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Abstract—Crowd counting, which count or accurately estimate
the number of human beings within a region, is critical in
many applications, such as guided tour and crowd control. A
crowd counting solution should be scalable and be minimally
intrusive (i.e., device-free) to users. Image-based solutions are
device-free, but cannot work well in a dim or dark environment.
Non-image based solutions usually require every human being
carrying device, and are inaccurate and unreliable in practice.
In this paper, we present FCC, a device-Free Crowd Counting
approach based on Channel State Information (CSI). Our design
is motivated by our observation that CSI is highly sensitive to
environment variation, like a frog eye. We theoretically discuss
the relationship between the number of moving people and the
variation of wireless channel state. A major challenge in our
design of FCC is to find a stable monotonic function to charac-
terize the relationship between the crowd number and various
features of CSI. To this end, we propose a metric, the Percentage
of nonzero Elements (PEM), in the dilated CSI Matrix. The
monotonic relationship can be explicitly formulated by the Grey
Verhulst Model, which is used for crowd counting without a
labor-intensive site survey. We implement FCC using off-the-
shelf IEEE 802.11n devices and evaluate its performance via
extensive experiments in typical real-world scenarios. Our results
demonstrate that FCC outperforms the state-of-art approaches
with much better accuracy, scalability and reliability.

I. INTRODUCTION

Robust crowd counting is an important yet challenging task.
It is of great interest in a number of potential applications,
such as guided tour, and crowd control, etc. Crowd behaviors,
however, are often unpredictable. Thus, crowd counting (or
estimation) may face various challenges, including, but are not
limited to, reliable observation collection, object occlusions,
and real-time processing requirement. Traditional approaches
that tackle these issues are mainly classified into two cat-
egories: video (or image) based recognition and non-image
based localization.

Video (or image) based recognition has been widely de-
ployed in many public places [1]. However, these methods
have inherent drawbacks. First, cameras can only work in a
line-of-sight pattern, leading many blind areas to the moni-
toring. Second, the environmental contribution of smoke or
lacking of light will severely degrade the visual quality of
cameras. Third, objects overlapping further deteriorates the
performance. Furthermore, the use of cameras poses privacy
concerns.

Non-image based solutions typically leverage radio devices
to locate objects, such as RFID tags, mobile phones, sensor
nodes, etc. These device-based approaches [2], [3], [4], [5],

[6], [7], [8] require people to carry certain devices for surveil-
lance, which significantly constrains the usage scope. For a
public area with mass people, distributing the device to each
person is impractical and costly, and may not be doable under
emergent events.

Some device-free approaches have been proposed recently.
Most approaches employ RSS fingerprints for localization
[9], [10], [11], [12], which can be easily obtained for most
off-the-shelf wireless devices. However, site survey is time-
consuming, labor-intensive, and easily affected by environ-
mental dynamics. To avoid site survey, the model based
localization approaches use RSS as an indication of signal
propagating distance to locate objects. Unfortunately, attenu-
ation models perform poorly due to multipath propagation in
complex indoor environments. One of the main trends recently
is to explore the fine-grained physical layer information to
locate or count people in multipath environments [13], [14],
which are usually based on USRP.

Channel State Information (CSI) from OFDM-based system
has new potential to overcome above drawbacks. Different
from RSS, CSI, a fine-grained value derived from the physical
layer, refers to known channel properties of a communication
link. This information describes how a signal propagates from
the transmitter to the receiver and represents the combined
effect of, for example, scattering, fading, and power decay
with distance. It consists of the attenuation and phase shift
experienced by each spatial stream on every subcarrier in
the frequency domain. Therefore, CSI is more sensitive to
environmental variance owing to moving object. In practice,
we can acquire these information quickly and easily from some
off-the-shelf 802.11n devices such like Intel 5300 NIC.

In this paper, we propose FCC, a device-Free Crowd
Counting approach based on CSI measurements. The rationale
behind FCC is that crowd motions can be accurately inferred
from the change of CSI readings. The contributions of this
work are summarized as follows.
• We theoretically study and experimentally validate the

relationship between the number of moving people and
the variation of wireless channel. The results suggest that
CSI is sensitive to the environment influences, and there is
a monotonic relationship between CSI variations and the
number of moving people. This lays a solid foundation
for crowd counting.

• We propose a metric PEM, the Percentage of non-zero
Element, in the dilated CSI Matrix, to indicate the crowd
size. PEM can adaptive reflect the changes of CSI in a
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short period of time. The value of PEM is convex and
increases with an increasing number of active people,
and it reaches the saturated state when crowd density
reached a certain threshold. We apply the Grey Verhulst
model to directly estimate the number of people from
PEM measurements without fingerprinting.

