
Iterative Mining for Rules with Constrained Antecedents

Zheng Sun∗ Philip S. Yu† Xiang-Yang Li‡

Abstract

In this study we discuss the problem of mining asso-
ciation rules with constrained antecedents in a large
database of sales transactions or clickstream records.
For a user-defined set A of items, this problem asks for
computing all association rules (satisfying suitable sup-
port and confidence thresholds) induced by A, where
an association rule is said to be induced by A if its
antecedent (i.e., LHS) is a subset of A while the conse-
quent (i.e., RHS) contains no items in A. In particular,
we are interested in a multi-step scenario where in each
step A is incremented by one item and all association
rules induced by the updated A are to be computed.
We propose an efficient iterative algorithm that can ex-
ploit mining information gained in previous steps to ef-
ficiently answer subsequent queries.

1 Introduction

The problem of discovering association rules is to com-
pute, given a set of items I = {I1, I2, · · · , In} and a set
T of transactions each of which is a subset of I, all asso-
ciation rules in the form of X ⇒ Y , where X, Y ⊂ I and
X∩Y = ∅. Here X is called the antecedent (or the LHS)
of the rule, while Y is the consequent (or the RHS). The
merit of the rule r : X ⇒ Y may be measured by its
support Supp(r), the fraction of transactions containing
both X and Y out of all transactions in T , and confi-
dence Conf(r), the fraction of transactions containing Y
that also contain X. Usually, we are interested in those
good rules that satisfy some user-defined support and
confidence thresholds, Suppmin and Confmin.

Traditionally, association rule discovery is con-
ducted in an offline manner, and the rules being sought
are general ones without any constraint on either the
antecedent or the consequent part. In this paper we
study the problem of iterative mining with constrained
antecedents. Each query of our problem is specified with
Suppmin, Confmin, and a set A ⊂ I of antecedent items
selected by the user. Let C = I \ A be the set of con-

∗Hong Kong Baptist University, sunz@comp.hkbu.edu.hk. The
author was supported in part by Grant FRG/03-04/II-21.

†IBM T.J. Watson Research Center, psyu@us.ibm.com.
‡Illinois Institute of Technology, xli@cs.iit.edu. The author

was supported in part by NSF under Grant CCR-0311174.

sequent items. The objective is to find association rules
induced by A, where a rule r : X ⇒ Y is said to be
induced by A if X ⊆ A and Y ⊆ C. In particular,
we are interested in a multi-step scenario where in each
step A is incremented by one item and all association
rules induced by the updated A are to be computed.
Therefore, it is critical to efficiently handle the previous
mining results as new antecedent items are introduced.
To facilitate efficient computation of association rules in
the query phase, we use an adjacency lattice (see [2]) to
store frequent itemsets with respect to a minimum sup-
port picked such that the entire adjacency lattice can
be stored in the main memory.

Several different forms of constrained mining have
been discussed in previous literature. Srikant et al.
[8] considered the problem of computing association
rules under constraints that are boolean expressions
over the presence or absence of items. Bayardo et al.
[4] described an algorithm that exploits user-defined
constraints on support, confidence, and predicative
advantage. Lakshmanan et al. [6] studied a rich class of
anti-monotone and succinct constraints for itemsets and
provided mining algorithms that achieve a significant
degree of pruning for these constraints. Pei et al. [7]
studied several types of constraints that are difficult to
be handled using traditional techniques. Cong and Liu
[5] provided an efficient technique to utilize previous
mining information to compute frequent itemsets when
the minimum support constraint is relaxed.

Aggarwal and Yu [2] proposed an online mining
technique that can efficiently answer queries with differ-
ent minimum support constraints using a pre-computed
adjacency lattice of itemsets. Later Aggarwal et al. [1]
extended this technique to mining profile association
rules with quantitative attributes. Thomas et al. [9]
studied interactive rule mining with constraint relax-
ations. In a sense, our iterative mining method comple-
ments the existing works by providing a more complete
mechanism for iterative mining, with constraints defined
on support, confidence, and antecedent/consequent.

