
Chapter 1

Efficient Strategyproof Multicast in
Selfish Wireless Networks

In this chapter, we study how to perform routing when each wireless node is selfish, i.e.,
a wireless node will always maximize its own benefit. Traditionally, it is assumed by the
majority of the routing protocols for wireless networks that each wireless node will forward
the packets for other nodes if it is asked to do so. However, this assumption may not be true
in practice, especially when the wireless devices are owned by individual users. A node will
deviate from a routing protocol if it will gain more benefit by doing so. In this chapter, we
assume that each wireless node will incur a cost when it forwards a unit of data for some
other nodes. A node will forward the data only if it gets a payment to compensate its cost.
Its profit (or called utility) will then be the payment minus its cost if it did forward the
data. For a multicast with a source node and a set of receiver nodes, we assume that they
will pay the relay nodes to carry the traffic from the source to receivers. We assume that the
cost of each agent is private and each agent can manipulate its reported cost to maximize
its utility. A payment scheme is strategyproof if every agent maximizes its utility when it
reports its cost truthfully. In this chapter, we propose several strategyproof mechanisms for
multicast for selfish wireless networks when each node has a cost of forwarding a unit data
based on various structures. We prove that each of our payment schemes is optimum for the
corresponding structure used.

1.1 Introduction

Recent years saw a great amount of researches in wireless ad hoc networks on various impor-
tant problems such as routing, Quality of Service, security, power management, and traffic
and mobility modelling. However, there are still many challenges left. In wireless ad hoc
networks, each host contributes its local resources to forward the data for other nodes to
serve the common good, and may benefit from resources contributed by other hosts in re-
turn. Based on such a fundamental design philosophy, wireless networks provide appealing
features of enhanced system robustness, high service availability and scalability. However,
the critical observation that users are generally selfish and non-cooperative may severely
undermine the expected wireless structure. For example, for a routing algorithm based on
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the least cost path (LCP), the individual wireless node may declare an arbitrarily high cost
for forwarding a data packet to other nodes since wireless nodes are energy-constraint and it
is often not in the interest of a node to always relay the messages for other nodes. The root
cause of the problem is, obviously, that there exist no incentives for users to be altruistic.
Following the common belief in neoclassic economics, it is more reasonable to assume that
all wireless terminals are rational : they try to maximize their benefits instead of conforming
to the existing protocols. Thus, we need to design some mechanisms to assure that these
rational wireless terminals will conform to our protocols without any deviation.

How to achieve cooperation among wireless terminals in network was previously addressed
in [3, 11, 13, 2, 4, 16, 17]. The key idea behind these approaches is that terminals providing
a service should be remunerated, while terminals receiving a service should be charged. Both
of these methods belong to so called credit based method. Some of these algorithms need
some special hardware which is not very practical in the real world. In recent years, incentive
based methods have been proposed to solve the non-cooperative problem. The most well-
known and widely used incentive based methods is so called the family of VCG mechanisms
by Vickrey [18], Clarke [5], and Groves [9]. Nisan and Ronen [14] provided a mechanism
belonging to VCG family to assure the cooperation for unicast problem in a general network
where each communication link is assumed to be selfish and rational.

While unicast in wireless network has been studied extensively in literatures and deployed
in practice for years, several important issues about multicast over wireless networks haven’t
been explored fully. In practice, multicast is a more efficient way to support group com-
munication than unicast or broadcast, as it can transmit packets to destination using fewer
network resource, which is critical in wireless networks. Typical wireless multicast appli-
cations include group-oriented mobile commerce, military command and control, distance
education, and intelligent transportation systems. For a multicast routing, usually a tree
with the minimum cost that span the sources and receivers is used because it requires the
least network resources than other structures. Finding such minimum cost tree is known to
be NP-hard. Thus, some multicast trees with good practical performances have been pro-
posed in the literatures. Unlike unicast problem, as we will show later, if we simply apply
VCG mechanism to those commonly used multicast tree structures, we can not guarantee
that all wireless devices will follow our prescribed protocols. In this chapter, we discuss how
to design truthful non-VCG mechanisms for those multicast structures in selfish wireless
networks.

The rest of the chapter is organized as follows. In Section 1.2, we review some definitions
and priori arts on truthful mechanism design for multicast. In Section 1.3, we present the
first strategyproof mechanism for Steiner tree problem (or called multicast). The output of
our mechanism (a tree) has a cost within a constant factor of the optimum, and the payment
is minimum among any truthful mechanism having this output. In Section 1.4, we show our
experimental study of our proposed mechanisms. We conclude the chapter in Section 1.5 by
pointing out some possible future works.
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1.2 Preliminaries and Priori Art

1.2.1 Wireless Ad hoc Networks

Wireless ad hoc networks is emerging as a flexible and powerful wireless architecture that
does not rely on a fixed networking infrastructure. Wireless ad hoc networks have received
significant attentions over past few years due to their potential applications in various sit-
uations such as battlefield, emergency relief and environmental monitor, etc. In a wireless
ad hoc network, each mobile node has a transmission range and energy cost. A node v can
receive the signal from another node u iff node v is within node u’s transmission range. We
assume that when node u received a message and then forwarded the message to another
node, it would consume node u some energy, which will be categorized as the cost of node u
forwarding the data for other nodes. If the receiving node is not within the sender’s trans-
mission range, then it must choose some intermediate nodes to repay the message. So unlike
the wired networks, all nodes in the wireless ad hoc network should be able to act as a router.
On the other aspect, the wireless node usually uses omni-directional antenna, which means
that it can use a broadcasting-like manner to distribute the message to all nodes within its
transmission range.

Usually, there are two different categories of wireless ad hoc nodes: fixed transmission
range and adjustable transmission range. For fixed transmission range nodes, their transmis-
sion range have been fixed and can’t be adjusted afterward. So there is a directed arc from
u to v if node v is in the transmission range of node u. Here the transmission cost depends
on node u regardless of the distance between two nodes. Thus the wireless ad hoc network
can be considered as a node weighted graph, where the weight of each node is its cost to
forward a unit data. If all nodes’ transmission range is the same, by properly scaling, we
can assume all nodes have transmission range 1. Thus, wireless topology can be modelled
by a Unit Disk Graph(UDG).

The second type of wireless network is that each wireless node can adjust its transmission
range: they can adjust their transmission power to the amount needed to reach the next
relay node. The power needed to send a packet from node u to v consists of three part.
First, the source node u needs to consume some power to prepare the packet. Second, node
u needs consume some power to send the message to v. The power required to support
the transmission between u and v not only depends on u but also depends on the geometry
distance of u and v. In the literature, it is often assumed that the power needed to support
a link uv is du · |uv|β, where β ∈ [2, 5] depends on the transmission environment, |uv| is the
Euclidean distance between u and v, and du is a positive number depending on node u only.
Finally, when v receives the packet, it needs consume some power to receive, store and then
process that packet. Thus, the weight of an edge uv is the power consumed for transmitting
packet from u to v plus some possible energy consumed by u and v to process the signal. The
wireless network under this model can be considered as a link weighted graph: all wireless
devices are the vertices of the graph, the weight of each link uv is the total energy cost of
communication using link uv.
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1.2.2 Algorithm Mechanism Design

In designing efficient, centralized (with input from individual agents) or distributed algo-
rithms and network protocols, the computational agents are typically assumed to be either
correct/obedient or faulty (also called adversarial). Here agents are said to be correct/obedient
if they follow the protocol correctly; agents are said to be faulty if (1) they stop working,
or (2) they drop messages, or (3) they act arbitrarily, which is also called Byzantine failure,
i.e., they may deviate from the protocol in arbitrary ways that harm other users, even if the
deviant behavior does not bring them any obvious tangible benefits.

