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Abstract—With the recent introduction of Spot Instances in
the Amazon Elastic Compute Cloud (EC2), users can bid for
resources and thus control the balance of reliability versus mone-
tary costs. Mechanisms and tools that deal with the cost-reliability
trade-offs under this schema are of great value for users seeking
to lessen their costs while maintaining high reliability. In this
paper, we propose a set of bidding strategies to minimize the
cost and volatility of resource provisioning. Essentially, to derive
an optimal bidding strategy, we formulate this problem as a
Constrained Markov Decision Process (CMDP). Based on this
model, we are able to obtain an optimal randomized bidding
strategy through linear programming. Using real Instance Price
traces and workload models, we compare several adaptive check-
pointing schemes in terms of monetary costs and job completion
time. We evaluate our model and demonstrate how users should
bid optimally on Spot Instances to reach different objectives with
desired levels of confidence.
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I. INTRODUCTION

With the recent advance of Cloud Computing, computing as
a utility has been widely recognized and realized. Computing
resources can be allocated transparently on an as-need basis.
Pricing of these resources can differ dynamically depending
on current demand and supply. In December 2009, Amazon
released Spot Instances, which is a new way to purchase and
consume Amazon EC2 Instances. They allow customers to
bid on unused Amazon EC2 capacity and run those Instances
for as long as their bid exceeds the current Spot Price.
The Spot Price changes periodically based on supply and
demand, and customers whose bids meet or exceed it gain
access to the available Spot Instances. For customers with
flexibility in when their applications can run, Spot Instances
can significantly lower their Amazon EC2 costs. Addition-
ally, Spot Instances can provide access to large amounts of
additional capacity for applications with urgent needs. Just
a few examples of categories of applications well-suited to
Spot Instances are: Image and video processing, conversion
and rendering, Scientific research data processing, Financial
modeling and analysis.

From above description, there is clearly a trade-off between
the reliability of service and cost of the Instances. Existing
middleware run on top of these infrastructures fails to cope
or leverage changes in pricing or reliability. Ideally, the
middleware would have mechanisms to seek by itself the best
bidding strategy given the pricing history and demands of the
application. In this paper, we investigate bidding strategies that
can be used to achieve the goal of minimizing monetary costs

under specified reliability requirement, e.g., delay requirement.
In specific, a bidding strategy should be able to provide a
bidding decision, e.g., the bidding price and time duration,
whenever needed. Using real price traces of Amazon’s Spot
Instances, we study various strategies that can adapt to current
Instance Price and show their benefit compared to static, cost-
ignorant strategies. Our key result is that the adaptive strategies
significantly reduce the monetary cost, while maintaining high
reliability.

Notice that when designing a bidding strategy, it is crit-
ical to balance the reliability and monetary costs. Previous
researchers investigate probabilistic model and checkpointing
mechanisms to tackle the problem of how to bid given set of
constraints, e.g., cost and reliability constraints. Nevertheless,
previous approaches were considered merely under the fixed
bid price model, and only empirical results were given in
their study. In this work, we try to design an optimal bidding
strategy that utilizes both the dynamic pricing model and
historic data. We first investigate how different prices transit
among each other as time goes on. We characterize above
transition process using Price Transition Probability Matrix
(PTPM) where each entry in the matrix represents corre-
sponding transition probability between two Instance Prices.
We show that if the price transition matrix is utilized in an
intelligent manner, we can improve the execution efficacy
while reducing monetary costs. In this perspective we have
designed intelligent bidding strategy AMAZING. The novelty
of AMAZING lies in the intelligence that it learns and adapts
from the transition of prices, to make the bid decisions. In
specific, in order to make proper bid decision at each Instance
hour, we formulated the problem as a Constrained Markov
Decision Process (CMDP) [6]. After solving corresponding
linear programming, AMAZING applies optimal bidding op-
tions during the course of the job’s computation. In addition
to the optimal bidding strategy, we also propose two simple
yet efficient heuristic bidding approaches. We are able to show
that both heuristic approaches perform very good in terms of
high reliability and low monetary cost in practice.