2 Preliminaries

Let A = {Ii1 , Ii2 , · · · , Iik
} be a set of items. For a

given A, an itemset X is called an antecedent itemset if

X ⊆ A; such an itemset can only serve as the antecedent
of rules induced by A. We use X to denote the set of
all frequent antecedent itemsets with supports no less
than Suppmin. An itemset Z is called a rule itemset if
Z \ A 6= ∅; such an itemset uniquely corresponds to a
rule Z ∩ A ⇒ Z \ A (without considering any support
and confidence thresholds) induced by A. We call Z∩A
the associated antecedent itemset of Z.

In this paper, we assume that the goal is to compute
all rule itemsets corresponding to good rules (including
those with null antecedents). With minor modifications,
our algorithm can also be used to compute rules with
some other properties.

We define the following lexicographic order O(·)
on items: i) O(Ij) < O(Im) for any Ij ∈ A and
Im ∈ C; ii) O(Iij) < O(Iim) if Iij , Iim ∈ A and j < m;
iii) O(Ij) < O(Im) if Ij , Im ∈ C and j < m. We say
that an item Ij is ordered before (after, respectively) Ik

if O(Ij) is less than (more than, respectively) O(Ik).
For any itemset Z and any Im ∈ C, if Z ′ = Z∪{Im}

is a good rule itemset and O(Im) > O(Ij) for all Ij ∈ Z,
we say that Z ′ is a consequent extension of Z. We use
Econ(Z) to denote the set of all consequent extensions
of Z. We define antecedent extensions Eant(Z) analo-
gously. In both cases, we say that Im is the generating
item of Z ′ and denote it by Igen(Z ′). For any set Z of
itemsets, we use Igen(Z) to denote the set of generating
items of all Z ∈ Z.

For the purpose of comparison, we first describe an
Apriori-like offline algorithm, FindRulesOffline (see Al-
gorithm 1), that computes all rule itemsets induced by
A assuming that the entire A is given at once. This al-
gorithm recursively calls Procedure FindRulesForItemset
(see Procedure 1), which computes for a given itemset
Z all rules that are extensions of Z.

Algorithm 1 FindRulesOffline(A)
1: R←∅; Z←∅.
2: Icc(Z) ← C; Ica(Z) ← A.

3: FindRulesForItemset(Z).

Procedure 1 FindRulesForItemset(Z)
1: for all It ∈ Ica(Z) do
2: if Supp(Z ∪ {It}) ≥ Suppmin and O(It) > O(Im) for all

Im ∈ Z then

3: Ica(Z ∪ {It})←Igen(Eant(Z)); Icc(Z ∪ {It})←C.
4: FindRulesForItemset(Z ∪ {It}).
5: for all It ∈ Icc(Z) do

6: if Supp(Z ∪ {It}) ≥ max{Suppmin,Confmin · Supp(X)}
and O(It) > O(Im) for all Im ∈ Z then

7: add itemset Z ∪ {It} into R.

8: Ica(Z ∪ {It})←∅; Icc(Z ∪ {It})←Igen(Econ(Z)).
9: FindRulesForItemset(Z ∪ {It}).

Similar to Apriori Algorithm, for any (antecedent or
rule) itemset Z and any Z ′ ∈ Eant(Z) ∪ Econ(Z), we let

the candidate consequent extension list Icc(Z ′) of Z ′ be
the list Igen(Econ(Z)) of all generating items of Econ(Z).
We construct the list Ica(Z ′) of candidate antecedent
extensions in a similar manner, with the exception that
for any rule itemset Z ′, Ica(Z ′) is always empty.

Next, we suppose that antecedent items are added
into A one at a time. Let Ak = {Ii1 , Ii2 , · · · , Iik

} be
the set of antecedent items in Step k, and let Rk be the
list of all good rules itemsets induced by Ak. In Step
(k+1) a new antecedent item Id is added, and therefore
Ak+1 = Ak ∪ {Id}.

We first examine each rule itemset X ∪ Y (corre-
sponding to rule X ⇒ Y) in Rk after Id becomes an
antecedent item. There are three cases:
Type A. Id 6∈ Y : X ∪Y is intact, as it corresponds to
the same rule with support and confidence unchanged.
Type B. {Id} ⊂ Y : X ∪ Y now corresponds to a
different rule X ∪ {Id} ⇒ Y \ {Id}, which has the
same support but most likely a larger confidence as
compared to X ⇒ Y . Therefore, X ∪ Y is still a good
rule itemset.
Type C. {Id} = Y : X ∪ Y is no longer a good rule
itemset as now the corresponding rule X ∪{Id} ⇒ ∅ is
no longer meaningful.

