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Capacity Bounds for Large Scale Wireless Ad Hoc
Networks Under Gaussian Channel model

Xiang-Yang Li?, ShaoJie Tang?, Xufei Mao?

Abstract—We study the capacity for both random and arbi-
trary wireless networks under Gaussian Channel model when
all wireless nodes have the same constant transmission power
P . During the transmission, the power decays along path with
attenuation exponent β > 2. We consider extended networks,
where n wireless nodes {v1, v2, · · · , vn} are randomly or arbi-
trarily distributed in a square region Ba with side-length a. We
randomly choose ns multicast sessions. For each source node vi,
we randomly select k points pi,j (1 ≤ j ≤ k) in Ba and the node
which is closest to pi,j will serve as a destination node of vi.
We derive the achievable upper bounds on unicast capacity and
an upper bound (partially achievable) on multicast capacity of
the wireless networks under Gaussian Channel model. We found
that the unicast (multicast) capacity for wireless networks under
Gaussian Channel model has three regimes.

Index Terms—Wireless networks, capacity, unicast, multicast,
Gaussian channel.

I. INTRODUCTION

Recently, the network capacity has been studied extensively
under different network and system models, and different
interference models. The ground breaking work of Gupta et
al., [3] has shown that when n wireless nodes are randomly
placed in a square region with side-length 1, for randomly
picked n pairs of source/destination nodes, the information
exchangeable by each pair per unit time will go to zero in
an order of 1√

n log n
as n tends to ∞ under some interference

models, e.g., protocol interference model (PrIM) and physical
interference model. They also showed in [3] that even all nodes
are located optimally, the amount of information that can be
exchanged by each source/destination pair still goes to zero in
an order of 1√

n
. In addition, the authors of [1], [2] proposed

alternative technologies that achieve unicast capacity bound
1√

n log n
as in [3] for random wireless networks. Recently,

Francheschetti et al. [4] proved that per-flow unicast capacity
of order 1√

n
is also achievable in networks of randomly located

nodes when Gaussian channel model is used. Their scheme is
based on Percolation Theory. They first construct a “highway”
system (or say backbone) of the random wireless network.
Then based on multihop transmission, pairwise coding and
decoding at each hop, and a time division multiple access
(TDMA) scheduling, they proved that the lower bound of
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unicast capacity for random wireless networks is 1√
n

. Hence,
the unicast capacity gap between randomly and arbitrary
wireless networks is claimed to be closed.

However, the work in [4] is based on Gaussian channel
model, while the work in [3] is based on PrIM and physical
interference models, and the results by applying the same
scheme to different communication and interference models
may be different. The main purpose of this paper is to study
the unicast capacity (or more generally the multicast capacity)
of large scale random or arbitrary wireless networks under
Gaussian channel model when we choose the best protocols
for all layers. Under Gaussian channel model, the data rate
between any pair of transceivers (u, v) is determined by
several parameters, including transmission power P of the
transmitter u, the environment noise N0 that can be heard
by v, the interference signals from all other simultaneously
transmitting nodes rather than u. Hence, multiple pairs of
nodes can communicate directly with different data rates.
For presentation simplicity, we assume that there is only one
channel in a wireless network. And as always, we assume that
data are sent from node to node either by one-hop or by multi-
hop manner until they reach the destination. In addition, we
assume every node has large enough buffer to save the relay
traffic temporarily while waiting for being transmitted such
that no packet will be lost through relaying.

Our Main Contributions: In this paper we derive ana-
lytical upper bounds and lower bounds of unicast(multicast)
capacity for wireless networks under Gaussian channel model.
We studied unicast(multicast) capacity for wireless networks
with n wireless nodes (randomly or arbitrarily) distributed in
a square region with side-length a . We studied different cases
when a is in different ranges, i.e., a is a function of n. Our
main results are as follows.

For an arbitrary network in which we can optimally choose
the locations of all nodes and choose pairs of communication
nodes, the total unicast capacity Λ(n) is:

Λ(n) =





Θ(1) if a = O(1)
Θ(a2) if a = O(

√
n)

Θ(n) if a = Ω(
√

n)
(1)

For random networks, the per-flow unicast capacity is

ϕ(n) =





Θ( 1
n ) if a = O(1)

Θ( a
n ) if a = O(

√
n)

Θ(( a√
n
)−β · 1√

n
) if a = Ω(

√
n)

(2)

For a random wireless network, an upper bound (partially
achievable) of minimum per-flow multicast capacity where
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each multicast flow will have k randomly chosen receivers,
when ns = Θ(n), is:

ϕk(n) =





O( a
n
√

k
) if a = O(

√
n)

Θ( 1√
n
· 1√

k
) if a = Θ(

√
n),k = O( n

log2 n
)

O(( a√
n
)−β 1√

n
· 1√

k
) if a = Ω(

√
n),k = O( n

log2 n
)

(3)
Consider a random wireless network, where nodes following

a Poisson distribution with parameter n
a2 are distributed in

Ba (a square with side-length a = Ω(
√

n)). Assume that ns

random multicast flows are generated. Under Gaussian channel
model, the per-flow multicast capacity ϕk(n) is at most

ϕk(n) =

{
O(( a√

n
)−β · 1

ns
·
√

n√
k
) if k ≤ n

(log n)β

O( n
nsk ( a√

n
)−β(log n)−

β
2 ), if k ≥ n

(log n)β

(4)

In contrast to [3], [4], studying unicast capacity of wireless
networks under Gaussian channel model needs new technical
insight. One of reasons is that the interference concept under
Gaussian channel model is different from PrIM. Under PrIM,
every node has fixed transmission range and interference
range, the data rate between them is fixed as well. Compared
with PrIM, the data rate under Gaussian channel model is
determined by power, distance and noise. Any two nodes can
communicate with each other although the data rate maybe go
to zero when the distance between the transceiver pair is long
or there are too much noise. Hence, some techniques used in
previous work cannot be applied directly to Gaussian channel
model without modification.

The rest of the paper is organized as follows. In Section
II we discuss in detail the network model used in this paper.
We present both upper-bounds and lower-bounds of unicast
capacity for an arbitrary wireless network in Section III. The
unicast capacity bounds for random wireless networks are
presented in Section IV. We study the multicast capacity in
Section V. We review the related results on network capacities
in Section VI and conclude the paper in Section VII.

II. NETWORK MODEL

Consider a square region Ba with side length a. We assume
that there is a set V = {v1, v2, · · · , vn, · · · } of ordinary
wireless terminals deployed in Ba following Poisson distri-
bution with parameter n

a2 . In other words, given a region X
with area x, the probability that there are exactly k nodes

inside X is (n/a2)ke−xn/a2

k! . The expected number of nodes
located in the region Ba is n and it is easy to show that,
with high probability, the number of nodes is in the range
[(1 − ε)n, (1 + ε)n] for a small constant 0 < ε < 1. Thus,
without affecting the asymptotic results, we assume that n is
also the total number of nodes deployed. We randomly pick ns

wireless terminals as source nodes. Here, ns can be as large as
n such that every node will serve as a source node. For each
source node vi, we randomly select a point pi in Ba and the
node which is closest to pi will become the destination node
of vi for unicast. Here, if the source node vi chooses itself as
its destination node, we can randomly generate point pi again
to avoid this. For studying multicast capacity, we assume that

each multicast session will have k receivers. For each source
node vi, we randomly pick k points pi,j , 1 ≤ j ≤ k, in Ba

and then the closest node vi,j to pi,j will serve as a destination
node of the ith flow that has the source node vi.