The remainder of this paper is organized as follows. In
Section II, we detail the market system of Amazon’s Spot
Instances, and describe our system model for the application
and its execution. In Section III, we present our method for
optimizing a user’s bid. In Section IV, we show the utility
of our model through simulation results. In Section V, we
compare and contrast our approach with previous work, and
Section VI concludes this paper.



II. SYSTEM MODEL OF SPOT INSTANCE

In this section we describe the work model adopted by Spot
Instance.

A. Characteristics of the Spot Instances

Spot Instances enable users to bid for unused Amazon
EC2 capacity. Amazon provides 64 types of Spot Instances
that differ by computing/memory, OS type and geographical
location [15]. Figure. 1 illustrates partial price history for Spot
Instance us-east-1.linux.c1.medium. As shown in the figure,
Spot Instances are charged the Spot Price set by Amazon
EC2, which fluctuates periodically depending on the supply of
and demand for Spot Instance capacity. In specific, Amazon
EC2 will change the Spot Price periodically as new requests
are received and as available Spot capacity changes (e.g. due
to Instance terminations). While the Spot Price may change
anytime, in general the Spot Price will change once per hour,
which is named as Instance hour in this work, and in many
cases less frequently. To use Spot Instances, the users place a
Spot Instance request, specifying the Instance type, the region
desired, the number of Spot Instances they want to run, and the
maximum price they are willing to pay per hour. To determine
how that maximum price compares to past Spot Prices, the
Spot Price history is available via the Amazon EC2 API and
the AWS Management Console. If the maximum price bid of
the user exceeds the current Spot Price, her request is fulfilled
and her Instances will run until either she chooses to terminate
them or the Spot Price increases above her maximum price
(whichever is sooner).

0.057

0.058

0.059

0.06

0.061

0.062

0.063

Time (11−18 June, 2011) − us−east−1.linux.c1.medium

P
ric

e 
of

 s
po

t i
ns

ta
nc

e 
(U

S
D

)

Fig. 1. Spot price fluctuations of us-east-1.linux.c1.medium Instance type.

Figure. 2 illustrates how Amazon EC2 charges per-hour
price for using a Spot Instance. It is important to note the
following characteristics of Amazon EC2’s Spot Instances.
When a user’s maximum price bid exceeds the current Spot
Price, the requested resources are granted. Conversely, Ama-
zon stops immediately without any notice when a user’s bid is
less than the current price. We call this a failure (or out-of-bid).
To increase efficiency of task execution, users are suggested
to save their intermediate results periodically by means of
checkpointing [2].

B. Problem Formulations

We assume a user is submitting a compute-intensive job
that is divisible. Divisible workloads such as video encoding,
advanced graphics and virtual reality are an important class of
application prevalent in high-performance parallel computing.

(a)

(b)

(c)
Fig. 2. Examples of pricing for Amazon EC2 Spot Instances: (a) Available
duration starts when user’s bid exceeds the current Spot Price and ends the
other way; (b) When a user’s Spot Instance is out-of-bid; (c) When a user
stops using Spot Instance.

This is a common type of application that could be submitted
on EC2 and amenable to failure-prone Spot Instances [8].
Suppose that the job consists of a total amount of work load
W to be executed. We measure W in hours of computation
needed on a single EC2 Instance with processing capacity
of 2.5 EC2 Compute Units i.e., a single core of the High-
CPU medium Instance type. We refer to the time needed for
processing W on a particular Instance type It the task length
T = T (It). Suppose that the processing capacity of It is Ct,
we have T (It) = W/Ct. It is worth to note that T is the net
computation time excluding any overheads due to out-of-bid,
checkpointing and restart. Therefore T is different from the
actual execution time Te. Let td denote the deadline or delay
requirement for a job (for a fixed Instance type), and E[Te] the
expected execution time, our objective is to design a bidding
strategy which can minimize the total monetary cost while
satisfying delay constraint E[Te] ≤ td.

In this work, we denote by tc the time for taking a check-
point, and tr the time for a restart. And let pmax denote the
maximum Spot Price (exclude the burst noises) of a particular
Instance type. Further, for a specific Instance type, the Spot
Price for the ith hour is denoted by pi. We define the result
of each hour during the course of the job’s computation as in-
bid or out-of-bid, representing whether a job is occupying the
computing resource. As discussed later, if the user’s current bid
exceeds pi, the result of the ith hour stays in-bid. Otherwise,
the result becomes out-of-bid.



