Dynamic Load Balancing for Parallel Adaptive
Mesh Refinement*

Xiang-Yang Li! and Shang-Hua Teng?

Department of Computer Science and Center for Simulation of Advanced Rockets,
University of Illinois at Urbana-Champaign, Urbana, IL 61801.

Abstract. Adaptive mesh refinement is a key problem in large-scale numer-
ical calculations. The need of adaptive mesh refinement could introduce load
imbalance among processors, where the load measures the amount of work
required by refinement itself as well as by numerical calculations thereafter.
We present a dynamic load balancing algorithm to ensure that

the work load are balanced while the communication overhead is minimized.
The main ingredient of our method is a technique for the estimation of the
size and the element distribution of the refined mesh before we actually gen-
erate the refined mesh. Base on this estimation, we can reduce the dynamic
load balancing problem to a collection of static partitioning problems, one
for each processor. In parallel each processor could then locally apply a static
partitioning algorithm to generate the basic units of submeshes for load re-
balancing. We then model the communication cost of moving submeshes by
a condensed and much smaller subdomain graph, and apply a static parti-
tioning algorithm to generate the final partition.

1 Introduction

Many problems in computational science and engineering are based on unstructured
meshes in two or three dimensions. An essential step in numerical simulation is to
find a proper discretization of a continuous domain. This is the problem of mesh
generation [1, 9], which is a key component in computer simulation of physical and
engineering problems. The six basic steps usually used to conduct a numerical sim-
ulation: 1: Mathematical modeling, 2: Geometric modeling, 3: Mesh gen-
eration, 4: Numerical approximation, 5: Numerical solution, 6: Adaptive
refinement.

In this paper, we consider issues and algorithms for adaptive mesh refinement, (cf,
Step 6 in the paradigm above). The general scenario is the following. We partition
well shpaed mesh My and its numerical system and map the submeshes and their
fraction of the numerical system onto a parallel machine. By solving the numerical
system in parallel, we obtain an initial numerical solution S;. An error-estimation
of Sy generates a refinement spacing-function h; over the domain. Therefore, we
need properly refine My according to h; to generate well shaped mesh M;. The
requirement of refinement introduces load imbalance among processors in the parallel

* Supported in part by the Academic Strategic Alliances Program (ASCI) of U.S. Depart-
ment of Energy, and by an NSF CAREER award (CCR-9502540) and an Alfred P. Sloan

Research Fellowship.

machine. The work-load of a processor is determined by refining its submesh and
solving its fraction of the numerical system over the refined mesh M;. In this paper,
we present a dynamic load balancing algorithm to ensure that the computation at
each stage of the refinement is balanced and optimized. Our algorithm estimates the
size and distribution of M; before it is actually generated. Based on this estimation,
we can compute a quality partition of M; before we generate it. The partition of
M can be projected back to My, which divides the submesh on each processor into
one or more subsubmeshes. Our algorithm first moves these subsubmeshes to proper
processors before performing the refinement. This is more efficient than moving M;
because My is usually smaller than M;. In partitioning M;, we take into account of
the communication cost of moving these subsubmeshes as well as the communication
cost in solving the numerical system over Mj.

This paper is organized as following. Section 2 introduces an abstract problem to
model parallel adaptive mesh refinement. Section 3 presents an algorithm to estimate
the size and distribution of the refined mesh before its generation. It also presents
a technique to reduce dynamic load balancing for mesh refinement to a collection
of static partitioning problems. Section 4 extends ours algorithm from the abstract
problem to unstructured meshes. Section 5 concludes the paper with a discussion of
some future research directions.

2 Dynamic Balanced Quadtrees

In this section, we present an abstract problem to model the process of parallel
adaptive mesh refinement. This abstract problem is general enough; it uses balanced
quadtrees and octrees to represent well-shaped meshes; it allows quadtrees and oc-
trees to grow dynamically and adaptively to approximate the process of adaptive
refinement of unstructured meshes. This model is also simple enough geometrically
to provide a good framework for the design of mesh refinement algorithms.

