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ABSTRACT
In a pioneering work, Gupta and Kumar [8] studied the critical
transmission range needed for the connectivity of random wireless
networks. Their result implies that, given a square region of

√
n×√

n, the asymptotic number of random nodes (each with transmis-
sion range 1) needed to form a connected network is Θ(n lnn)
with high probability. This result has been used as cornerstones
in deriving a number of asymptotic bounds for random multi-hop
wireless networks, such as network capacity [7, 10, 11, 14]. In this
paper we show that the asymptotic number of nodes needed for
connectivity can be significantly reduced to Θ(n ln lnn) if we are
given a “second chance” to deploy nodes. More generally, under
some deployment assumption, if we can deploy nodes in k rounds
(for a constant k) and the deployment of the ith round can utilize
the information gathered from the previous i− 1 rounds, we show
that the number of nodes needed to provide a connected network
with high probability is Θ(n ln(k) n). (See Eq (1) for the definition
of ln(k) n.) Similar results hold when we need deploy sensors such
that the sensing regions of all sensors cover the region of interest.
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1. INTRODUCTION
In wireless ad hoc networks, autonomous nodes form self-organized

networks without centralized control or infrastructure, i.e. there are
no wired infrastructure or cellular networks. In the last few years,
there has been a big interest in ad hoc wireless networks, espe-
cially, wireless sensor networks, as they have tremendous military
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and commercial applications. Ad hoc wireless networks can be de-
ployed quickly anywhere and anytime as they eliminate the com-
plexity of the infrastructure setup. In all such application scenarios,
quick and easy deployment of a connected network is essential for
wireless ad hoc networks, especially wireless sensor networks.

There are two ways to deploy a wireless sensor network: random
deployment and precise deployment. Random deployment means
setting positions of wireless sensor nodes randomly and indepen-
dently in the target area. On the other hand, in precise deployment,
nodes are set at exact positions one by one according to the com-
munication range of the nodes. Usually, the positions are chosen to
minimize the number of nodes required to achieve certain deploy-
ment goal. Clearly, precise deployment method is time consuming
however costing the least number of nodes. Random deployment
method is fast in practice though costs a relatively larger number of
nodes to achieve the same deployment goal. Considering practical
application scenarios, random deployment is a feasible and practi-
cal method, and sometimes it is the only feasible strategy (such as
deploying sensors in a hostile environment).

Consider a square region of size a×a. We assume all nodes have
the same communication range r. Each wireless sensor node can
communicate directly with all neighboring nodes within its com-
munication range. One natural question is that how many nodes
are needed to construct a connected network if all nodes are placed
in the region randomly and uniformly. Gupta and Kumar [8] stud-
ied the critical transmission range (CTR) for connectivity: what is
the CTR for connectivity if we randomly deploy n sensor nodes in
a unit square. Their pioneering work showed that if n nodes V are
uniformly randomly deployed in a unit square and the transmission
range r satisfies that nπr2 ≥ c1 lnn for some constant c1, then the
network G(V, r) (two nodes of V are connected in G iff their Eu-
clidean distance is at most r) will be connected with probability 1
when n → ∞. This implies that, when all nodes have transmission
range r, the asymptotic number m of nodes needed to deploy in a
square of size a × a such that the resultant network is connected
satisfies that mπ( r

a
)2 = Θ(lnm). Let n = (a/r)2. Therefore

m = Θ(n lnn). Another similar problem is to study the number
of random nodes to deploy in the square region such that the entire
region is covered by the disks centered at the sensors with radius
r (called sensing disk for each node). Previous results [17, 18]
proved that it costs m = Θ(n lnn) nodes to cover the target square
area with high probability when all sensor nodes are deployed ran-
domly. Consequently, if we randomly deploy Θ(n lnn) nodes in
the square region, the resultant network will be connected and the
square region will be covered by the sensors with high probabil-
ity. On the other hand, if precise deployment is available, only
Θ(n) sensors is needed to achieve both connectivity and coverage
requirements. In other words, the cost overhead introduced by the



convenient random deployment is that we need an Ω(lnn) factor
of more sensors. Observe that, if we require the resultant network
to be κ-connected or g-coverage for some constants κ ≥ 1 and
g ≥ 1, the number of nodes needed by a random deployment is
still in the order of Ω(n lnn) [16, 17, 19, 20]. As we mentioned,
convenient deployment of wireless sensor networks is critical for
some applications, however, reducing the cost (i.e., the number of
sensor nodes needed by the applications) is also important. For
example, currently the price of a wireless sensor typically ranges
from $100 to $500, e.g., ITS400 - IMOTE2 sensor board by cross-
bow costs about $249 (as of Jan. 25th, 2008). Thus, it is important
to reduce the number of sensors while do not sacrifice the conve-
nience of random deployment.

In this paper, we will employ the concept of “second chance”
to design a random deployment method. In our second chance de-
ployment approach, we first randomly deploy a certain number of
wireless sensor nodes S1 into the targeted deployment region. We
then use the information collected from the nodes in S1 to decide
where to deploy sensors S2 in the second round of deployment.
The sensors S1 ∪ S2 deployed in both rounds will form the final
deployment.

We assume the target deployment region is a square region R of
size a × a. Intuitively, in the first round, each node is uniformly
and randomly placed into the region. In following rounds, how-
ever, we assume the ability to reduce the region of placement for
random nodes. Assume each node placed in the covers a disk with
radius r and the union of all suck disks from the sensors in the
first i − 1 round is R1. In ith round, we assume the ability to ran-
domly deploy nodes in region R \ R1. In practice, though, it is
hard to acquire R1. Instead, if we appropriately choose the num-
ber of nodes deployed in the first round, there exists a unique large
connected component which touches the boundary. Therefore, it
is easy to detect this large component simply by querying the sen-
sors on the boundary of the deployment region. Localization algo-
rithms [1, 2, 5, 6, 15] exist to find the location of the wireless nodes
in this component, which gives us a subset R′ of R1. We assume
we are able to randomly deploy wireless sensor nodes in the region
R \R′. In this paper, we study both cases.

Formally, in a “second chance” deployment (or more generally
a k-phrase deployment), we find a giant component formed by the
sensors in S1 in first round (or the first i−1 rounds). Let R′ be the
region covered by this giant component. We then deploy S2 in the
region excluding R′.

Assume the communication range for the wireless nodes is r.
Let n = (a/r)2. We first prove that, by properly choosing the size
of S1, there is a giant connected component formed by S1 which
touches the boundary of the deployment region. We then theo-
retically prove that our second chance deployment strategy costs
Θ(n ln lnn) nodes to form a connected network with high prob-
ability, and costs Θ(n ln lnn) nodes to cover the target area with
high probability. This bound is tight for any “second chance” method,
which means that one cannot achieve the same goal with asymptoti-
cally less than Θ(n ln lnn) nodes by any “second chance” method.
Our results, together with the power of multiple choices (by Mitzen-
macher [13]) show that the system performances can be greatly im-
proved if the choices (temporal choices used in this paper and spa-
cial choices used in [13]) are only slightly relaxed. Our second
chance deployment will significantly reduce the number of sen-
sors required to achieve connectivity and coverage. Assume that
n = 1000, the traditional one-phase random deployment will need
around n logn ≃ 10, 000 sensors, while our second chance de-
ployment strategy only requires about n log log n ≃ 3322 sensors.
Thus, the second-chance deployment strategy could save us about

66% number of sensors in this case. Our extensive simulations con-
firm our theoretical findings.