• To count/estimate the number of people in a large mon-
itoring area, we deploy multiple FCC devices, organized
in a grid array. The challenge here is that as CSI has
a high sensitivity to environment, people moving in one
grid will cause CSI fluctuations in other adjacent grids.
To address this challenge, we propose an interference
cancelation method to adaptively adjust the sensing range
of each receiver for improving the counting accuracy in
a large monitoring area.

• We implement our FCC scheme with off-the-shelf
802.11n device and evaluate it with extensive real-world
experiments. The results demonstrate that our approach
outperforms existing approaches in terms of higher accu-
racy, scalability, and reliability.

The rest of this paper is organized as follows. Section II
presents the theoretical analysis and real-world observations
of the relationship between the number of moving people
and the variation of wireless channel. The design of FCC is
elaborated in Section III, followed by performance evaluation
in Section IV. Section V briefly reviews the related work. We
conclude this paper in Section VI.

II. THEORETICAL ANALYSIS AND OBSERVATION

In radio communications, the emitted electromagnetic waves
often do not reach the receiving antenna directly due to obsta-
cles blocking the line-of-sight path. In fact, the received waves
are a superposition of waves coming from all directions due
to reflection, diffraction, and scattering caused by furniture,
people, and other obstacles. This effect is known as multipath
propagation.

In current widely used Orthogonal Frequency Division
Multiplexing (OFDM) systems, Channel State Information
(CSI) refers to known channel properties of each subcarrier.
This information describes how a signal propagates from the
transmitter to the receiver and represents some other combined
effect. In a narrowband flat-fading channel, the OFDM system
in the frequency domain is modeled as

Y = HX +N (1)

where Y and X are the receive and transmit vectors, respec-
tively, and H and N are the channel matrix CSI and the noise
vector, respectively. Therefore, the estimated value of H can
be expressed as

Ĥ =
Y

X
(2)
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The variation of CSI amplitude from 30 subcarriers is shown
in Figure 2. Figure 3 illustrates how the people influence
the signal propagation. The black solid lines demonstrate the
transmission paths from Tx01 to Rx in a stationary scene. The
receive vector is denoted as Y 0 and the corresponding CSI is
denoted as H0. The H0 can be considered as a constant in a
certain scenario with no person. Each person may reflect or
block signal and cause the receive vector being strengthened
or weakened. It can be regarded as a virtual antenna, and
the receive vectors from virtual antennas are denoted as Y i

(i = 1, 2, 3, ...). The virtual antennas have the following
properties:
• The Rx cannot distinguish the signals from Tx01 and
Txi1, because the signals transmitted from all the virtual
antennas actually originate from Tx01, and the transmit
vectors Xi are the same and equal to X0 from Tx01.

• Y i obeys normal distribution N(µn, σ
2
n), where µn and

σ2
n are functions that depends on the number of Txi1. In

other words, Y i is independent and identically distributed
with the condition of the same number of Txi1.

Thus, the CSI between Rx and Tx can be estimated as

Ĥ =
Y

X
=

Y 0 +
n∑

i=1

Y i

X
= Ĥ0 +

1

X

n∑
i=1

Y i (3)

Applying variance operator to the two sides of Equation 3,
we get

D(Ĥ) =
nσ2

n

X2
(4)

σ2
n decreases as the number of Txi1 grows, which is caused

by intercepting mutually. The blocking inhibits effect of virtual
antenna, and the range of Y i is reduced. The probability of
blocking, S(n), can be calculated as following:

S(n) =
Kn

Cn
m

⇒

{
S(n+ 1) >

KnC
1
m−n

Cn+1
m

S(n+1)−S(n)
S(n) > n

(5)

where m is the number of Y i that the area can contain, Kn

is the number of choices that there is blocking when the
number of Y i is n. S(1) = 0, S(n) with the number of Y i

increases exponentially. The σ2
n will convex reduce with the

S(n) growth until S(n) equals to 1. In other words, D(Ĥ)
will convex increase with growing number of moving people.

We use Intel 5300 wireless net card and Linux 802.11n CSI
Tool to obtain 30 pairs of amplitude and phase CSI values of
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each packet. We conduct a set of experiments to check the
relationship between CSI measurements and the number of
moving people. We place a pair of laptops 5 meters away
from each other as shown in Figure 1. One continues to send
packets to the other, and there are some people walking in the
active area.

Figure 4 (a), (b), (c) and (d) respectively demonstrate the
variation of CSI amplitude of one subcarrier when 0, 2, 4, 6
people are walking in Case I as shown in Figure 1. Figure 4
clearly indicates that CSI values distribute more widely and
change more drastic when there are more moving people. If we
find a proper quantifiable index to characterize the variation
of CSI measurement, it becomes possible to use CSI to count
crowd.