To construct Rk+1 from Rk, we first need to delete
all Type C rule itemsets from Rk. Further, we need to
compute all rules in the form of X ∪ {Id} ⇒ Y , where
X ⊆ Ak and Y ∩ Ak+1 = ∅. If the corresponding rule
itemset X∪Y ∪{Id} is not inRk (i.e., rule X ⇒ Y ∪{Id}
is not a good rule discovered in Step k), it shall be added
into Rk. We call these rule itemsets Type D itemsets.
The resulting set of rule itemsets is Rk+1.

To better utilize mining information gained in pre-
vious steps, we maintain a local rule itemset tree Trule,
which is a lexicographic tree (according to the lexico-
graphic order defined in the previous section) and con-
tains all frequent antecedent itemsets as well as all good
rule itemsets. Naturally, there is a one-to-one mapping
between nodes in Trule and nodes in Litemset. There
are two types of nodes in Trule, antecedent nodes and
rule nodes, corresponding to antecedent itemsets and
rule itemsets respectively. For any Z ∈ Trule, we use
Trule(Z) to denote the subtree of Trule rooted at Z.

3 Terminologies and Data Structures

Support- and confidence-constrained an-
tecedent itemsets Let Xk be the set of frequent
antecedent itemsets with respect to Ak. Any X ∈
Xk is said to be support-constrained if Confmin ·
Supp(X) ≤ Suppmin; otherwise, it is said to be
confidence-constrained. It is easy to see that, if X is
support-constrained, there will be no Type D rule item-
set in Rk+1 that is a descendent of X. This is because

Figure 1: Active antecedent itemsets with respect to
item F.

in Step k a rule itemset Z associated with X can only
be disqualified (from being a good rule) due to low sup-
port and hence it will remain a “bad rule” even after
the introduction of a new antecedent item Id.

Active antecedent extensions A confidence-
constrained X ∈ Xk is said to be active with respect
to a consequent item Im if X ∪ {Im} is frequent. For
each Im, we maintain an active antecedent extension list
Xact(Im) containing all X ∪ {Im} such that X is active
with respect to Im.

As a running example throughout the paper, we as-
sume that we have I = {A, B, · · · , M, N} (in this exact
lexicographic order). After two steps, items A and B
are specified as antecedent items, and the next item to
be specified as an antecedent item is F (i.e., Id = F).
In the following discussion as well as in the figures, we
use {A1A2 · · · As|C1C2 · · · Ct} to represent an itemset cor-
responding to rule {A1, A2, · · · , As} ⇒ {C1, C2, · · · , Ct}.
We use “-” to denote that the antecedent (or conse-
quent) part of an itemset is empty. Figure 1 shows
that for consequent item F, there are three active an-
tecedent extensions: itemsets {-|F} and {A|F} are good
rule itemsets, while itemset {B|F} does not have enough
confidence to be a good rule itemset (but it still has a
support no less than Suppmin).

It is important to note that there is no additional
computation required to acquire such information, as
for each frequent antecedent itemset X and each con-
sequent item Im, we need to check Supp(X ∪ {Im}) in
order to determine whether X ⇒ {Im} is a good rule.

Active rule extensions A good rule itemset Z as-
sociated with a confidence-constrained antecedent item-
set X is said to be active with respect to a consequent
item Im if it is judged that the Z ′ = Z ∪ {Im} is fre-
quent (with respect to Suppmin) and yet is not a good
rule itemset. We call the list containing all such Z ′ the
active rule extension list of Z, and denote it by Eact(Z).
For example, rule itemset {A|CFH} has two active rule
extensions, {A|CFHI} and {A|CFHJ}, as shown in Figure
2. If Z is an antecedent itemset or a rule itemset asso-
ciated with a support-constrained antecedent, its active
rule extension list is defined to be empty.

We shall emphasize here that the Eact(Z) may not
contain all Z ∪ {Im} that are frequent but not good.

Figure 2: Recursive active rule extensions for rule
itemset {A|CF}.