In contrast, as we mentioned before, economists design market mechanisms in which it
is assumed that agents are rational. The rational agents respond to well-defined incentives
and will deviate from the protocol only if it improves its gain. A rational agent is neither
correct/obedient nor adversarial.

A standard economic model for analyzing scenarios in which the agents act according to
their own self-interests is as follows. There are n agents. Each agent i, for i ∈ {1, · · · , n},
has some private information ti, called its type. The type ti could be its cost to forward
a packet in a network environment, could be its willing payment for a good in an auction
environment. Then the set of n agents define a type vector t = (t1, t2, · · · , tn), which is called
the profile. There is an output specification that maps each type vector t to a set of allowed
outputs. Agent i’s preferences over the possible outputs are given by a valuation function vi

that assigns a real number vi(ti, o) to each possible output o. Here, notice that the valuation
of an agent does not depend on other agents’ types. Everything in the scenario is public
knowledge except the type ti, which is a private information to agent i.

Definition 1 A Mechanism M = (A,O, p) defines three functions: a set of strategies A
for all agents, an output function O, and a payment function p = (p1, · · · , pn):

1. For each agent i, it has a set of strategies Ai. Agent i can only choose a strategy a ∈ Ai.

2. For each strategy vector a = (a1, · · · , an), i.e., the agent i plays a strategy ai ∈ Ai, the
mechanism computes an output o = O(a1, · · · , an) and a payment pi = pi(a). Here the
payment pi is the money given to each participating agent i. If pi < 0, it means that
the agent has to pay −pi to participate in the action.

For an agent i, given the output o and the payment pi, its utility is ui(o, ti) = vi(ti, o) +
pi. A strategy ai by an agent i is dominant the agent i maximizes its utility regardless
of whatever other agents do. Considering all different strategies, there will be too many
candidate mechanisms, but with the Revelation Principle, we only need to focus our
attention on these direct revelation mechanisms. A mechanism is direct revelation mechanism
if the types are the strategy space Ai. In this chapter, we will only consider the direct
revelation mechanisms. In practice, a mechanism should satisfy the following properties:

1. Incentive Compatibility (IC): The payment function should satisfy the incentive
compatibility, i.e., for each agent i,

vi(ti, o(a−i, ti)) + pi(a−i, ti) ≥ vi(ti, o(a−i, ai)) + pi(a−i, ai).
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In other words, revealing the type ti is the dominating strategy. If the payment were
computed by a strategyproof mechanism, he would have no incentive to lie its type
because his overall utility would be no greater than it would have been if he had told
the truth.

2. Individual Rationality (IR): It is also called Voluntary Participation. For each agent
i and any a−i it should have non-negative utilities. In other words, if agent i reveals its
true type ti, then its utility should be non-negative.

3. Polynomial Time Computability (PC): All computation is done in polynomial
time. Notice that after every agent declares its type, the mechanism has to compute
an output o and a payment vector to all agents. For example, for the family of VCG
mechanisms, the output that maximizes the summation of the valuations of all nodes
has to be found. When the optimal output cannot be found exactly, the individual
agent may have incentives to misreport its type initially.

A mechanism is strategy-proof or truthful if it satisfies both IR and IC properties. In the
remaining of this chapter, we will focus our attention on these truthful mechanisms only.

Arguably the most important positive result in mechanism design is what is usually
called the generalized Vickrey-Clarke-Groves (VCG) mechanism by Vickrey [18], Clarke [5],
and Groves [9]. The VCG mechanism applies to mechanism design maximization problems
where the objective function is simply the sum of all agents’ valuations and the set of possible
outputs is assumed to be finite.

A maximization mechanism design problem is called utilitarian if its objective function
satisfies that g(o, t) =

∑
i v

i(ti, o). A direct revelation mechanism m = (o(t), p(t)) belongs
to the VCG family if (1) the output o(t) computed based on the type vector t maximizes
the objective function g(o, t) =

∑
i v

i(ti, o), and (2) the payment to agent i is

pi(t) =
∑

j 6=i

vj(tj, o(t)) + hi(t−i).

Here hi() is an arbitrary function of t−i and different agent could have different function hi()
as long as it is defined on t−i. It is proved by Groves [9] that a VCG mechanism is truthful.
Green and Laffont [8] proved that, under mild assumptions, VCG mechanisms are the only
truthful implementations for utilitarian problems.

An output function of a VCG mechanism is required to maximize the objective function.
This makes the mechanism computationally intractable in many cases. Notice that replacing
the optimal algorithm with non-optimal approximation usually leads to untruthful mecha-
nisms. In this chapter, we will study how to perform truthful routing for multicast, which
is known to be NP-hard and thus VCG mechanisms cannot be applied.

1.2.3 Priori Arts

There are generally two ways to implement the truthful computing: credit based method and
incentive based method.
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The first category uses various non-monetary approaches including auditing, system-wide
optimal point analysis and some hardwares. Credit based methods have been studied for
several years, and most of them are based on the simulation and are heuristic.

In [13], nodes, which agree to relay traffic but do not, are termed as misbehaving. They
used Watchdog and Pathrater to identify misbehaving users and avoid routing through these
nodes. The Watchdog runs on every node keeping track of how the other nodes behave; the
Pathrater uses this information to calculate the route with the highest reliability. Notice
that this method ignores the reason why a node refused to relay the transit traffics for other
nodes. A node will be wrongfully labelled as misbehaving when its battery power cannot
support many relay requests and thus refused to relay. It also does not provide any incentives
to encourage nodes to relay the message for other nodes.

In [3], Buttyan et al. focused on the problem how to stimulate selfish nodes to forward
the packets for other nodes. Their approach is based on a so called nuglet counter in each
node. A node’s counter is decreased when sending its own packet, and is increased when
forwarding other nodes’ packet. All counters should always remain positive. In order to
protect the proposed mechanism against misuse, they presented a scheme based on a trusted
and tamper resistant hardware module in each node, which generates cryptographically pro-
tected security headers for packets and maintains the nuglet counters of the nodes. They also
studied the behavior of the proposed mechanism analytically and by means of simulations,
and showed that it indeed stimulates the nodes for packet forwarding.

In [4], they still use a nugget counter to store the nuglets and besides that they use a fine
which decreases the nugget counter to prevent the node from not relaying the packet. They
use the packet purse model to discourage the user to send useless traffic and overload the
network. The basic idea presented in [4] is similar to [3] but different in the implementation.

In [16], two acceptance algorithms are proposed. These algorithms are used by the network
nodes to decide whether to relay traffic on a per session basis. The goal of them is to balance
1 the energy consumed by a node in relaying traffics for others with energy consumed by
other nodes to relay its traffic and to find an optimal trade-off between energy consumption
and session blocking probability. By taking decisions on a per session basis, the per packet
processing overhead of previous schemes is eliminated. In [17], a distributed and scalable
acceptance algorithm called GTFT is proposed. They proved that GTFT results in Nash
equilibrium and the system converges to the rational and optimal operating point. Notice
that, they assumed that each path is h hops long and the h relay nodes are chosen with
equal probability from the remaining n− 1 nodes, which may be unrealistic.

In [15], Salem et al. presented a charging and rewarding scheme for packet forwarding in
multi-hop cellular networks. In their network model, there is a base-station to forward the
packets. They use symmetric cryptography to cope with the lying. To count several possible
attacks, it pre-charges some nodes and then refunds them only if a proper acknowledgment
is received. Their basic payment scheme is still based on nuglets.