We assume that all nodes have a constant transmission
power P , and for each transceiver pair (vi, vj), node vj

receives the transmitted signal from node vi with power
P · `(d(vi, vj)), where d(vi, vj) is the Euclidean distance
between node vi and vj , `(d) is the transmission loss during a
path with length d. Here we consider the attenuation function

`(d) = min{1, d−β}
where the constant β > 2. Hence, any two nodes can
establish a direct communication link over a unit bandwidth
channel, of rate R(vi, vj) = log(1 + S(vi,vj)

N0+I(vi,vj)
) = log(1 +

P ·`(vi,vj)
N0+

∑
q 6=i P ·`(vq,vj)

). Here, vq is any other node which is
transmitting simultaneously with vi and N0 is the variance
of background noise, usually a constant, I(vi, vj) is the
total interference at the receiving node vj when vi and vj

communicate, and S(vi, vj) denotes the strength of signal
received by vj sent from vi.

We assume that any node vi could serve as the source node
for some unicast or multicast, here 1 ≤ i ≤ n. And for each
source node vi, assume that node vi will send data to its
receiver(s) by unicast (or multicast) with a data rate λi. Let
λ = (λ1, λ2, · · · , λn−1, λn) be the rate vector of the multicast
data rate of all multicast sessions. The total throughput of
a feasible rate vector for unicast (multicast) is defined as
Λk(n) =

∑n
i=1 λi. The average per flow unicast(multicast)

throughput is defined as ϕk(n) =
∑n

i=1 λi

ns
, where ns is the

number of unicast (multicast) sessions, and k is the total
number of nodes in each unicast(multicast) session, including
the source node. Similarly, given ns unicast(multicast) sessions
with S as source nodes, the minimum per-flow multicast
capacity is defined as

ϕk(n) = min
vi∈S

λi.

In this paper, we will focus on the minimum per-flow capacity.

A. Useful Known Results

Throughout this paper, we will repeatedly use the following
results from probability theory literature.

Lemma 1 (Azuma’s Inequality): Suppose that random vari-
ables X0, X1, X2, · · · , Xn, · · · are martingale and |Xk −
Xk−1| ≤ ak almost surely for any k ≥ 1. Then for all positive
integers N and all positive real number t, we have

Pr (|XN −X0| ≥ t) ≤ 2 exp

(
− t2

2
∑N

i=1 a2
k

)

A sequence of random variables Xi, 0 ≤ i, are called
martingale if ∀N > 0, E(XN+1 | X0, X1, · · · , XN ) = XN .
Here E(X | Y ) is the expected value of variable X with Y
being true.

Lemma 2: [4] For a Poisson random variable X of param-
eter λ, Pr (X ≥ x) ≤ e−λ(eλ)x

xx , for x > λ.
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NOTATIONS: Throughput this paper, for a continuous region
B, we use |B| to denote its area; for a discrete set S, we
use |S| to denote its cardinality; for a tree T , we use ‖T‖ to
denote its total Euclidean edge lengths; x → ∞ denotes that
variable x takes value to infinity.

B. Technical Lemmas

To study the asymptotic capacity, we first present several
technical lemmas that are essential for the analysis. For a
random wireless network with n wireless nodes located in a
square region Ba, we partition Ba into cells with side length
c. Two nodes u and v are said to have cell-distance d if they
are located in two cells that are separated by d-cells.

Lemma 3: Based on a TDMA schedule, for any transceiver
pair (u, v) with cell-distance d, the data rate R(u, v) only
depends on d and c. Furthermore, when c ·d →∞, R(u, v) =
Ω(c−βd−β−2).

We use the similar idea as Theorem 3 in [4] to prove this.
See our report [5] for proof details.

Lemma 4: If we partition the square Ba into a2

c2 cells with
constant side length c, then w.h.p., there are less than nc2

a2 log a
c

nodes in each cell.
Proof: Let An be the event that there is at least one

cell with more than log a
c × nc2

a2 nodes. Since the number
of nodes x in each cell of the partition is a Poisson ran-
dom variable of parameter nc2

a2 , by the union the Chernoff
bounds, we have Pr(An) ≤ (a

c )2 Pr(x > log a
c × nc2

a2 ) ≤

(a
c )2e−

nc2

a2 (
nc2

a2 e

log a
c×nc2

a2
)

nc2

a2 log a
c

, which goes to 0 as n → 0.

Lemma 5: If we partition square Ba into stripes with
width a and height c1, then with probability at least 1 −√

n
c1

e−c1
√

n( e
2 )2c1

√
n the number of nodes in each stripe will

be no more than 2 c1
a · n.

Proof: Let x be the number of nodes falling in one
rectangle with size c1×a and An be the event that there is at
least one rectangle with more than nodes, by Lemma 2, we get

Pr(An) ≤
√

n
c1
×Pr(x > c1

√
n) ≤

√
n

c1
e−c1

√
n( ec1

√
n

c1
√

n
)
2c1

√
n

=
√

n
c1

e−c1
√

n( e
2 )2c1

√
n. It goes to 0 when n → 0.

C. Highway System and Related

Most of our routing strategies are built upon the highway
system developed in [4]. Here we briefly review its construc-
tion and some key properties. To construct a highway system,
we partition the square Ba into m = a√

2c
cells with a side

length c. By appropriately choosing c, we can arrange that the
probability that a square contains at least a Poisson point is
as high as we want. Here when a = O(

√
n), choosing c as

some constant is enough, while when a = Ω(
√

n), we choose
c = θ1 · a√

n
for some constant θ1.

Then based on percolation theorem, we can choose c large
enough such that with high probability (w.h.p.) there are paths
crossing Ba from left to right. These paths can be grouped into
disjoint sets of paths: each group has dδ log me paths, crossing
a rectangle of width m and height (κ log m+εm) cells, for all
k > 0, δ small enough, and a vanishingly small εm so that the

side length of each rectangle is an integer. Same results still
hold when looking for paths crossing Ba from bottom to top.
Then by union bound, we claim that there exist both horizontal
and vertical disjoint paths w.h.p.. These paths are called the
highway system. From now on, we simply call a node highway
node if the node is on one of horizontal or vertical (or both)
paths, otherwise, it will be called non-highway node.

Then we slice the network area into horizontal strips of
constant width c0 such that there are at least as many paths
as slices inside each rectangle of size m × κ log m + εm by
choosing c0 appropriately. Then we impose that nodes from
the ith slice communicate directly with the ith horizontal path.
And it is also proved in [4] that w.h.p., there are at most
Θ(
√

n) nodes contained in each stripe. Finally, we can get
the following important lemma.

