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Abstract. In this paper we study the set cover games when the elements
are selfish agents. In this case, each element has a privately known val-
uation of receiving the service from the sets, i.e., being covered by some
set. Each set is assumed to have a fixed cost. We develop several ap-
proximately efficient truthful mechanisms, each of which decides, after
soliciting the declared bids by all elements, which elements will be cov-
ered, which sets will provide the coverage to these selected elements, and
how much each element will be charged. For set cover games when both
sets and elements are selfish agents, we show that a cross-monotonic pay-
ment-sharing scheme does not necessarily induce a truthful mechanism.

1 Introduction

In the past, an indispensable and implicit assumption on algorithm design for in-
terconnected computers has been that all participating computers (called agents)
are cooperative; they will behave exactly as instructed. This assumption is being
shattered by the emergence of the Internet, as it provides a platform for distrib-
uted computing with agents belonging to self-interested organizations. This gives
rise to a new challenge that demands the study of algorithmic mechanism design,
the sub-field of algorithm design under the assumption that all agents are selfish
(i.e., they only care about their own benefits) and yet rational (i.e., they will
always choose their actions to maximize their benefits).

Assume that there are n agents {1, 2, · · · , i, · · · , n}, and each agent i has
some private information ti, called its type. For direct-revelation mechanisms,
the strategy of each agent i is to declare its type, although it may choose to
report a carefully designed lie to influence the outcome of the game to its liking.
For any vector t = (t1, t2, · · · , tn) of reported types, the mechanism computes
an output o as well as a payment pi for each agent i. For each possible output o,
agent i’s preference is defined by a valuation function vi(ti, o). The utility of agent
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i for the outcome of the game is defined to be ui = vi(ti, o) + pi. An action ai is
called a dominant strategy for player i if it maximizes its utility regardless of the
actions chosen by other players; a selfish agent will always choose its dominant
strategy. A mechanism is incentive compatible (IC) if for every agent reporting
its type truthfully is a dominant strategy. Another very common requirement in
the literature for mechanism design is individual rationality : the agent’s utility
of participating in the outcome of the mechanism is not less than the utility
of the agent if it does not participate at all. A mechanism is called truthful or
strategyproof if it satisfies both IC and IR properties.

A classical result in mechanism design is the Vickrey-Clarke-Groves (VCG)
mechanism by Vickrey [1], Clarke [2], and Groves [3]. The VCG mechanism
applies to maximization problems where the objective function g(o, t) is simply
the sum of all agents’ valuations. A VCG mechanism is always truthful [3], and
is the only truthful implementation, under mild assumptions, to maximize the
total valuation [4]. Although the family of VCG mechanisms is powerful, it has its
limitations. To use a VCG mechanism, we have to compute the exact solution
that maximizes the total valuation of all agents. This makes the mechanism
computationally intractable for many optimization problems.

This work focuses on strategic games that can be formulated as the set
cover problem. A set cover game can be generally defined as the following. Let
S = {S1, S2, · · · , Sm} be a collection of multisets (or sets for short) of a universal
set U = {e1, e2, · · · , en}. Element ei is specified with an element coverage require-
ment ri (i.e., it desires to be covered ri times). The multiplicity of an element ei

in a set Sj is denoted by kj,i. Let dmax be the maximum size of the sets in S, i.e.,
dmax = maxj

∑
i kj,i. Each Sj is associated with a cost cj . For any X ⊆ S, let

c(X ) denote the total cost
∑

Sj∈X cj of the sets in X . The outcome of the game
is a cover C, which is a subset of S. Many practical problems can be formulated
as a set cover game defined above. For example, consider the following scenario:
a business can choose from a set of service providers S = {S1, S2, · · · , Sm} to
provide services to a set of service receivers U = {e1, e2, · · · , en}.
? With a fixed cost cj , each service provider Sj can provide services to a fixed

subset of service receivers.
? There may be a limit kj,i on the number of units of service that a service

provider Sj can provide to a service receiver ei.
? Each service receiver ei may have a limit ri on the number of units of service

that it desires to receive (and is willing to pay for).