Fig. 3. Illustration of the execution model for Amazon EC2 Spot Instances.

C. Execution Scenario

Figure. 3 illustrates an exemplary execution scenario. A user
submits a job with a total amount of workload W = 6 unit-
hours (assuming EC2’s small Instance server). User’s bid price
is 0.30 USD, and during the course of the job’s computation,
the job encounters an out-of-bid result (i.e. failure) between
time 2 and 4. The total available time was 7 hours (tc =
0.5 hour for checkpointing and tr = 0.5 hour for restart),
from real execution progress (i.e. useful computation) is only
(1.5+4.5) = 6 hours. The overall execution time Te is 9 hours.
During the job’s active execution, the spot price fluctuates: 1
hour at 0.10 USD per time unit, 5 hours at 0.20 USD per
time unit, and 1 hour at 0.30 USD per time unit, leading to
total cost of 1.4 USD. Thus the average cost is 1.4/7 = 0.2
USD per hour. The per hour average execution progress is
T/Te = 6/9 ≈ 0.67 hour.

III. BIDDING STRATEGIES

We next propose set of bidding strategies, aiming to min-
imize the monetary cost under required reliability level. For
ease of introduction, we first introduce one simple yet efficient
heuristic and then propose our optimal bidding strategy based
on Constrained Markov Decision Process.

A. A Heuristics — Always Bidding Maximum Price

We first propose a heuristic bidding strategy. This heuristic
is easy to implement and has good performance in prac-
tice. This strategy is called Always Bidding Maximum Price
(ABMP). By following ABMP, we always bid the maximum
price regardless of current state. The motivation of this strategy
can be summarized as follows: Firstly, since ABMP always
bid at the maximum price, thus the job Instance will never
be terminated by Amazon. In other words, ABMP ensures
consistent execution of any job. Therefore the completion
time is minimized. Secondly, no matter what strategy we
implement, we must pay the minimum price at least. Notice
that in current Spot Instance setting, the maximum price is at
most 1.1 times the minimum one, thus ABMP will pay at most
10% more than the minimum cost. Therefore ABMP strategy

guarantees (1) minimum completion time and (2) at most 10%
more than the minimum cost.

B. AMAZING: CMDP-based Dual-Option Bid Strategy

In this section, we study the following constrained optimiza-
tion problem: considering a long state evolving process, given
an execution time (delay constraint td) and price transition
probability matrix, what is the optimal bid strategy µ, such
that the expected monetary cost E[M ] to finish the entire
job is minimized, and the expected execution time satisfies
E[Te] ≤ td?

To tackle the above problem, we design an optimal bidding
strategy, namely AMAZING, that utilizes both the dynamic
pricing model and the state transition intelligence. AMAZING
is built upon Price Transition Probability Matrix (PTPM), a
back-end system runs a linear programming routine to select
a bid option (make a desirable decision for the next Instance
hour) ahead of each Instance hour. The PTPM for a particular
Spot Instance type can be learnt from Spot Price history
released on Amazon EC2 website. With E different Spot
Prices for a particular Instance type, we can build an E × E
matrix PTPM to represent the transition probability between
each Spot Price pair σ and τ . In our system, we estimate the
transition probability between two Spot Prices σ and τ based
on the relative transition frequency. Therefore each entry in
PTPM, denoted by Λ(σ, τ), is defined as the fraction of time
when σ is followed by τ in adjacent hours whenever σ appears.
Clearly, an entry Λ(σ, τ) of a higher value indicates a higher
transition probability from Spot Price σ to τ . In our system,
an AI agent is trained to extract Spot Price patterns from the
dynamically changed Spot Price data.

Theoretically, a general bidding strategy may bid any price
for a specific Instance. However, we prove in Theorem 1 that
any bidding strategy can be simulated by so call Dual-Option
Strategy where the bidding option in a dual-option strategy is
either bidding the maximum Spot Price or bidding zero dollars.

Theorem 1: Any sequence of bidding decisions can be
obtained by carefully performing dual-option strategy, either
bid the maximum Spot Price or give up, at each instance hour.