Lemma 6: [4] The nodes along the highways can achieve
w.h.p., a per-flow rate of Ω( 1√

n
).

III. UNICAST CAPACITY FOR ARBITRARY NETWORKS

Here we study unicast capacity for an arbitrary wireless
network. Assume n wireless nodes {v1, v2, · · · , vn} are ar-
bitrarily distributed inside a square Ba with side length a,
each node will communicate with constant transmission power
P . Here the locations of nodes can be optimally chosen to
maximize throughput.

A. When a = O(1)
Lemma 7: For an arbitrarily network in Ba with a = O(1),

the total unicast capacity for ns transceiver pairs is Θ(1).
Proof: The lower bound is clearly Ω(1) since, in any

time slot we pick only one transceiver pair (u and v) to
communicate, all other transmitters are silent. In this case,
the rate R(u, v) = log(1 + P ·`(u,v)

N0+I(u,v) ) = Ω(1) because the
Euclidean distance `(u, v) is at most

√
2a which is a constant,

I(u, v) is zero in this case and N0 is a constant. Thus, the
lower bound of unicast capacity for n unicast sessions is Ω(1).
Clearly, when we pick two nodes within distance Θ(a), the
transport capacity can achieve Ω(1× a).

We then show that the capacity is O(1) by the follow-
ing observations. Assume for any time slot t, there are
m ≥ 2 simultaneously active links in the network. Then for
any transceiver pair u and v, the rate R(u, v) = log(1 +
P ·`(d(u,v))
N0+I(u,v) ) ≤ log(1+ P ·1

N0+
∑

m−1 P ·1 ) ≤ 1
m−1 . Since there are

m simultaneously active links for time slot t, thus, the total
capacity of all network is O(1). Clearly, the upper bound on
transport capacity is m

m−1 · a = O(a) bits-meters/sec.

B. When a = Ω(1), and a = O(
√

n)
We first present the following lemma (see [5] for its proof).
Lemma 8: For any pair of source/destination nodes (u, v),

the transport capacity of a direct link e = (u, v) is log(1 +
P ·`(d)

N0+I(u,v) ) ·d where d is the Euclidean distance between node
u and node v. In addition, the transport capacity between u
and v will get its maximum value when d = 1.

Lemma 9: For arbitrary network, when side length of Ba

is a = Ω(1) and a = O(
√

n), the total unicast capacity for n
transceiver pairs is Θ(a2). The transport capacity is Θ(a2).
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Proof: First, we prove that the capacity is at least Ω(a2).
We partition the whole square into a2 cells with side length
1. Next, we assume there is one transceiver pair in each cell.
Assume for cell Si, node u and v are chosen as source and
receiver respectively. For a cell Si, we consider the 5 by 5
grid of cells in which Si is in the centroid of the grid. All
other 24 cells are called the nearest neighbor cells of Si.
Based on a TDMA scheduling scheme, we let the transmitter
in Si be able to transmit only if all transmitters in the Si

and Si’s nearest 24 neighbor cells keep silent. Next we show
that when all transceiver pairs in all grey cells exchange data
simultaneously, for any pair of transmitter u and receiver v,
the data rate between them is Ω(1) due to Lemma 3.

Next, we give a matching upper bound so that our results
are indeed tight. First, we partition the whole square region
into Θ(a2) cells with side length Θ(1). For any cell Si, assume
there are j simultaneously transmitters {vi1, vi2, · · · , vij} in-
side of Sj . Thus the unicast capacity contributed by cell Si is∑j

k=1 λik. Here, λik is the feasible transmitting rate of the kth

transmitters inside of Si. Clearly, adding one or more trans-
mitters into Si or replacing current transmitter(s) with others
(originally silent nodes in this time slot) will not improve the
unicast capacity contributed by Si due to Lemma 7. Thus, the
total unicast capacity is equal to

∑Θ(a2)
i=1

∑j
k=1 λij , which is

bounded by O(a2 × 1) = O(a2).
Observe that the total capacity Ω(a2) clearly is achievable

by carefully placing a pair of nodes with distance Θ(1) in each
cell. This construction also gives us a lower bound Ω(a2) on
the transport capacity. This finishes the proof.

C. When a = Ω(
√

n)
Lemma 10: For arbitrarily network in Ba with a = Ω(

√
n),

the total unicast capacity for n transceiver pairs is Θ(n).
Proof: Clearly, the upper bound here is O(n) because

there are at most bn
2 c node can transmit simultaneously, and

the rate of each pair is at most a constant. Next we show that
by the following construction, the unicast capacity can also
archive Ω(n) when side length a = Ω(

√
n).

We partition the region into m = n
c2 small rectangles

with side length r = c × a√
n

. Here, we can round c up
to some constant such that c2 ≥ 2 and m is an integer. In
each small square, we put one source/destination pair within
small distance d1 around the center. First, we show when
all transmitters transmit simultaneously, for any transceiver
pair (u, v), the data rate R(u, v) = Ω(1) based on a TDMA
schedule. The proof idea is exactly same with the one used in
Lemma 9. The total interference is

I(u, v) ≤
∞∑

i=1

8iP · ((2i− 1)
ca√
n

)−β

Notice that this sum clearly converges if β > 2 when
a = Ω(

√
n), so I(u, v) is a constant. Thus, the total rate

between u and v is R(u, v) = log(1 + P ·`(d(u,v))
N0+I(u,v) ) = Ω(1),

since `(d(u, v)) = min{1, |uv|−β} is also a constant. Thus,
at any time, based on our TDMA scheduling, there are at
least bn/2

9 c links be active simultaneously, so the lower bound
capacity for n transceiver pair is Ω(n).

IV. UNICAST CAPACITY FOR RANDOM NETWORKS

We will study the unicast capacity for random wireless
networks based on three scenarios a = O(1), a = Ω(1) and
a = O(

√
n), or a = Ω(

√
n).

A. When a = O(1)
When the side length a = O(1) and n goes to ∞, the

unicast case for random wireless networks is similar with the
one for arbitrary wireless networks. The following theorem
directly follows Lemma 7.

Theorem 11: For a wireless network with randomly placed
wireless nodes in a square Ba, the total unicast capacity is
Θ(1) when a = O(1).

Similarly it is not difficult to derive the following theorem.
Theorem 12: For a random wireless network with n ran-

domly placed wireless nodes in a square Ba, the per-flow
unicast capacity is Θ( 1

n ) when a = O(1) and ns = n.