2.1 Balanced Space Decomposition

The basic data structure for quad-/oct-tree based adaptive mesh refinement is a
boz. A box is a d-dimensional cube embedded in an axis-parallel manner in R? [9].
Initially, there is a large d-dimensional box, we call it the top-boz, which contains
the interior of the domain, and a neighborhood around the domain. The box may
be split, meaning that it is replaced by 2¢ equal-sized boxes. These smaller boxes
are called the children bozes of the original box. A sequence of splitting starting at
the top-box generates a 2%-tree, i.e., a quadtree in two dimensions, and an octree in
three dimensions. Leaf-bozes of a 2%-tree are those that have no child. Other boxes
are internal-bozes, i.e., have children. The size of 2%-tree T, denoted by size(T), is
the number of the leaf-boxes of T'. The depth of a box b in T, denoted by d(b), is
the number of splittings needed to generate b from the top box. The depth of the
top box, hence is 0. Two leaf-boxes of a 2%-tree are neighbors if they have a (d—1)
dimensional intersection. A 2%-tree is balanced iff for any two neighbor leaf-boxes b1,
ba, |d(b1) — d(b2)| < 1. For convenience, leaf-boxes b and b; of a quadtree are called
edge neighbors if they intersect on an edge; and they are called corner neighbors if
they share only a vertex.

[htp]

THRHT
CHEH T

/ vocdor 1| |7 A F
100} ! | I E
w T T [P anRE N 1
g Y Pocesorps | [T HH Y Procgsor 3
lProcgssorpa | | I 1 [s 1

Fig.1. A balanced quadtree T in two dimensions, a 4-way partition, refinement and bal-
ancing. Assume the splitting depth of by, bz, bs and bs are 1, 1, 2 and 2 respectively.

2.2 Modeling Adaptive Refinement with Dynamic Quadtree

A balanced 2%-tree can be viewed as a well-shaped mesh in IR?. In fact, most quad-
/oct-tree based mesh generation algorithms first construct a balanced 2¢-tree over an
input domain, and then apply a local warping procedure to build the final triangular
mesh [1, 9]. When the accuracy requirement of a problem is changed during the
numerical simulation, we need refine the mesh accordingly. In particular, an error
estimation of the computation from the previous stage generates a new spacing-
function over the input domain. The new spacing-function defines the expected size
of mesh elements in a particular region for the formulation in the next stage. In
the context of a 2%-tree, the refinement requires that some leaf-boxes be split into
a collection of boxes of a certain size while globally maintains that the resulting
29_tree is still balanced. We model the refinement of a 2%-tree as following:

Definition1 Adaptive Refinement of 2%-trees. A balanced 2%-tree T and a list
of non-negative integers §, one for each leaf-box, i.e., associated with each leaf-box
b is an integer J(b), generate a new balanced tree T* as the following.

1. Construct T" by dividing each leaf-box b of T' into 29(?) equal sized boxes.
2. Construct T* by balancing T".

The refinement most likely introduces load imbalance among processors, which
reflects in the work for both refinement and computations thereafter. Therefore, as
an integral part of parallel adaptive computation, we need to dynamically repartition
the domain for both refinement and computations of the next stage. To balance the
work for refinement, we need to partition a 2%-tree before we actually refine it. In
the next section, we present an efficient method to estimate the size and element
distribution of a refined 29-tree without actually generating it.

3 Reduce Dynamic Load Balancing to Static Partitioning

The original 2%-tree T is distributed across a parallel machine based on a partition
of T'. Assume we have k processors, and we have divided T into k-subdomains
S1...,S5;, and have mapped S; onto processor i. A good partition is in general
balanced, 1.e., the sizes of S1,..., Sy are approximately the same size. In addition,

the number of boundary bozes, the set of leaf-boxes that have neighbors located at
different processors should be small.