The results developed here could be used to enhance our study
of the performances of (random) wireless networks in several as-
pects. Firstly, using a second chance deployment (or more gener-
ally, a k-phase deployment), we can significantly reduce the num-
ber of wireless devices required to accomplish certain missions,
e.g., forming a connected network, providing full monitoring cov-
erage of a certain region. The saving on the number of devices
is already in the order of Θ( logn

log logn
) even if we randomly deploy

the wireless sensors nodes in two rounds. Secondly, when a wire-
less network is deployed using a “second chance” deployment, we
will inherently improve the per-node unicast (or multicast) capac-
ity because the network nodes density is reduced compared with the
traditional random deployment. The findings in this paper can be
viewed as the first step towards the study of trade-offs between net-
work performances and the complexity of deploying the network.
It remains as a future work to study the asymptotic network ca-
pacity (and other properties such as the critical transmission range
for certain localized routing methods) of such randomly deployed
networks using “second chance” deployment.

The rest of paper is organized as follows. In Section 2, we
present new technical lemmas on the traditional bin and balls prob-
lem, which will be used to derive the results in this paper. These
results could be of independent interest. In Section 3, we study the
largest component of a random wireless network when m nodes
are randomly deployed in a square region of n squarelets. We ob-
tain tight bounds on the number of sensors nodes for the coverage
problem in Section 4 and connectivity problem (and related criti-
cal range for connectivity) in Section 5 under the “second chance”
deployment strategy. Extensive simulations are presented in Sec-
tion 6. We conclude the paper in Section 7 with the discussion of
some future problems.

2. TECHNICAL LEMMAS
Our analysis will be based on some key results from the balls and

bins problem. In this section, we revisit the problem of randomly
placing m identical and indistinguishable balls into n distinguish-
able (numbered) bins. Instead of placing balls in one round (i.e.,
in one shot), we study the case that we are able to identify the
empty bins after previous rounds of random placement and place
balls into the remaining empty balls in the next round uniformly
and randomly. We are interested in the asymptotic number of balls
required to fill all the bins with high probability under our new
model in k rounds. Here an event is said to happen with high prob-
ability (w.h.p.), if it happens with probability at least 1− 1

n
. Placing

balls into bins can be used to study the random wireless sensor de-
ployment by the following observation: Assuming that each sensor
has communication range 1, we partition the deployment region
into grids (with cell size 1/

√
2); To cover the region using sensing

disks defined by randomly placed sensors, it suffices that each bin
is filled with at least one sensor. A similar analog can be made be-
tween the connectivity of the sensor networks and the number of
unit bins (See Section 2.2).

2.1 Filling Empty Bins
Let n be the number of bins. We denote

ln(k) n = ln ln . . . ln︸ ︷︷ ︸
ktimes

n. (1)

Notice that here ln(k) n is only defined when ln(k−1) n > 0.



FACT 1. For all values of n and t with n ≥ 1 and |t| ≤ n, it
holds that

et
(
1− t2

n

)
≤
(
1 +

t

n

)n

≤ et.

DEFINITION 1 (k-ROUND BALL PLACEMENT (k-RBP)). In
a k round ball placement, balls are randomly placed into n bins in
k rounds. Let n0 = n be the original number of empty bins and
ni be the number of empty bins after i rounds. In the ith round,
mi balls are randomly placed into ni−1 remaining empty balls.
m =

∑k
i=1 mi is the total number of balls placed.

Observe that a key requirement here for k-RBP is, after the first
i rounds of placing balls randomly, we are able to determine the
empty bins left and randomly place balls into the remaining empty
balls. Let random variable Z be the number of empty bins when
m balls are placed randomly into n bins in one round and µ be its
expected value. Then

µ = E[Z] = n

(
1− 1

n

)m

∼ ne−
m
n .

Define the function H(m,n, z) as the probability that Z = z, i.e.,
H(m,n, z) = Pr(Z = z). The following occupancy bounds were
proved in [9].

LEMMA 1 (OCCUPANCY BOUND 1 [9]). For any θ > 0,

Pr[|Z − µ| ≥ θµ] ≤ 2 exp

(
−θ2µ2(n− 1/2)

n2 − µ2

)
(2)

LEMMA 2. (OCCUPANCY BOUND 2 [9]) For θ > −1,

H(m,n, (1 + θ)µ) ≤ exp(−((1 + θ) ln[1 + θ]− θ)µ) (3)

In particular, for −1 ≤ θ < 0,

H(m,n, (1 + θ)µ) ≤ exp

(
−θ2µ

2

)
(4)

Here exp(x) denotes ex for any x. The following lemma is di-
rectly implied by the Occupancy Bound 2 proved in [4, 9].

LEMMA 3. Assume that m balls are randomly placed into n
bins. Let variable Z be the number of empty bins. We have:

µ = E[Z] = n(1− 1

n
)m (5)

Pr[Z = 0] = exp
(
−µ

2

)
(6)

2.1.1 Upper bound
We are interested in the number of balls required to fill n bins

w.h.p. in any k round ball placement. In particular, we are inter-
ested in m =

∑k
i mi so that with high probability there are no

empty bins left.
We assume k ≥ 2. In order to make our argument valid, we

require that: ln(k) n ≥ 2 which implies n ≥ ee
2

≥ 14. We also
require that

n(ln(k) n− 1) ≥ 2(lnn)2. (7)

This condition will hold when n is sufficiently large (depending on
k). The following lemma discusses the case when we want to cover
the bins by placing balls in one round.

LEMMA 4. If we randomly place (1+ϵ)n lnn balls into n bins,
then all the n bins are occupied with probability at least 1 − 1

nϵ ,
where 0 < ϵ ≤ 1 is a constant.

PROOF. The probability p that there is at least one empty bin
left is

p ≤

(
n

1

)(
1− 1

n

)(1+ϵ)n lnn

≤ n

(
1

e

)(1+ϵ) lnn

=
1

nϵ

Thus, the probability that all the n bins are occupied is at least
1 − 1

nϵ . This implies that 2n lnn balls (by setting ϵ = 1) suffices
to cover n bins with probability at least 1− 1

n
.

For the simplicity of presentation later, we define function

f(n, k, δ) =
1

ln(k) n
(1− ln(k−1) n ln δ

n
).

LEMMA 5. Let constant δ ∈ (0, 1). If we randomly place (1 +

f(n, k, δ))n ln(k) n balls into n bins, then with probability at least
(1− δ), the number of empty bins afterwards is at most n

ln(k−1) n
.