In [11] Jakobsson et al. described an architecture for fostering collaboration between self-
ish nodes of multi-hop cellular networks. Based on this architecture, they provided mecha-
nisms based on per packet charge to encourage honest behavior and to discourage dishonest

1It is impossible to strictly balance the number of packets a node has relayed for other nodes and the number of packets of
this node relayed by other nodes since, in a wireless ad hoc network, majority of the packet transmissions are relayed packets.
For example, consider a path of h hops. h− 1 nodes on the path relay the packets for others. If the average path length of all
routes is h, then 1− 1/h fraction of the transmissions are transit traffics.
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behavior. In their approach, all packet originators attach a payment token to each packet,
and all intermediaries on the packet’s path to the base station verify whether this token
corresponds to a special token called winning ticket. Winning tickets are reported to nearby
base stations at regular intervals. The base stations, therefore, receive both reward claims
(which are forwarded to some accounting center), and packets with payment tokens. After
verifying the validity of the payment tokens, base stations send the packets to their desired
destinations, over the backbone network. The base stations also send the payment tokens to
an accounting center. Their method also involves some traditional security method including
auditing, node abuse detection and encryption etc.

The Incentive based methods borrow some ideas from the micro-economic and game-
theoretic world, which involve the monetary transfer. The key result of this category is that
all nodes won’t deviate from their normal activities because they will benefit most when
they reveal their true cost, even knowing all other nodes’ true costs. We can thus achieve
the optimal system performance. This idea has been introduced by Nisan and Ronen in [14]
and is known as the algorithm mechanism design.

In [14], Nisan and Ronen provided a polynomial-time strategyproof mechanism for optimal
unicast route selection in a centralized computational model. In their formulation, the
network is modelled as an abstract graph G = (V, E). Each edge e of the graph is an
agent and has a private type te, which represents the cost of sending a message along this
edge. The mechanism-design goal is to find a Least Cost Path (LCP) LCP(x, y) between two
designated nodes x and y. The valuation of an agent e is −te if the edge e is part of the
path LCP(x, y) and 0 otherwise. Nisan and Ronen used the VCG mechanism for payment.
The payment to an agent e is DG−{e}(x, y)−DG(x, y), where DG−{e}(x, y) is the cost of the
LCP through G when edge e is not presented and DG(x, y) is the cost of the least cost path
LCP(x, y) through G. Clearly, there must have two link disjoint paths connecting x and y to
prevent the monopoly. The result in [14] can be easily extended to deal with wireless unicast
problem for arbitrary pair of terminals.

Feigenbaum et. al [6] then addressed the truthful low cost routing in a different network
model. They assume that each node k incurs a transit cost ck for each transit packet it
carries. For any two nodes i and j of the network, Ti,j is the intensity of the traffic (number
of packets) originating from i and destined for node j. Their strategyproof mechanism again
is essentially the VCG mechanism. They gave a distributed method such that each node
i can compute a payment pk

ij > 0 to node k for carrying the transit traffic from node i to
node j if node k is on the LCP LCP(i, j). Anderegg and Eidenbenz [1] recently proposed a
similar routing protocol for wireless ad hoc networks based on VCG mechanism again. They
assumed that each link has a cost and each node is a selfish agent.

For multicast flow, Feigenbaum et. al [7] assumed that there is fixed multicast infrastruc-
ture, given any set of receivers Q ⊂ V , connects the source node to the receivers. Addition-
ally, for each user qi ∈ Q, they assumed a fixed path from the source to it, determined by
the multicast routing infrastructure. Then for every subset R of receivers, the delivery tree
T (R) is merely the union of the fixed paths from the source to the receivers R. They also
assumed that there is a link cost associated with each communication link in the network
and the link cost is known to everyone. For each receiver qi, there is a valuation wi that this
user values the reception of the data from the source. This information wi is only known to
qi. User qi will report a number w′

i, which is the amount of money he/she is willing to pay to
receive the data. The source node then selects a subset R ⊂ Q of receivers to maximize the
difference

∑
i∈R w′

i − C(R), where C(R) is the cost of the multicast tree T (R) to send data
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to all nodes in R. The approach of fixing the multicast tree is relatively simple to implement
but could not model the greedy nature of all network terminals in the network.

1.2.4 Problem Statement and Network Model

In this chapter, we consider a wireless ad hoc network composed of n selfish nodes V =
{v1, v2, · · · , vn}. Every node vi has a fixed transmission range ri, node u and v can com-
municate with each other if and only if |vivj| ≤ min{ri, rj}. When node vi send a packet
to one of its neighbors, say vj, all vi’s neighbors can receive this packet. Thus, every node
will broadcast its packet. We assume each node vi has a private cost ci to broadcast a unit
data(the unit data could be 1 Byte or 1 MegaByte). In this chapter, we model this wire-
less ad hoc network as a node weighted graph G = (V,E, c) where V is the set if wireless
nodes, and e = vivj ∈ E if and only if vi and vj can communicate with each other. Here
c = {c1, c2, · · · , cn} is the cost profile of all nodes. Notice here the graph is undirected.

Based on the node weighted graph, we now define the multicast problem as follows. Given
a set of receivers Q = {q0, q1, q2, · · · , qr−1} ⊂ V , when selects node qi ∈ Q as the source, the
multicast problem is to find a tree T ⊂ G spanning all receiving terminals Q. For simplicity,
we assume that q0 is the source of the multicast. Each node vi is required to declare a
cost di of relaying the message. Based on the declared cost profile d = {d1, d2, · · · , dn},
the source node constructs the multicast tree and decide the payment for each node. It is
well-known [10, 12] that it is NP-hard to find the minimum cost multicast tree when given
an arbitrary node weighted graph G, and it is at least as hard to approximate as the set
cover problem. Klein and Ravi [12] showed that it can be approximated within O(ln r),
where r is the number of receivers. The utility of an agent is its payment received, minus its
cost if it is selected in the multicast tree. Instead of reinventing the wheels, we will still use
the previously proposed structures for multicast as the output of our mechanism. Given a
multicast tree, we will study the designing of strategyproof payment schemes based on these
trees.

Given a graph G, we use ω(G) to denote the total cost of all nodes in this network. If
we change the cost of any agent i (link ei or node vi) to c′i, we denote the new network as
G′ = (V,E, c|ic′i), or simply c|ic′i. If we remove one agent i from the network, we denote it as
c|i∞. Denote G\ei as the network without link ei, and denote G\vi as the network without
node vi and all its incident links. For the simplicity of notation, we will use the cost vector
c to denote the network G = (V, E, c) if no confusion is caused.

1.3 Strategyproof Multicast

In this section, we discuss in detail how to conduct truthful multicast when the network is
modelled by a node weighed communication graph. We specifically study the following three
structures: least cost path star(LCPS), virtual minimum spanning tree (VMST) and node
weighted Steiner tree (NST). In practice, for various applications, usually receivers/senders
in the same multicast group usually belong to the same organization or company, so their
behavior can be expected to be cooperative instead of uncooperative. Thus, we assume that
every receiver will relay the packet for other receivers for free.
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1.3.1 Strategyproof Mechanism Based on LCPS

1.3.2 Least Cost Path Star

Given a network modelled by the graph G, a source node s, and a set of r receivers Q,
the least cost path star is the union of all r shortest paths from the receiver to each of
the receivers in Q. In practice this is one of the most widely used methods of constructing
the multicast tree since it takes advantage of the unicast routing information collected by
Distance-Vector Algorithm or Link-State Algorithm. Notice that, although here we only
discuss the using of least cost path star for the node weighted case, all results we presented
in this subsection can be extended to the link weighted scenario without any difficulty, when
each link will incur a cost when transmitting data.