III. METHODOLOGY

In this section, we give the details of our FCC system. We
start by an overview of the system architecture followed by
the details of the system modules.

Algorithm 1: Dilatation-based crowd profiling
Input: Cd;S;P ;Cl;CU ;Mc;D.
Output: P.

1 for i = 1 : S do
2 for j = 1 : P do
3 k =

⌊
Cd[i][j]−Cl

CU−Cl
· (Mc − 1)

⌋
+ 1;

4 for u = −D : D do
5 for v = −D : D do
6 if 1 6 j + u 6 P&1 6 k + v 6Mc then
7 M[i+ u][j + v] = 1;
8 end
9 end

10 end
11 end
12 for l = 1 : P do
13 for m = 1 :Mc do
14 Ones = Ones+M[l][m];
15 end
16 end
17 P[i] = Ones/(P ×Mc);
18 end

A. System Design

Figure 5 gives an overview of the system architecture.
The modules of the proposed system are implemented in the
application server that collects samples from the monitoring
points and processes them. The system works in two phases:
1) A short offline phase, during which the system studies the
CSI values when no or a few of people are present inside the
area of interest to construct what we call a ”training profile”
for each stream. The profiles of all streams are constructed
concurrently in that short phase. 2) A monitoring phase, in
which the system collects readings from the monitoring points
and decides whether there is human activity. It also updates
the stored training profile so that it can adapt to environmental
changes. Finally, a decision refinement procedure is applied to
further enhance the accuracy.



In our basic FCC system, there are 4 laptops with Intel 5300
NICs at each four corner. One laptop continues to broadcast
beacon messages, and the other three ones work as receivers
to measure the CSI values of the channel fadings. In the next
three subsections, we elaborate on the design of FCC.

B. CSI Profile Construction

Training phase and monitoring phase contain a common
component to learn the behavior of the signal readings in
the monitoring area. The selected feature for system operation
should be resistant to possible environmental changes that may
affect the stored data. In addition, the selected feature should
also be sensitive to the human motion to enhance the detection
accuracy.

As mentioned before, moving people can influence the
transmission channel, change the signal paths and cause CSI
variation. The more people who are moving in the area, the
more signal transmission paths will be changed. Figure 4 illus-
trates that the change of time-adjacent CSI amplitude becomes
larger when the number of moving people increases. When
the CSI measurements during a time period are plotted as a
two-dimensional diagram, the distance of time-adjacent points
indicates the variation of CSI profiling. A major challenge is
to formulate the relationship between CSI variation and the
number of crowd. The biggest obstacle is how to describe
the variance of CSI. If we select a large size sample space,
the system performance would suffer the impact of the long
sampling time. Furthermore, the average variance is helpless
when the crowd number changes very frequently. On the
other hand, the variance is not statistically significant when
the sample size was too small. Therefore, we should find a
metric which has the capability of mirroring the current CSI
variance. We observe that when the points are expanded a
certain size, they will overlap with their neighboring points.
The overlapped area varies inversely to the intensity of CSI
variation. We propose a metric PEM, the Percentage of non-
zero Elements in the dilated CSI Matrix, to indicate variation
of CSI profiling as shown in Algorithm 1. It is generally
divided into 3 steps: transform the CSI amplitude values into
two-dimensional matrix, dilate the matrix, and count the non-
zero element. In Algorithm 1,Cd is the barriered CSI results
after time domain filtering (see in Algorithm 2), S is the
number of subcarriers, P is the number of packets, Cu and Cl

are the maximum and minimum value of CSI measurements,
Mc is the number of rows of matrix, D is the dilatation
coefficient.

Firstly, each element in the Mc×P matrix M0 is initialized
to ”0”. The CSI reading Cd[i][j] are converted into integers k
by k =

⌊
Cd[i][j]−Cl

CU−Cl
· (Mc − 1)

⌋
+1, then the elements in row

k and column j in M0 is set to ”1”. There is a ”1” in each
column, and the rest are ”0”s. Obviously, the variance of the
row numbers of non-zero elements between adjacent columns
becomes larger, when the CSI readings take dramatic turns.

Secondly, the elements around ”1” are set to ”1”s, which
is called matrix dilation. After dilation, the CSI matrix M0 is
transformed into dilated CSI matrix M. There are less overlap
of dilated elements when the CSI reading are changing more

sharply. That is, significant change of CSI usually comes along
with more 1’s.