Proof: Let pmax denote the maximum Spot Price (exclude
the burst noises) observed from the Spot Price history of
a particular type of Spot Instance. Suppose that we have a
bidding sequence {b1, b2, · · · , bn}. Here, bi is the bid price
for the ith hour. The result for each hour is either in-bid or
out-of-bid, as shown in Figure. 3. If the result of the ith hour
is in-bid and the Spot Price is pi, then we can substitute bi by
pmax i.e., bidding the maximum Spot Price. As a result, the
result of the ith hour would not change. Further, since the Spot
Instances are charged based on Spot Prices, the user will be
charged the same price at pi. On the other hand, if the result
of the ith hour is out-of-bid, then we can substitute bi by 0
USD (give up). In this scenario, the result of the ith hour stays
the same, and the user will not be charged at all. Thus any
bidding strategy, including the optimal one, can be substituted
by a dual-option strategy without changing the final output.
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Fig. 4. Examples of execution progress f for Amazon EC2 Spot Instances
under different Instance states.

Theorem 1 implies that an optimal dual-option strategy must
be also an optimal strategy. Therefore, in the rest of this
paper, we can reduce the number of possible bidding options
to two instead of infinity without affecting the optimality of
our strategy. Let A denote the set of bidding options that we
consider at each hour. Implied by Theorem 1, A is composed
of only two elements: A = {B,G}. Here B is short for
bid the maximum price and G is short for bid zero or give
up. We denote the bid option made in the ith hour by ai
where ai ∈ A . The basic idea of AMAZING is that during
each Instance hour, we pre-select a bidding option, either bid
maximum price or giving up, for the next Instance hour with
certain selection probability. The selection probability for each
bid option is calculated based on current state and PTPM.
Since we always make our bid option ahead of time, we can
set a checkpoint at current hour whenever we decide to give
up in the next hour.

We use xα,βpi to denote an integrated state (or simply
state) of the ith hour. Let α and β denote the result of
the (i − 1)th hour and the ith hour, respectively. Note that
α, β ∈ {I,O}, where I is short for in-bid and O is short
for out-of-bid. For instance, xO,Ip represents such a state: (1)
out-of-bid in previous hour, (2) in-bid at current hour, and
(3) the Spot Price at current hour is p. By integrating the
result from previous hour to current hour, xα,βp provides a
compact representation to calculate the execution progress.
Execution progress represents the actual progress resulted from
current 〈state, bidding option〉 pair. Let f(xi,ai) denote the
execution progress resulted from state xi under bidding option
ai. Refer to Figure. 4 as three examples: (a) assume the result

Algorithm 1 Pseudo Code for AMAZING Policy
Input: Optimal bidding strategy µ (computed from Algorithm 2) and
current state information
Output: The bidding decision for the next hour

1: Randomly choose a bid option based on bidding strategy µ
calculated from Algorithm 2 for the next Instance hour;

2: if the bidding option is to give up in the next Instance hour then
3: set a checkpoint at the end of current Instance hour;
4: Perform bidding decision correspondingly in the next hour.

of previous hour is in-bid, and current hour is also in-bid,
then the execution progress is 1 − tc under option give up,
e.g., f(xI,Ipi ,G) = 1 − tc. This is because it takes tc time to
set the checkpoint at the end of current hour; (b) assume the
result of previous hour is out-of-bid, and current hour is in-
bid, then the execution progress is 1 − tr under option bid,
e.g., f(xO,Ipi ,B) = 1 − tr. This is because it takes tr time
to restart the program at the beginning of current hour; (c)
assume the result of previous hour is out-of-bid, and current
hour is in-bid, then the execution progress is 1− tr− tc under
option give up, e.g., f(xO,Ipi ,G) = 1− tr− tc. This is because
it takes tr and tc time to restart the programm and set the
checkpoint, respectively. The complete definition of f(xi,ai)
is summarized as follows.

f(xi,ai) =



1− tc, if xi = xI,Ipi ,ai = G
1− tr, if xi = xO,Ipi ,ai = B
1− tc − tr, if xi = xO,Ipi ,ai = G
1, if xi = xI,Ipi ,ai = B
0, otherwise

(1)

AMAZING works as follows: In each Instance hour, AMAZ-
ING pre-selects a bidding option for the next Instance hour
according to decision strategy µ. The calculation of µ will
be discussed in detail later. It is worth noting that during
computing the selection strategy µ, we already take into
account all potential overhead (e.g., checkpoint, restart). Please
refer to Algorithm 1 for pseudo codes.