Constructing LCPS

For each receiver qi 6= s, we compute the shortest path (least cost path), denoted by
LCP(s, qi, d), from the source s to qi under the reported cost profile d. The union of all least
cost paths from the source to receivers is called least cost path star, denoted by LCPS(d).
Clearly, we can construct LCPS in time O(n log n+m). The remaining part is how to design
a truthful payment scheme while using LCPS as output.

VCG mechanism on LCPS is not strategyproof

Intuitively, we would like to use the VCG payment scheme in conjunction with the LCPS
tree structure as follows. The payment pk(d) to every node vk is

pk(d) = ω(LCPS(d|k∞))− ω(LCPS(d)) + dk.

We show by an example that the above payment scheme is not strategyproof. Figure ??
illustrates such an example where node v2 will have a negative utility when it reveals its true
cost.

q2

v1 v2

+εM

q

M

0

q1

Figure 1.1: The cost of terminals are v1 = M and v2 = M + ε.
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Notice ω(LCPS(c)) = 2M + ε and ω(LCPS(c|1∞)) = M + ε. If v1 reveals its true cost,
its payment is p1(c) = ω(LCPS(c|1∞))− ω(LCPS(c)) + M = M + ε− (2M + ε) + M = 0.
Thus, it utility is p1(c)− C1 = 0−M < 0, which violates the IR property.

Strategyproof mechanism on LCPS

Now, we describe our strategyproof mechanism that does not rely on VCG payment. For
each receiver qi 6= s, we compute the least cost path from the source s to qi, and compute a
payment pi

k(d) to every node vk on the LCP(s, qi, d) using the scheme for unicast

pi
k(c) = dk + |LCP(s, qi, d|k∞)| − |LCP(s, qi, d)|.

Here |LCP(s, qi, d)| denotes the total cost of the least cost path LCP(s, qi, d). The total
payment to a link vk is then

pk(d) = max
qi∈Q

pi
k(d) (1.1)

Theorem 1 Payment (1.1) based on LCPS is truthful and it is minimum among all truthful
payments based on LCPS.

Proof. Clearly, when node vk reports its cost truthfully, it has non-negative utility, i.e., the
payment scheme satisfies the IR property. In addition, since the payment scheme for unicast
is truthful, so vk cannot lie its cost to increase its payment pi

k(c) based on LCP(s, qi, d). Thus,
it cannot increase maxqi∈Q pi

k(c) by lying its cost. In other words, our payment scheme is
truthful.

We then show that the above payment scheme pays the minimum among all strategyproof
mechanisms using LCPS as the output. Before showing the optimality of our payment
scheme, we give some definitions first. Consider all paths from source node s to a receiver qi,
they can be divided into two categories: with node vk or without node vk. The path with the
minimum length among these paths with node vk is denoted as LCPvk

(s, qi, d); and the path
with the minimum length among these paths without edge vk is denoted as LCP−vk

(s, qi, d).

Assume that there is another payment scheme p̃ that pays less for a link vk in a network G
under a cost profile d. Let δ = pk(d)− p̃k(d), then δ > 0. Without loss of generality, assume
that pk(d) = pi

k(d). Thus, node vk is on LCP(s, qi, d) and the definition of pi
k(d) implies that

|LCP−vk
(s, qi, d)| − |LCP(s, qi, d)| = pk(d)− dk.
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Then consider another cost profile d′ = d|k(pk(d) − δ
2
) where the true cost of node vk is

pk(d)− δ
2
. Under profile d′, since |LCP−vk

(s, qi, d
′)| = |LCP−ek

(s, qi, d)|, we have

|LCPvk
(s, qi, d

′)| = |LCPvk
(s, qi, d|k0)|+ pk(d)− δ

2

= |LCPvk
(s, qi, d)|+ pk(d)− δ

2
− dk

= |LCP(s, qi, d)|+ pk(d)− δ

2
− dk

= |LCP−vk
(s, qi, d)| − δ

2
< |LCP−vk

(s, qi, d)| = |LCP−vk
(s, qi, d

′)|

Thus, vk ∈ LCPS(d′). From the following Lemma 1, we know that the payment to node
vk is the same for cost profile d and d′. Thus, the utility of link vk under the profile d′ by
the payment scheme p̃ becomes p̃k(d

′)− ck = p̃k(d)− ck = p̃k(d)− (pk(d)− δ
2
) = − δ

2
< 0. In

other words, under the profile d′, when the node ek reports its true cost, it gets a negative
utility under payment scheme p̃. Thus, p̃ is not strategyproof. This finishes our proof.

Lemma 1 If a mechanism with output T and the payment function p̃ is truthful, then for
every node vk in network, if vk ∈ T then payment function p̃k(d) should be independent of
dk.

Proof. We prove it by contradiction. Suppose that there exists a truthful payment scheme
such that p̃k(d) depends on dk. There must exist two valid declared costs x1 and x2 for node
vk such that x1 6= x2 and p̃k(d|kx1) 6= p̃k(d|kx2). Without loss of generality we assume that
p̃k(d|kx1) > p̃k(d|kx2). Now consider the situation when node vk has an actual cost ck = x2.
Obviously, node vk can lie its cost as x2 to increase his utility, which violates the incentive
compatibility (IC) property. This finishes the proof.

Notice that the payment based on pk(c) = minqi∈Q pi
k(c) is not truthful since a link may

lie its cost upward so it can discard some low payment from some receiver. In addition, the
payment pk(c) =

∑
qi∈Q pi

k(c) is not truthful either.

1.3.3 Strategyproof Mechanism Based on VMST

Constructing VMST

We first describe our method to construct the virtual minimum spanning tree.
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Algorithm 1 Virtual MST Algorithm

1. First, calculate the pairwise least cost path LCP(qi, qj, d) between any two terminals
qi, qj ∈ Q when the cost vector is d.

2. Construct a virtual complete link weighted network K(d) using Q (including the
source node here) as its terminals, where the link qiqj corresponds to the least cost
path LCP(qi, qj, d), and its weight w(qiqj) is the cost of the path LCP(qi, qj, d), i.e.,
w(qiqj) = |LCP(qi, qj, d)|.

3. Build the minimum spanning tree (MST) on K(d). The resulting MST is denoted
as V MST (d).

4. For every virtual link qiqj in V MST (d), we find the corresponding least cost path
LCP(qi, qj, d) in the original network. Combining all these paths can generate a
subgraph of G, say V MSTO(d).

5. All nodes on V MSTO(d) will relay the packets.

Notice that a terminal vk is on V MSTO(d) iff vk is on some virtual links in the V MST (d),
so we can focus our attention on these terminals in V MST (d). It is not very difficult to
show that the cost of VMST could be very large compared to the optimal. But when all
nodes have the same transmission ranges in the original wireless ad hoc network, which can
be modelled as UDG, following theorem shows that the virtual minimum spanning tree can
approximate cost of the optimal tree within a constant factor.

Theorem 2 V MST (G) is a 5-approximation of the optimal solution in terms the total cost
if the wireless ad hoc network is modelled by a unit disk graph.