PROOF. To simply our notation, let s = ln(k−1) n and then
ln s = ln(k) n. Let us consider the first n

s
bins. The probability

that these bins are empty is:

(1− 1

s
)(1+f(n,k,δ))n ln s ≤ e−

(1+f(n,k,δ))n ln s
s .

By union bound, the probability that there are more than n
s

empty
bins is at most:

e−
(1+f(n,k,δ))n ln s

s

(
n
n
s

)
≤ e−

(1+f(n,k,δ))n ln s
s (e · s)

n
s . (8)

The inequality is based on the Sterling’s approximation: ∀0 <
m ≤ n, ( n

m

)m
≤

(
n

m

)
≤
(ne
m

)m
.

Because s1/s = e
ln s
s , the above inequality (8) actually becomes

e−
(1+f(n,k,δ))n ln s

s (e·s)
n
s ≤ e

n
s
(1−f(n,k,δ) ln s) = δ. This finishes

the proof.

LEMMA 6. Let 2 ≤ l ≤ k − 1. Randomly place 2n balls
in n

ln(l) n
bins. With probability at least (1 − 1

kn
), the number of

empty bins afterwards is at most n

ln(l−1) n
.

PROOF. The probability p that the first n

ln(l−1) n
bins are empty

is:

p =

(
1− ln(l) n

ln(l−1) n

)2n

≤ e
− 2n ln(l) n

ln(l−1) n .

By union bounds, the probability that there are more than n

ln(l−1)

empty bins is at most:

p ·

(
n

ln(l) n
n

ln(l−1) n

)
≤ p

(
e ln(l−1) n

ln(l) n

) n

ln(l−1) n

≤ p · e
n

ln(l−1) n (ln(l−1) n)
n

ln(l−1) n

≤ e
− 2n ln(l) n

ln(l−1) n e
n

ln(l−1) n e
n ln(l) n

ln(l−1) n

≤ e
n

ln(l−1) n
(ln(l) n−1)

≤ e−2 lnn ≤ 1

kn
.

The last inequality comes from eq. (7). This finishes the proof.



We are now ready to study the upper bound for the number of
balls needed for covering n bins w.h.p. using k-RBP.

THEOREM 7. Let k ≥ 2 be an integer constant. There exists a
k round ball placement in n bins, such that with (1+f(n, k, 1

kn
)+

2(k−1)

ln(k) n
)n ln(k) n balls, it is sufficient to fill all the bins with proba-

bility at least (1− 1
n
).

PROOF. We first place (1+f(n, k, 1
kn

))n ln(k) n balls randomly
into n empty bins. From Lemma 5, with probability at least (1 −
1
kn

), the number of empty bins after first round is at most n

ln(k−1) n
.

In ith round, for 2 ≤ i ≤ k − 1, we place 2n balls randomly
into the empty bins after (i−1)’th round. By Lemma 6, after k−1
round, with probability at least (1 − 1

k·n )
k−1 ≥ 1 − k−1

kn
, the

number nk−1 of empty bins left is at most n
lnn

.
In the k-th round, we randomly place another 2n balls. We show

that all the left nk−1 empty bins are filled with high probability.
From Lemma 4, in order to achieve probability at least (1 − 1

kn
),

it requires (1 + ln(kn)
lnnk−1

)nk−1 lnnk−1 ≤ 2n balls (when nk−1 ≤
n

lnn
and k ≤ lnn). Thus if the number nk−1 of empty bins left

before the last round k is at most n
lnn

, randomly placing 2n balls
suffices to fill all the empty balls with probability at lest (1− 1

kn
).

In total, we place (1+f(n, k, 1
kn

)+ 2(k−1)

ln(k) n
)n ln(k) n balls. The

probability of success is at least (1− 1
k·n )

k ≥ (1− 1
n
). This finishes

the proof.

Remark: Note that f(n, k, 1
kn

+ 2(k−1)

lnk n
) = o(1) when n → ∞

and k remains constant. Essentially, it is sufficient to use n ln(k) n
balls to fill n bins with high probability by a k round ball place-
ment.

2.1.2 Lower bound
We now show that the bound of n ln(k) n in Theorem 7 is tight.

In particular, if the number of balls is (1 − o(1))n ln(k) n, any k
round ball placement will always have empty bins left with con-
stant probability. We assume ln(k+1) n ≥ 1. We first prove the
case when k = 1.

LEMMA 8. Randomly place n lnn balls into n bins. With con-
stant probability, there is at least one empty bin.

PROOF. It is easy to show that the expected number of empty
bins is at least:

n(1− 1

n
)n lnn ≥ 1− (lnn)2

n
≥ 1/2.

From Lemma 3, the probability that there is no empty bin left is
at most e−1/4. Thus, with constant probability (at least 1−e−1/4),
there is at least one empty bin.

We then prove the lower bound for any k-RBP. Compared with
the upper bound on the balls required, the difficulty here is that we
do not have any constraints on the distribution of m balls over k
rounds of the deployment. We essentially have to show that, given
a certain number of m balls, regardless of the choices of mi (1 ≤
i ≤ k), there are empty bins with constant probability when m is
less than some number.

LEMMA 9. Let k > 1 be an integer constant. Randomly place
(1− 4 ln(k+1) n

ln(k) n
)n ln(k) n balls into n bins in one round. With con-

stant probability, there are at least n(ln(k) n)2

ln(k−1) n
empty bins after-

wards.

PROOF. Let ϵ = 4 ln(k+1) n

ln(k) n
. Let Z be the random variable for

the number of empty bins. The expected number of empty bins is:

µ = E[Z] = n(1− 1

n
)(1−ϵ)n ln(k) n.

Because 1− (1−ϵ) ln(k) n
n

≥ 1/2, by Fact 1,

µ ≥ n

2
e−(1−ϵ) ln(k) n.

Since ln(k+1) n ≥ 1, we have ln(k) n ≥ e > 2. Also e−(1−ϵ) ln(k)

=
(ln(k) n)4

ln(k−1) n
≥ 4(ln(k) n)2

ln(k−1) n
, we have

µ ≥ 2n(ln(k) n)2

ln(k−1) n
.

By the occupancy bound, the probability that Z ≥ µ/2 is at least:

Pr[Z ≥ µ

2
] ≥ 1− Pr[|Z − µ| ≥ µ

2
] ≥ 1− 2e

−µ2(n−1/2)

n2−µ2 .

As n ≥ (lnn)4, we have µ2 ≥ 2n. Consequently,

Pr[Z ≥ µ

2
] ≥ 1− 2e−

µ2

2n ≥ 1− 2

e
> 0.

This finishes the proof.

LEMMA 10. Let 2 ≤ l ≤ k. Randomly place n ln(k) n balls

into n(ln(l) n)2

ln(l−1) n
bins in one-round. With constant probability, the

number of remaining empty bins afterwards is at lest n(ln(l−1) n)2

ln(l−2) n
.

PROOF. Because ln(k) n ≤ ln(l) n when l ≤ k, let us assume
we place n ln(l) n balls instead. Because we actually increase the
number of balls. The argument on the lower bound still holds with
fewer balls.