A mechanism of the game is to determine an optimal (or approximately
optimal) outcome of the game, according to a pre-defined objective function. We
design various mechanisms that are aware of the fact that the service receivers
and/or the service providers are selfish and rational. In addition to truthfulness,
we aim to achieve the following objectives, which are sometimes at odds with
each other and thus require proper tradeoffs.

? Economic Efficiency A mechanism is α-efficient if its output is no worse is
than α times the optimal solution with respect to the objective function.



? Budget Balance Let C(S) be the total cost incurred by providing services to
all agents in S. If ξi(S) is the cost charged to each agent i ∈ S, the cost-sharing
method is β-budget-balanced if

∑
i∈S ξi(S) ≥ β · C(S), for some 0 < β < 1.

? Fair Cost-Sharing We also need to make the cost-sharing method fair so
that it encourages agents to participate. Besides the well accepted measures
such as cross-monotonicity (i.e., the cost share of an agent should not go up
if more players require the service), we also consider a less-studied measure,
called fairness under core (i.e., the cost shares paid by any subset of agents
should not exceed the minimum cost of providing the service to them alone),
which is derived from game theory concepts [5].

? No Positive Transfers (NPT) The cost shares are non-negative.
? Voluntary Participation (VP) The utility of each agent is guaranteed to

be non-negative if an element reports its bid truthfully.
? Consumer Sovereignty (CS) When an agent’s bid is large enough, and

others’ bids are fixed, the agent will get the service.
We first consider the case where the elements to be covered are selfish agents;

each ei has a privately known valuation bi,r of the r-th unit of service to be re-
ceived. We show that the truthful cost-sharing mechanism designed by a straight-
forward application of a cross-monotonic cost-sharing scheme is not α-efficient
for any α > 0. We present another truthful mechanism such that the total valu-
ation of the elements covered is at least 1

dmax
times that of an optimal solution.

This mechanism, however, may have free-riders: some elements do not have to
pay at all and are still covered. We then present an alternative truthful mecha-
nism without free-riders and it is at least 1

dmax ln dmax
-efficient. When the sets are

also selfish agents with privately known costs, we show that the cross-monotonic
payment-sharing scheme does not induce a truthful mechanism; a set could lie
about its cost to improve its utility. The positive side is that the mechanism is
still truthful for elements.

Previously, Devanur et al. [7] studied the truthful cost-sharing mechanisms
for set cover games, with elements considered to be selfish agents. In a game
of this type, each element will declare its bid indicating its valuation of being
covered, and the mechanism uses the greedy algorithm [8] to compute a cover
with an approximately minimum total cost. Li et al. [6] extended this work
by providing a truthful cost-sharing mechanism for multi-cover games. They
also designed several cost-sharing schemes to fairly distribute the costs of the
selected sets to the elements covered, for the case that both sets and elements are
unselfish (i.e., the will declare their costs/bids truthfully). The case of set cover
games where sets are considered as selfish agents was also considered. Immorlica
et al. [9] provided bounds on approximate budget balance for cross-monotone
cost-sharing scheme for the set cover games.

2 Preliminaries

Typically, the objective function of a game is defined to be the total valuation
of the agents selected by the outcome of the game. In set cover games, when



sets are considered to be agents (e.g., [6]), maximizing the total valuation of
all selected agents is equivalent to minimizing the total cost of all selected sets.
However, if the elements are considered to be agents, the objective becomes to
maximize the total valuation of all elements (i.e., the sum of all bids covered).
Correspondingly, we need to solve the following optimization problem:

Problem 1. Each element ei is associated with a coverage requirement ri and
a set of bids Bi = {bi,1, bi,2, · · · , bi,ri} such that bi,1 ≥ bi,2 ≥ · · · ≥ bi,ri . An
assignment C is defined as the following: i) C ⊆ S; ii) a bid bi,r can be assigned
to at most one set Sπ(i,r) ∈ C; iii) for any Sj ∈ C, the assigned value νj(C) =∑

π(i,r)=j bi,r is no less than cj (Sj is “affordable”); iv) κj,i ≤ kj,i, where κj,i is
the number of bids of ei assigned to Sj ; v) if the number γi of assigned bids of ei

is less than ri, then the assigned bids must be the first γi bids (with the greatest
bid values) of ei. The total value V (C) =

∑
Sj∈C νj(C) is the sum of all assigned

bids in C. The problem is to find an assignment with the maximum total value.