For example, since itemset {A|CFK} is not a good rule
itemset (see Figure 2), in previous steps we would
not have attempted to extend {A|CFH} (or any of the
descendant rule itemsets of {A|CF} other than {A|CFK}
itself) by item K, as K is even not in the candidate
consequent extension list of {A|CFH}. Therefore, we have
no prior information regarding the support of itemset
{A|CFHK}; it may or may not be a frequent itemset.

However, it is easy to see that, if Z is a good rule
item and yet Z ∪{Im} is a frequent but not a good rule
itemset, either Z is active with respect to Im, or there
exists an ancestor Z ′′ of Z such that Z ′′ is active with
respect to Im. This property can be used to identify all
potential Type D rule itemsets in the event of an Im ∈ Z
switching from a consequent item to an antecedent item.
In that case, the confidence of any Z ′ such that Z ⊂ Z ′

and Z ′\Z ⊆ Ck will increase due to a reduced antecedent
support, potentially making it a good rule itemset. The
following rule itemsets should be examined to see if they
become Type D rule itemsets:
• each Z ′ ∈ Eact(Z);
• Z ′ ∪ {Im} for each good rule itemset Z ′ in Rk in

the form of Z ∪ {Ij1 , Ij2 , · · · , Ijt
}, where j1 < j2 <

· · · < jt < m.
To facilitate finding all potential Type D rule item-

sets in an efficient manner, we recursively merge the
active rule extension lists into a single list Eact. For
any good rule itemset Z, we define the recursive ac-
tive rule extension list Er

act(Z) of Z as the follow-
ing: Er

act(Z) = Eact(Z) ∪ (
⋃t

k=1 Er
act(Z ∪ {Ijk

})). Here
Z ∪ {Ij1}, Z ∪ {Ij2}, · · · , Z ∪ {Ijt

} are the frequent ex-
tensions of Z such that j1 < j2 < · · · < jt. Therefore,
Er

act(Z) contains all active rule extensions of Z as well
as those of rule itemsets extending Z (by one or multi-
ple consequent items). As shown in Figure 2, for rule
itemset {A|CF}, its recursive active rule extension list
contains {A|CFK}, {A|CFGHI}, {A|CFHI}, and {A|CFHJ}.

We define Eact to be Er
act(∅), which contains all ac-

tive rule extensions. By definition, for any (antecedent
or rule itemset) Z, all recursive active rule extensions of

Z are contiguous in the list. Therefore, we just need to
keep track of the start and end points of Er

act(Z) inside
Eact.

4 Iterative Mining: The Algorithm

In this section, we describe an iterative mining algo-
rithm that will update Trule every time a new an-
tecedent item is specified. The goal is to manipulate
Trule in such an efficient manner that the total com-
putation time of iterative mining is close to the time
required if all items in A are known at once.

4.1 The Main Loop In Algorithm 2, we give the
description of the main loop of our algorithm.

Algorithm 2 FindRulesOnline(Id)
1: Ak+1←Ak ∪ {Id}; Rk+1←Rk; Xk+1←Xk.
2: for all X′ ∈ Xact(Id) do

3: Xk+1←Xk+1 ∪ {X′}.
4: X←X′ \ {Id}; Icc(X′)←Igen(Econ(X) ∪ Eact(X)).

5: if X′ was already a good rule itemset in Step k then
6: change X′ to an antecedent itemset.
7: ComputeSubTree(X′, Id).

8: else
9: Ica(X′)←∅.

10: FindRulesForItemset(X′).

Notice that, in Step (k + 1) we only need to search
for good rule itemsets associated with an antecedent
X ′ = X ∪ {Id} for each X ∈ Xk. If X is supported-
constrained, there will be no Type D rule itemsets
underneath X, meaning that no new good rule itemsets
associated with X ′ will be found. Therefore, we can skip
the subtree Trule(X ′) of Trule rooted at X ′ entirely.

Moreover, for a confidence-constrained X, we need
to search for good rule itemsets associated with X ′ =
X ∪ {Id} only if Supp(X ′) ≥ Suppmin, meaning that X
was active with respect to Id in the previous step, when
Id was a consequent item. Therefore, we just need to
go through Xact(Id), and add each X ′ ∈ Xact(Id) into
Xk+1, as indicated in Line 3 of Algorithm 2. The list
Xact(Id) can subsequently be disposed, as it is no longer
useful in later steps.