Let Z be the random variable for the number of empty bins. The
expected number of empty bins is:

µ = E[Z] =
n(ln(l) n)2

ln(l−1) n
(1− ln(l−1) n

n(ln(l) n)2
)n ln(l) n.

Let t = ln(l−1) n

ln(l) n
. We assume n ≥ 2(ln(l−1) n)2, which implies

that (1− t2

n ln(l) n
) ≥ 1/2. By Fact 1, we have

µ ≥ n(ln(l) n)2

ln(l−1) n
(1− t2

n ln(l) n
)et.

We assume n is sufficiently large such that ln(l−1) n ≥ ln 4 +

3 ln(l) n. Hence µ ≥ 2n(ln(l−1) n)2

ln(l−2) n
. Let m = n(ln(l) n)2

ln(l−1) n
. From

the occupancy bound,

Pr[Z ≥ µ

2
] ≥ 1− Pr[|Z − µ| ≥ µ

2
] ≥ 1− 2e

−µ2(m−1/2)

m2−µ2 .

We assume n is sufficiently large such that n ≥ (lnn)4, µ2 ≥
2m.

Pr[Z ≥ µ

2
] ≥ 1− 2e−

µ2

2m ≥ 1− 2

e
> 0.

This finishes the proof.

THEOREM 11. Let k be an integer constant. Randomly place
m = (1 − 4 ln(k+1) n

ln(k) n
)n ln(k) n balls into n bins by any k-RBP.

With constant probability, there exists at least one empty bin.



PROOF. Based on Lemma 9 and Lemma 10, before last round,
the number of empty bins is at least n(ln lnn)2

lnn
with constant prob-

ability (at least (1− 2
e
)k for a constant k), even we randomly place

m = (1− 4 ln(k+1) n

ln(k) n
)n ln(k) n balls into n bins in round 1, and m

balls (that is less than n ln(k) n) in rounds 2 to k − 1.
Let mk = n(ln lnn)2

lnn
. Assume ln lnn > 2 and ln lnn ≤

lnn
2

. Obviously, we have mk lnmk ≥ n ln lnn ≥ n ln(k) n. By
Lemma 8, n ln(k) n balls will leave at least one empty bin with
constant probability after the last round k. Thus, with probability
at least (1− 2

e
)k, randomly placing m balls by any k-RBP strategy

will leave at least one empty bin.

2.2 Number of Unit Bins in One Round
We denote unit bins as the bins that have exactly one ball in-

side. As shown later, the existence of unit bins is closely related to
connectivity of the network after the random deployment.

In this section, we develop the bound on the number of unit bins
after place m balls into n bins randomly, which is similar to the oc-
cupancy bound 1 [4,9]. In particular, we follow the scheme of proof
as in [4], which apply the “bounded difference” method introduced
in [4].

Let Zi(1 ≤ i ≤ n) be the indicating random variable which
is 1 if the ith bin has exactly one ball (bin i is a unit bin) and 0
otherwise. Let Z =

∑n
i=1 Zi be the number of unit bins. We are

interested in tail bounds on the distribution of Z. Clearly,

E[Zi] =

(
m

1

)
1

n
(1− 1

n
)m−1 =

m

n
(1− 1

n
)m−1

and

E[Z] =

n∑
i=1

E[Zi] = m(1− 1

n
)m−1.

We denote [n] = {1, 2, ..., n}. We first recall the following
lemma by McDiarmid [12].

LEMMA 12 (MCDIARMID [12]). Let X1, ..., Xn be indepen-
dent random variables, variable Xi taking values in a finite set Ai

for each i ∈ [n], and suppose the function f satisfies the following
“bounded difference” conditions: for each i ∈ [n], there is a con-
stant ci such that for any xk ∈ Ak, k ∈ [i− 1] and for xi, x

′
i ∈ Ai

|E[f(X)|X1 = x1, ..., Xi−1 = xi−1, Xi = xi]−

E[f(X)|X1 = x1, ..., Xi−1 = xi−1, Xi = x′
i]| ≤ ci.

then

Pr[|f(X)− E[f(X)]| > t] < 2 exp

(
− t2

2
∑

i c
2
i

)
.

THEOREM 13 (OCCUPANCY BOUND FOR UNIT BINS). Randomly
place m balls into n bins. Let Z be the number of unit bins after-
wards. For any θ > 0,

Pr[|Z − µ| ≥ θµ] ≤ 2 exp

(
− θ2µ2(2n− 1)

8(m+ n)2(1− (1− 1
n
)2m)

)
where, µ = E[Z] = m(1− 1

n
)m−1 is the expected number of unit

bins.

PROOF. To get a tail probability estimate, we view the variable
Z as Z = Z(B1, . . . , Bm) where the random variable Bk takes

values in the set [n] indicating which bin the ball k occupies, for
each k ∈ [m]. In order to use Lemma 12, we need to compute the
difference

D = |E[Z|B1 = b1, . . . , Bi−1 = bi−1, Bi = bi]

−E[Z|B1 = b1, . . . , Bi−1 = bi−1, Bi = b′i]|

for fixed i ∈ [m], fixed b1, . . . , bi−1, bi, b
′
i.

Note that for any j ∈ [n] and j ̸= bi, b
′
i,

E[Zj |B1 = b1, . . . , Bi−1 = bi−1, Bi = bi] =

E[Zj |B1 = b1, . . . , Bi−1 = bi−1, Bi = b′i].

Thus,

D = |E[Zbi + Zb′i
|B1 = b1, . . . , Bi−1 = bi−1, Bi = bi]

−E[Zbi + Zb′i
|B1 = b1, . . . , Bi−1 = bi−1, Bi = b′i]|.

Clearly, we are interested in the case b = bi ̸= b′i = b′. Let
I = {b1, . . . , bi−1}, B = {B1 = b1} ∧ . . . ∧ {Bi−1 = bi−1} ∧
{Bi = bi} be a multiset, B′ = {B1 = b1} ∧ . . . ∧ {Bi−1 =
bi−1} ∧ {Bi = b′i}. Because all expectations are non-negative,
D ≤ max{E[Zb + Zb′ |B], E[Zb + Zb′ |B]}. For symmetry, we
only study E[Zb + Zb′ |B]. Clearly, we have

E[Zb|B] =

{
0 b ∈ I
(1− 1

n
)m−i otherwise

Let n(b′) be the number of times b′ appears in I , e.g., the number
of balls in b′th bin after the first i balls are randomly placed.

E[Zb′ |B] =


0 n(b′) ≥ 2
(1− 1

n
)m−i n(b′) = 1

m−i
n

(1− 1
n
)m−i−1 otherwise

Hence E[Zb + Zb′ |B] ≤ 2(1− 1
n
)m−i + m−i

n
(1− 1

n
)m−i−1.