This problem is NP-hard. In fact, the weighted set packing problem, which
is NP-complete, can be viewed as a special case of this problem. Therefore,
the VCG mechanism cannot be used here if polynomial-time computability is
required. In the rest of the paper, we concentrate on designing approximately
efficient and polynomial-time computable mechanisms.

All our methods follow a round-based greedy approach: in each round t, we
select some set Sjt to cover some elements. After the s-th round, we define the
remaining required coverage r′i of an element ei to be ri −

∑s
t′=1 κjt′ ,i. For any

Sj 6∈ Cgrd, the effective coverage k′j,i of ei by Sj is defined to be min{kj,i, r
′
i}.

The effective value (or value for short) vj of Sj is therefore
∑n

i=1

∑k′j,i

r=1 bi,ri−r′i+r

and it is affordable after s-th round if vj ≥ cj .
One scheme is to select a set Sj as long as it is still affordable, and assign all

appropriate bids to Sj . However, in this case an element may find it profitable
to lie about its bid, as we will show in Section 3. An alternative scheme is to
pick a set only if it is individually affordable, as defined as the following:

Definition 1. A set Sj is individually affordable by d bids if it contains at least
d bids each with a value no less than cj

d , for some d > 0.

Consequently, only the d largest bids are assigned to Sj , for the maximum
d such that Sj is individually affordable by d bids. Notice that here an implicit
assumption is that each set Sj can selectively provide coverage to a subset of ele-
ments contained by Sj . This is to prevent anybody from taking “free rides.” The
modified value ṽj of Sj is defined to be the total value of these bids. The follow-
ing lemma gives upper bounds on the total value lost by enforcing individually
affordable sets:

Lemma 1. For any set Sj ∈ S, i) if Sj is individually affordable, the modified
value ṽj is no less than 1

ln dmax
fraction of its value vj; ii) if Sj is not individually

affordable, its value is no more than ln dmax times the cost cj of Sj.



3 Set Cover Games with Selfish Receivers

In this section we first study the case where only elements are selfish.
An obvious solution to designing a truthful mechanism for single-cover set

cover games is to use a cross-monotone cost-sharing scheme based on a the-
orem proved in [10]: a cross-monotone cost-sharing scheme implies a group-
strategyproof mechanism when the cost function is submodular, non-negative,
and non-decreasing. A cost function C is submodular if C(T1)+C(T2) ≥ C(T1∪
T2) + C(T1 ∩ T2). A cost function C is non-decreasing if C(T1) ≤ C(T2) for any
T1 ⊆ T2. A cost-sharing scheme is group-strategyproof if, for any group of agents
who collude in revealing their valuations, if no member is made worse off, then
no member is made better off. For set cover games, it is not difficult to show by
example that the following cost functions are not submodular: the cost c(Copt)
defined by the optimal cover Copt of a set of elements, and the cost defined by
the traditional greedy method (i.e., in every round we select the set Sj with the
minimum ratio of cost cj over the number of elements covered by Sj and not
covered by sets selected before)3. Even if a cost function is submodular, some-
times it may be NP-hard to compute this cost, and thus we cannot use this cost
function to design a truthful mechanism. It was shown in [6] that there is a cost
function that is indeed submodular: for each element ei ∈ T , we select the set Sj

with the minimum cost that covers ei. Notice that, if it is a multi-cover set cover
game, each set Sj is only eligible to cover an element ei kj,i times. Let Clcs(T )
be all sets selected to cover a set of elements T . Then c(Clcs) is submodular,
non-decreasing, and non-negative.