B. When Θ(1) ≤ a ≤ Θ(
√

n)
Next we show that when the side length a satisfies 1 ≤

a ≤ √
n, the capacity for unicast is Ω(a) by constructing

the following routing and link scheduling scheme. By the
percolation theory and the results in [4], when we partition
the whole square into small cells with side length c, we can
select one node from each cell and construct Ω(m) horizontal
and Ω(m) vertical “highways” (or say disjoint paths) from left
to right and from top to bottom respectively as the backbone
of the whole wireless network with probability 1− e−nc2/a2

.
Here, m = a

c , where c is rounded up such that m is an integer.
In addition, we can choose c large enough such that Ω(m)
paths can be partitioned into a number of disjoint groups each
with dδ log me disjoint paths, and each group are contained in
a stripe with width m cells and height (κ log m − εm) cells,
for all κ > 0, δ small enough, and a non-zero small εm such
that the side length of each stripe is integer. The same is true
when we partition the square into vertical stripes with side
length m× (κ log m− εm).

Routing Strategy: Our routing strategy is same as [4]. We
briefly review it here. For each pair of source/destination nodes
u and v, assume u is in the ith stripe. If u is not on the
highway, we will find a highway node uen in the same stripe
to be the entrance node of u, i.e., uen will be the first highway
node which will relay packets of u. To find this entrance node,
we draw a vertical line from u, and the closest highway node
(from this line) which is in the same stripe will be chosen as
uen. For destination node v, if v is not a highway node, we
use the same method to draw a vertical line from v, and find
the closest highway node as the exit node uex.

There are three phases for any pair of source/destination
nodes (u, v) to communicate.

1) If u is not the highways nodes, u will find some entrance
node uen and send data to uen by one hop.

2) uen will relay the data of u to exit node vex of node v
through highway (involving both vertical and horizontal
highways).

3) vex will transmit the data to v directly at last.
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Lemma 13: For any wireless node u, u can achieve a rate
of Ω( a

n ) to some node vex on the highway system based on a
TDMA schedule when the side length a satisfies Θ(1) ≤ a ≤
Θ(
√

n). Here log a > 1.
Proof: We know that after we partition the whole square

into horizontal (or vertical) stripes with size m × (κ log m −
εm), node v can find an entrance node uen on one of dδ log me
disjoint paths within distance κ log m +

√
2c by the triangle

inequality. By Lemma 3, we can get the data rate between u
and uen is Ω((log m)−β−2). In addition, we know there are at
most log m× n

m2 nodes that will share the bandwidth together
due to Lemma 4. Therefore the lower bound of the per-flow
capacity is Ω( (log m)−β−2

log m× n
m2

) = Ω( a
n ).

The data rate achievable between destination v and the node
vex is Ω( a

n ) as well by applying Lemma 13 reversely.
Lemma 14: The nodes on the highways can achieve per-

flow capacity rate of Ω( a
n ) with high probability based on a

TDMA schedule when Θ(1) ≤ a ≤ Θ(
√

n).
Proof: By Lemma 3, because any two adjacent nodes

on the highways are at most one cell away and the side-
length c is a constant, any two adjacent nodes on highway
can communicate with each other with constant rate based on
a TDMA schedule.

In addition, if we partition the square Ba into a
c1

stripes
with size c1 × a, each stripe will contain at most 2 c1n

a nodes
w.h.p., by Lemma 5. Here, c1 can be rounded up such that a

c1
is integer. Thus, for each node on the highway, it will relay
traffic for at most 2 c1n

a nodes w.h.p.. So, the per-flow capacity
for each highway node is Ω( a

n ).
Based on Lemma 13 and Lemma 14, we have
Theorem 15: The per-flow unicast capacity in random wire-

less networks in Ba is Ω( a
n ) when Θ(1) ≤ a ≤ Θ(

√
n).

Next, by calculating a matching upper bound of per-flow
unicast capacity, we can show that our results are indeed tight.

Lemma 16: Given a source/destination pair randomly
placed in a square of side length a, the expected Euclidian
distance between them is c2a for some constant c2.

Theorem 17: There is a constant c3 such that, with prob-
ability at least 1 − 2e−nsc2

3/32, the data rate that can be
supported, for any routing strategy, is at most

c3a

cns
= O(

a

ns
) (5)

Proof: First, we partition Ba into cells with side length c,
here c is some constant. Let C(Pi) denote the number of cells a
routing path Pi will use, i.e., the number of cells crossed by Pi.
Let variable L =

∑ns

i=1 C(Pi), denoting the total load of all
cells. Here the load of a cell by a routing method is the number
of flows visiting the cell for the unicast path constructed. Then
L ≥ ∑ns

i=1 li/(
√

2 a
m ), where li denotes the Euclidian distance

between the i-th source/destination pair.
We define random variables Xq =

∑q
j=1(lj −

E(lj)). Then E(Xq+1 | X1, · · · , Xq) = Xq . In other
words, variables Xi are martingale. In addition, |Xq −
Xq−1| = |lq − E(lq)| ≤ √

2a. From Azuma’s Inequal-
ity, we have Pr (|Xns −X0| ≥ t) ≤ 2 exp(− t2

2
∑ns

i=1 8a2 ).
Let t = ε

∑ns

i=1 E(|li|). Clearly, εnsc3a ≤ t ≤
εns

√
2a for some constant c3. Note that X0 = 0.

Then, Pr (
∑ns

i=1 li ≤
∑ns

i=1 E(li)− t) ≤ Pr (|Xns | ≥ t) ≤
exp(− t2

2
∑ns

i=1 8a2 ) ≤ exp(− (εnsc3a)2

8nsa2 ) = exp(−nsε2c2
3

8 ) Then,
for a constant ε ∈ (0, 1),

Pr

(
ns∑

i=1

li ≤ (1− ε)ns

√
2a

)
≤ 2e−

nsε2c23
8

By letting ε = 1
2 , Pr

(∑ns

i=1 li ≥ ns

√
2a/2

) ≥ 1−2e−nsc2
3/32.

Thus, Pr (L ≥ nsm/2) ≥ 1− 2e−nsc2
3/32.

Recall that L denotes the total load of all cells. Then by
pigeonhole principle, with probability at least 1− 2e−nsc2

3/32,
there is at least one cell, that will be used by at least nsc3m

m2

flows. According to Lemma 7, we know that the capacity of a
cell with constant side length is O(1). Thus, with probability
at least 1 − 2e−nsc2

3/32, the data rate that can be supported
using any routing strategy, due to the congestion in some cell,
is at most 1

nsm

c3m2
= c3m

ns
= c3a

cns
= O( a

ns
) since m = a/c for

some constant c.
Obviously, when a =

√
n, our upper bound shows that the

results in [4] is indeed tight.

C. When a = Ω(
√

n)
We then address the per-flow unicast capacity when the side

length a is of order Ω(
√

n). Clearly, when we partition square
region Ba into cells with side length g, as long as we scale
g carefully, the highway system still exists. Notice that here
g is not a constant but a function of a and n. Specifically,
g = θ3

a√
n

, for some constant θ3. In this case, we use the
same routing strategy as described in Subsection IV-B to give
a lower bound of unicast capacity first.

Lemma 18: For a random wireless network with n ran-
domly distributed wireless nodes in a square region with side
length a, by our routing strategy, the achievable per-flow
unicast rate is Ω(( a√

n
)−β · 1√

n
) when a = Ω(

√
n).