Because E[Zb + Zb′ |B′] has the same bound, we have

D ≤ 2(1− 1

n
)m−i +

m− i

n
(1− 1

n
)m−i−1

= (2 +
m− i

n− 1
)(1− 1

n
)m−i

≤ 2(m+ n)

n
(1− 1

n
)m−i

(9)

As a result, for i ∈ [m], we have

D = |E[Z|B]− E[Z|B′]| ≤ ci,

where

ci =
2(m+ n)

n
(1− 1

n
)m−i.

m∑
i=1

c2i =
4(m+ n)2

n2

m∑
i=1

[(1− 1

n
)m−i]2

=
4(m+ n)2

n2
×

n2[1− (1− 1
n
)2m]

2n− 1

=
4(m+ n)2(1− (1− 1

n
)2m)

2n− 1

(10)

The theorem follows directly by applying Lemma 12.

THEOREM 14. Let n ≥ (12)4. Randomly place m balls into n
bins, where 1 < m < n lnn/4. With constant probability, there
exists one unit bin afterwards.



PROOF. Let X be random variable of the number of unit bins.
Then

E[X] = µ = m(1− 1

n
)m−1, and E[X2] = m2(1− 1

n
)m−1.

First we consider the case that m ≤ n/2. By the second moment
method: Pr[X = 0] ≤ E[X2]

(E[X])2
− 1 = 1/(1 − 1

n
)m−1 − 1. Note

that by Fact 1, (1− 1
n
)m−1 ≥ (1− 1

n
)m ≥ (1− m

n2 )e
−m

n . Because
m ≤ n2/10, (1− 1

n
)m ≥ 9

10
e−1/2,

Pr[X = 0] ≤ 10e1/2

9
− 1 < 1.

Second, we consider the case that m = cn where c ∈ (1/2, lnn/4).
From Theorem 13 and n ≥ 324(lnn)4, we have

Pr[X = 0] ≤ 2 exp(− µ2(2n− 1)

8(n+m)2(1− (1− 1
n
)2m)

)

≤ 2 exp(− µ2n

8(n+m)2
)

≤ 2 exp(−
m2(1− 1

n
)2m−2n

8(n+m)2
)

≤ 2 exp(−
(1− 1

n
)2mn

8(1 + n
m
)2

).

Because (1− 1
n
)2m ≥ (1− 2m

n2 )e
−2m/n ≥ 1

2
√

n
and (1+ n

m
)2 ≤

9. Hence

Pr[X = 0] ≤ 2 exp(−
√
n

144
) ≤ 2/e.

This finishes the proof.

3. LARGEST CONNECTED COMPONENT
In order to deploy network in multiple rounds, we have to as-

sume the ability to detect “empty areas”1 after one round. This
assumption is sometimes too strong to be true in practice. As we
discussed in the introduction, there exits a largest connected com-
ponent if we place an appropriate number of wireless sensor nodes
in the first round. We will use the complement of the area cov-
ered by this largest connected component, which is a super-set of
the empty area, as an estimation of the empty area. In the sec-
ond round of the deployment of wireless sensors, we will not place
sensors into the region covered by the largest component formed
by sensors in the first round. This approach clearly will “waste”
sensors that are not in the largest component from the first round
deployment. Fortunately, we can later show that such “waste” is
negligible: the asymptotic number of sensors required for a “sec-
ond chance” deployment in two rounds will not increase.

We assume the communication range for all wireless sensors is
r. The target deployment region is a square of size a × a. Let
n = (a/r)2. Carruthers and King [3] proved that there exists an
unique large connected component which covers at least a constant
portion of the square in expectation, if the number of random nodes
deployed is Θ(n). Based on this result, we show that, by increas-
ing the number of nodes slightly, the portion of the area covered by
the largest connected component will be 1− o(1). We first present
some technical lemmas.

1Here a point x is called “uncovered” if it is not inside the transmis-
sion range of any deployed wireless nodes. The empty area after a
random deployment of some wireless nodes is the collection of all
uncovered points in the region.

LEMMA 15. Let n ≥ 4(lnn)5. Randomly place 2n ln lnn −
n ln 2 balls into n bins. With probability at least 1− 1

2n
, the number

of empty bins is at most 4n
(lnn)2

.

PROOF. Let m = 2n ln lnn − n ln 2 and Z be the number of
empty bins. By Fact 1, µ = E[Z] = n(1− 1

n
)m ∈ ( n

(lnn)2
, 2n
(lnn)2

).
From the Lemma 1, we have

Pr[Z ≥ 2µ] ≤ Pr[|Z − µ| ≥ µ] ≤ 2 exp(−µ2(n− 1/2)

n2 − µ2
).

Because n ≥ 4(lnn)5 and µ ≥ n
(lnn)2

, we have

Pr[Z ≥ 2µ] ≤ 2 exp(− n/2

(lnn)4

≤ 2 exp(−2 lnn) =
2

n2
≤ 1

2n
.

In our “second chance” deployment, we first place O(n ln lnn)
wireless nodes randomly. Based on Carruthers and King’s result,
we have an unique large connected component. Localization algo-
rithms [1,2,5,6,15] exist to find the location of wireless nodes. This
location information can then be used to calculate the area covered
by this connected component. Because this component is large, by
a few probes, we can contact this component and retrieve its area.
Recall that it was already proved in [3] that, which high probability,
the largest connected component will touch the boundary of the de-
ployment region. Hence this component can also be contacted by
simply querying the sensor nodes along the boundary. After detect-
ing the area covered by the largest connected component, we then
deploy wireless sensor nodes in the area not covered by the largest
component.

Let r0 = a
⌊a/r⌋ . Note that r/2 ≤ r0 ≤ r. We divide the a × a

square region into cells with size r0/3 × r0/3. Let n0 = 9a2/r20
be the number of cells. A cell is called empty if it does not contain
any node. Two empty cells are connected by an edge if they share a
side-segment. We denote a path of empty cells a “Manhattan” path
in the sense that it consists of up, down, left and right turns. As
observed in [3], if two wireless nodes are disconnected (there is no
path connecting them in the wireless communication graph), there
exists a path of empty cells that separate one from the other. This
is a direct consequence of our setting of r0/3 as the cell size2. The
following lemma characterizes the length of paths of empty cells,
which is directly implied by the Lemma 3 from [3]. The bounds
could be improved in our setting, though this improvement will not
give us better results.

LEMMA 16 (EMPTY PATH LENGTH LEMMA [3]). Let G be
a grid of size n, with ⌊en⌋ random empty boxes, then the probabil-
ity that there is a path of empty cells of length l ≥ lnn is less than
1/n.

THEOREM 17 (LARGEST CONNECTED COMPONENT). Assume
the communication range for the wireless nodes is r. The target de-
ployment region is a square of size = a × a. If n = a2/r2 ≥ 36,
by randomly placing 36n ln ln(36n) wireless nodes in the square,
the largest connected component covers area with size more than
(1− 2

ln(36n)
)a2 with probability at least 1− 1

n
.

2For any node u from one connected component and its closest v
from another connected component, clearly we have ∥u− v∥ > r.
Then we need 3 adjacent cells to reach them since r√

2r0/3
> 2.

The middle cell must be empty one.



PROOF. Let r′ = a
⌈a/r⌉ ∈ (1/2, 1). We divide the a×a square

into cells with size r′/3 × r′/3. We denote n′ = 9a2/r′2 ∈
(9n, 36n).