Among these new antecedent itemsets, some were
not good rule itemsets in the previous step. For each
of these antecedent itemsets X ′, to build the subtree
Trule(X ′) rooted at X ′, we can only use Procedure 1
(as indicated in Line 10 of Algorithm 2) as there is
no prior information to utilize. The remaining new
antecedent itemsets are the Type C ones; they were
converted from good rule itemsets found in the previous
step. For each such X ′, it would be wasteful to compute
the subtree Trule(X ′) from scratch in case X ′ already
has some descendants in Trule, as these itemsets shall be
retained in this step; they are the Type B ones. Instead,

we use ComputeSubTree (see Procedure 2) to compute
Trule(X ′), as indicated in Line 7 of Algorithm 2.

Procedure 2 ComputeSubTree(Z, Id)
1: ExpandPartialSubTree(Z, Er

act(Z), ∅).
2: if Z is an antecedent node then
3: imin←0.

4: else

5: Im ← Igen(Z); imin←m.
6: for all It ∈ Ck+1 such that imin < t < d do

7: if Supp(Z ∪ {It}) ≥ max{Suppmin,Confmin · Supp(X)}
then

8: if Z ∪ {It} was already a good rule itemset in Step k

then

9: change the parent of Z ∪ {It} from Z \ {Id} ∪ {It} to
Z.

10: ComputeSubTree(Z ∪ {It}, Id).
11: else

12: add Z ∪ {It} as a new child of Z.

13: Icc(Z ∪ {It})←Igen(Econ(Z)); Ica(Z ∪ {It})←∅.
14: FindRulesForItemset(Z ∪ {It}).

To illustrate how Procedure 2 works, we use itemset
X ′ = {AF|-} (which was {A|F} in the previous step)
as an example. The new antecedent item F divides
all consequent items into two groups; Group 1 contains
those ordered before F in the previous step (i.e., C, D,
and E), and Group 2 contains those ordered after F (i.e.,
G, H, · · ·, N). In turn, the subtree Trule(X ′) is divided into
two partial trees: the left partial tree, which contains
all the immediate children (as well as their descendants)
that extend {AF|-} by items in Group 1, and the right
partial tree, which contains all immediate children (as
well as their descendants) that extend {AF|-} by items
in Group 2. In the next two subsections, we show how
to compute the two partial trees.

4.2 Reconstruct the Left Partial Tree In the
previous step, we would not have tried to extend {A|F}
by any of C, D and E, because they were ordered before
F. In this step, to compute the left partial tree of {AF|-},
we first need to check whether {AF|C}, {AF|D}, and
{AF|E} are good rule itemsets; if they are, we need to
further compute the subtrees rooted at those itemsets.

We may find Type D children of {AF|-}, e.g.,
{AF|E}. Before F becomes an antecedent item, {AF|E}
was {A|EF} (see Figure 3), who did not satisfy the
minimum confidence constraint. We may also find Type
B children of {AF|-}, e.g., {AF|C}, which was {A|CF} in
the previous step. However, at that time {A|CF} was a
child of {A|C}. Now itemset {A|CF} becomes {AF|C} and
thus should be changed to become a child of {AF|-} to
maintain the lexicographic order, as indicated in Line 9
of Procedure 2.

For any Type D child Z ′ of {AF|-} found in the
left partial tree, we use Procedure 1 (see Line 14 of
Procedure 2) to compute the subtree rooted at Z ′. If Z ′

Figure 3: Recursively reconstructing the left partial tree
for {AF|-}. The shaded rule nodes are the ones to be
moved.

is a Type B one, however, we recursively call Procedure
2, as indicated in Line 10 of Procedure 2, so that we can
“reuse” the descendants of Z ′ already in Trule.

4.3 Expand the Right Partial Tree To compute
the right partial tree for a Type B or C itemset
Z, Procedure 2 invokes, as indicated in Line 1, the
procedure ExpandPartialSubTree (see Procedure 3). We
now describe how Procedure 3 works by using the
example of Z = {AF|C}. Our goal is to give a chance
to all the rule itemsets underneath Z that have been
disqualified as good rule itemsets due to low confidence,
while avoiding revisiting those ones who would never
become good rule itemsets due to low support.

