1 leaves to replace the position of leaving node. To
continue the message delivery for node v, the new master
node u will keep the new label of v for a period of time and
forwards the message targeted to v accordingly. More detail
is discussed in Section 4. Figure 10 illustrates the change of
labels by merging piconets.

m...

x1 xm... ,001

x1 xm... ,101

x1 xm... ,110

x1 xm... 0,101

x1 xm... 1,010

x1 xm... 0,010

x1 xm... 1,101

x1 xm... 0

x1 xm... 1

x1 xm... ,010

x1 xm... 1

u

v

u

v

x

 replace leaving node

1 x

Figure 10: Piconets merge due to node leaving.

2. Then, node u need reselect the bridge slaves to connect with
in-neighbors and out-neighbors if needed. Simultaneously,
the neighboring master nodes of u and v need reselect their
same-prefix bridge slaves to connect with u. The selection
still follows the same rule described in Section 2.2, please see
Figure 3 for an illustration for all possible scenarios. Notice
this update is totally localized.

3. The token is now kept by the master node x1 · · ·xm.

It is not difficult to prove the following theorem.

THEOREM 2. Our method locally updates the dBBlue scatter-
net using at most O(log n) communications when a node joins or
leaves the network. In most cases, the cost of updating the scat-
ternet is actually O(1) since the node can leave and join without
affecting the remaining scatternet. The number of nodes affected
when a node leaves or joins the network is always bounded from
above by a constant. Our method can construct the structure incre-
mentally when the nodes join the network one by one.

3.4 Bounded Network Size
The method described so far can incrementally construct the scat-

ternet when the nodes join the network one by one and can update
the scatternet structure efficiently when nodes leave or join the net-
work even frequently without affecting the worst case properties of
the scatternet. This method is efficient in most cases, however, it
could generate lots of merging and splitting of piconets in the worst
case: a node joins the scatternet which causes the splitting of a pi-
conet, then a node leaves which in turn causes the merging of two
piconets, and repeat joining, leaving.

In most applications, the size of the bluetooth network is often
stable, for example, within [n, c · n] for a small constant c > 1. If
this is the case, we can apply the following approach to build the
scatternet. First, we use Algorithm 1 to build a scatternet with n
nodes. When a new node joins the network, we first tries to find
an empty pure slave slot for this node from the current token node.
If no empty slot, we then pass the token to the successor of the
current token node. When all master nodes in the scatternet have
7 slaves, we will start to create another piconet to connect to the
current backbone. In other words, instead of having 3 pure slave
nodes, a master node from the scatternet backbone will replace the
pure slave nodes by 3 piconets (at maximum). We call such pi-
conets associated with the master node of the backbone. Clearly,
a backbone based on a balanced de Bruijn graph B(2, m) could
support from 3 · 2m nodes to 6 · 2m nodes without associating pi-
conets. By associating piconets to the master nodes of backbone,
the number of nodes it can support is increased to 27 · 2m since we
can replace each pure slave node by a piconet of 8 nodes.

One disadvantage of associating piconets to master nodes is that
every master node in the backbone will have to forward more mes-
sages than the scatternet created by the method described previ-
ously. The other disadvantage is that when the network size goes
beyond its supported scope, the updating of the scatternet is more
costly than before. See the full version of the paper for more detail.

4. ROUTING IN SCATTERNET
We first describe the routing in the dBBlue scatternet with bal-

anced backbone. If both source and target nodes are masters, we
assume the source master node u has label x1x2 · · ·xm and the
target master node v has label y1 · · · ym. According to the routing
mechanism described in Section 2.1, node u simply forwards the
message to its neighbor master node u1 = x2 · · ·xmy1, relayed
by their common bridge node (x1 · · ·xm, 010) if y1 = 0 or by
(x1 · · ·xm, 101) if y1 = 1. Then u1 forwards the message again
to its neighbor master node accordingly. Clearly, the message is
guaranteed to reach the target in at most 2m steps. If the source
node is a slave, it first sends the messages to its master node. No-
tice that pure slave node has only one master node and the bridge
slave node has two master nodes. Then bridge slave node just ran-
domly picks one master node. Similarly if the target node is a slave,
the message will be first forwarded to its master node. The proce-
dure of routing message between these two master nodes is same as
the previous description. Clearly, the routing path from one mas-
ter node to another master node is at most 2m hops. The longest
path between two nodes happens from a slave node to another slave
node, which is at most 2m + 2 hops. From 2m−1 < �n

6
�, we have

m < 1 + log�n
6
�. Thus, the diameter of the de Bruijn-based scat-

ternet is 4 + 2 log�n
6
�.

THEOREM 3. For any two nodes in dBBlue scatternet, there is
a path with at most 4 + 2 log�n

6
� hops and such path can be found

locally based only on the labels of the source and target.