Given the cost function c(Clcs), it was shown in [6] that the cost-sharing
method ξi(T ), defined as ξi(T ) =

∑
Sj∈Clcs(T )

κj,i·cjP
a κj,a

, is budget-balanced, cross-
monotone and a 1

2n -core. Here κj,i is the number of bids of ei assigned to Sj . For
a single-cover set cover game, based on the method described in [10], given the
single bid bi,1 by each element ei, we can define a mechanism M(ξ) as follows.

Algorithm 1 Mechanism for single cover games via cost-sharing.
1: S0 = U ; t = 0;
2: repeat
3: St+1 = {ei | bi,1 ≥ ξi(S

t)}; t = t + 1;
4: until St−1 = St

5: The output of mechanism M(ξ) is Ũ(ξ, b) = St,
6: The charge by M(ξ) to an element ei is ξi(Ũ(ξ, b)).

The following theorem is directly implied by the result in [10].

Theorem 1. The cost-sharing mechanism M(ξ) is group-strategyproof, budget-
balanced, and meets NPT, CS, and VP.
3 Notice that the greedy method we will present later is different from this traditional

greedy set cover method.



However, this mechanism is not efficient at all. We can construct an example
to show that it cannot be α-efficient for any α > 0. Next, in Algorithm 2,
we describe a new greedy algorithm that computes for a single cover game an
approximately optimal assignment Cgrd. Starting with Cgrd = ∅, in each round
t′ the algorithm adds to Cgrd a set Sjt′ with the maximum effective value.

Algorithm 2 Greedy algorithm for single cover games.
1: Cgrd←∅.
2: For all Sj ∈ S, x compute effective value vj .
3: while S 6= ∅ do
4: pick set St in S with the maximum effective value vt.
5: Cgrd←Cgrd ∪ {St}, S←S \ {St}.
6: for all ei ∈ St do
7: π(i, 1)←t; remove ei from all Sj ∈ S.
8: for all Sj ∈ S do
9: update effective value vj .

10: If vj < cj , then S←S \ {Sj}.

The following theorem establishes an approximation bound for the algorithm.

Theorem 2. Algorithm 2 computes an assignment Cgrd with a total value V (Cgrd) ≥
1

dmax
· V (Copt).

Obviously, Algorithm 2 satisfies the monotone property defined in [11]: when
an element ei was selected with a bid bi,1, then it will always be selected with
a bid bi,1 > bi,1. This monotone property implies that there is always a truthful
cost-sharing mechanism using Algorithm 2 to compute its output. Further, Al-
gorithm 2 is a round-based greedy method that satisfies the cross-independence
property defined in [11]. Thus, the payment to each element can always be com-
puted in polynomial time. We include the description of this mechanism in the
full version of this paper [13].

However, Algorithm 2 and and its induced cost-sharing mechanism together
may produce an output such that the payment by a certain element is 0. To avoid
this zero payment problem, we use a slightly different algorithm to determine the
outcome of the game. Our modified greedy method (described in Algorithm 3)
instead only selects individually affordable sets. When a set Sj is added into Cgrd,
the algorithm only assigns to Sj the largest d bids, such that Sj is individually
affordable with d bids, for the maximum such d. Using the same argument, we
can show that there is a polynomial-time computable and truthful cost-sharing
mechanism using Algorithm 3.

On the approximate efficiency of the modified greedy algorithm, we have

Theorem 3. When only individually affordable sets are allowed to be picked,
the assignment Cgrd computed by Algorithm 3 has a total value that is: 1) no less
than 1

dmax
· V (Copt), if the optimal assignment Copt also allows only individually



Algorithm 3 Improved greedy algorithm for single cover games.
1: Cgrd←∅.
2: For all Sj ∈ S, compute the modified value ṽj .
3: while S 6= ∅ do
4: pick set St in S with the maximum modified value ṽt.
5: Cgrd←Cgrd ∪ {St}, S←S \ {St}.
6: dt← the largest d such that the set St is individually affordable by d largest

unsatisfied bids.
7: for all ei ∈ St do
8: if bi,1 is one of the largest dt unsatisfied bids in St then
9: π(i, 1)←t; remove ei from all Sj ∈ S.