Proof. Assume that the optimal solution is a tree called Topt. Let V (Topt) be the set of
nodes used in the tree Topt. Clearly, ω(Topt) =

∑
vi∈V (Topt)

ci. Similarly, for any spanning

tree T of K(G,Q), we define ω(T ) =
∑

e∈T w(e). Following we will prove 5 · ω(Topt) ≥
ω(V MST (G)).

First, for all nodes in Topt, when disregarding the node weight, there is a spanning tree
T ′

opt on V (Topt) with node degree at most 5 since the wireless network is modelled by a unit
disk graph. This is due to a well-known fact that there is an Euclidean minimum spanning
tree with the maximum node degree at most 5 for any set of two-dimensional points. Note
here we only need to know the existence of T ′

opt, we do not require to construct such spanning
tree explicitly. Obviously, ω(Topt) = ω(T ′

opt). Thus, tree T ′
opt is also an optimal solution. with

maximal node degree degree at most 5.

For spanning tree T ′
opt, we root it at an arbitrary node and duplicate every link in T ′

opt

(the resulting structure is called DT ′
opt). Clearly, every node in DT ′

opt has even degree now.
Thus, we can find an Euler circuit, denoted by EC(DT ′

opt), that visits every vertex of DT ′
opt

and uses every edge of DT ′
opt exactly once, which is equivalent to say that every edge in

T ′
opt(G) is used exactly twice. Consequently, we know that every node vk in V (Topt) is used
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exactly degT ′opt
(vk) times. Here degG(v) denotes the degree of a node v in a graph G. Thus,

the total weight of the Euler circuit is at most 5 times of the weight ω(T ′
opt), i.e.,

ω(EC(DT ′
opt)) ≤ 5 · ω(T ′

opt).

Notice that here if a node vk appears multiple times in EC(DT ′
opt), its weight is also counted

multiple times in ω(EC(DT ′
opt)).

If we walk along EC(DT ′
opt), we visit all receivers, and length of any subpath between

receivers qi and qj is no smaller than |LCP(qi, qj, G)|. Thus, the cost of EC(DT ′
opt) is at least

ω(V MST (G)) since V MST (G) is the minimum spanning tree spanning all receivers and the
cost of the edge qiqj in V MST (G) corresponds the path with the least cost |LCP(qi, qj, G)|.
In other words,

ω(EC(DT ′
opt)) ≥ ω(V MST (G)).

Consequently, we have

ω(V MST (G)) ≤ ω(EC(DT ′
opt)) ≤ 5 · ω(T ′

opt).

This finishes the proof.

VCG mechanism on VMST is not strategy-proof

In this subsection, we show that a simple application of VCG mechanism on VMST is not
strategy-proof. Figure 1.2 illustrates such an example where terminal v3 can lie its cost to
improve its utility when output is VMST. The payment to terminal v3 is 0 and its utility is
also 0 if it reports its cost truthfully. The total payment to terminal v3 when v3 reported a
cost d3 = M− ε is ω(V MST (c|3∞))−ω(V MST (c|3d3))+d3 = 2M− (M− ε)+M− ε = 2M
and the utility of terminal v3 becomes u3(c|3d3) = 2M − (M + ε) = M − ε, which is larger
than u3(c) = 0. Thus, VCG mechanism based on VMST is not strategy-proof.

21
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(a) Graph G (b) VMST (c) VMST with lie

Figure 1.2: The cost of terminals are c4 = c5 = M and c3 = M + ε.

Strategyproof Mechanism on VMST

Before discussing the strategyproof mechanism based on VMST, we give some related defi-
nitions first. Given a spanning tree T and a pair of terminals p and q on T , clearly there is a
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unique path connecting them on T . We denote such path as ΠT (p, q), and the edge with the
maximum length on this path as LE(p, q, T ). For simplicity, we use LE(p, q, d) to denote
LE(p, q, V MST (d)) and use LE(p, q, d|kd′k) to denote LE(p, q, V MST (d|kd′k)).

Following is our truthful payment scheme when the output is the multicast tree V MST (d).

Algorithm 2 Truthful payment scheme based on VMST

1. For every terminal vk ∈ V \ Q in G, first calculate V MST (d) and V MST (d|k∞)
according to the terminals’ declared costs vector d.

2. For any edge e = qiqj ∈ V MST (d) and any terminal vk ∈ LCP(qi, qj, d), we define
the payment to terminal vk based on the virtual link qiqj as follows:

pij
k (d) = |LE(qi, qj, d|k∞)| − |LCP(qi, qj, d)|+ dk.

Otherwise, pk
ij(d) is 0. The final payment to terminal vk based on V MST (d) is

pk(d) = max
qiqj∈V MST (d)

pij
k (d). (1.2)

Theorem 3 Our payment scheme (1.2) is strategyproof and minimum among all truthful
payment schemes based on VMST structure.

Instead of proving Theorem 3, we prove Theorem 4, Theorem 5 and Theorem 6 in the
remaining of this subsection.

Before the proof of Theorem 3, we give some related notations and observations. Consid-
ering the graph K(d) and a node partition {Qi, Qj} of Q, if an edge’s two end-nodes belong
to different node set of the partition, we call it a bridge. All bridges qsqt over node partition
Qi, Qj in the graph K(d) satisfying vk 6∈ LCP(qs, qt, d) form a bridge set B−vk(Qi, Qj, d).
Among them, the bridge with the minimum length is denoted as MB−vk(Qi, Qj, d) when
the nodes’ declared cost vector is d. Similarly, All bridges qsqt over node partition Qi, Qj in
the graph K(d) satisfying vk ∈ LCP(qs, qt, d) form a bridge set Bvk(Qi, Qj, d). The bridge in
Bvk(Qi, Qj, d) with the minimum length is denoted as BM vk(Qi, Qj, d). Obviously, we have

BM(Qi, Qj, d) = min{BM vk(Qi, Qj, d), BM−vk(Qi, Qj, d)}.

We then state our main theorems for the payment scheme discussed above.

Theorem 4 Our payment scheme satisfies IR.

Proof. First of all, if terminal vk is not chosen as relay terminal, then its payment pk(d|kck)
is clearly 0 and its valuation is also 0. Thus, its utility uk(d|kck) is 0.
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When terminal vk is chosen as a relay terminal when it reveals its true cost ck, we have
|LE(qi, qj, d|k∞)| ≥ |LCP(qi, qj, d|kck)|. This is due to the following observation: For any
cycle C in a graph G, assume ec is the longest edge in the cycle, then ec 6∈ MST (G). The
lemma immediately follows from

pk
ij(d|kck) = |LE(qi, qj, d|k∞)| − |LCP(qi, qj, d|kck)|+ ck > ck.

This finishes the proof.

From the definition of the incentive compatibility (IC), we assume that the d−k is fixed
throughout the proof. For our convenience, we will use G(dk) to represent the graph G(d|kdk).
We first prove a series of lemmas that will be used to prove that our payment scheme satisfies
IC.

Lemma 2 If vk ∈ qiqj ∈ V MST (d), then pij
k (d) doesn’t depend on dk.

Proof. Remember that the payment based on a link qiqj is pij
k (d) = |LE(qi, qj, d|k∞)| −

|LCP(qi, qj, d)| + dk. The first part LE(qi, qj, d|k∞) is the longest edge of the unique path
from qi to qj on tree V MST (d|k∞). Clearly, it is independent of dk. Now considering the
second part LCP(qi, qjd)− dk. From the assumption we know that vk ∈ LCP(qi, qj, d), so the
path LCP(qi, qj, d) remains the same regardless of vk’s declared cost dk. Thus, the summation
of all terminals’ cost on LCP(qi, qj, d) except terminal vk equals to

|LCP(qi, qj, d|k0)| = |LCP(qi, qj, d)| − dk.