Because 36n ln ln(36n) ≥ n′ ln lnn′. From Lemma 15 and
Lemma 16, with probability at least 1 − 2

n′ , the number of empty
cells after the deployment is at most n′

(lnn′)2 and there is no path of
empty cells with length more than lnn′.

Let us consider the connected components Ci formed by the
wireless nodes, where 0 ≤ i ≤ k for some k. The non-existence of
long path of empty cells implies the existence of an unique largest
component, which we denote as C0.

Because Ci for 1 ≤ i ≤ k is small, it is separated by a path of
empty cells with length li at most lnn′ (possibly together with the
boundary). Ci spans a square with side length at most li. Clearly,∑

i li ≤ n′

(lnn′)2 . Let Ai be the number of cells that contain Ci.
We have Ai ≤ l2i . Then∑

i

Ai ≤
∑
i

l2i ≤ lnn′
∑
i

li ≤
n′

lnn′ .

On the other hand, the number of empty cells is at most n′

(lnn′)2 ≤
n′

lnn′ . Then the number of cells that are filled by the largest con-
nected component is at least (1 − 2

lnn′ )a
2 ≥ (1 − 2

ln 36n
)a2 ≥

(1− 1
lnn

)a2, with probability at least 1− 2
n′ ≥ 1− 1

n
.

By deploying Θ(n ln lnn) number nodes into the square region
a × a, Theorem 17 states that almost surely the region (except an
infinite small portion) is already covered. Thus, the second round
of deployment only has to spend a small number of wireless nodes
to cover the remaining empty portion.

4. COVERAGE
In this section, we discuss the number of nodes required to cover

a a × a square region in our “second chance” deployment model.
We assume the area the wireless network is deployed to be a square
of size a × a. As before, we assume each wireless node has com-
munication range r and n = (a/r)2.

In traditional one round random deployment, wireless nodes are
randomly placed in the square. It is shown that we need Θ(n lnn)
nodes [17,18] to provide a coverage with high probability. We first
assume we can deploy nodes outside the region covered by wire-
less nodes deployed in previous rounds. Based on the technical
lemma derived in Section 2, we obtain tight bounds for any “sec-
ond chance” deployment strategy in k rounds. Then, we assume
we only able to deploy nodes outside the largest connected compo-
nent from the first round. We obtain tight bounds for any “second
chance” deployment strategy for two rounds.

We assume that we can detect empty areas after previous round
deployment and selectively place wireless nodes only in the empty
area randomly in the next round. By applying the result in Sec-
tion 2, we show that in a k round random deployment, Θ(n ln(k) n)
nodes sufficiently cover the region w.h.p..

THEOREM 18. Assume the communication range for wireless
nodes is r. The target deployment region is a square of size a× a.
Let n = (a/r)2. Assume we can randomly deploy wireless nodes
outside the covered region in previous rounds. With Θ(n ln(k) n)
wireless nodes, we can cover the square in k rounds with probabil-
ity at least 1− 1

n
.

PROOF. We first show O(n ln(k) n) is sufficient. Let r′ = a

⌈
√

2a/r⌉ ∈
[
√
2r/4,

√
2r/2]. We divide the square into cells with side length

r′ (see Figure 5(b) for partitioning). The number of cells is n′ =
(a/r′)2 = O(n). By Theorem 7, O(n′ ln(k) n′) = O(n ln(k) n)
wireless nodes sufficiently fill all the cells with probability at least
1− 1

n
in k rounds, which assures the coverage.

By setting the cells’ side length to r′′ = 2a
⌊a/r⌋ ∈ [2r, 4r] and

n′′ = (a/r′′)2 = Θ(n), we need at least one node for each such
cell to provide full coverage of the region. From Theorem 11, we
need at least Ω(n′′ ln(k) n′′) = Ω(n ln(k) n) wireless nodes so that
all cells are filled with a positive constant probability. This finishes
the proof.

The preceding theorem assumes that we can precisely determine
which cells are not covered after previous rounds. However, as we
mentioned, it could be hard to detect the empty area after one de-
ployment. On the other hand, by Theorem 17, after one deployment
with O(n ln lnn) nodes, there is a unique large connected compo-
nent. As mentioned in [3], the largest connected component will
w.h.p. cover at least one point on the boundary of the deployment
square region. This property ensures that we can easily probe this
largest connected component by simply querying the sensors along
the region boundary. If we assume we can randomly place addi-
tional wireless nodes outside this largest connected component, we
then show that Θ(n ln lnn) suffices to cover the area in two rounds.

THEOREM 19. Assume the communication range for wireless
nodes is r. The target deployment region is a square of size a× a.
Let n = (a/r)2. Assume we can randomly deploy wireless nodes
outside the area covered by a large connected component in the first
round. With Θ(n ln lnn) wireless nodes, we can cover the square
region by a “second chance” random deployment with probability
at least 1− 1

n
.

PROOF. The lower bound of Ω(n ln lnn) comes from the last
theorem. From Theorem 17, after deploy 36n ln ln(36n) wireless
nodes, the largest connected component covers region with area at
least (1 − 2

lnn
)a2 with high probability. In other words, there are

at most 2
lnn

n cells with side length a
⌈a/r⌉ are empty.

Applying localization technique, the area (hence the cells) cov-
ered by the largest connected component can be computed. After
we compute the n′ = 2(36n)

ln(36n)
) cells not covered by the largest com-

ponent, by Lemma 4, randomly placing another 2n′ lnn′ ≤ 148n
wireless nodes in the area sufficiently covers the entire region with
high probability.

We summarize the discussion in this section by following algo-
rithm states our “second chance” deployment strategy. We show in
next section that this algorithm actually achieves full connectivity
as well.

Algorithm 1 Second Chance Deployment for Coverage and Con-
nectivity
1: We first place 36n ln ln(36n) nodes randomly into the region.
2: The deployed nodes then apply some location techniques to

find their locations.
3: We query nodes along the boundary of the deployment region

and find the largest connected component. Based on this, we
find the “empty” region that is not covered by nodes for this
largest connected component.

4: We randomly deploy 148n nodes into the “empty” region.

The constants in the algorithm is quite large based on our theo-
retical result. However, in our simulation, we find small constants
are sufficient to achieve the deployment goals with high probability.



5. CONNECTIVITY
In the previous section, we studied the asymptotic number of

nodes needed to cover a region with high probability using a “sec-
ond chance” random deployment (or generally k-RBP). It is easy to
show that asymptotic upper bound on the number of nodes needed
for achieving a connected network is the same with the coverage.
In particular, if a set of nodes achieves coverage for a square region
with communication range r/2, they form a connected network un-
der communication range r. Hence O(n ln(k) n) nodes is sufficient
to assure connectivity by a “second chance” random deployment
in k rounds and O(n ln lnn) in two rounds. In this section, we
study the asymptotic lower bound on the number of nodes needed
for achieving a connected network with a “second chance” deploy-
ment strategy. As usual, we assume that the region is an a× a size
square and the communication range is r for every wireless nodes.
Let n = (a/r)2.