In Algorithm 1, µ specifies the selection probability of
each bid option at different states. In following discussions,
we focus on finding such an optimal selection strategy µ.
We model the computation of selection strategy µ as Con-
strained Markov Decision Process (CMDP). By solving the
corresponding Linear Programming (LP) in polynomial time
[6], we obtain an optimal selection strategy µ for each state.

1) Constrained Markov Decision Process: Markov decision
processes (MDP), also known as controlled Markov chains,
constitute a basic framework for dynamically controlling sys-
tems that evolve in a stochastic way. To make it fit our problem
setting, we define a tuple {O,X,A , P,M,D}, where: (a)
O = {t|t = 1, 2, · · · } denotes the set of decision epochs.
Decisions are made at the beginning of each Instance hour. (b)
X = {x1,x2, · · · ,xn} is a countable state space. Although
we limit the study in this work to discrete Instance state tran-
sitions, the continuous case can also be handled by dividing



it to discrete space. We have xi = xα,βpi for xi ∈ X . (c) A
is an action set A = {B,G}. Theoretically, each Instance
hour has 4 · E possible states. As defined previously, E is
the number of different Spot Prices that presented in the price
history of a particular Instance type. Since α, β ∈ {I,O},
the number of different combinations of α, β is 4. Thus we
have 4 · E possible states for each Instance hour. In order to
reduce the searching space, we leverage underlying transition
matrix to facilitate our study. We use the previous example
in Figure. 4(a) for illustration. In this example, a possible bid
option ai could be give up i.e., ai = G. Notice that current
state xi = xI,Ipi and bid option ai together limit the valid state
space for the next instance hour to be xi+1 = xI,Opi+1

, thus the
size of searching space for the next instance hour is reduced
to E. Different bidding options made in the ith Instance hour
will lead to different valid state space for the (i+1)th Instance
hour. (d) Let ρ(xi,ai) denote the occupation measure of state-
option pair 〈xi,ai〉, it represents the probability that such
state-option pair ever exists in the decision process. Notice
that the occupation measure ρ() is decided by corresponding
decision making strategy. (e) P represents the state transition
probability matrix (different from PTPM). Define Pi,j(ai) as
the probability of moving from state xi to xj , when bid option
ai is taken. Here xj denotes any valid state of the (i + 1)th

Instance hour. If xj is a valid state given xi and ai, then
Pi,j(ai) = Λ(pi, pj). Recall that Λ(σ, τ) is the transition
probability from price σ to τ . Otherwise, Pi,j(ai) = 0. (f)
M is the immediate cost. In this paper, we define E[M ] as
the expected total monetary cost during the course of the job’s
computation, which can be computed as in Equation. 2. (g) D
is the maximum allowed job completion time i.e., deadline.
In this paper, we have D = td. Recall that f(xi,ai) denotes
the execution progress for the ith Instance hour. Please refer to
Equation. 1 for detailed calculation of f under different states.
Therefore, assume the processing capacity is 1 and workload
is W , we have E[f ] ≥ W

td
where E[f ], which is calculated in

Equation 2, denotes the expected average execution progress
per Instance hour.

E[f ] =
∑
xi∈X

∑
ai∈A

ρ(xi,ai) · f(xi,ai)

E[M ] =
∑
xi∈X

∑
ai∈A

ρ(xi,ai) · pi · td
(2)

2) Optimal Bid Option Selection Strategy µ: In order to
compute the optimal selection strategy µ of the CMDP with
expected monetary cost criteria, we can formulate it as a
linear programming. After solving the corresponding LP, we
can obtain the optimal strategy through normalization [6]. We
next write the bid optimization problem defined above as the
following LP. The constraints (1) and (3) ensure that ρ(xi,ai)
is a feasible probability measure. The deadline requirement
can be respected under constraint (2) by setting the expected
average execution progress no less than W

td
. In inequality (4),

δxj
(xi) is the delta function of xi concentrated on xj , which

is defined in following equation: δxj
(xi) =

{
1, if i = j

0, otherwise

This constraint describes that the outgoing rate and incom-
ing rate for a state must be the same. At the same time, it
emphasizes the property for ergodic processes. After solving
the linear programming, we get an optimal occupation measure
ρ() in terms of monetary cost minimization for each state/bid-
option pair. However, since