Notice that, two assumptions are made in our routing scheme
described above: (1) the source node knows the label of the target
node, and (2) the backbone of the scatternet is based on a balanced
de Bruijn graph. We will not try to resolve the first assumption in
this paper, but discuss it briefly here. The labels of a node can be
broadcasted to the whole network if the nodes leaving and joining
is not frequent, i.e., the labels of nodes do not change frequently.
Or we can adopt a mechanism similar to the Domain Name Service
(DNS): the labels are stored in a hierarchical manner and a node
can query the label servers to get the labels of the target nodes and
then cache them locally. Here, we discuss briefly how to perform
broadcast in de Bruijn graph such that it guarantees to reach each
node exactly once. We initiate the broadcast from node 0m. Each
node with label 0y1 · · · ym−1 continues forwarding the message
to its out-neighbors. The nodes whose most significant bit is 1
will not forward the message. The broadcast basically works same
as the breadth first search (BFS) in a binary tree. Clearly, a node
will only forward the message to nodes with larger labels. Thus, a
node receives the message exactly once. The communication cost
of such broadcasting is exactly n messages.

We then discuss in detail how to route the packets when the scat-
ternet backbone is pseudo-balanced. Assume the source master
node u has label x1x2 · · ·xs−1xs and the target master node v
has label y1y2 · · · yt−1yt, where s, t ∈ [k, k + 1]. Node u will
forward the packet to its out-neighbor master node v with label
x2 · · ·xs−1xs, or x2 · · ·xs−1xsy1, or x2 · · ·xs−1xsy1y2. Notice
that since the labels of all nodes are a universal prefix set, we know
that exactly one of these three labels does exist. Consequently, the
diameter of pseudo-balanced de Bruijn graph is still O(log n). The
bridge slave node from u to v has MAC (1) 010 if a master node
with label x2 · · ·xs−1xs exists; or (2) y1y1y1 if a master node with
label x2 · · ·xs−1xsy1 exists; or (3) y1y2y2 if a master node with
label x2 · · ·xs−1xsy1y2 exists. Review Section 2.2 for more detail
about the rules of labeling nodes and assigning MAC addresses in
a piconet. A shorter route is obtained by looking for the longest
sequence that is suffix of x1x2 · · ·xs and prefix of y1y2 · · · yt.

For the purpose of illustration, let’s see how we route packets
from master node x1x2x3x4 = 0010 to master node y1y2y3y4 =
0001 in the scatternet based on the de Bruijn graph illustrated in
Figure 2. First, the master node 0010 checks the labels of all
out-neighbor master nodes and finds that master node with label
x2x3x4 = 010 exists. Then it forwards the packet to master node
010 via the bridge slave node with MAC 010. Similarly, master
node x2x3x4 = 010 forwards the packet to master node with
label x3x4y1 = 100 via the bridge slave with MAC 010. Fi-
nally, the master node x3x4y1 = 100 forwards the packet to node
y1y2y3y4 = 0001 via the bridge slave with MAC 010. Notice that
the last step it takes a shorter path other than via another master
node x4y1y2y3 = 0000.

At last, we discuss how to route the messages while the scatternet
is on updating due to nodes leaving or joining the network. When a
node joins the network, the piconet mastered by the token node may
be split into two piconets. Clearly, the message still can be routed
since the labels of the two newly created piconets are the children
of this token node. Similarly, when two piconets are merged to cre-
ate a new piconet, the label-based routing still successfully route
the packets. The remaining case is that when a node leaves, we
may need find a pure slave node v from the current token node t to
fill the space emptied by this left node. When a message targeted
to node v reaches the piconet mastered by the token node t, node
v has already been moved. To remedy this, we apply a mechanism
similar to the mail-forwarding service provided by the post-office:
the master node t will keep a record of the nodes moved to other

piconets and its new label within a time window. When a message
targeted for v reaches, the master node forwards the message to the
new destination and also acknowledges the source node of the new
label of v. The source node will then cache the label of node v if
it is frequently used. To decrease messages forwarding, every mas-
ter node could record the frequency that a slave node receives mes-
sages from other node. When a pure slave node is visited frequently
by other nodes, then we switch its role with one of the bridge slaves
with same prefix and broadcast the new labels of these two nodes
to the network. When we have to move a pure slave node to other
piconet to make the scatternet compact, the pure slave node is the
least frequently visited nodes among the current piconet.