Finally, the percentage P[i] (which is the PEM of ith
subcarrier)of non-zero elements in the dilated CSI matrix of
each subcarrier can be calculated. The larger overlap areas of
dilated points are, the low percentage of non-zero elements in
the dilated CSI matrix. So the P[i] can indicate the number of
moving people. Figure 6 shows that there exist monotonous
relations between P[i] and the people count. P[i] increases with
the growing number of moving people.

Based on the monotonous relation, we can gather CSI
fingerprint to determine the function between PEM and people
count when a few people walk in the area, and then estimate
numbers when there are more moving people.

C. CSI Profile Fitting
The purpose of the CSI Profile Construction Module is to

construct a normal profile and capture the CSI characteristics.
These characteristics can be used by other modules to count
crowd. As shown in Figure 6, we can see that there are some
quasi-monotonous relationships between the crowd number
and the corresponding PEM. PEM is non-negative, and its
growth is a saturation process. We introduce the Grey Theory
[15] to describe them.

The Verhulst model [16] was first introduced in 1838 by
Pierre Franois Verhulst. The main purpose of Velhulst model
is to limit the whole development for a real system. The raw
data series is assumed to be

X(0) = {x(0)(1), x(0)(2), · · · , x(0)(n)} (6)

where n is the number characteristic data sequence.
The Grey Verhulst Model can be constructed by establishing

a first order differential equation for X(1)(k) as:

dX(1)

dt
+ aX(1) = b(X(1))

2
(7)

where parameters a and b are the developing coefficient and
grey action quantity, respectively. In practice, parameters a and
b can be obtained by using the least square method.

[a, b]T = (BTB)−1BTY (8)

B =


z(1)(2) (z(1)(2))

2

z(1)(3) (z(1)(3))
2

...
...

z(1)(n) (z(1)(n))
2

 , Y =


x(0)(2)
x(0)(3)

...
x(0)(n)

 (9)

where Z(1) is the Mean Generation of Consecutive Neighbours
Sequence (MGCNS) defined as following:

z(1)(k) =
1

2
(x(1)(k) + x(1)(k − 1))(k = 2, 3, · · ·n) (10)

The X̂(1) turns to

x̂(1)(k) =

{
ax(1)(1)

bx(1)(1)+(a−bx(1)(1))ea(k−1) k = 2, 3, · · ·
x(1)(1) k = 1

(11)
where x̂(1)(k)(k ≤ n) are fitted sequence, and x̂(1)(k)(k > n)
are the forecast values. Since the initial sequence X(0) is a
saturated sequence, it can be used instead of X(1) [16].
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Fig. 7. CSI sensing range with different α

D. Crowd Counting

According to Grey Theory, smaller |a| is better for forecast.
So the crowd estimation can be decomposed into 2 steps: 1)
each Rx generates its own developing coefficient ai and grey
action quantity bi, and calculate its estimating number:

n̂umi = ln

aix
(1)(1)

PEMi
− bixi(1)(1)

(ai − bixi(1)(1))eai
+ 1 (12)

2) obtain the final estimation through weighted average
algorithm if there are N RXs

Enumber =

N∑
1
n̂umi × 1

|ai|

N∑
i=1

1
|ai|

(13)

E. Scalability

Since each receiver can only estimate the number of moving
people within a certain range, the scalability of FCC should
be considered to work well in large scale scenes. Intuitively,
more devices can be deployed as the grid to cover the larger
monitoring regions. It leads to a new problem that there
are each mutual interference between two neighboring grid.
Therefore, we need to eliminate distractions.

For narrow-band systems, these reflections will not be
resolvable by the receiver when the bandwidth is less than
the coherence bandwidth of the channel. Fortunately, the
bandwidth of 802.11n waveforms is 20MHz (with channel
bonding, the bandwidth could be 40MHz), which provides the
capability of the receiver to resolve the different reflections
in the channel. We propose a multipath mitigation mechanism
that can distinguish the LOS signal or the most closed N-
LOS from other reflections in the expectation of eliminating
distractions from a distant.

The commonly used profile of multipath channel in the time
domain is described as follow:

In practice, OFDM technologies are efficiently implemented
using a combination of fast Fourier Transform (FFT) and
inverse fast Fourier Transform (IFFT) blocks. The 30 groups
of CSI represent the channel response in frequency domain,
which is about one group per two subcarriers. With IFFT
processing of the CSI, we can obtain the channel response in
the time domain, i.e., h(t). Due to the bandwidth limitation, we

may not be able to distinguish each signal path, but multiple
signal clusters. Therefore, we keep the first part of h(t) which
includes the LOS and a few of NLOS signal paths, and filter
out the residual clusters using a truncation window. The first
part time duration is determined by setting the truncation
threshold α as shown in Algorithm 2. Cr means the raw CSI
measurement of ith subcarriers and jth packet.