A simple minded way to refine a 29-tree (or a mesh in general) for a new spacing-
function is to have each processor refine its own subdomain to collectively con-
struct T*. Note that the construction of T* from 7" needs communication among
processors. The original k-way partition of T naturally defines a k-way partition
(S1,...,S5;) for T/ and a k-way partition (S} ..., S;) for T*. However, these parti-
tions may not longer be balanced. In addition, the computation of the next stage will
no longer be balanced either. Note also that the set of boundary boxes will change
during the construction of 7/ and T*. The number of the boundary boxes may not
be as small as it should be. In this approach, to balance the computation for the
next stage, we could repartition 7% and distribute it according to the new partition.
One shortcoming of this approach is that T* could potentially be larger than T', and
hence the overhead for redistributing 7" could be more expensive.

We would like to have a mechanism to simultaneously balance the work for
refinement and for the computation of the next stage. To do so, we need to properly
partition T™ before we actually generate it. Furthermore, we need a dynamic load
balancing scheme that is simple enough for efficient parallel implementation. In this
section, we present an algorithm that effectively reduce the dynamic load balancing
problem to a collection of static partitioning problems. We first give a high-level
description of our approach. Details will be given in subsequent subsections.

Repartitioning Method
Input (1) a balanced 29-tree T that is mapped onto k processor according
to a k-way partition S1, ..., Sk, and (2) a list of non-negative integers ¢, one
for each leaf-box.

1. In parallel, processor i estimates the size and the element distribution of
its subdomains S; and S} without constructing them.

2. Collectively, all processors estimate the size of T*. Assume this estima-
tion is N. Let W = a(N/k) for a predefined positive constant o < 1.

3. In parallel, if the estimated size of S; is more than W, then processor
1 applies the geometric partitioning algorithm of Miller-Teng-Thurston-
Vavisis [6, 3] to implicitly partition S} into a collection of subsubdomains

;1)---,5; 1,- We can naturally project this partition back to S; to gen-
erate subsubdomains S; 1,...,5; 1,

4. We remap these subsubdomains to generate a partition of T' so that the
projected work for the refinement and computations thereafter at each
processor 1s balanced. We would also like to minimize the overhead in
moving these subsubdomains. We introduce a notion of subdomain graph
over these subsubdomains to do dynamic balancing.

5. We construct a k-way partition of the subdomain graph using a standard
static graph partitioning algorithms such as provided in Chaco and Metis
[4, 5]. The partition of the subdomain graph defines a new distribution
for T* before its refinement.

6. Move each subsubdomain to its processor given by the partition of the
subdomain graph.

7. In parallel, each processor refines and balances its subdomain.

8. Solve the resulting numerical system for the next stage.

3.1 Subdomain Estimation

We now estimate the size of the quadtree 7™ after refining and balancing quadtree
T. Our technique can be directly extended to general 2%-trees. For each leaf-box b
of a balanced 2¢-tree, the effect region of b, denoted by region(b), is defined to be
the set of all boxes that share at least one point with 4. We mainly concern about
the two dimensions case during the later discussion.

Lemma 2. For any leaf-boz b of a quadtree T, the size of region(b) satisfies |region(b)| <
12. The region of b can be computed in a constant time.

The pyramid of a leaf-box b of a quadtree T', denoted by pyramid(b), is defined
as following: 1:if a leaf-box b; ¢ region(b) shares a (d — 1) dimensional face with
a box by € region(b), §(b1)=0, and d(bz) = d(b1) + 1, then b1 € pyramid(b). 2:if
a leaf-box bz ¢ region(b) shares a (d — 1) dimensional face with a leaf-box b; in

pyramid(b), 6(bs) = 0, and d(b1) = d(b3) + 1, then b3 € pyramid(b).

(htop]
splitting depth of b=3
- an edge box
b: b1l [Wi & . -acenter-box
‘ ‘ i e b1
bl
M:}HEH ‘ ‘1}1 - (edge neighbor)
i acomer-box
b b } 3
b2 (3
(edge neighbor) (corner neighbor)
(a) Ca) (c)

Fig.2. The two templates for splitting boxes in region(b). Fig (a): the refinement of b
causes the edge neighbor b; to be split, Fig (b): it causes corner neighbor b; to be split,
Fig (c): how the refinement of b influence the splitting of leaf-boxes in region(b).

Lemma 3. The set of bozes that we need to split in the construction of T™ due to
the refinement of a leaf-boz b is contained in region(b) U pyramid(b).