Procedure 3 ExpandPartialSubTree(Z, Lact)
1: if Icc(Z) = ∅ then
2: if Lact = ∅ then
3: return.

4: Z′← the first active rule extension in Lact.
5: Z′′← the parent node of Z′.
6: if Z′′ 6= Z then

7: Z←Z′′; Icc(Z)←∅.
8: L′act←∅.
9: remove from Lact all active rule extensions that extend Z

and add them into L′act.
10: Lcan←Igen(L′act) ∪ Icc(Z); Lnew←∅.
11: for all It ∈ Lcan such that t > d do

12: if Conf(Z ∪ {It}) ≥ Confmin (after Id becomes an
antecedent item) then

13: Econ(Z)←Econ(Z) ∪ {Z ∪ {It}}.
14: Lnew←Lnew ∪ {Z ∪ {It}}.
15: for all Z′ ∈ Econ(Z) ordered by generating item do

16: if Z′ ∈ Lnew then
17: Icc(Z′)←Igen(Econ(Z)); Ica(Z′)←∅.
18: FindRulesForItemset(Z′).
19: else
20: Icc(Z′)←Igen(Lnew).
21: ExpandPartialSubTree(Z′, Lact).

In the previous step, itemset Z (then denoted by
{A|CF}) was already in Trule and thus we have computed

the subtree of good rule itemsets underneath Z, as
shown in Figure 2. Further, we have identified four
active rule extensions in Er

act(Z), namely, {A|CFK},
{A|CFGHI}, and {A|CFHI}, {A|CFHJ}. Now F becomes an
antecedent item, and thus each of these rule itemsets
shall have an increased confidence. Therefore, we shall
check each of them to see if it now satisfies the minimum
confidence constraint. If none of them does, there will
be no Type D itemsets underneath Z and thus the
subtree Trule(Z) remains the same.

Let us assume for now that the confidence of
{AF|CK} (originally {A|CFK}) grows enough to make it a
good rule itemset. In this case, not only should we add
{AF|CK} into Trule, but we should also examine all the
“elder siblings” of {AF|CK} (the siblings with generating
items ordered before item K, the generating item of
{AF|CK}), i.e., {AF|CG}, {AF|CH}, {AF|CI}, and {AF|CJ},
to see if we can extend any of them by item K to get a
new good rule itemset. Recall that, previously, it was
exactly because {A|CFK} was not a good rule itemset
that K was not in the list of candidate consequent
extensions of {A|CFH} (or any of the other children of
{A|CF}).

In general, for any Type B itemset Z ′ in the subtree
Trule(Z), we should try to extend Z ′ if either Z ′ itself
has active rule extension(s), or Z ′ has new “younger
siblings.” For example, if Z ′ = {AF|CH}, we should try
to extend Z ′ by: i)items I and J, as previously {A|CFH}
was active with respect to I and J; and ii) item K, as it is
the generating item of {AF|CK}, a younger sibling of Z ′.
The trick is, however, that we should avoid revisiting
each Z ′ ∈ Trule(Z) to see if it is “expandable,” which
could be costly if Trule(Z) contains a large number of
nodes (in case we use relatively relaxed thresholds for
support and confidence).

In Procedure 3, we add all immediate children of
Z in a list Lnew (see Line 14). We use the generating
items of all itemsets in Lnew as the candidate consequent
extensions Icc(Z ′) for each existing child Z ′ of Z, and
recursively call Procedure 3 to revisit Z ′ so that we
can expand the subtree rooted at Z ′. Therefore, if a
revisited Z ′ is found to have no candidate consequent
extensions, we do not need to revisit any of its existing
children. We can skip Trule(Z ′) entirely if Z ′ does
not have any recursive active rule extensions (i.e.,
Er

act(Z
′) = ∅); or, we go directly to the first recursive

active rule extension of Z ′ (see Lines 1-7 of Procedure
3).

For example, supposing instead that {AF|CK} is
still not a good rule itemset, {AF|CG} does not have
any candidate consequent extensions. In this case, we
shall revisit none of the existing children of {AF|CG},
namely, {AF|CGI}, {AF|CGI}, and {AF|CGJ}; we simply

need to move directly to the next active rule extension,
{AF|CGHI}, to see whether now becomes a good rule
itemset.