∑
ai∈A ρ(xi,ai) ≤ 1, we can not

directly use ρ(xi,ai) as the probability of taking action ai at
state xi. Instead, the optimal bid strategy µ can be determined
from ρ(xi,ai) as follows: µ(ai|xi) = ρ(xi,ai)∑

ai∈A ρ(xi,ai)
. Here

µ(ai|xi) represents the probability that taking bid option ai
at state xi. It is easy to verify that

∑
ai∈A µ(ai|xi) = 1. For

any number of input state, Algorithm 2 can return an optimal
selection strategy µ in polynomial time. As input of Algorithm
1, µ specifies the selection probability of different bid option
for different states.

Problem: LP-Minimizing Expected Monetary Cost
Objective: Minimize E[M ]
subject to:



(1) ρ(xi,ai) ≥ 0, ∀xi, ∀ai

(2) E[f ] · td ≥W
(3)

∑
xi∈X

∑
ai∈A ρ(xi,ai) = 1

(4) ∀xj ∈ X∑
xi∈X

∑
ai∈A ρ(xi,ai)(δxj (xi)− Pi,j(ai)) = 0

Algorithm 2 Computation of Optimal Bidding Strategy µ
Input: Execution deadline td, transition matrix P
Output: Optimal bidding strategy µ.

1: Solve corresponding CMDP linear programming to get the oc-
cupation measure ρ(xi,ai), ∀xi ∈ X, ∀ai ∈ A ;

2: Calculate optimal bidding strategy µ from ρ(xi,ai) as:

µ(ai|xi) =
ρ(xi,ai)∑

ai∈A ρ(xi,ai)

IV. PERFORMANCE EVALUATION

In our study we considered prices of Instance types that run
under Linux/UNIX OS and are deployed in the zone us-east-1.
Interested readers please refer to [1] for details. We simulated
the bid optimization algorithms based on the real price traces
in terms of the task completion time, total price, and the time
overhead of checkpointing and restart.

A. Evaluation Settings

Table. I shows our simulation setup in detail. We assume
that the checkpointing cost of running programs is known.
We used the constant value for the tc but using a variable
checkpointing cost is also possible in our system model. If not
stated otherwise, we use the Instance type D with task length T
of 164 minutes (2.7 hours). Furthermore, our models assume
that a job is executed on a single instance only, as running
several instances of same type in parallel yields the identical
time and proportional cost behavior.



TABLE I
VALUES OF PARAMETERS USED IN THIS PAPER

Parameter Value
Time to take a checkpoint (tc) 5 mins

Time to analyze price history for obtaining µ 3secs
Time to restart a task (tr) 10 mins

Starting date of training traces March 15th, 2011
Ending date of training traces May 7th, 2011
Starting date of testing traces May 21st, 2011
Ending date of testing traces June 18th, 2011

Testing traces for calculating pdf 10,080 mins
Minimum price granularity 0.001 USD

B. Impact of Constraint Parameters

In this part, we study how the constraint factors such as
budgetary constraint influence the distributions of the execu-
tion time and monetary cost per Instance. We also investigate
the overhead of the checkpoint/restart during the course of the
job’s computation.

1) Execution Time and Monetary Cost: Figure. 5(a) shows
execution time for various values of budgetary constraints and
desired confidence in meeting the job’s deadline cT . Instead
of assuming a fixed deadline, we study here the execution
time which can be achieved with confidence cT . As shown
in Figure 5(a), low budgets in conjunction with high values
of confidence lead to extremely long execution times, which
can be up to factor 15 compared to the task length T . For
sufficiently high budget (≥ 0.18 USD) the execution time
drops to half of the peak value. Only in the top range of the
budgetary constraints the execution time is on the order of T .