Algorithm 2: Truncation Denoise Procedure
Input: Cr;S;P ;α.
Output: Cd.

1 np = 2dlog2lenth(Cr)e;
2 for i = 1 : P do
3 tmp[S] = IFFT (Cr[S][i], np);
4 for j = bS ∗ αc : S do
5 tmp[j] = 0;
6 end
7 Cd[S][i] = FFT (tmp[S], np)
8 end

In doing so, we expect to mitigate the estimation error in-
troduced by the mutual interference between two neighboring
grid. After the time domain signal processing, we reobtain the
CSI using FFT.

We conduct a set of experiments to evaluate the impact of
α in all three cases shown in Figure 1. Figure 7 shows the
contour of PEM. The darker color indicates a larger PEM.
The red point and black point are Tx and Rx respectively. It’s
interesting that the CSI sensing range is asymmetrical. From
the figure 7 we can see that it is more sensitive around Tx than
Rx, and the sensing range of Tx and larger than Rx. With the
decreased α, the sensing range is reduced. When α is 3, the
effective sensing range is reduce to the area between Rx and
Tx. In this case, the moving people in adjacent regions cannot
effect the PEM, which can efficiently eliminate distractions
among adjacent regions.

IV. EXPERIMENT RESULTS

In this section, we illustrate the implementation and do
various experiments under different conditions to evaluate the
performance of FCC. We conduct real-world experiments to
show the performance and robustness of FCC in different
scenarios as shown in Figure 8.
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Fig. 8. The experiments scenes and device

A. Overall performance

We summarize the results we have obtained from both
indoor (i.e. meeting room, office, laboratory) and outdoor
settings.

As explained in previous section, FCC works well in
different scenario because the CSI variance is sensitive to the
change of scenario but not to the scenario itself. Figure 9(a)
compares the cumulative distribution of crowd counting errors
in indoor and outdoor environments. The X axis represents
the difference between the actual number of moving people

and the estimation value, while the Y axis represents the
CDF percentage. It is easy to see FCC works well in both
indoor and outdoor environments, and better in former. More
than 98% estimation errors are less than 2 persons in indoor
environment, while about 70% errors is 2 persons in outdoor
environment. It is because that there are more obvious multi-
path effects in indoor environments than outdoors. Figure 9(b)
plots the PEM in two kinds of scenes. The PEM is increasing
with the increasing numbers of people, especially in indoor
environments. In outdoor environments, the curve becomes
gentler when the number of people is more than 10.

B. Impact of dilatation coefficient

Since PEM is calculated based on the dilated CSI matrix M,
the impact of dilatation coefficient should be evaluated. Figure
10 shows the variation of PEM under different dilatation
coefficient D. When D = 0, the PEM keeps constant with the
increase in the number of people. It is because that no matter
how the CSI changes over time, there are none overlapping
parts or components since each column only has one non-zero
element before dilatation. When D = 20, the PEM also keeps
constant. It is because that almost all the elements are set to
”1”, when dilatation coefficient is too big. In other words,
the dilatation covers the variance. When D is equal to 5, 10,
15, there is a monotone increasing relationship between PEM
and the number of people. In follow-up experiments, we set
D = 10.
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Fig. 15. Scalability in a large area
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C. Performance of Verhulst Model

We take a set of experiments to evaluate the performance
of Verhulst Model with different number of characteristic data
sequence. The estimation results are presented in Figure 11.
We use 0-N people’s characteristic data sequence in training
phase to estimate the number of moving people in monitoring
phase where the people is from 0 to 30. The Verhulst model
is an ad-hoc model. It is an equation chosen to fit data, which
is a very good model for the number of people growth. The
maximum estimation error is about 2.5, and it reduces to 1.1
with N growth. Since the parameters a and b is calculated by
the least square estimate method, a bigger N means the more
equations, which will obtain a better a and b, and have more
accurate fitted sequences. Generally speaking, the Verhulst
model can take a long term forecast when |a| < 0.3, and
take a short term forecast when |a| < 0.7.

D. Impact of communication distance

We evaluate how the distance between Tx and Rx influ-
ences the accuracy of our FCC system. We estimate the num-
ber of people walking between a pair of laptops with different
distances apart. Due to space limitation, the communication
distance between two laptops is increased from 2m to 8m.

Figure 12 shows the estimation error with different com-
munication distances. It’s very interesting that the estimation
error is unrelated to communication distance, as long as
the communication distance is less than a certain threshold.
The experiment shows that we can provide more flexible

deployment mechanism in order to adapt to various indoor
layouts without reducing the estimation accuracy.