Again, for any Type D itemset Z ′ found, we invoke
Procedure 1 to compute the subtree Trule(Z ′), as indi-
cated in Line 18 of Procedure 3.

5 Experimental Results and Conclusion

To conduct experiments, we generated using the method
first proposed by Agrawal and Srikant [3] a synthetic
data set T20.I8.D100K containing 100,000 transactions.
We generated using a minimum support of 0.15% an
adjacency lattice with 968,820 nodes. We performed
experiments using a number of combinations of support
and confidence thresholds. For each combination, we
ran 30 different test cases, each with a distinct set A
of 300 antecedent items (out of a total of 1000 items)
randomly picked according to their frequencies, and
reported the running time and other statistics averaged
over the 30 test cases.

For each test case, the antecedent items were added
one by one, and a query was performed using Algorithm
2 each time a new antecedent item was added. The
reported running time is the total time for finishing
all 300 queries. We also recorded the number of
rules found after all 300 items were added into A.
As shown in Table 1, answering a query is almost
instantaneous. This demonstrates the advantage of pre-
computing an adjacency lattice for mining association
rules with constrained antecedents.

Table 1: Statistics of running time (in milliseconds) and
number of association rules found. Each entry of “x/y”
means that the average time for all 300 queries is x mil-
liseconds and the average number of discovered rules is y.

c = 50% c = 70% c = 90%

s = 0.4% 441 / 18,721 450 / 15,440 423 / 5,203

s = 0.6% 198 / 1,267 197 / 1,005 198 / 495

s = 0.8% 135 / 200 135 / 151 135 / 66

s = 1.0 % 110 / 10 110 / 6 110 / 1

Next, we compare Algorithm 2 and Algorithm 1
with experiments on data set T20.I8.D100K. Figure 4
shows the “competitive ratio” of Algorithm 2, which is
defined to be the ratio of its total running time (for
answering all 300 queries) to that of Algorithm 1, for
each combination of support and confidence thresholds.
Here for Algorithm 1 the running time is defined to
be the time for answering a single query with all 300
antecedent items known in advance. It shows that the
performance of our online algorithm is very close to that
of the offline algorithm.

In summary, by carefully maintaining a tree of
rules as well as some auxiliary data structures, our
algorithm performs nearly as well as the offline algo-

50

60

70

80

90

0.4
0.5

0.6
0.7

0.8
0.9

1

1

1.2

1.4

1.6

1.8

2

Min Conf (%)

Competitive Ratio

Min Supp (%)

Figure 4: Competitive ratio.

rithm, as shown by the above experimental results.
For future works, we plan to study how this algo-
rithm can be effectively combined with other iterative
mining algorithms to answer queries with both tight-
ened/relaxed support and confidence constraints, as
well as increased/decreased antecedent set. Further, we
are interested in studying an alternative approach that
does not require the pre-computation of an adjacency
lattice.

References

[1] C. C. Aggarwal, Z. Sun, and P. S. Yu, Fast algo-
rithms for online generation of profile association rules,
TKDE, 14 (2002), pp. 1017–1028.

[2] C. C. Aggarwal and P. S. Yu, A new approach to online
generation of association rules, TKDE, 13 (2001),
pp. 527–540.

[3] R. Agrawal and R. Srikant, Fast algorithms for mining
association rules, VLDB’94, pp. 487–499.

[4] R. Bayardo, R. A. Jr., and D. Gunopulos, Constraint-
based rule mining in large, dense databases, ICDE’99,
pp. 188–197.

[5] G. Cong and B. Liu, Speed-up iterative frequent itemset
mining with constraint changes, ICDE’02, pp. 107–114.

[6] L. V. S. Lakshmanan, R. T. Ng, J. Han, and A. Pang,
Optimization of constrained frequent set queries with
2-variable constraints, SIGMOD’99, pp. 157–168.

[7] J. Pei, J. Han, and L. V. S. Lakshmanan, Mining fre-
quent item sets with convertible constraints, ICDE’01,
pp. 433–442.

[8] R. Srikant, Q. Vu, and R. Agrawal, Mining association
rules with item constraints, KDD’97, pp. 67–73.

[9] S. Thomas and S. Chakravarthy, Incremental mining
of constrained associations, HiPC’00, pp. 547–558.