If by is a leaf-box contained in pyramid(b), then we need to split b; at most once.
If b; is a leaf-box in region(b), then b; can only be split geometrically away from
the face shared between b; and b (see Figure 2 (a)) or geometrically from a corner
shared by b; and b (see Figure 2 (b)). The depth of splitting is a function of §(b) and
d(b1). As shown in Figure2(c), after the refinement, the impact of b geometrically
weakens away from b in region(b).

Let 6(b,b1) = max([6(b)—4(b1)],0). Let 5(b,b1) = d(b)—d(b1). Let pressure(b, b1)
be the needed split depth of leaf-box b1, due to the imbalance caused by the refine-
ment of leaf-box b. Let y(b,b1) = 1 or 2 if b and b; are edge neighbors or corner
neighbors. Then we have pressure(b, b1) = 6(b, b1) — B(b,b1) — v(b, b1).

The unit bozes of leaf-box b are the smaller box uniformly split in b by depth §(b),
i.e., the side length of this kind boxes is 27%(%) of that of b. There are three kinds of
unit boxes. One is corner-bozes, which locates at the four corners of b. The other is
edge-bozes, which intersect b with only one edge. All other boxes are center-bozes.
Figure 2 shows an example of these unit boxes.

We now consider how the refinement of one leaf-box may influence the splitting
of its neighboring leaf-boxes. Suppose b and b; are two edge neighbors in T'. We have
three cases:d(b) —d(b1) = 1,0, —1. Assume the refinement of b; causes an imbalance
between b and b;. Note that there are 25(®)=2 edge-boxes need be split along one
edge of b. Let ag be the number of smaller boxes introduced in splitting an edge-box
of b into depth k using the template shown at Figure 2(a). Then a can be computed
as following.

Lemma 4. The number of smaller bozes introduced in splitting an edge-box of b into
depth k is ap, = 3 % 2% — 3.

Proof: We have ag = 0. Splitting each small box will introduce four smaller boxes.
Then we have ay = ax_1 + 3 * 2k_1, which implies that ax = 3 * 2k _ 3. 0O

We now consider the splitting of a corner-box of b to eliminate the imbalance
caused by the refinement of boxes in region(b). Let bs be a corner neighbor of b. Let
by be the corner-box of b which shares a vertex v with b3, as shown in Figure 2. Let
sg be the number of boxes introduced in bg if we split it by depth & according to the
pressure of bz. Then we have the following lemma to compute s;.

Lemma 5. The number of smaller bozes introduced in splitting by by depth k from
pressure of by is s = 3 x k.

Proof: Clearly so = 0. And s = sx_1 + 3, which implies that s = 3 * k. O

We now consider the case that two edge neighbors of b cause the corner-box
to be split. W.l.o.g., let b; and b; be the two neighbors of 4. Boxes b, b; and b,
intersect on the vertex v of b. Let by be the corner-box which also intersect on v.
Let k1 = pressure(by,b). Let ko = pressure(bz,b). Let c(k1,k2) be the number
of smaller boxes split in by by pressure k; and pressure k;. We do not consider
the corner-pressure from b3 in ¢(k1, k2) now. Then we have the following lemma to
compute c(kq, k2).

Lemma 6. The number of smaller bozes split in by by pressure k1 and pressure ks,
is c(ky, ko) = 3 % (251 4 2%2) — 3ky — 6. where we assume ki > k.

Proof: Clearly c(k1, k2) = c(k2, k1). If k1 = ka2, then we have ¢(0,0) = 0,c(k, k) =
c(k —1,k— 1)+ 3 (2¥ — 1). Hence, we have c(k, k) = 3 28+ — 3k — 6.

If k1 # ko, then w.l.o.g, we assume k1 > k3. The splitting of the corner unit box
by can be viewed as two steps: (1) split it by depth ks in both directions of b; and b3,
(2) split the much smaller boundary boxes generated in (1) into depth k1 — k along
the common edge of b and b;. Note that there are 2%2 much smaller boundary boxes
needed to be split in step (2). The number of total smaller boxes split is c(k1, k2) =
c(k2, ka) + 2%2 x ag, _x,. Generally, we have c(ki,ks) = 3 % (281 +2%2) — 3ky — 6. D

We now take into account the corner pressure from corner neighbor b3 and the
edge pressures from two edge neighbors b; and b, together, as shown in Figure 2.