Figure. 5(b) shows the monetary cost under varied budgetary
constraints and desired confidence in meeting the budget cM .
Differently from the execution time, monetary cost increases
only slightly with the budget constraint, and is relatively
indifferent to the confidence. We explain this by the fact that
a long execution time comes primarily from out-of-bid (give
up) time. In this scenario, the user is not charged. Even during
an execution time of 35 hours there might be only small in-
bid time on the order of execution time T that is charged. In
conclusion, a user does not save much by bidding low (within
10%) but risks very high execution times.

We also find that a slight change of the budgetary confidence
cM has significant impact on the execution time. If the user
assumes 0.01 USD more for the budget, she will benefit from a
significant reduction of execution time at the same confidence
value.

2) Overhead of Checkpoint/restart: Figure 5(c) shows the
overhead of checkpoint/restart during the task execution,
where both the budgetary constraint and the confidence of
availability (in-bid) time cI . We denote availability time by
AT . We study the time overhead due to checkpointing and
restart. We observe that our approach outperforms previous
work in terms of low execution time and overhead while
meeting the budgetary constraint. This will be discussed in
detail later in Section IV-C. Clearly, low budgets lead to more
frequent out-of-bid situations, which increases the checkpoint-
ing overhead.
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Fig. 5. (a-b)Influence of budget constraint and desired confidences cT and
cM ; (c) Overhead of the checkpoint/restart for various budget constraints; (d)
Availability ratio depending on the budget constraint and task length T .

3) Influence of Task Length: Figure 5(d) illustrates how
the distributions of the availability ratio (AR) depends on the
task length T . Availability ratio is another importance feature
utilized in cloud computing to evaluate the efficacy of bidding
algorithms. We first give a T -free definition of availability
ratio (AR): the ratio of the total time in-bid to execution time
i.e., AR = AT/Te. Figure 5(d) shows AR(0.9) i.e., value v ≥
(90% of values assumed by AR) as a function of the budgetary
constraint and T . Here the influence of T is strongly visible,
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Fig. 6. CDF of execution time for different task length T on Instance type D, where (a) T = 144 mins (b) T = 164 mins (c) T = 184 mins.
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Fig. 7. CDF of monetary cost for different task length T on Instance type D, where (a) T = 144 mins (b) T = 164 mins (c) T = 184 mins.

especially for low budgets. As a consequence, distribution of
AR depend on T , and cannot be stored only as functions of
T -free factors.

C. Evaluation of Execution Time

In this section we study performance of AMAZING in terms
of the execution time compared to previous work [8], [16].
In previous work, bid price for each Instance hour is fixed
and various checkpointing strategies are proposed to balance
the reliability and monetary cost during the course of job’s
computation. The HOUR strategy proposed in [16] is the
hourly strategy, where a checkpoint is taken at a boundary of
each paid hour. We conduct extensive experiments to compare
the performance of AMAZING with the HOUR strategy, where
the bid price and the task length T are both varied.

Figure 6 shows the cumulative distribution function (CDF)
of the execution time Te according to different bidding strate-
gies and task lengths T . The budget constraint for our proposed
approach is set to be 0.18 USD per Instance. We used the same
settings of the remaining parameters, such as checkpointing
cost, rollback cost (restart cost) and processing capacity of the
Instance type as in [16], [8]. Obviously under the same task
length T , the AMAZING strategy has much lower time over-
head. We explain this by the fact that our bid option for each
Instance hour is computed from the Instance state transition
probability matrix (STPM). AMZAING exploits the predicted
Spot Price transition to solve the bid optimization problem,

thus it is more likely to help customers skip unnecessary
checkpoints/restart when the Spot Price is relatively smooth.
Consequently, more clock time is utilized to perform effective
computation, and a higher utilization ratio (UR) is achieved,
where UR = T/Te. On the other hand, the HOUR strategy
asks customers to take a checkpoint at a boundary of each
paid hour without looking ahead even if with high probability
the Spot Price could be even lower in the next Instance hour.
As a result, more than 20% of the availability time is taken
for hourly checkpointing/recovery, less time is utilized for real
program processing. In summary, achieving a higher utilization
ratio (UR) during the course of task computation is the main
reason that the proposed AMAZING strategy outperforms
the HOUR strategy.