Proof: We partition the whole square into m2 = (a/g)2 =
θ2
3n cells with side length g = θ3

a√
n

. Here we can choose

constant θ3 carefully such that a2

g2 is an integer. Then for any
cell Si, the probability that this cell Si contains at least one
node is 1−e−θ2

3 . Again, by appropriately choosing θ3, we can
make the above probability high enough. So the Euclidean
distance between any two adjacent nodes (both horizontal
and vertical) from the highway system we got by percolation
theorem is bounded by

√
5g. Next, we use a TDMA scheduling

such that a transmitter inside cell Si can transmit iff all
transmitters inside the closest 24 cells keep silent. Since any
two adjacent highway nodes are at most one cell away from
each other, then by Lemma 3, the transmission rate between
any two adjacent nodes u and v on highway system is at least

Ω(||g||−β) = Ω((
√

5c5
a√
n

)−β) = Ω((
a√
n

)−β).

In addition, we know that each node on highway relays packets
for at most 2c1n

a = O(
√

n) nodes by Lemma 5. Thus, the per-
flow unicast capacity is at least Ω(( a√

n
)−β · 1√

n
).

From now on, we will derive matching upper bound on the
minimum per-flow unicast capacity. We first give the proof
of the existence of a number of cells which contains only a
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(a) quasi-closed cut (b) quasi-closed net

Fig. 1. Here a cell is called quasi-closed cell and marked grey if it contains
at most c4 nodes.

constant number of nodes. Then we give an upper bound on
minimum data rate by showing the congestion in those cells.

Definition 1: We say a cell is quasi-closed cell if it contains
at most c4 nodes, here c4 is some constant. As illustrated in
Figure 1, we call a path of cells quasi-closed cut if it contains
only quasi-closed cells and crosses from left to right side of
Ba. Furthermore, we define the length of a quasi-closed cut
as the total number of cells it contains.

See [5] for the proof of the following lemma.
Lemma 19: For any 5

6 < p < 1, there exists a constant c4

such that the probability that any cell contains no more than
c4 nodes is at least p.

Lemma 20: Some quasi-closed cuts must be crossed by at
least c5ns unicast sessions w.h.p.., for some constant c5.

Proof: As shown in [4], for all κ > 0 and 5
6 < p < 1

satisfying 2 + κ log(6(1 − p)) < 0, there exists a number of
disjoint groups containing at least dδ log me disjoint paths in
every group, and each group is constraint in a stripe of size
m× (κ log m− εm) cells, for δ small enough satisfying

δ log
p

1− p
+ 1 + κ log(6(1− p)) < 1 (6)

and a non-zero small εm such that the side length of each
stripe is integer. Based on Lemma 19, same results can be
used to prove the existence of our quasi-closed cuts.

For any constant κ ≤ 1
3

m
log m and δ ≥ 1

log m , we pick c4

carefully based on Lemma 19 to make sure that the preceding
inequality (6) is satisfied. Then, w.h.p., there exists at least
three disjoint groups containing at least one quasi-closed cut
in each group, and every group is bounded by a stripe with
width a and height at most a

3 . Here we only focus on the
middle group, for each unicast session, the probability that it
must cross the same quasi-close cut in the middle group is no
less than 1

3 .
Denote by y the number of unicast sessions which cross the

same quasi-closed cut belonging to the middle group. Then

Pr
(
y ≤ ns

6

) ≤ e
−2( ns

3 −ns
6 )2

ns . Thus, Pr
(
y > ns

6

)
> 1−e−

ns
18 .

Here if we set c5 as 1
6 , the lemma follows when ns goes to

infinity.
Lemma 21: With high probability, some of the quasi-closed

cells must be crossed by at least c6
ns√

n
unicast sessions for

some constant c6.
Proof: First, we will prove that, w.h.p.. in each group,

there exists a quasi-closed cut whose length is no more than

Θ(
√

n). Since there are at least dδ log a
g e disjoint paths in each

group, and the size of one group is a
g × (κ log a

g − ε a
g
), then

by pigeonhole principle, there exists at least one quasi-closed
cut, say Q, in each group which occupies no more than

a
g × (κ log a

g − ε a
g
)

dδ log a
g e

= O(
a

g
) = O(

√
n)

cells, when g = Θ( a√
n
). Then together with Lemma 20, there

exists at least one cell in Q which is crossed by at least c6
ns√

n
unicast sessions for some constant c6. Notice that it equals to
Θ(
√

n) when ns = Θ(n).
Lemma 22: For a random wireless network with n wireless

nodes randomly distributed in a square region with side
length a, the minimum per-flow unicast capacity is at most
O(( a√

n
)−β · 1√

n
) when a = Ω(

√
n).

Proof: According to Lemma 21, we know that for any
routing strategy, there always exist some cells which contain
only constant number of nodes while helping at least c6

√
n

unicast sessions to relay (when ns = Θ(n)). Then the per-flow

unicast capacity is at most O(
( a√

n
)−β

c6
√

n
) = O(( a√

n
)−β · 1√

n
).

Lemma 18 and Lemma 22 together imply Theorem 23.
Theorem 23: For a random wireless network with n ran-

domly distributed wireless nodes in a square region with
side length a, the minimum per flow unicast capacity is
Θ(( a√

n
)−β · 1√

n
).

V. MULTICAST CAPACITY FOR RANDOM NETWORKS

To study the multicast capacity, we first present one tech-
nique lemma which will be frequently used throughout this
section.

Lemma 24: We partition square region Ba into cells with
side length g (chosen based on a). Given multicast session
Mi, let Ti be the multicast tree for Mi and C(Ti) denote
the number of cells the multicast tree Ti will use, then when
k < θ4 · a2

g2 , w.h.p.,

C(Ti) ≥ θ3
|EMSTMi |

g

where |EMSTMi | denotes the length of Euclidean Minimum
Spanning Tree spanning Mi, θ3 and θ4 are some constants.

Proof: We will prove this lemma using some existing
results under protocol model, especially the area argument
[14]. For the sake of our proof, assume that every node has
an artificial “transmission radius” r such that each node v can
only communicate with other nodes within its transmission
range (a transmitting disk with its center at v and radius r).
In addition, we define the area covered by a tree T as the
union of the transmitting disks centered at its’ nodes. Then by
showing a lower bound on the area of the region covered by
any multicast tree T , we can give the desired lower bound on
the number of cells it will cross.

Recall Lemma 11 in [13], it is proved that in protocol model,
the area of the region D(T ), w.h.p., is at least θ0

√
kar when

k < θ1 · a2

r2 for some constants θ0 and θ1. Here r denotes
the transmission range of each node in protocol model and
D(T ) denotes the region covered by all transmitting disks of
all transmitting nodes (internal nodes of T ) in any multicast
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tree T . Unfortunately, this result can not help us directly, since
in our model, each node has no fixed transmission range r.
Instead, any pair of nodes can communicate with each other
even though the data rate may be very small. Based on the
original network under Gaussian channel model, we construct
a new network under protocol model as follows.