Let k; and ks be the edge pressure from two edge neighbors b; and by respectively.
And let k3 be the corner pressure from a corner neighbor b3 of b. And let v be the
common vertex of b, b1, by and bs. Let g(k1, k2, k3) be the number of much smaller
boxes introduced in corner-box by of b due to the refinement of b1, b5 and b3. Then
from the above lemmas, we have the following lemma.

Lemma 7. The number of smaller bozes introduced in by due to the corner pressure
from corner neighbor bz and the edge pressures from two edge neighbors by and bs 1s

g(kl, kz, kg) = C(kl, kz) —|— Sks—k1 ’Lf k3 Z kl, otherwise g(kl, kz, kg) = C(kl, kz)

The proof is omitted here. Let F(T',§) = Uy 5(5)>0pyramid(b)—Us 51)>oregion(d).
Let f(T,6) = |F(T,6)|. In other words, f(T,4) counts the leaf-boxes b that have to
be split due to the imbalance introduced by the refinement of the boxes b; which
are not in the region of b. Then by computing pyramid(b,) for 6(b1) > 0, we can
compute f(T,4) in size(T)? time.

For leaf-box b, let V(b) = {v1, va, v3, va} be the vertex set of b. Let Intr(v;) be
the number of smaller boxes introduced in corner-box bg, which shares v; with b.
Intr(v;) can be computed in constant time according to analysis before. And let
E(b) = {e1,e2,e3,ea} be the edge set of b. Let Intr(e;) be the number of smaller
boxes introduced in edge-boxes which intersect b on e;. Intr(e;) can also be computed
in constant time according to analysis before. Then we have the following theorem
to compute size(T™).

Theorem 8. Suppose T is a balanced quadtree and § is a list of non-negative integers
for its leaf-boxes. Then after balancing and refining T,

size(T") = E E Intr(v;) + Z Intr(e;) + 225(0) | 4+ 4« (T, 6).

beT \w;€V(d) e;€E(b)

Proof: The elements of 7* has three resources. The first contribution is from the
refinement of each box b(there are 228(%) small boxes constructed). The second is from
the re-refinement of edge neighbors in region(b). There are Intro(e;) introduced from
pressure an edge neighbor sharing e; with 4. And there are no overlaps when we do
> Intro(e;). And the last is from the re-refinement of boxes in pyramid(b). There
are at most 4 * pyramid(b) small boxes introduced, because each box in pyramid(b)
is split to 4 smaller boxes. Note that if b; € region(b) then b € region(by). m|

Lemma9.

s1zeqpp (TF) = E Z Imtr(v;) + Z Intr(e;) + 224(%)

beT \w;€V(d) e;€V(b)

approzimates size(T™) very well. If there are € portion of bozes of T' such that §(b) =
0, then sizeqp, (T*) > (1 — 4e/(4 — 3¢€))size(T™).

Proof: sizeqy, (T*) < size(T™). We have size(T*) = sizeqp, (T*) + 4 % f(T,6) <

s1zeqpp (T™) + 4de * size(T) < sizeqpy(T™) + 4¢/(4 — 3€) * size(T™). It implies that

sizeapp (T™) > (1 — 4e/(4 — 3¢€))size(T™). O
Our algorithm for estimating the size of T* runs in linear in the size(T).

3.2 Sampling Boxes from T*

According to the size estimation of mesh T, we can approximately sample a random
leaf-box of T™*. For a leaf-box b of mesh T, let k., ks, ky and k, be the pressure of
b from four edge-neighbor leaf-boxes respectively. Let ke, ksy, knw and kye be the
pressure of b from four corner-neighbor leaf-boxes respectively. Then according to
the lemmas of size estimation, we can compute the number of introduced splitting
boxes in b due to the refinement of the neighbor leaf-boxes. Let ¢i, ¢3, ¢3 and ¢4 be
the number of splitting boxes introduced in four corner-boxes of b. Let c5, cg, c7 and
cg be the number of splitting boxes introduced in edge-boxes of . And let cg be the
number of center-boxes splitting in b. The set of small boxes, which ¢; is counted
from, is called block i. Let (z,y) be the geometric center point of b. Let h be the side
length of b. Let hg = h/25(b), the side length of the split boxes in b according to the
refinement of depth 6(b).