We also observed that the advantage of AMAZING is even
more obvious when the task length T increases. As shown in
Figure 6, the HOUR strategy with various bid prices rarely
meets the confidence cT = 90% under the budget constraint of
0.18 USD. In contrast, AMAZING reaches 100% confidence
of meeting the deadline requirement at less than 4 hours.

D. Evaluation of Monetary Cost

In this section we study performance of AMAZING in
terms of the monetary cost compared to previous work [8],
[16]. In Figure 7, we illustrated the cumulative distribution
function (CDF) of the monetary costs per Instance according
to different bidding strategies and task length T . Under the



same task length T , the monetary cost followed the AMAZING
bid strategy is much lower (10%) than that conducted by the
HOUR strategy for various bid prices. The main reason is
that in the proposed AMAZING strategy, PTPM facilitates the
decision making by means of predicting the transition among
various Instance states and optimizing the balance of reliability
versus monetary costs. With intelligence about the Instance
state transition, AMAZING has more chance to obtain the Spot
Instances charged at lower prices by EC2, while keeping a high
utilization ratio to complete submitted jobs before deadline.

We also observed that the advantage of AMAZING is even
more obvious as the task length T increases. As shown in
Figure 7(c), the HOUR strategy with various bid prices can
not meets the budget constraint of 0.18 USD. In contrast,
AMAZING reaches budgetary confidence cM > 15% even
under harsh monetary cost constraint.

In the results of Figure 7(b), the HOUR checkpointing
strategy with two highest bid prices can not meet the user’s
budgetary constraints (0.18 USD), while the three lowest bid
prices can not meet the given deadline constraint (17.6 hours).
As we can observe from Figure 6 and 7 some bid prices
followed the HOUR strategy are not feasible. The proposed
AMAZING approach outperforms the HOUR strategy in terms
of both execution reliability and monetary cost.

V. RELATED WORK

Branches of related work include cloud computing eco-
nomics and resource management services. Several previous
work focus on the economics of Cloud Computing i.e.,
the performance and monetary benefits of Cloud Computing
compared to other traditional computing platforms such as
Clusters, Grids, and ISPs [7], [10]–[12], [14]. These economic
studies are important for understanding the performance trade-
offs among those computing platforms. However, these work
assume a static pricing model for EC2’s dedicated on-demand
Instances and do not address the specific and concrete deci-
sions an application scientist must make to balance bid price
and resource allocation when using a market-based Cloud
Computing platform, such as Spot Instances. Several systems
for monitoring and managing cloud applications exist [3]–
[5], but these systems currently do not consider cloud prices
that vary dynamically over time. Several middleware currently
deployed over Clouds have fault-tolerance mechanisms [9],
[13], but these mechanisms currently are not cost-aware either.

It is a critical challenge to control the balance of reliability
versus monetary costs in the context of unreliable resources
such as Spot Instances. Previous researchers investigate proba-
bilistic model [8] and checkpointing mechanisms [16]–[18] to
answer the question of how to bid given these constraints.
Given the maximum price that users are willing to pay
per hour, researchers tend to apply probabilistic model and
different checkpointing strategies to meet the requirements.
Nevertheless, these approaches were considered merely under
the fixed bid price model, and only periodically checkpointing
schemes were given in their study. In this work, we try
to design an optimal bidding strategy that utilizes both the

dynamic pricing model and the state transition intelligence to
meet customers’ computing requirements.

VI. CONCLUSION

In this work, we propose an effective bid option making
strategy to balance the reliability versus monetary costs in the
context of unreliable resources such as Spot Instances. Dif-
ferent from previous work on cloud applications, AMAZING
exploits the intelligence about state transition among various
Spot Instances to facilitates decision making during the course
of job’s computation. Our state context aware design tries to
intelligently adapt the bid using intelligence from detected
state patterns. In this paper, the decision making optimization
problem is formulated as a Constrained Markov Decision
Process (CMDP). After solving the CMDP, AMAZING applies
optimal bid decision to each Instance hour until the job’s
computation is completed. Our experimental results verifies
that AMAZING outperforms previous work in terms of both
execution time and monetary cost.
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