E. Impact of distribution

In this subsection, we explore how the crowd distribution
affects estimation number. There are four cases: case 1, 12
people split into 2 groups, ones move near Rx1, and others
move near Rx3; case 2, one group move near Tx, and others
move near Rx2; case 3, 12 people move random in the
scenario; case 4, 12 people split evenly into 3 groups with
4 people, and they move near Tx, Rx1, Rx3 respectively.

Figure 13 shows the impact of distribution. The X and Y
axis represent the estimation error and four cases respectively.
The estimation error in case 3 is less than other three cases. It
is because that the crowd is most similar to stochastic distri-
bution in case 3. Although the distribution affects estimation
accuracy, the the maximum average error is less than 1.5.

F. Impact of moving speed

In actual environment, different people has different walking
speed, therefore, we should consider that whether the moving
speed would influence estimation accuracy.

Figure 14 shows the CDF of estimation error in different
moving speed. The low speed motion and high speed motion
has a similar estimation accuracy, while hybrid motion has
larger estimation errors. It is because that FCC estimate the
moving people based on the observation in training phase.
For low speed motion and high speed motion, the training



phase and monitoring phase have the same CSI feature. For the
hybrid motion, different people have different moving speed,
the relationship between PEM and the number of moving
people is unstable, which will affect the estimation accuracy.
This could be addressed in our future work.

G. Scalability in large area
Since each receiver can only estimate the number of moving

people within a certain range, the scalability of FCC should
be considered to work well in large scale scenes. In order to
evaluate the scalability of FCC, we implement 5 laptops in a
hall. 4 laptops is in 4 corner as Rxs, and 1 laptop is in center
as a Tx.

Figure 15 compares the performance between unaltered and
modified FCC. Figure 15(a) shows the CDF of estimation
error. More than 50% estimation errors are less than 2 using
modified method, while more than 70% errors more than 2
using unaltered method. Figure 15(b) shows the variation of
average estimation error with people increasing from 1 to 30.
It is worth noting that the estimation errors remain stable for
different number of people using modified method, while the
error is increasing as the number of people increase using
unaltered method, especially when people is more than 22.
It is because that modified method uses Truncation Denoise
Procedure to eliminate distractions among adjacent regions. It
is feasible, flexible and extensible. FCC works well when 30
people in the scenario, while recent similar work [17], [13]
can only distinguish no more than 4 people.

H. The resolution of crowd counting
Figure 16 shows the maximum distinguished number of

people in indoor environment. The experiments are implement-
ed in a hall with four laptops in four corners. The blue curve
plots the PEM variation with the increasing people. Obviously,
the curve becomes slower gradually when the number of
people is more than 20. The green bars illustrates the average
estimation errors. At first, the estimation error is small. When
people is more than 15, the estimation error increases to 2.
When people is more than 27, the estimation increases to more
than 5. It is because that the PEM almost stops growing when
people is more than 22. In a word, if people is less than 30,
FCC can work well in the indoor environment. By contrast,
to the best of our current knowledge, the distinguishability of
exist non-vision device-free approach [17] remains the single
digits level using radio link, using ISAR [13] or a dozen people
by excessively deploying dense sensors [11].

I. Comparison with other approach
There is few methods on device-free crowd counting. SCPL

[17] is one of the latest device-free technique to count and
localize multiple subjects in indoor environments. We do a
set of experiments to compare the performance of FCC and
SCPL. There are 5 devices deployed on the both sides of the
room with area of 40 m2. Each device is both a transmitter and
receiver. Figure 17(a) and (b) show the people counting results
of SCPL and FCC respectively. In all four cases, the estimated
number always fluctuates over time for both SCPL and FCC.
The errors caused by temporally overlapping trajectories and

the environmental disturbance. For SCPL, about 45% results
are accurate. It is because that SCPL is a link-based scheme,
which requires more intensive devices to provide adequate
links. For FCC, the estimated results are relative stable. The
number of estimated moving people is jitter with a range of
plus or minus about 0.4. CSI is information which represents
the state of a communication link from the transmit source
to the receiver source. It is more sensitive to the diversity of
transmission channel than RSS, which is more suitable than
RSS at counting moving people.

V. RELATED WORK

Recently, indoor localization and counting problem has at-
tracted much attention. The solutions can be classified into two
categories by whether the object needs to carry equipments or
not: Device-based Approach and Device-free Approach.

A. Device-based Approach

Device-based approach utilizes device carried by users to
locate or count objects. Cricket system [2] calculates the
position relying on coupled RF and ultrasonic signals. RFID-
based localization [3], [18] has gained much attention in recent
years. RSS-based approaches can be categorized into the Radio
Propagation Model [4], [19] and the Fingerprint Method [20],
[21], [5]. Recently, Channel State Information (CSI) was used
for localization [22], [23], [24].