For sampling a leaf-box in T”, we uniformly generate a random positive integer
r, which is not larger than Zle ¢;. W.l.o.g. we assume that E;_:ll g <r< 23:1 cj.
The value r specifies the block 7 at which the random small box will be located. If the
object block 7 is center block, i.e., r > Ele c;. Lett = T—Zle c;. Let e = 26(8) 9,
the number of small split boxes per row at the center block ¢g. Let m,n be the integer
such that m <e—1,n <e—1andt =mx*e+n. In other words, the object small box
will locate the mth row and nth column at the center block of . The coordinates
of left-up corner point of center block of bis (z — h/2+ hg,y + h/2 — hg). Then the
center point of the object small box is (z — h/2+ (n+3/2)ho, y+ h/2— (m+3/2)hg).
And the side length of the sampled small box is hg.

For the cases that the object block is an edge-block or corner-block, we have
similar sampling methods. Detail of the sampling is omitted here.

3.3 Subdomain Partitioning

We first review the basic concepts of graph partitioning. Suppose we have a weighted
graph G = (V, E,w), where V is the set of vertices and E is the set of edges, and
w assigns a positive weight to each vertex and each edge. A k-way partition of G is
a division of its vertices into k subsets Vi, ..., Vi. The set of edges whose endpoints
are in two different subsets are call the edge-separator of the partition. The goal of
graph partitioning is to find a k-way partition such that (1) V; has approximately
equal total weight, and (2) the separator is small. There are several available soft-
ware for graph partition [4, 5]. However, most of these algorithms requires the full
combinatorial description of an input graph.

To partition each subdomain according to its size and distribution in 7%, we do
not have its final combinatorial structure available before the refinement is actually
performed. What do we have is a geometric approximation of its size and element
distribution. Fortunately, the geometric information is sufficient for us to use the
geometric partitioning algorithm of Miller-Teng-Thurston-Vavisis [6, 7].

Recall that the original k-way partition of T' defines a k-way partition (S7, ..., S;)
for TV and a k-way partition (S7,...,S;) for T*. However, these partitions may
not longer be balanced. What we are going to do is to use the estimation of the
element distribution of T%, to implicitly divide each subdomain from (S7,...,S})

into subsubdomains of approximately equal size. The subsubdomain decomposition
1s described explicitly using T and its initial partition S, ..., Sk. The subsubdomains
will be the units for the final partition.

In particularly, we use the size estimation algorithm presented in the previous
section to estimate the size and element distribution of each leaf-box in T'. This
estimation allows us to sample a random leaf-box of T in each leaf-box of T'. By
doing so, we can obtain a sample of random leaf-boxes of S;. We then apply the
geometric mesh partitioning algorithm to this sample to obtain a proper multiway
partition of S} . This multiway partition is described as a partition tree of separating
spheres and hence we can use this set of separating spheres to build a multiway
partition (S; 1,. .., Si ;) of S;. Details of the geometric mesh partitioning algorithm
uses samples can be found in [6].

After the size estimation of each subdomain, we use the sampling technique to
uniform and randomly select leaf-boxes in 7. We can use the sphere based technique
to partition the sampled leaf-boxes. The partition of the sampling leaf-boxes in T
implied a partition of subdomain in T

3.4 Subdomain Redistribution

After we have divided each subdomain of T into a collection of subsubdomains, we
need to redistribute them to proper processors to balance the load and minimize
the communication requirement. We introduce a subdomain graph SG to model the
redistribution of these subsubdomains. This graph is a weighted graph and its node
set contains two parts. The first part has one node for each subsubdomain that
we have generated. These nodes will be referred as subdomain nodes. The weight
of each subdomain node is equal to the estimated size of the subsubdomain in 7.
The second part has one node for each processor. We will call these nodes processor
nodes. We will discuss the weight of processors nodes later.