5. RELATED WORK
Zaruba, Basagni and Chlamtac [15] proposed two protocols for

forming connected scatternet. In both cases, the resulting topology
is termed a bluetree. The number of roles each node can assume
is limited to two or three. The first protocol is initiated by a single
node, called the blueroot, which will be the root of the bluetree. A
rooted spanning tree is built as follows. The root will be assigned
the role of master. Every one hop neighbor of the root will be its
slave. The children of the root will be now assigned an additional
master role, and all their neighbors that are not assigned any roles
yet will become slaves of these newly created masters. This proce-
dure is repeated recursively till all nodes are assigned. Each node is
slave for only one master, the one that paged it first. Each internal
node of the tree is a master on one piconet, and slave of another
master (its parent in the initial tree). In order to limit the number of
slaves, they [15] observed that if a node in unit disk graph has more
than five neighbors, then at least two of them must be connected.
This observation is used to re-configure the tree so that each mas-
ter node has no more than 5 slaves. If a master node has more
than 5 slaves, it selects its two slaves s1 and s2 that are connected
and instructs s2 to be master of s1, and then disconnects s2 from
itself. Such branch reorganization is carried throughout the net-
work. However, whether this approach will terminate is not proved
in [15]. Tan et al. [14] proposed a similar method for single-hop
network. In the second protocol [15], several roots are initially se-
lected. Each of them then creates its own scatternet as in the first
protocol. In the second phase, sub-tree scatternets are connected
into one scatternet spanning the entire network. Notice that the tree
topology suffers from a major drawback: the root is a communi-
cation bottleneck as it will be overloaded by communications be-
tween the different parts of the tree. Obviously, the root node in the
tree-based scatternet is the bottleneck of the network and its con-
gestion is O(1), assuming that total traffic demand is a unit and is
uniformly distributed. In addition, dynamic updating that preserves
correct routing is not discussed in these protocols.

Law, Mehta and Siu [9] described an algorithm that creates con-
nected degree bounded scatternet in single-hop networks. The final
structure is a tree like scatternet, which limits efficiency and robust-
ness. A single-hop Bluetooth scatternet formation scheme based on
1-factors is described in [1]. However, piconets are not degree lim-
ited in that scheme.

Salonidis et al. [13] proposed another topology construction al-
gorithm recently. It first collects neighborhood information using
an inquiry procedure, where senders search for receivers on ran-
domly chosen frequencies, and the detected receivers reply after
random backoff delay. Leader is elected in the process, one for
each connected component. Leader then collects the information
about the whole network, decides the roles for each node, and dis-
tributes back the roles. In other words, basically, it is a central-
ized approach. Thus, the solution is not scalable, and not localized.

Moreover, how to assign the roles is not elaborated in [13]. They
also assume up to 36 nodes in the network. Another centralized so-
lution for single-hop networks, where the traffic between any pair
of nodes is known a priori, is described in [10].

Sun, Chang and Lai [11] described a self-routing topology for
single-hop Bluetooth networks. Nodes are organized and main-
tained in a search tree structure, with Bluetooth ID’s as keys (these
keys are also used for routing). It relies on a sophisticated scatter-
net merge procedure with significant communication overhead for
creation and maintenance. Bluerings as scatternets are proposed in
[4]. Ring structure for Bluetooth has simplicity and easy creation as
advantage, but it suffers large diameter (i.e., the maximum number
of hops between any two devices) and large number of piconets.

The works are most related to our dBBlue scatternet construction
method is [2] and [7].

Barriere, Fraigniaud, Narajanan, and Opatrny [2] described a
connected degree limited and distributed scatternet formation so-
lution based on projective geometry for single-hop networks. They
assume that only slave nodes can act as bridges. They described
procedures for adding and deleting nodes from the networks and
claimed that its communication cost is O(log4 n log4 log n) and
the computation cost is O(log2 n log2 log n), where n is the num-
ber of nodes in the network. The degree of the scatternet can be
fixed to any q+1, where q is a power of a prime number. However,
in their method, every node need hold information of the projec-
tive plane and the master node who has the ” token” needs to know
the information of the projective scatternet (which label should be
used for the new coming master and which existing nodes need to
be connected to it). However, the authors did not discuss in detail
how to compute the labels for the new master and its slaves, and
what will happen when the number of nodes reaches the number of
nodes of a complete projective scatternets.

Notice that our dBBlue scatternet can be easily transformed to
support a Bluetooth network in which a piconet has any number
p ≥ 6 of slaves, while the method in [2] can only support the pi-
conet with q+1 slaves where q is a power of a prime number. More-
over, the dynamic updating cost of dBBlue is at most O(log n).

The construction of dBBlue scatternet is inspired by the method
proposed by Fraigniaud and Gauron [7] for constructing a network
topology for P2P environment based on de Bruijn graph. When a
node u joins the P2P network, it [7] randomly selects a node v in the
de Bruijn graph and then creates two children nodes of v: one for v
and one for u. This random selection of node v cannot be applied
to Bluetooth scatternet since it may create a de Bruijn graph with
node whose degree is large than 7. It is not difficult to show that for
Bluetooth scatternet, we can only afford the de Bruijn graph whose
node label lengths differ by at most 1. In this paper, we proposed
a novel method for assigning MAC addresses to nodes such that a
self-routing is still possible during the updating procedures when
node leaves or joins the network. The de Bruijn graph is used as
backbone of the scatternet in our dBBlue structure.