1) Set each node’s transmission range as the side length of
each cell g, where g = c when a = O(

√
n) and g =

ca/
√

n for some constant c when a = Ω(
√

n) .
2) Add some artificial “additional relay nodes” Vad such that

any pair of nodes will have enough relay nodes along its
link to make sure that the minimum number of cells the
routing path crosses under protocol model is no more than
the number of cells the direct link will cross in Gaussian
channel model. Notice that Vad cannot be selected as
source or receivers, they can only act as relay nodes.

Let T be any multicast tree in the original network under
Gaussian channel model and Tp denote the corresponding mul-
ticast tree (spanning the same multicast session) constructed on
this new network (with additional nodes Vad) under protocol
model. We have two important observations here:

1) Our preceding two modifications will not affect the proof
for Lemma 11 in [13]. In other words, the lower bound
on |D(Tp)| still holds,

2) Furthermore, any link in Gaussian channel model can
be simulated by using these artificial “additional relay
nodes” in the protocol model such that the number of
cells it will cross will not increase. So the lower bound
of C(T ) is no smaller than the lower bound of C(Tp).

From Lemma 11 in [13], we have, w.h.p., D(Tp) ≥ θ0

√
kar =

θ0

√
kag. Since one transmitting disk can cover no more than 4

cells. We have, w.h.p., C(Tp) ≥ θ0

√
kag/4×g2 = θ0

4 ·
√

ka
g . It

follows that when k < θ4 · a2

g2 , w.h.p., C(T ) ≥ θ0
4 ·

√
ka
g . Since

|EMST | ≤ 2
√

2
√

ka, if we set θ3 as θ0
4 /2

√
2, the lemma

follows.

A. Upper Bound When a = O(
√

n)

Here we provide an upper bound of multicast capacity when
a = O(

√
n). Similar as previous approach, we partition the

square region Ba into cells with side length c where c is some
constant, then the total number of cells is m2 = a2

c2 = Θ(a2).
Lemma 25: [14] Given one multicast session Mi with one

source and k−1 receivers randomly selected and all receivers
are placed in a square Ba, the Euclidean minimum spanning
tree EMST(Mi) has an expected total edge length c1

√
ka for

a constant c1 ∈ (0, 2
√

2]
Theorem 26: When a = O(

√
n), with probability at least

1 − 2e−nsc2
8/32, the per-flow multicast data rate that can be

supported using any routing strategy, is at most

O(
a

ns

√
k

) (7)

Proof: Let variable L =
∑ns

i=1 C(Ti), denoting the
total load of all cells. Here the load of a cell by a routing
method is the number of flows “crossing” the cell for the
multicast tree constructed. Then based on Lemma 24, we

know that L ≥ ∑ns

i=1 θ3|EMST(Mi)|/( a
m ) w.h.p.. Notice that

E(
∑ns

i=1 |EMST(Mi)|) = nsc7a
√

k.
Define random variables Xq =

∑q
j=1(|EMST(Mj)| −

E(|EMST(Mj)|)). Then E(Xq+1 | X1, · · · , Xq) = Xq , so
variables Xi are martingale. In addition, |Xq − Xq−1| =
||EMST(Mq)| − E(|EMST(Mq)|)| ≤ E(|EMST(Mq))| ≤
2
√

2
√

ka. Again, from Azuma’s Inequality, we have
Pr (|Xns

−X0| ≥ t) ≤ 2 exp(− t2

2
∑ns

i=1 8ka2 ). Let t =

ε
∑ns

i=1 E(EMST(Mi)). Clearly, we have εnsc8

√
ka ≤ t ≤

2
√

2nsε
√

ka. Note that X0 = 0. Then,

Pr

(
ns∑

i=1

|EMST(Mi)| ≤
ns∑

i=1

E(|EMST(Mi)|)− t

)

≤ Pr (|Xns
| ≥ t) ≤ exp(− t2

2
∑ns

i=1 8ka2
)

≤ exp(− (εnsc8

√
ka)2

8nska2
) = exp(−nsε

2c2
8

8
)

Letting ε = 1
2 , Pr

(∑ns

i=1 |EMST(Mi)| ≥ nsc9

√
ka/2

)

≥ 1 − 2e−nsc2
8/32. Based on Lemma 24, we get

Pr
(
L ≥ nsθ3c9

√
km/2

)
≥ 1 − 2e−nsc2

8/32. It implies that

Pr
(
L ≥ nsθ3c9

√
km/2

)
≥ 1− 2e−nsc2

8/32 if k ≤ θ1
√

n.
Recall that L denotes the total load of all cells. Then by

pigeonhole principle, with probability at least 1− 2e−nsc2
8/32,

there is at least one cell, that will be used by at least nsc10
√

km
m2

flows where c10 = θ3c9. Again, according to Lemma 7, the
capacity of a cell with constant side length is O(1). Thus,
when ns = Θ(n), with probability at least 1−2e−nsc2

8/32, the
per-flow data rate that can be supported is at most, for any
routing strategy, 1

nsc10
√

km

m2

= m
c10ns

√
k

= O( a
ns

√
k
).

B. Upper Bound When a = Ω(
√

n)
We now give an upper bound for multicast capacity when

a = Ω(
√

n). The main idea is to show the existence of quasi-
closed cell net i.e., the cell net which is composed by all
quasi-closed cells. Furthermore, by proving that w.h.p., any
multicast routing tree will cross a sufficient large number of
quasi-closed cells, we can show that some cell will be used
by many flows i.e., the congestion in some quasi-closed cells.
Please see Figure 1 for illustration.

Next, we explain our proof in details: First we partition the
square region Ba into m2 = c2

8n cells with side length c8
a√
n

for some constant c8. Then based on the results in [4] and
Lemma 19, we can choose c8 large enough such that Ω(m)
quasi-closed cuts can be partitioned into a number of disjoint
groups each with dδ log me disjoint quasi-closed cuts, and each
group is constraint in a stripe of size m× (κ log m− εm), for
all κ > 0, δ small enough, and a non-zero small εm such
that the side length of each stripe is integer. The same is true
when we partition the square into vertical stripes with side
length m × (κ log m − εm). Notice that all of the horizontal
and vertical stripes together partition Ba into super-cells with
side length (κ log m− εm)× a

m = (κ log m− εm)× c8 · a√
n

.
Theorem 27: When k = O( n

log2 n
) and ns = Θ(n), with

probability at least 1− 2e−nsc2
8/32, the per-flow data rate that
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can be supported by any routing strategy is

O((
a√
n

)−β · 1
ns
·
√

n√
k

) (8)

Proof: Our proof again is to analyze the load of some
cells. We use L to denote the total load of all cells. Then we get
L ≥ ∑ns

i=1 θ3|EMST (Mi)|/
(
(κ log m− εm)× a

m

)
based on

Lemma 24. Since Pr
(∑ns

i=1 |EMST(Mi)| ≥ nsc9

√
ka/2

)
≥

1− 2e−nsc2
8/32, from Lemma 24, we get

Pr
(

L ≥ nsc10

√
k

m

log m

)
≥ 1− 2e−nsc2

8/32.

for some constant c10 = c9θ3. Here we use L to denote the
total number of flows crossing some super-cell. Notice that
here “crossing” means visiting and leaving. We get

Pr
(
L ≥ L− nsk = nsc10

√
k

m

log m
/2− nsk

)
≥ 1−2e−nsc2

8/32.