With the sharply increasing scale of mobile computing,
using built-in sensors and modules of smart phones for lo-
cating, tracing or counting became a wider trend. Jens et
al. [6] exploited Bluetooth collecting environment data to
estimate crowd density. Kannan et al. [7] utilized the headset
to estimate the crowd density(the number of phones exactly).
Phone inertial sensors [8] can also be used for localization.

Device-based approach is essentially counting devices. It
is more suitable for object localization than crowd counting.
In many crowd counting scenarios, it is hard to require each
person taking a device with him. If a person takes more devices
or dose not carry the device, it will import estimated errors.

B. Device-free Approach

Device-free approach [9] has gained much more attention
because this approach doesn’t require targets to equip any
devices. The most intuitive device-free solution exploit the
machine vision technology. Most of vision-based crowd den-
sity estimations have a considerable overhead of computing
though, and can only work in a line-of-sight pattern. Moreover,
because of privacy protection and some other reasons, more
and more non-vision-based approaches appeared in recent
year. Most of them are built on radio frequency techniques.
These solutions can be broadly categorized into Location-
based scheme and Link-based scheme.

Location-based scheme: This kind of scheme [12], [11]
divides locating procedure into two phases: training phase
and operating phase. Xu et al. [12] propose to formulate the
localization problem into a probabilistic classification problem
in order to mitigate the error caused by the multipath effect
in cluttered indoor environments. These approaches aimed



at locating only one person, and Yuan et al. [11] employ
classification algorithm to estimate the number of people.
Masaya Arai et al. [25] attempted to get the relationship
between the feature of radar chart and the crowd movement
patterns, but they only got some qualitative results.

This kind of scheme require site survey over areas of inter-
ests to build a fingerprint database. The considerable manual
cost and efforts, in addition to the inflexibility to environment
dynamics are the main drawbacks of this methods. For crowd
counting, the training cost is too much heavy for large-scale
scenarios and it’s hard to obtain the ground truth when the
number of people is large.

Link-based scheme: This kind of scheme [26], [27] is
unique in device free approach. Radio link is a radio com-
munication system, N nodes can construct N(N−1)/2 links.
If objects active nearby Link Li,j , the RSS of Nodei and
Nodej would change obviously. But if object moves far away
from any link, the performance decrease sharply. Nakatsuka et
al. [10] first demonstrated the feasibility of using static profile
(average and variance) of RSS to estimate the crowd density.
Patwari et al. [28] provides a statistical model for the RSS
variance as a function of ONE person’s position with respect
to the transmitter (TX) and receiver (RX) locations. Xu et
al. [17] exploited link-based scheme to count the number and
locate the people using RSS.

Obviously, this kind of scheme is more sensitive when
the obstacle moves near by the links. Users must deploy
exorbitantly intensive nodes to provide adequate links, which
causes high cost issues.

Utilizing fine-grained physical layer information in localiza-
tion and counting draws increasing attentions recently. Dina
et al. [13] exploit inverse synthetic aperture radar (ISAR)
technique to track and count moving objects. Shwetak et
al. [14] extract Doppler shifts from Wireless Signals for
gesture recognition. The USRP plays an important role in
obtaining the physical layer information such as signal angle
and frequency shift, etc.

VI. CONCLUSION

Crowd counting is an important service needed by many
applications. Previous crowd counting approaches either rely
on smart phone or RFID tag carried by users or need to collect
abundant fingerprint which may not be suitable for large-scaled
scene. This paper proposed a novel device-free crowd counting
method called FCC based on CSI measurements. It can be
obtained from off-the-shelf 802.11n devices. We propose a
new metric PEM to extract the feature of CSI variation. The
relation between the PEM and the number of people can
be leveraged by the Grey Verhulst Model to count crowd.
Extensive real-world experiments results demonstrate that our
approach perform well in accuracy, scalability and reliability.

REFERENCES

[1] M. Li, Z. Zhang, K. Huang, and T. Tan, “Estimating the number of
people in crowded scenes by mid based foreground segmentation and
head-shoulder detection,” in Proceedings of ICPR2008, pp. 1–4.

[2] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The cricket
location-support system,” in Proceedings of MobiCom 2000, pp. 32–43.

[3] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, “Landmarc: indoor location
sensing using active rfid,” Wireless networks, vol. 10, no. 6, pp. 701–710,
2004.