In other words, the second part is also independent of dk. Now we can write the payment
to a terminal vk based on an edge qiqj as following:

pij
k (d) = |LE(qi, qj, d|k∞)| − |LCP(qi, qj, d|k0)|,

Here terminal vk ∈ LCP(qi, qj, d) and qiqj ∈ V MST (d).

If a terminal vk lies its cost ck upward, we denote the lied cost as ck. Similarly, if terminal
vk lies its cost ck downward, we denote the lied cost as ck. Let Ek(dk) be the set of edges
qiqj such that vk ∈ LCP(qi, qj, d) and qiqj ∈ V MST (d) when terminal vk declares a cost dk.
From Lemma 2, the non-zero payment to vk is defined based on Ek(dk). Following lemma
reveals the relationship between dk and Ek(dk). The proof of the lemma is omitted due to
the simplicity.

Lemma 3 Ek(dk) ⊆ Ek(d
′
k) when d′k ≤ dk.

We now state the proof that the payment scheme 1.2 satisfies IC.

Theorem 5 Our payment scheme satisfies the incentive compatibility (IC).
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Proof. For terminal vk, if it lies its cost from ck to ck, then Ek(ck) ⊆ Ek(ck), which implies
that payment

pk(d|kck) = max
qiqj∈Ek(ck)

pij
k (d|kck)

≤ max
qiqj∈Ek(ck)

pij
k (d|kck) = pk(d|kck).

Thus, terminal vk won’t lies it cost upward, so we focus our attention on the case when
terminal vk lies its cost downward.

From Lemma 3, we know that Ek(ck) ⊆ Ek(ck). Thus, we only need to consider the
payment based on edges in Ek(ck) − Ek(ck). For edge e = qiqj ∈ Ek(ck) − Ek(ck), let

qk
I q

k
J = LE(qi, qj, d|k∞) in the spanning tree V MST (d|k∞). If we remove the edge qk

I q
k
J , we

have a vertex partition {Qk
I , Q

k
J}, where qi ∈ Qk

I and qj ∈ Qk
J . In the graph K(d), we consider

the bridge BM(Qk
I , Q

k
J , d) whose weight is minimum when the terminals cost vector is d.

There are two cases need to be considered about BM(Qk
I , Q

k
J , d): 1) vk 6∈ BM(Qk

I , Q
k
J , d|kck)

or 2) vk ∈ BM(Qk
I , Q

k
J , d|kck). We discuss them individually.

Case 1: vk 6∈ BM(Qk
I , Q

k
J , d|kck). In this case, edge qk

I q
k
J is the minimum bridge over Qk

I

and Qk
J . In other words, we have |LE(qi, qj, |k∞)| ≤ |LCP(qi, qj, d|kck)|. Consequently

pij
k (d|kck) = |LE(qi, qj, d|k∞)| − |LCP(qi, qj, d|kck)|+ ck

= |LE(qi, qj, d|k∞)| − |LCP(qi, qj, d|kck)|+ ck

≤ ck,

which implies that vk will not get benefit from lying its cost downward.

Case 2: vk ∈ BM(Qk
I , Q

k
J , d|kck). From the assumption that qiqj 6∈ V MST (G(d|kck)),

we know edge qiqj cannot be BM(Qk
I , Q

k
J , d|kck). Thus, there exists an edge qsqt 6= qiqj

such that vk ∈ LCP(qs, qt, d|kck) and qsqt = BM(Qk
I , Q

k
J , d|kck). This guarantees that qsqt ∈

V MST (d|kck).

Obviously, qsqt cannot appear in the same set of Qk
I or Qk

J . Thus, qk
I q

k
J is on the path from

qs to qt in graph V MST (d|k∞), which implies that |LCP(qk
I , q

k
J , d|k∞)| = |LE(qi, qj, d|k∞)| ≤

|LE(qs, qt, d|k∞)|. Using Lemma 3, we have LCP(qs, qt, d|kck) ∈ V MST (d|kck)). Thus,

pij
k (d|kck) = |LE(qi, qj, d|k∞)| − |LCP(qi, qj, d|kck)|+ ck

= |LE(qi, qj, d|k∞)| − |LCP(qi, qj, d|kck)|+ ck

≤ |LE(qs, qt, d|k∞)| − |LCP(qi, qj, d|kck)|+ ck

≤ |LE(qs, qt, d|k∞)| − |LCP(qs, qt, d|kck)|+ ck

= pst
k (d|kck)

This inequality concludes that even if vk lies its cost downward to introduce some new
edges in Ek(ck), the payment based on these newly introduced edges is not larger than the
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payment on some edges already contained in Ek(ck). In summary, node vi don’t have the
incentive to lie its cost upward or downward, which proves the IC property.

Before proving Theorem 6, we prove the following lemma regarding all truthful payment
schemes based on VMST.

Lemma 4 If vk ∈ V MST (d|kck), then as long as dk < pk(d|kck) and d−k fixed, vk ∈
V MST (d).

Proof. Again, we prove it by contradiction. Assume that vk 6∈ V MST (d). Obviously,
V MST (d) = V MST (d|k∞). Assume that pk(d|kck) = pij

k (d|kck), i.e., its payment is com-
puted based on edge qiqj in V MST (d|kck). Let qIqJ be the LE(qi, qj, d|k∞) and {Qi, Qj}
be the vertex partition introduced by removing edge qIqJ from the tree V MST (d|k∞),
where qi ∈ Qi and qj ∈ Qj. The payment to terminal vk in V MST (d|kck) is pk(d|kck) =
|LCP(qI , qJ , d|k∞)| − cvk

ij , where cvk
ij = |LCP(qi, qj, d|k0|. When vk’s declare its cost as dk, the

length of the path LCP(qi, qj, d) becomes cvk
ij + dk = |LCP(qI , qJ , d|k∞)| − pk(d|kck) + dk <

|LCP(qI , qJ , d|k∞)|.
Now consider the spanning tree V MST (d). We have assumed that vk 6∈ V MST (d), i.e.,

V MST (d) = V MST (d|k∞). Thus, among the bridge edges over Qi, Qj, edge qIqJ has the
least cost when graph is G\vk or G(d|kdk). However, this is a contradiction to we just proved:
|LCP(qi, qj, d|kdk)| < |LCP(qI , qJ , d|k∞)|. This finishes the proof.

We now are ready to show that our payment scheme is optimal among all truthful mech-
anisms using VMST.

Theorem 6 Our payment scheme is the minimum among all truthful payment schemes based
on the VMST structure.

Proof. We prove it by contradiction. Assume that there is another truthful payment
scheme, say A, based on VMST, whose payment is smaller than our payment for a terminal
vk under a cost profile d. Assume that the payment calculated by A for terminal vk is
p̃k(d) = pk(d)− δ, where pk(d) is the payment calculated by our algorithm and δ > 0.

Now consider another profile d|kd′k, where the terminal vk has the true cost ck = d′k =
pk(d) − δ

2
. From Lemma 4, we know that vk is still in V MST (d|kd′k). Using Lemma 1, we

know that the payment for terminal vk using algorithm A is pk(c)− δ, which is independent
of terminal vk’s declared cost. Notice that dk = pk(d)− δ

2
> pk(d)− δ. Thus, terminal vk has

a negative utility under the payment scheme A when node vk reveals it true cost under cost
profile d|kd′k, which violates the incentive compatibility (IC). This finishes the proof.