10: for all Sj ∈ S do
11: update the modified value ṽj .
12: If ṽj < cj , then S←S \ {Sj}.

affordable sets; 2) no less than 1
2dmax

· V (Copt), if the optimal assignment Copt

allows sets that are not individually affordable, but all sets in S are individually
affordable initially.

Theorem 2 and Theorem 3 can easily be extended to the case of multi-cover.
However, when it comes to computing payments, there is a problem: in the multi-
cover case, an element can lie in different ways, and it may not be of its best
interest if it achieves the maximum utility in the first bid (or the last bid). In
that case, how can we compute payments efficiently?

To overcome the computational complexity of computing payments, we de-
sign another mechanism using a different greedy algorithm to compute the out-
come of the game. This algorithm is the same as Algorithm 3 of [6]. In [6] it
is shown that this mechanism produces an outcome with a total cost no more
than ln dmax times the total cost of an optimal outcome. We claim that the out-
come is also approximately efficient with respect to the total valuation of the
assigned (covered) bids. Further, due to the monotone property, this mechanism
is truthful.

Theorem 4. Algorithm 3 of [6] defines a budget-balanced and truthful mech-
anism. Further, it is 1

dmaxHdmax
-efficient, if all sets are individually affordable

initially.

4 Set Cover Games with Selfish Providers and Receivers

So far, we assume that the cost of each set is publicly known or each set will
truthfully declare its cost. In practice, it is possible that each set could also be
a selfish agent that will maximize its own benefit, i.e., it will provide the service
only if it receives a payment by some elements (not necessarily the elements
covered by itself) large enough to cover its cost. In [6], Li et al. designed several
truthful payment schemes to selfish sets such that each set maximizes its utility



when it truthfully declares its cost and the covered elements will pay whatever
a charge computed by the mechanism. They also designed a payment sharing
scheme that is budget-balanced and in the core.

To complete the study, in this section, we study the scenario when both the
sets and the elements are individual selfish agents: each set Sj has a privately
known cost cj , while each element ei has a privately known bid bi,r for the r-th
unit of service it shall receive and is willing to pay for it only if the assigned cost is
at most bi,r. It is well-known that a cross-monotone cost sharing scheme implies
a truthful mechanism [10]. Unfortunately, since the sets are selfish agents, it is
impossible to design any cost-sharing scheme here, and the best we can do is to
design some payment sharing scheme. It was shown in [12] that a cross-monotone
payment sharing scheme does not necessarily induce a truthful mechanism by
using multicast as a running example: a relay node could lie its cost upward or
downward to improve its utility.

Given a subset of elements T ⊆ U and their coverage requirement ri for
ei ∈ T , a collection of multisets S, and each set Sj ∈ S with cost cj , let MS

be a truthful mechanism that will determine which sets from S will be selected
to provide the coverage to all elements T , and the payment pj to each set Sj .
We assume that the mechanism is normalized: the payment to an unselected set
Sj is always 0. Based on two monotonic output methods, the traditional greedy
set cover method (denoted as GRD) and the least cost set method (denoted
as LCS) for each element, Li et al. [6] designed two truthful mechanisms for
set cover games. Let E(Sj , c, T, MS) be the set of elements covered by Sj in the
output of MS . In the remaining of the paper, we assume that the mechanism MS

satisfies the property that if a set Sj increases its cost then the set of elements
covered by Sj in the output of MS will not increase, i.e., E(Sj , c|jd, T, MS) ⊆
E(Sj , c, T, MS) for d > cj . This property is satisfied by all methods currently
known for set cover games.

Let ξi,j(T ) be the shared payment by element ei for its jth copy when the
set of elements to be covered is T , given a truthful payment scheme MS to
all sets. Following the method described in [10], given the set U of n elements
and their bids B1, · · · , Bn we can compute the outcome Ũ(ξ, B) as the limit
of the following inclusion monotonic sequence: S0 = U ; St+1 = {ei | bi,j ≥
ξi,j(St)}. Notice that here we have to recompute the payments to all sets, and
thus the shared payments by all elements, when the set of elements to be covered
is changed from St to St+1. In other words, we define a mechanism ME(ξ)
associated with the payment sharing method ξ as follows: the set of elements to
be covered is Ũ(ξ, B), the charge to element ei is ξi,j(Ũ(ξ,B)) if ei ∈ Ũ(ξ,B);
otherwise its charge is 0. Based on the truthful mechanism using LCS as output
for set cover games, Li et al. [6] designed a payment sharing mechanism that is
budget-balanced, cross-monotone, and in the core.