[4] Y. Ji, S. Biaz, S. Pandey, and P. Agrawal, “Ariadne: a dynamic indoor
signal map construction and localization system,” in Proceedings of
MobiSys 2006, pp. 151–164.

[5] M. Azizyan, I. Constandache, and R. Roy Choudhury, “Surroundsense:
mobile phone localization via ambience fingerprinting,” in Proceedings
of MobiCom 2009, pp. 261–272.

[6] J. Weppner and P. Lukowicz, “Collaborative crowd density estimation
with mobile phones,” in Proceedings of Sensys 2011.

[7] P. G. Kannan, S. P. Venkatagiri, M. C. Chan, A. L. Ananda, and L.-S.
Peh, “Low cost crowd counting using audio tones,” in Proceedings of
SenSys 2012, 2012, pp. 155–168.

[8] F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao, “A reliable and
accurate indoor localization method using phone inertial sensors,” in
Proceedings of UbiComp 2012.

[9] M. Youssef, M. Mah, and A. Agrawala, “Challenges: device-free passive
localization for wireless environments,” in Proceedings of MobiCom
2007, pp. 222–229.

[10] M. Nakatsuka, H. Iwatani, and J. Katto, “A study on passive crowd
density estimation using wireless sensors,” in Proceedings of ICMU
2008.

[11] Y. Yuan, C. Qiu, W. Xi, and J. Zhao, “Crowd density estimation using
wireless sensor networks,” in Proceedings of MSN 2011, pp. 138–145.

[12] C. Xu, B. Firner, Y. Zhang, R. Howard, J. Li, and X. Lin, “Improving rf-
based device-free passive localization in cluttered indoor environments
through probabilistic classification methods,” in Proceedings of IPSN
2012, pp. 209–220.

[13] F. Adib and D. Katabi, “See through walls with wi-fi!” to appear at
SIGCOMM 2013.

[14] S. G. S. P. Qifan Pu, Sidhant Gupta, “Whole-home gesture recognition
using wireless signals,” to appear at Mobicom 2013.

[15] J. Deng, “Introduction to grey system theory,” The Journal of grey
system, vol. 1, no. 1, pp. 1–24, 1989.

[16] Y. L. Sifeng Liu, Grey information: theory and practical applications
(advanced information and knowledge processing). Springer-Verlag
New York, Inc, 2005.

[17] C. Xu, B. Firner, R. S. Moore, Y. Zhang, W. Trappe, R. Howard,
F. Zhang, and N. An, “Scpl: Indoor device-free multi-subject counting
and localization using radio signal strength,” in Proceedings of IPSN
2013.

[18] C. Wang, H. Wu, and N.-F. Tzeng, “Rfid-based 3-d positioning
schemes,” in Proceedings of INFOCOM 2007, pp. 1235–1243.

[19] H. Lim, L.-C. Kung, J. Hou, and H. Luo, “Zero-configuration, robust
indoor localization: Theory and experimentation,” in Proceedings of
IEEE INFOCOM 2006, pp. 1–12.

[20] P. Bahl and V. N. Padmanabhan, “Radar: An in-building rf-based user
location and tracking system,” in Proceedings of INFOCOM 2000,
vol. 2, pp. 775–784.

[21] M. Youssef and A. Agrawala, “The horus location determination sys-
tem,” Wireless Networks, vol. 14, no. 3, pp. 357–374.

[22] S. Sen, B. Radunovic, R. R. Choudhury, and T. Minka, “Spot localization
using phy layer information,” in Proceedings of MobiSys 2012, vol. 12.

[23] X. Jiang, W. Kaishun, Y. Youwen, W. Lu, and M. N. Lionel, “Pilot :
Passive device-free indoor localization using channel state information,”
in Proceedings of ICDCS 2013.

[24] K. Wu, J. Xiao, Y. Yi, M. Gao, and L. M. Ni, “Fila: Fine-grained indoor
localization,” in Proceedings of INFOCOM 2012, pp. 2210–2218.

[25] M. Arai, H. Kawamura, and K. Suzuki, “Estimation of zigbee’s rssi
fluctuated by crowd behavior in indoor space,” in Proceedings of SICE
2010, pp. 696–701.

[26] D. Zhang, Y. Liu, and L. M. Ni, “Rass: A real-time, accurate and scalable
system for tracking transceiver-free objects,” in Proceedings of PerCom
2011, pp. 197–204.

[27] O. Kaltiokallio, M. Bocca, and N. Patwari, “Enhancing the accuracy of
radio tomographic imaging using channel diversity,” in Proceedings of
MASS 2012.

[28] N. Patwari and J. Wilson, “Spatial models for human motion-induced
signal strength variance on static links,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 6, no. 3, pp. 791–802, 2011.