By summarizing Theorem 4, Theorem 5 and Theorem 6, we get Theorem 3.
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1.3.4 Strategyproof Mechanism Based on Spider

For a general node weighted network, in the worst case, the cost of the structure LCPS and
VMST could be θ(n) times of cost of the optimal tree. It is known (e.g., [12],[10]) that it
is NP-hard to find the minimum cost multicast tree when given an arbitrary node weighted
graph G, and it is at least as hard to approximate as the set cover problem. Klein and Ravi
[12] showed that it can be approximated within O(ln r), where r is the number of receivers,
which is within a small constant factor of the best achievable approximation ratio among all
polynomial time computable tree if N 6= NP .

Constructing the spider

Here, we review the method used in [12] to find a node weighted Steiner tree (NST). In [12],
the authors used a special structure called spider to approximate the optimal solution. A
spider is defined as a tree having at most one node of degree more than two. Such a node (if
exists) is called the center of the spider. Each path from the center to a leaf is called a leg.
The cost of a spider S is defined as the sum of the cost of all nodes in spider S, denotes as
ω(S). The number of terminals or legs of the spider is denoted by t(S), and ratio of a spider
S is defined as

ρ(S) =
ω(S)

t(S)
.

Contraction of a spider S is the operation of contracting all vertices of S to form one
virtual terminal and connect this virtual terminal to each vertex v when uv is a link before
the contraction and u ∈ S. The new virtual terminal has a weight zero.

Algorithm 3 Construct NST

Repeat the following steps until no receivers are left and there is only one virtual terminal
left.

1. Find the spider S with the minimum ρ(S) that connects some receivers and virtual
terminals.2

2. Contract the spider S by treating all nodes in it as one virtual terminal. We call this
as one round.

All nodes belong to the final unique virtual terminal form the NST.

The following theorem is proved in [12].

Theorem 7 [12] Given k receivers, the tree constructed above has cost at most 2 ln k times
of the optimal.
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VCG mechanism on NST in not strategy-proof

Again, we may want to pay terminals based on the VCG scheme, i.e., the payment to a
terminal vk ∈ NST (d) is

pk(d) = ω(NST (d|k∞))− ω(NST (d)) + dk.

We show by an example that the payment scheme does not satisfy the IR property: it is
possible that some terminal has a negative utility under this payment scheme. Figure 1.3

1

u

v

u iu
k−1u

v

1

iv k

0

Figure 1.3: Terminals qi, 1 ≤ i ≤ k are receivers; the cost of terminal v2k−1 is 1. The cost of
each terminal vi is 2

k+1−i
− ε, where ε is a sufficiently small positive number.

illustrates such an example. It is not difficulty to show that, in the first round, terminal vk is
selected to connect terminals s and q1 with cost ratio 1

k
− ε

2
(while all other spiders have cost

ratio at least 1
k
). Then terminals s, vk and q1 form a virtual terminal. At the beginning of

round r, we have a virtual terminal, denoted by Vr formed by terminals vk+i−1, 1 ≤ i ≤ r−1,
and receivers qi, 1 ≤ i ≤ r; all other receivers qi, r < i ≤ k are the remaining terminals. It is
easy to show that we will select terminal qk+r−1 at round r to connect Vr and qr+1 with cost

1
k+1−r

− ε
2
. Thus, the total cost of the tree NST (G) is

∑k−1
i=1 ( 2

k+1−i
−ε) = 2H(k)−2−(k−1)ε.

When terminal vk is not used, it is easy to see that the final tree NST (G\u1) will only
use the terminal v2k−1 to connect all receivers with cost 1

k
when 1

k−1
− ε

2
> 1

k
. Notice that

this condition can be trivially satisfied by letting ε = 1
k2 . Thus, the utility of terminal vk is

p1(d) − c(vk) = ω(NST (G\vk)) − ω(NST (G)) = −2H(k) + 3 + (k − 1)ε, which is negative
when k ≥ 8, and ε = 1/k2.

Strategyproof Mechanism on Spiders

Notice, the construction of NST tree is by rounds. Following, we show that if terminal vk

is selected as part of the spider with the minimum ratio under a cost profile d in a round
i, then vk is selected before or in round i under a cost profile d′ = d|kd′k for d′k < dk. We
prove this by contradiction, which assumes that the terminal vk won’t appear before round
i + 1. Notice the graph remains the same for round i after the profile changes, so spider
Si(d) under the cost profile d is still a valid spider under the cost profile d′. Its ratio becomes
ωk

i (d) − dk + d′k < ωk
i (d) while all other spiders’ ratio keeps the same if they don’t contain

vk. Thus, the spider Sk
i (d) has the minimum ratio among all spiders under cost profile d′,
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which is a contradiction. So for terminal vk, there exists a real value Bi
k(d−k) such that the

terminal vk is selected before or in round i iff dk < Bi
k(d−k). If there are r rounds, we have

an increasing sequence

B1
k(d−k) ≤ B2

k(d−k) ≤ · · · ≤ Br
k(d−k) = Bk(d−k)

Obviously, the terminal vk is selected in the final multicast tree iff dk < Bk(d−k). Following
is our payment scheme based on NST.

Definition 2 For a node vk, if vk is selected in NST, then it gets payment

pk(d) = Bk(d−k). (1.3)

Otherwise, it gets payment 0.

Regarding this payment we have the following theorem:

Theorem 8 Our payment scheme (1.3) is truthful, and is minimum among all truthful
payment schemes for multicast tree based on spider.

Proof. To prove that it is truthful, we prove that it satisfies IR and IC respectively.
Notice that vk is selected iff dk < Bi

k(d−k), we have uk(d) = Bk(d−k)− dk > 0, which implies
IR. Now we prove that our payment scheme (1.3) satisfies IC by cases. Notice when vk is
selected, its payment doesn’t depend on dk, so we only need to discuss the following two
cases:

Case 1: When vk declares ck, it is not selected. What happens if it lies its cost upward
as dk to make it not selected? From the IR property, vk gets positive utility when it reveals
its true cost while it gets utility 0 when it lies its cost as dk. So it better for vk not to lie.

Case 2: When vk declares a cost ck, it is not selected. What happens if it lies its cost
downward as dk to make it selected? When vk reveals ck, it has utility 0, after lying it has
utility Bk(d−k)− ck. From the assumption that vk is not selected under cost profile d|kck, we
have Bk(d−k) ≤ ck. Thus, vk will get non-positive utility if it lies, which ensures vk revealing
its true cost ck.

So overall, vk will always choose to reveal its actual cost to maximize its utility (IC
property).

Following we prove that our payment is minimal. We prove it by contradiction, suppose
that there exists such a payment scheme P̃ such that for a terminal vk under a cost profile
d, the payment to P̃i(d) is smaller than our payment. Notice in order to satisfy the IR,
the terminal must be selected, so we assume P̃i(d) = Bk(d−k) − δ, where δ is a positive
real number. Now considering the profile d′ = d|k(Bk(d−k) − δ

2
) with vk’s actual cost being

ck = Bk(d−k)− δ
2
. Obviously, vk is selected, from Lemma 1 the payment to vk is Bk(d−k)−δ.

Thus, the utility of vk becomes uk(d
′) = Bk(d−k)−Bk(d−k)− δ + δ

2
= − δ

2
< 0, which violates

the IR property. This finished our proof.
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We then study how to compute such payment to a selected node vk. With Theorem 8,
we only need focus our attention on how to find the value Bi

k(d−k). Before we present our
algorithm to find Bi

k(d−k), we first review in details how to find the minimum ratio spider.
In order to find the the spider with the minimum ratio, we find the spider centered at every
vertex vj with the minimum ratio over all vertices vj ∈ V and choose the minimum among
them. The algorithm is as follows.