Two subdomain nodes are connected in SG if they are directly connected by
boundary boxes. The weight of the edge between them is equal to the the number of
shared boundary leaf-boxes times a scaler which is determined by the communication
cost in solving the numerical system in the parallel computer.

Each processor node is connected in SG with all subdomain nodes of its subsub-
domains. The weight on the edge between a processor node and a subdomain node
1s the cost of moving the subsubdomain to any other processor.

We now come back to the issue of the weight of a processor node. Let W be
the total weight of all subsubdomain nodes in SG. Let w = (1/2 + ¢) * W/k for a
predefined positive constant €. The constant ¢ is also a function of the constant «
used in the repartition method of Section 3. For example ¢ = /2. The choice of the
welight of processor nodes is to ensure that in the subsequent partition of SG, no
two processor nodes will be assigned to the same partition. That is why we choose
the weight larger than 0.5W/k. However, if the weight is too large, then it might
disturb the balance of the final partition of some static partitioning algorithm. An
example of a subdomain partition and its subdomain graph is given in Figure 3.

In Figure 3, we use the follow notation. Node p; denotes the processor ¢. Node S;;
denotes the jth subsubdomain of subdomain associated with processor z, generated
by the subdomain partition algorithm.

[htp]

)
Pr u.Er jor Pl1

“"++ - | Procedsor P4 |
HHH

pa|

Fig. 3. constructing subdomain graph and redistribution of subdomain.

Note that the subdomain graph is very small. It has only ©(k) nodes. So the cost
for partitioning subdomain graph will be small as well.

We can use any static graph partitioning algorithm such as those provided in
Chaco and Metis on SG to divide its nodes into k subsets of roughly equal total
weights. It follows from the weight that we assigned to processor nodes, in the k-
way partition, each subset contains exactly one processor node. Hence this partition
generates a redistribution map of subsubdomains among processors in the parallel
computer: a subsubdomain will be moved to the processor whose processor node is
in the same subset in the k-way partition. Therefore the weight on the edge between
a processor node and a subdomain node faithfully includes the communication cost
in the partition.

Figure 3 gives an example of a quadtree T and its redistribution over the four
processors. After the redistribution, each processor then refines and balances its new
subdomain and solves its fraction of the numerical system for the next stage.

4 Remeshing Unstructured Meshes

Our parallel adaptive 2%-tree refinement algorithm can be extended to general un-
structured meshes. In this section, we outline our approach. It follows from a series
of work by Bern-Eppstein-Gilbert [1], Mitchell-Vavasis [9], and Miller-Talmor-Teng-
Walkington [8] that given a well-shaped mesh M in IR?, there is a balanced 2%-tree
Ty that approximates M. In particularly, Tas has the property that there are three
positive constants ¢ > 1, £1 < 1 and B2 > 1 such that (1) For each element e in M,
the number of leaf-boxes of T that intersect e is at most ¢. (2) For each leaf-box b
in Tz, the number of elements of M that intersect b is at most ¢. (3) In addition, if
a leaf-box b of Ty intersects e, then (rarea(e) < area(b) < Frarea(e).

Given a well-shaped mesh M, we can construct Ty in time linear in the size of
M . Moreover, such computation can be optimally speeded-up if we have a multiple
number of processors. We can then use the following strategy to design a parallel
adaptive refinement algorithm for unstructured meshes.

Parallel Refinement Method
Input (1) a well-shaped mesh M that is mapped onto k processor according

to a k-way partition My, ..., My, and (2) a spacing-function f defining the
new spacing at each vertices of M.

In parallel, we generate Ths. We project the k-way partition My, ..., My
to Tas to obtain a k-way partition of Ths. For each vertex v € M, we compute
the ratio r,, that is equal to the ratio of the current spacing at v to f(v).
For each box b € Ty, let 6(b) be the logarithm of the average ratio of all
vertices of M that lies inside b. We then apply our 2%tree load balancing
algorithm to compute a k-way partition of 7" and project it back to M to
obtain a new k-way partition of M. This k-way partition will be balanced for
M*, the refined mesh for M. Then permute M according this new partition
and each processor applies a sequential mesh refinement algorithm to their
own submesh and collaboratively refine the boundary elements among the
submeshes.