Let l = a

⌈√5a/r⌉ ∈ (
√
5r/10,

√
5r/5]. We divide the a × a

square into grids with side length l. The number of grid cells is
at most 10n. For any two nodes from two adjacent cells, their
Euclidean distance is at most r, hence they are connected in the
communication graph. If we randomly deploy wireless nodes us-
ing a k-RBP strategy, such that each cell contains at least one node.
Because nodes in adjacent cells are connected, the entire network
G = (V,E) (where two nodes are connected by an edge in E iff
their Euclidean distance is at most r) is connected. Compared with
the coverage case, the grid size is slight smaller, though the number
of cells are both Θ(n). An upper bound on the number of nodes
needed for producing a connected network when we randomly de-
ploy wireless nodes using k-RBP strategy asymptotically is thus
O(n ln(k) n), which matches result for the coverage case. Thus,
we have the following theorem.

THEOREM 20. Assume the communication range for wireless
nodes is 1. The target deployment region is a square of size a ×
a. Let n = a2/r2. Assume we can randomly deploy wireless
nodes outside the covered region of nodes in previous rounds. With
O(n ln(k) n) wireless nodes, we can produce a connected network
in k rounds with probability at least 1− 1

n
.

Again, if we are only able to deploy in region outside the largest
connected component from the first round. We first deploy 36n ln lnn
random wireless nodes in the square region, which will leave at
most 72n/ ln(36n) empty grid cells with side length at most r/3.
Since r/3 ≤ r/sqrt5, if each such empty cell has at least one
wireless node in the second round, the entire network is connected.
Hence, another 148n wireless nodes in the second round is suffi-
cient to achieve full connectivity. Hence the “second chance” de-
ployment described in Algorithm 1 achieves a connected network
with high probability.

Similar to the coverage case, our simulations suggest better per-
formance for our “second chance” deployment than the theoretical
upper bound.

The lower bound, however, requires an argument that is different
with the coverage case. To prove the lower bound, we first exclude
the case when we only deploy one node, which is a always con-
nected network by itself.

THEOREM 21. Assume the communication range for wireless
nodes is r. The target deployment region is a square of size a× a.
Let n = (a/r)2. Assume we can randomly deploy wireless nodes
outside the region covered by the nodes in the first round. There
exists a constant c > 0 such that with at most cn ln lnn wire-
less nodes, the network is disconnected with a positive constant

probability using any “second chance” deployment strategy in two
rounds.

PROOF. Let r′ = a
⌊a/5r⌋ . We first divide the square a × a into

grid with cell side-length r. See Figure 5(c) for illustration. Note
that r′ ≥ 54 and the number of cells is n′ = (a/r′)2 = Θ(n). We
deploy at most (1 − 4 ln lnn′

lnn
)n′ ln lnn′ = Θ(n ln lnn) nodes in

the first round of deployment.
From Lemma 9 the number of empty cells after this round is at

least n′(ln lnn′)2

lnn′ with a probability at least 1− 2
e

.
Now we consider the second round of the deployment. Let r′′ =

r′/5 ≥ r. We divide each cell further into smaller cells with
side length r′′, i.e., each original cell is further partitioned into 5
rows and 5 columns. See Figure 5(c) for an illustration. For each
large empty cell, our second random deployment region will at least
cover the centering 3r′′ × 3r′′ grid cells. We define each 9 empty
centering cells as a “middle” cell, which is empty of nodes.

Define n′′ = n′(ln lnn′)2

lnn′ and m = 1
4
n′′ lnn′′ = Θ(n(ln lnn)2).

Assume we deploy at most m nodes in the second round, it is
clear that we deploy at most m nodes in the union of the “mid-
dle” cells. From Theorem 14, with a constant probability, there
exists an unit “middle” cell after the second deployment, i.e., there
is only one node placed into this “middle” cell. (See Figure 5(a)
for illustration of unit bins.) On the other hand, for an unit “mid-
dle” cell, with probability 1/9, the node will lie in the centering
small-cell of the 9 small-cells. Consequently, this node is dis-
connected from the rest of the nodes, because the side length of
the small-cells is at least r and all its adjacent 8 small-cells are
empty. Consequently, the network is disconnected with a constant
probability after a two-round random deployment if we only have
(1 − 4 ln lnn′

lnn
)n′ ln lnn′ = Θ(n ln lnn) nodes overall. This fin-

ishes the proof.

Notice that in the previous section and this section, we essen-
tially show that, when the sensing range (or the transmission range
respectively) of all nodes is r and the target deployment region is
a square of size a × a, having Θ(n ln lnn) nodes is sufficient and
necessary condition to providing full coverage of the region (or a
connected network respectively) with high probability using a sec-
ond chance random deployment, where n = (a/r)2. These results
also can be used to derive the critical coverage range (or the trans-
mission range respectively) when we have m wireless nodes ready
for deploying using second chance deployment. Essentially, as-
suming a = 1, the critical range r is a solution of the following
equation

m =
1

r2
ln ln

1

r2
.

Thus, ln lnm = ln ln 1
r2

+ ln ln ln ln 1
r2

. This implies that r ≃√
ln lnm

m
.

THEOREM 22. Assume that we randomly deploy n nodes using
a second chance deployment strategy in a unit square. The critical
sensing range for providing full coverage and the critical transmis-

sion range for achieving a connected network is Θ(
√

ln lnm
m

).

Recall that, Gupta and Kumar [8] proved that the critical range
for achieving connectivity using one-round random deployment of

m nodes is Θ(
√

lnm
m

). Our bound is asymptotically smaller than
this bound. Observe that, the optimal deterministic deployment of
m nodes that provides the full coverage requires the sensing range

to be of order Θ(
√

1
m
). Our second-chance deployment strategy
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(a) empty and unit cells (b) coverage (c) lower bound for connectivity

Figure 1: (a) empty cells (colored red) and unit cells (colored green) after random deployment. (b) Randomly placing sensors for
achieving full coverage. Here a sensor with transmission range r in a

√
2r
2

×
√
2r
2

cell can cover the entire cell. (c) Lower bound on the
number of randomly placed sensors needed for achieving a connected network with at least a constant probability. Here the large
cells have side-length r′ ≥ 5r and the smaller cells have side-length r” ≥ r. The shaded region is a “middle” cell formed by 9 smaller
cells.

moves the critical range needed for coverage and connectivity sig-
nificantly closer to the deterministic optimal solution using only a
small cost.

6. SIMULATIONS
In this section, we conduct extensive simulations to illustrate the

effectiveness of our method. In our simulations, the target region is
a square of size 1× 1. We varies the communication range for the
wireless nodes deployed to study the asymptotic behavior when the
relative field size N = (1/r)2 increases. Each sensor is connected
to the neighbors within its communication range.

6.1 Largest Connected Component
Our result assumes the existence of a large connected compo-

nent after the first round deployment. Let the communication range
for the wireless nodes is r. In our simulation, we set r to be in
{0.1, 0.05, 0.0333, 0.025, 0.02}.