6. CONCLUSION
In this paper, we addressed the problem of scatternet forma-

tion for single-hop Bluetooth based ad hoc networks, with minimal
communication overhead. We adopted the well-known structure de
Bruijn graph to form the backbone of the dBBlue scatternet. The di-
ameter of the scatternet dBBlue is O(log n) and we can find a path
with at most O(log n) hops between every pair of nodes without
using any routing table. Moreover, the congestion of every node is
at most O(log n/n). We discussed in detail the method to locally
update the structure dBBlue using at most O(log n) communica-
tions when a node joins or leaves the network. In most cases, the

cost of updating the scatternet is actually O(1). Our method can
construct the structure dBBlue incrementally when the nodes join
the network one by one. Previously no method can guarantee all
these properties although some methods can achieve some of the
properties. The dBBlue scatternet has lower dynamic updating cost
than the structure proposed in [2].

Notice that, instead of having three statuses for the token, we
can require that the scatternet is always in the status of expand-
ing. Then the scenarios for updating the scatternet become simpler
when nodes join or leave the network, but with a possible high cost
of updating: more merging and splitting of piconets will occur. We
are currently investigating the tradeoffs of the three approaches de-
scribed in this paper by conducting simulations on different models
of node joining and leaving the network. We are also investigating
the scatternet formed based on butterfly structure [6] and compare
their performance with the one described here. Notice that the but-
terfly structure has node degree at most 7, which maps exactly to
the degree requirement by bluetooth piconet.

7. REFERENCES
[1] S. Baatz, S. Bieschke, M. Frank, P. Martini, C. Scholz, and C. Kuhl.

Building efficient bluetooth scatternet topologies from 1-factors. In
Proc. IASTED Wireless and Optical Communications WOC, 2002.

[2] L. Barriere, P Fraigniaud, L. Narajanan, and J. Opatrny. Dynamic
construction of bluetooth scatternets of fixed degree and low
diameter. In Proc. ACM SODA, 2003.

[3] S. Basagni, R. Bruno, and C. Petrioli. Device discovery in bluetooth
networks: A scatternet perspective. In Proc. IFIP-TC6 Networking
Conference, Networking 2002, 2002.

[4] F. Cgun-Choong and C. Kee-Chaing. Bluerings - bluetooth
scatternets with ring structure. In Proc. IASTED Wireless and Optical
Communications WOC, 2002.

[5] N. de Bruijn. A combinatorial problem. In Koninklijke Nederlandse
Academie van Wetenschappen, 49, pages 758–764, 1946.

[6] D.Malkhi, M.Naor, and D.Ratajczak. Viceroy: a scalable and
dynamic lookup network. In ACM PODC, 2002.

[7] Pierre Fraigniaud and Philippe Gauron. The content-addressable
network d2b. Technical Report Technical Report TR-LRI-1349 (also
submitted in PODC ’03), 2003.

[8] Jaap C. Haartsen. The bluetooth radio system. IEEE Personal
Communications, 7:28–36, 2000.

[9] C. Law, A.K. Mehta, and K.Y. Siu. Performance of a new bluetooth
scatternet formation protocol. In Proc. ACM Symposium on Mobile
Ad Hoc Networking and Computing MobiHoc, pages 183–192, 2001.

[10] D. Miorandi and A. Zanella. On the optimal topology of bluetooth
piconets: Roles swapping algorithms. In Proc. Mediterranean
Conference on Ad Hoc Networks MedHoc, 2002.

[11] C.K. Chang M.T. Sun and T.H. Lai. A self-routing topology for
bluetooth scatternets. In Proc. ISPAN, 2002.

[12] C. Petrioli and S. Basagni. Degree-constrained multihop scatternet
formation for bluetooth networks. In Proc. IEEE GLOBECOM 2002,
2002.

[13] T. Salonidis, P. Bhagwat, L. Tassiulas, and R. LaMaire. Distributed
topology construction of bluetooth personal area networks. In Proc.
IEEE INFOCOM, 2001.

[14] G. Tan, A. Miu, J. Guttag, and H. Balakrishnan. Forming scatternets
from bluetooth personal area networks. Technical Report
MIT-LCS-TR-826, MIT, 2001.

[15] G.V. Zaruba, S. Basagni, and I. Chlamtac. Bluetrees - scatternet
formation to enable bluetooth based ad hoc networks. In Proc. IEEE
ICC, 2001.