We can show that any multicast routing tree will cross at
least dδ log me quasi-closed cuts if it crosses three super-cells.
Denote by L′ the total number of flows crossing some quasi-
closed cut. Then L′ ≥ L

3 × dδ log me. It follows that, with
probability at least 1− 2e−nsc2

8/32, the total load of all quasi-

closed cell is at least
nsc10

√
k m

log m /2−nsk

3 ×dδ log me. Then by
pigeonhole principle, with probability at least 1− 2e−nsc2

8/32,
there is at least one quasi-closed cell, that will be used by at

least
nsc10

√
k m

log m
/2−nsk

3 ×dδ log me
m2 flows, which can be rewrit-

ten as θ2
ns

√
k√

n
for some constant θ2 when k = O(( m

log m )2).

Then with probability at least 1 − 2e−nsc2
8/32, the minimum

data rate that can be supported using any routing strategy, due
to the congestion in some quasi-closed cell, is at most

O(
( a√

n
)−β

√
n

θ2ns

√
k

) = O((
a√
n

)−β · 1
ns
·
√

n√
k

), (9)

when k = O( n
log2 n

).
Observe that our result matches the upper bound derived in

[6] when a =
√

n. We will derive another upper bound on
multicast capacity using different approaches. The basic idea
is to show that, for a random network topology, a cluster of
nodes exists, that is relatively isolated from the rest of the
nodes. Consequently, the average rate of the information that
can be sent/received by the nodes of the cluster is limited.

Theorem 28: Consider a random wireless networks, where
nodes following a Poisson distribution with parameter n

a2

are distributed in Ba with a = Ω(
√

n). Assume that ns

random multicast flows are generated. Under Gaussian channel
model, the per-flow multicast capacity ϕk(n) is at most
O(( a√

n
)−β(log n)1−

β
2 /(nsp3)), which is

ϕk(n) =

{
O( n

nsk ( a√
n
)−β(log n)−

β
2 ), if k ≤ n

log n

O( 1
ns

( a√
n
)−β(log n)1−

β
2 ), if k ≥ n

log n

(10)

The proof is similar to the Theorem 2 of [6]. See [5]
for proof details. The preceding upper bound on multicast is
derived by analyzing an isolated cluster of nodes. For a random
wireless network (n nodes randomly distributed in a region

Ba, or nodes following a Poisson distribution with parameter
n
a2 ), it is proved in [15] that, w.h.p., the nearest neighbor graph

has an edge of length Θ(a
√

log n
n ). By exploring this long

edge, we are able to derive better upper bound:
Theorem 29: Under Gaussian channel model, the per-flow

multicast capacity ϕk(n) of ns flows in 2D random networks
in Ba (for a = Ω(

√
n)), when k = ω(

√
n), is at most

ϕk(n) = O

(
1
ns

n

k

(
a√
n

)−β

(log n)−
β
2

)
(11)

Proof: Assume that the longest edge in the nearest
neighbor graph of the random network is uv. Then for
node v, the probability p3 that it is chosen as a terminal
of a given multicast flow is p3 = k

n . It is easy to show
that, with high probability (at least 1 − e−frack22n), the
number of multicast flows that will choose the node v as
a terminal is at least nsp3/2 when k = ω(

√
n). Observe

that the total data rate that node v can receive is at most
R(v) = O

((
a√
n

)−β

(log n)−
β
2

)
since the shortest link

incident at node v is at least Θ(a
√

log n
n ). Then we have

ϕk(n) ·nsp3/2 ≤ R(v). The theorem then directly follows.
Combining Theorem 27, Theorem 28, and Theorem 29, we

have the following theorem.
Theorem 30: Under Gaussian channel model, the per-flow

multicast capacity ϕk(n) of ns flows in 2D random networks
in Ba (for a = Ω(

√
n)) is at most

ϕk(n) =

{
O(( a√

n
)−β · 1

ns
·
√

n√
k
) if k ≤ n

(log n)β

O( n
nsk ( a√

n
)−β(log n)−

β
2 ), if k ≥ n

(log n)β

(12)
When ns = n and a =

√
n, we have the following corollary.

Corollary 31: Under Gaussian channel model, the per-flow
multicast capacity ϕk(n) of n flows in 2D random networks
in B√n is at most

ϕk(n) =

{
O( 1√

n
√

k
) if k ≤ n

(log n)β

O( 1
k (log n)−

β
2 ), if k ≥ n

(log n)β

(13)

Observe that our upper bound on multicast capacity is
achievable when k = n [21] and k = O( n

(log n)2β+6 ) [22].
Our bounds also improve the result in [6].

VI. LITERATURE REVIEWS

Gupta and Kumar [3] studied the asymptotic capacity of a
multi-hop wireless networks for two different models. When
each wireless node is capable of transmitting at W bits per
second using a fixed range, the throughput obtainable by each
node for a randomly chosen destination is Θ( W√

n log n
) bits per

second under a non-interference protocol, where n in number
of nodes. If nodes are optimally assigned and transmission
range is optimally chosen, the per-flow throughput is only
Θ( W√

n
). Similar results also hold for physical interference

model. Grossglauser and Tse [8] showed that mobility actually
can help to improve the capacity if we allow arbitrary large
delay. They show that the average long-term per-flow through-
put can be kept constant even as node density increases. Li
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et al. [12] found that the traffic pattern determines whether
the per node capacity of a wireless network will scale to
large networks. In [7] Gastpar and Vetterli demonstrated the
power of network coding: under the point-to-point coding
assumption considered in [3], the achievable data rate is
constant, independent of the number of nodes. Kyasanur and
Vaidya [11] studied the capacity region on random multi-hop
multi-radio multi-channel wireless networks.

Broadcast capacity of an arbitrary network has been studied
in [10], [16]. They essentially show that the broadcast capacity
of a given network is Θ(W ) for single source broadcast and
the achievable broadcast capacity per node is only Θ(W/n)
if each of the n nodes will serve as source node. Multicast
capacity was recently studied in the literature. Jacquet and
Rodolakis [19] claimed that the maximum rate at which a node
can transmit multicast data is O( W

kn log n ). Recently, serval
results [13], [14], [18], [20] were proposed for asymptotic
multicast capacity for a large-scale random wireless networks.
Assume for each node vi (1 ≤ i ≤ n), randomly and
independently pick k − 1 points pi,j (1 ≤ j ≤ k − 1) from
the square, and then vi multicast data to the nearest node
for each pi,j . They showed the total multicast capacity is
Θ(

√
n

log n · W√
k
) when k = O( n

log n ) and when k = Ω( n
log n ),

the total multicast capacity is equal to the broadcast capacity,
i.e., Θ(W ). Mao et al. [20] studied the multicast capacity for
hybrid networks. They derived several capacity regimes based
on the relations of the number k of receivers per multicast
session, the total number n of nodes, and the number m of
base stations.