In Theorem 17, we prove that by placing 36N ln ln(36N) ran-
dom nodes in one round the largest connected component cov-
ers most area of the square region. Therefore, in the simulation,
we randomly place cN ln lnN nodes, where c is a constant in
{0.5, 0.8, 1.0, 1.2} in our setting. We vary the constant c to ex-
amine the impact of the node density on the largest component.

For each pair of values r and c, we run the simulation for 50
rounds. When c = 0.5, the largest connected component accounts
20% of the network for r = 0.1 and 6% for r = 0.02. Notice that
in this case, although the size of the largest connected component
increases when N increase, the larger component takes a smaller
portion of the network.

On the other hand, for all other larger values of c we tested, the
largest connected component takes a larger portion of the network
when N increases. In particular, when c = 1, the largest connected
component accounts 85% of the network for r = 0.1 and 99%
for r = 0.025. See Figure 3 for a largest connected component
instance when c = 1 and r = 0.025. The growth of the portion
taken by the largest connected component matches the prediction
of Theorem 17. However, the case of c = 0.5 indicates that this
trend does not hold for small c values.

6.2 Coverage
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Figure 2: The portion of the largest connected component in
the entire networks.

We test the number of wireless nodes needed to achieve 99%+
coverage over a square region. Again, we set the square region to
be of size 1× 1 and vary the communication range of the wireless
nodes. Instead of directly computing the area of the union of the
sensing disks for the wireless nodes, we simply place a dense grid
in the square region and count the portion of the grid vertices cov-
ered by the deployed wireless nodes. This treatment saves us from
boundary issues in computing the size of covered area.

In simulating the traditional one time deployment, we randomly
place node one by one until 99% of the region is covered. The
number of nodes needed to achieve coverage increases nearly lin-
early with the field size N = (1/r)2 in Figure 4. The growth
approximately matches the theoretical bound Θ(N lnN).

In our “second chance” deployment, we deploy cN ln lnN nodes
in the first round where c is a chosen constant. We then randomly
deploy wireless nodes one by one outside the region covered by the
largest connected component in the first round. In our simulation,
we simply reject each new random node if its sensing disk is inside



Figure 3: The largest connected component for case c = 1 and
r = 0.025. The blue nodes are the nodes outside the largest
component.
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Figure 4: The number of nodes to achieve 99% coverage of the
region.

the sensing regions formed by the nodes in the largest connected
component from the first round.

In Algorithm 1, we deploy 36N ln ln(36N) wireless nodes in
the first round and place another 148N wireless nodes in the sec-
ond round. In our simulation, we find that this theoretical bound
is too pessimistic in practice. In Figure 4, we show the number
of nodes required to achieve 99% coverage in one time random de-
ployment and our “second chance” deployment with c = 0.8 and 1.
In particular, we find that placing N ln lnN nodes in the first round
actually costs the smallest number nodes to achieve the coverage of
the region, i.e., c should be set to 1.

On average, our “second chance” deployment strategy saves about
40% on the number of nodes. The gap between the two method is
expected to widen due to their different theoretical growth speeds.
Figure 5 gives an instance of the node distribution in our “second
chance” deployment. Red nodes denote the largest connected com-
ponent in the first round. Blue nodes are the nodes in the first round
that are not in the largest component, and black nodes are deployed

Figure 5: An example for the “second chance” deployment for
coverage with c = 1 and field size N = 40× 40. Red nodes are
the largest connected component in the first round. Blue nodes
are the nodes outside the largest connected component in the
first round, and black nodes are deployed in the second round.

in the second round.

6.3 Connectivity
We also test the number of nodes needed to achieve full connec-

tivity of the entire network while preserving more than 90% cov-
erage of the field. The simulation setup is the same with previous
sections.

In one time deployment, we randomly place node one by one un-
til 90% of the region is covered and the network is connected. From
Figure 6, the number of nodes required to achieve connectivity is
roughly the same with the coverage case in one time deployment,
which grows nearly linearly.
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Figure 6: The number of nodes to achieve full connectivity and
90% coverage of the region.

In our “second chance” deployment, again, we deploy cN ln lnN
nodes in the first round. We test the cases that c = 0.8 and 1 as in
the coverage case. Our choice of the second round deployment is



the same with the coverage case. Though the condition for termina-
tion is to achieve full connectivity and 90% coverage instead. The
number of nodes to achieve the deployment goal of connectivity
and the savings on the number of nodes over the one time deploy-
ment is roughly the same with the coverage case, as indicated in
Figure 6.

Figure 7: An example for the “second chance” deployment for
connectivity with c = 1 and field size N = 40× 40. Red nodes
are the largest connected component in the first round. Blue
nodes are the nodes outside the largest connected component
in the first round, and black nodes are deployed in the second
round.

Figure 7 gives an instance of the node distribution in our “second
chance” deployment to achieve connectivity. Red nodes denote the
largest connected component in the first round. Blue nodes are
the nodes in the first round that are not in the largest component,
and black nodes are deployed in the second round to achieve full
connectivity.

7. CONCLUSIONS
In this paper, we studied the number of nodes needed to provide

full coverage and the number of nodes needed to provide connec-
tivity, when we have a second chance (or multiple chances) in ran-
dom deployment. Under some deployment assumption, we showed
that the number of nodes needed is Θ(n ln lnn) for both cases
in 2 rounds where n = (a/r)2, which is much smaller than the
Θ(n lnn) bound needed when we are only able to deploy nodes
in one-shot. Our results also imply the critical sensing range for
providing coverage and the critical transmission range for provid-
ing connectivity when we randomly deploy m nodes using our

second-chance deployment is asymptotically Θ(
√

ln lnm
m

), which
is also much smaller than the critical range using one-round deploy-
ment [8]. We further showed that our second-chance deployment
is practical by showing that there is a giant largest connected com-
ponent, and that it touches one of the deployment boundary with
high probability. Therefore, it is possible to acquire deployment
information in the first round by querying this large component.

This paper is the first step towards a more complete study of
performance limits of multi-hop wireless networks produced by
random deployment. In particular, this result can be viewed as

a trade-off between the deployment complexity and the resulting
network quality. There are a number of interesting and challeng-
ing questions left for future research. First, we would like to close
the constant gaps between the lower bounds and upper bounds. We
conjecture that the actual coefficients of all formulas are either 1 or
sufficiently close to 1. Second, we would like to study the exact
critical range for coverage and the critical range for connectivity
when m nodes are randomly placed using a second-chance deploy-
ment strategy. We conjecture that the critical range to be exactly√

ln lnm
m

for connectivity. Third, we would like to study the net-
work capacity of random networks produced a “second chance” de-
ployment. Recall that, for random networks of m nodes produced
by one-round random deployment, the pioneering work by Gupta
and Kumar [7] proved that the per unicast flow capacity (when there

are m random flows) is Θ(
√

1
m lnm

). We conjecture that, the per-
unicast flow capacity for random networks produced by a “second

chance” deployment will be Θ(
√

1
m ln lnm

).
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