In the full version of this paper, we will review some of sequential mesh refinement
algorithms. We can support any sequential mesh coarsening algorithm.

5 Final Remarks

In this paper, we present a dynamic load balancing algorithm for parallel adaptive
mesh refinement. The main objective of this research is to develop effective algo-
rithms that are simple enough for implementation. We focus on reducing dynamic
load balancing to static partitioning in a black-box fashion and on reducing parallel
mesh refinement to a collection of traditional sequential mesh refinements. We show
how the estimation of the size and element distribution of a refined mesh can be
used for this objective. There are several directions that we can extend and improve
the method presented in this paper.

In our abstract model for adaptive mesh refinement, we assume that each leaf-
box will be uniformly split in 7. In practice, we may need to split each leaf-box
according to a given pattern.

The scheme developed in this paper for unstructured mesh refinement first builds
a balanced 2%-tree to approximate the unstructured mesh. This could be cumber-
some. It is desirable to have a more direct method to estimate the size and element
distribution of unstructured meshes other than 2%-tree.

In our current model for adaptive refinement, we assume that the mesh will
be made finer at every region. For certain applications, some regions will be “de-
refined”, i.e., will be coarsened. We need to extend our adaptive refinement scheme
to handle mixed adaptive refinement and coarsening.

We are in the process of implementing ideas and methods developed in this paper.
Experimental results will be presented in subsequent writings. The full version of
the paper is available at request.

References

1. M. Bern, D. Eppstein and J. R. Gilbert. Provably good mesh generation. In 81st
Annual Symposium on Foundations of Computer Science, IEEE, 231-241, 1990.

10.

11.

12.

13.

. L. Paul Chew, Nikos Chrisochoides, Florian Sukup. Parallel constrained delaunay
meshing. Trends in Unstructured Mesh Generation edited by S.A.Canann and S.Saigal,
pp89-96, 1997.

J. R. Gilbert, G. L. Miller, and S.-H. Teng. Geometric mesh partitioning: Implemen-
tation and experiments. SIAM J. Scientific Computing, to appear, 1998.

B. Hendrickson and R. Leland. The Chaco user’s guide, Version 1.0. Technical Report
SAND93-2339, Sandia National Laboratories, Albuquerque, NM, 1993.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Scientific Computing to appear, 1997.

G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Automatic mesh partition-
ing. In A. George, J. Gilbert, and J. Liu, editors, Sparse Matriz Computations: Graph
Theory Issues and Algorithms, IMA Volumes in Mathematics and its Applications.
Springer-Verlag, pp57-84, 1993.

G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Geometric separators for
finite element meshes. SIAM J. Scientific Computing, to appear, 1998.

G. L. Miller, D. Talmor, S.-H. Teng, and N. Walkington. A Delaunay based numerical
method for three dimensions: generation, formulation, and partition. In Proc. 27th
Annu. ACM Sympos. Theory Comput., pages 683-692, 1995.

S. A. Mitchell and S. A. Vavasis. Quality mesh generation in three dimensions. Proc.
ACM Symposium on Computational Geometry, pp 212-221, 1992.

T.Okusanya, J.Peraire. 3D parallel unstructured mesh generation. Trends in Unstruc-
tured Mesh Generation edited by S.A.Canann and S.Saigal, pp109-116, 1997.

M. L.Staten and S. A. Canann. Post refinement element shape improvement for quadri-
lateral meshes. Trends in Unstructured Mesh Generation edited by S.A.Canann and
S.Saigal, pp9-16, 1997.

G. Strang and G. J. Fix. An Analysis of the Finite Element Method, Prentice-Hall,
1973.

S.-H. Teng. A geometric approach to parallel hierarchical and adaptive computing
on unstructured meshes. In Fifth STAM Conference on Applied Linear Algebra, pages
51-57, June 1994.

This article was processed using the BTEX macro package with LLNCS style