Hereafter, we assume that for the payment-sharing scheme ξ, the payment
pj to the set Sj is only shared among the elements, i.e., E(Sj , c, T, MS), covered
by Sj . This property is satisfied by the payment-sharing methods studied in [6]
for set cover games.



Theorem 5. For set cover games with selfish sets and elements, a truthful mech-
anism MS to sets and a cross-monotone payment sharing scheme ξ imply that
in mechanism ME each set Sj cannot improve its utility by lying upward its cost.

Unfortunately, for set cover games, we show that a truthful mechanism MS

to sets and a cross-monotone payment sharing scheme ξ do not induce a truthful
mechanism ME for each element. Figure 1 illustrates such an example when LCS
is used as the output, a set sj can lie its cost downward to improve its utility
from 0 to pj − cj . A similar example can be constructed when the traditional
greedy method is used as the output. When set S2 is truthful, although LCS
will select it to cover element e1 with payment p2 = 5, but the corresponding
sharing by e1 is ξ1 = 5, which is larger then its bid b1,1 = 4. Consequently, set
S2 will not be selected and element e1 will not be covered (see Figure 1 (c)). On
the other hand, if S2 lies its cost downward to c2 = 2, its payment is still p2 = 5,
but now, since it covers elements e1 and e2, the shared payments by e1 and e2

become ξ1 = 3.5 and ξ2 = 1.5. Thus, the set S2 becomes affordable by elements
e1 and e2.

3

b  =4b  =4 21

c  =51 c  =42 c  =3

2b  =4b  =4 21

c  =51 c  =42 c  =33

2 p  =43p  =5

ξ  =5 ξ  =41

(a) sets-elements (b) LCS output

2b  =4b  =4 21

c  =51 c  =42 c  =33
p  =43

ξ  =4 2b  =4b  =4 21

c  =51 c  =22 c  =33

2p  =5

ξ  =3.5 ξ  =1.51

(c) selected elements (d) output if S2 lies

Fig. 1. An example that a set can lie its cost to improve its utility when LCS is used.

We leave it as future work to study whether there exists a truthful mechanism
to select selfish sets to cover selfish elements using the combination of a truthful
mechanism for sets, and a good payment-sharing method for elements.

5 Conclusion

Strategyproof mechanism design has attracted a significant amount of attentions
recently in several research communities. In this paper, we focused the set cover
games when the elements are selfish agents with privately known valuations of
being covered. We presented several (approximately budget-balanced) truthful
mechanisms that are approximately efficient. See [13] for more details about the
algorithms and the analysis. Mechanism 1 is based on a cross-monotone cost-
sharing scheme and thus is budget-balanced and group-strategyproof. However,



in the worse case it cannot be α-efficient for any α > 0. The second mechanism is
based on Algorithm 2 and its induced cost-sharing mechanism and it produces
an output that has a total valuation at least 1

dmax
of the optimal. However,

this mechanism may charge an element 0 payment. The third mechanism, based
on Algorithm 3, avoids this zero payment problem, but it is only 1

2dmax
-efficient

under some assumptions. We conducted extensive simulations to study the actual
total valuations of three mechanisms. In all our simulations, we found that the
first mechanism (based on cost-sharing) and the second mechanism have similar
efficiencies in practice. As expected, the third mechanism always produces an
output that has less total valuations than the other two methods since it only
picks sets that are individually affordable.

When the service providers (i.e. sets) are also selfish, we show that a cross-
monotonic payment-sharing scheme does not necessarily induce a truthful mech-
anism. This is a sharp contrast to the well-known fact [10] that a cross-monotonic
cost-sharing scheme always implies a truthful mechanism.
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