Franceschetti et al. [4] addressed the unicast capacity under
Gaussian channel. They proposed a routing and scheduling
scheme using highway system based on percolation theorem
and proved that a rate 1√

n
is achievable under Gaussian chan-

nel. Zheng [17], [21] pointed out that using multihop relay,
the rate of broadcasting continuous stream is Θ((log n)−

β
2 )

in random extended networks. Most recently, Li et al. [22]
proved that, when nd = O( n

(log n)2β+6 ) and ns = Ω(n
1
2+θ),

the achieving per-session multicast throughput, w.h.p., is of
order Ω(

√
n

ns
√

nd
) using percolation model, where θ > 0 is

a constant. Wang et al. [23] recently show that the same
results still hold even when nd = O( n

(log n)β ). All the above
results are derived under the bounded propagation model (
[24]) and for a single network. Recently, Keshavarz-Haddad
and Riedi [6] derived some upper bounds on multicast capacity
for Gaussian channel model. They also present algorithms
for multicast and claimed that the capacity achieved by their
method matches the upper bound. Their bounds are not tight,
e.g., rate of W is not achievable when k ≥ n

log n .

VII. CONCLUSIONS

In this paper, we studied the unicast and multicast capacity
for wireless networks under Gaussian channel model when
nodes are deployed in a square region Ba with side-length
a. We derived asymptotic matching upper-bounds and lower-
bounds of unicast capacity for arbitrary and random wireless
networks in different cases. Our results close the gap for
unicast capacity [4] for example, when a =

√
n. We also

present new upper-bounds on multicast capacity for random
networks where nodes follow poisson distribution. Our upper-
bounds improve the previous result and use new analyzing
techniques. A number of interesting and challenging questions
remain as future work. A main challenging question is to
close the gap on multicast capacity by presenting possibly
new tight upper-bounds and designing algorithms to achieve
the asymptotic multicast capacity.

REFERENCES

[1] S. KULKARNI AND P. VISWANATH A deterministic approach to
throughput scaling in wireless networks. IEEE Trans. Inf. Theory, vol.
50, pp. 1041-1049, 2004

[2] S. TOUPIS AND A.J. GOLDSMITH Large wireless networks under
fading, mobility, and delay constraints. Proc. IEEE Trans. Inf. Commun.
Conf., INFOCOM 2004.

[3] GUPTA, P., AND KUMAR, P. Capacity of wireless networks. IEEE
Transactions on Information Theory, Mar 2000, 46(2), pages 388-404.

[4] MASSIMO FRANCESCHETTI, OLIVIER DOUSSE, DAVID N.C. TSE,
AND PATRICK THIRAN Closing the Gap in the Capacity of Wireless
Networks Via Percolation Theory. In IEEE Transactions on Information
Theory Vol. 53. (2007).

[5] XIANG-YANG LI, SHAOJIE TANG AND XUFEI MAO Capacity
Bounds for Large Scale Wireless Ad Hoc Networks Under Gaus-
sian Channel model technical report, CS of IIT, available at
http://www.cs.iit.edu/∼xli/paper/Submitted/cap-gau-full.pdf

[6] ALIREZA KESHAVARZ-HADDAD, RUDOLF RIEDI. Multicast Capacity
of Large Homogeneous Multihop Wireless Networks, 6th International
Symposium on Modeling and Optimization in Mobile, Ad Hoc, and
Wireless Networks (WiOpt), 2008.

[7] GASTPAR, M., AND VETTERLI, M. On the capacity of wireless
networks: the relay case. In IEEE INFOCOM (2002).

[8] GROSSGLAUSER, M., AND TSE, D. Mobility increases the capacity of
ad-hoc wireless networks. In INFOCOMM (2001), vol. 3, pp. 1360
–1369.

[9] GUPTA, P., AND KUMAR, P. R. Critical power for asymptotic connectiv-
ity in wireless networks. Stochastic Analysis, Control, Optimization and
Applications: A Volume in Honor of W.H. Fleming, W. M. McEneaney,
G. Yin, and Q. Zhang (Eds.) (1998).

[10] KESHAVARZ-HADDAD, A., RIBEIRO, V., AND RIEDI, R. Broadcast
capacity in multihop wireless networks. In MobiCom’06, pp. 239–250.

[11] KYASANUR, P., AND VAIDYA, N. H. Capacity of multi-channel wireless
networks: impact of number of channels and interfaces. In MobiCom’05,
pp. 43–57.

[12] LI, J., BLAKE, C., COUTO, D. S. J. D., LEE, H. I., AND MORRIS, R.
Capacity of ad hoc wireless networks. In ACM MobiCom (2001).

[13] XIANG-YANG LI Multicast Capacity for Large Scale Wireless Ad Hoc
Networks IEEE Trans. on Networking (May. 2008).

[14] LI, X.-Y., TANG, S.-J., AND FRIEDER, O., Multicast Capacity of Large
Scale Wireless Ad Hoc Networks, In ACM MobiCom (2007).

[15] PENROSE, M. The longest edge of the random minimal spanning tree.
Annals of Applied Probability 7 (1997), 340–361.

[16] TAVLI, B. Broadcast capacity of wireless networks. IEEE Communica-
tion Letters 10, 2 (February 2006).

[17] ZHENG, R. Information dissemination in power-constrained wireless
networks. In INFOCOM (2006).

[18] SHAKKOTTAI S., LIU X. AND SRIKANT R., The multicast capacity of
ad hoc networks, Proc. ACM Mobihoc, 2007.

[19] JACQUET, P. AND RODOLAKIS, G., Multicast scaling properties in
massively dense ad hoc networks, ICPADS’05.

[20] MAO, X., LI, X.-Y., AND TANG, S.-J., Multicast capacity for hybrid
wireless networks. ACM MobiHoc’08.

[21] R. ZHENG, Asymptotic bounds of information dissemination in power-
constrained wireless networks, IEEE Trans. on Wireless Communica-
tions, vol. 7, no. 1, pp. 251–259, Jan. 2008.

[22] S. LI, Y. LIU, AND X.-Y. LI, Capacity of large scale wireless networks
under gaussian channel model, in ACM Mobicom, 2008.

[23] CHEN WANG, X.-Y. LI, C.-J. JIANG, S.-J. TANG, Y.-H. LIU, AND J.
ZHAO Scaling laws of networking-theoretic bounds on capacity for
wireless networks, IEEE INFOCOM 2009

[24] A. KESHAVARZ-HADDAD AND R. RIEDI, Bounds for the capacity of
wireless multihop networks imposed by topology and demand, in ACM
MobiHoc’07, 2007.