Algorithm 4 Find the minimum ratio spider

Do the following process for all vj ∈ V :

1. Calculate the shortest path tree rooted at vj that span all terminals. We call each
shortest path a branch. The weight of the branch is defined as the length of the
shortest path. Here, the weighted of the shortest path doesn’t include the weight of
the center node vj of the spider.

2. Sort the branches according to their weights.

3. For every pair of branches, if they have terminals in common then remove the branch
with a larger weight. Assume that the remaining branches are

L(vj) = {L1(vj), L2(vj), · · · , Lr(vj), }
sorted in an ascending order of their weights.

4. Find the minimum ratio spider with center vj by linear scanning: the spider is formed

by the first t branches such that
cj+

∑t
k=1 Lk

t
≤ cj+

∑h
k=1 Lk

h
for any h 6= t.

Assume the spider with the minimum ratio centered at terminal vj is S(vj) and its
ratio is ρ(vj).

5. The spider with minimum ratio for this graph is then S = minvj∈V S(vj).

In algorithm 4, ω(Li(vj)) is defined as the sum of the terminals’ cost on this branch,

and Ωi(L(vj)) =
∑i

s=1 ω(Ls(vj)) + cj. If we remove node vk, the minimum ratio spider
with center vj is denoted as S−vk(vj) and its ratio is denoted as ρ−vk(vj). Assume that
L−vk

1 (vj), L
−vk
2 (vj), · · · , L−vk

p (vj) are those branches in ascending order before linear scan.

From now on, we fix d−k and the graph G to study the relationship between the minimum
ratio ρ(vj) of the spider centered at vj and the cost dk of a node vk.

Observation 1 The number of the legs of the minimum ratio spider decreases over dk.

If the minimum ratio spider with the terminal vk has t legs, then its ratio will be a line
with slope of 1

t
. So the ratio-cost function is several line segments. From the observation 1,

these line segments have decreasing slopes and thus it has at most r segments, where r is
the number of receivers. So given a real value y, we can find the corresponding cost of vk in
time O(log r) such that the minimum cost ratio spider S(vj) centered at node vj has a ratio
y. We the present our algorithm to find these line segments as follows.
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Algorithm 5 Find the ratio-cost function y = Rvj
(x) over the cost x of vk

There are two cases here: j = k or j 6= k.
Case 1: j = k, we apply the following procedures:

Apply steps 1, 2, 3 of algorithm 4 to get L(vk).
Set the number of legs to t = 1, lower bound lb = 0 and upper bound ub = 0
While t < r do the follows {

ub = (t + 1) ∗ ω(Lt+1(vk))− Ωt+1(L(vk))

y = Ωt(L(vk))+x
t

for x ∈ [lb, ub)
Set lb = ub and t = t + 1 }

Let y = Ωr(L(vk))+x
r

for x ∈ [lb,∞).
Case 2: j 6= k, we apply the following procedures:

1. Remove terminal vk, apply algorithm 4 to find S−vk(vj).

2. Find the shortest path with terminal vk from vj to every receiver, sorted these paths
according to their length in a descending order, say sequence

Lvk(vj) = {Lvk
1 (vj), L

vk
2 (vj), · · · , Lvk

r (vj)}.
Here r is the number of terminals, and ω(Lvk

i (vj)) is the sum of terminals on path
Lvk

i (vj) excluding terminal vk.

3. t is the index for branches in Lvk(vj) and l is the index for paths in L−vk(vj).

4. For Lvk
t (vj) (1 ≤ t ≤ r), there may exists on or more branches in L−vk(vj) such that

they have common terminals with Lvk
t (vj). If there are more than one such branches,

choose the branch with the minimum cost, say L−vk
l (vj). We defined upper bound

uppert for Lvk
t (vj) equals ω(L−vk

l (vj))−ω(Lvk
t (vj)). If there does not exist such branch

we set uppert = ∞.

5. Initialize lower bound lb = 0 and upper bound ub = 0. Apply the following algorithm:

For t = 1 to r do {
While lb < uppert do

Set l = 1

Obtain a new sequence LT−vk(vj) from L−vk(vj) by removing all branches
that has common nodes with Lvk

t (vj). Let rt be the number of branches in sequence
LT−vk(vj).

While l ≤ rt do

While ω(Lvk
t (vj)+lb > lω(LT−vk

l (vj))−Ωl−1(LT−vk(vj))−cj and l ≤ rt

l = l + 1

If l ≤ rt then

Set ub = ω(LT−vk
l (vj))− Ωl−1(LT−vk(vj))− ω(Lvk

t (vj)− cj

If ub ≥ uppert break;

Set y =
Ωl−1(LT−vk (vj))+ω(LT

vk
t (vj))+x

l
for x ∈ [lb, ub)

Set lb = ub.

Set l = l + 1.

Set y =
Ωl−1(LT−vk (vj))+ω(L

vk
t (vj))+x

l
for x ∈ [lb, uppert).

Set lb = uppert.

}
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Given a real value x, the corresponding cost for terminal vk is denoted as R−1
vj

(x). Finally,

we give the algorithm to find value Bk(d−k).

Algorithm 6 Algorithm to find Bk(d−k)

1. Remove the terminal vk and find the multicast tree by using the spider structure.

2. For every round i in the first step, we have a graph called Gi and a selected spider
with ratio ρ−vk

i . Adding the node vk and all its incident edges to Gi, we get a graph
G′

i.

3. Find the function y = R−1
vj

(x) for every terminal vj in the graph G′
i using Algorithm

5.

4. Calculate Br
k(d−k) = maxvj∈V (G′i){R−1

vj
(ρ−vk

i )}.
5. Bk(d−k) = max1≤i≤r Bi

k(d−k)

The correctness of our algorithms is omitted due to space limit. Notice that for the
practical implementations, we do not have to compute the functions actually. We are more
interested in given some value y, what is the corresponding cost dk such that the minimum
ratio spider centered at the node vk has a ratio y.

1.4 Experimental Studies

Remember that the payment of our structure is often larger than the structure’s actually
cost. For a structure H, let c(H) be its cost and ps(H) be the payment of a scheme s
based on this structure. We define the overpayment ratio of the payment scheme s based on
structure H as

ORs(H) =
ps(H)

c(H)
. (1.4)

When it is clear from the context, we often simplify the notation as OR(H).

Actually, there are some other definitions about overpayment ratio in the literature. In
[?], the authors propose to compare the payment p(H) with the cost of the new structure
obtained from the graph G−H, i.e., removing H from the original graph G. Here, we only
focus our attention on the overpayment ratio defined as (1.4).

We conducted extensive simulations to study the overpayment ratio of various schemes
proposed in this chapter. In our experiments, we will compare the different schemes proposed
according to three different metrics: actual cost, total payment and overpayment ratio.
Figure 1.4 shows the different multicast structures when the original graph is a unit disk
graph. Here, the grey nodes are receivers.

In the first experiment, we randomly generate n nodes uniformly in a 2000ft × 2000ft
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UDG LCPS VMST NST

Figure 1.4: Multicast Structures for Node Weighted Network

region. The transmission range of each node is set as 300ft. The weight of a node i is ci ∗ 3κ

where ci is randomly selected from a power level between 1 and 10. We vary the number of
terminals in this region from 100 to 320, and fix the number of sender to 1 and the number
of receivers to 15. For a specific number of terminals, we generate 500 different networks,
and compare the average cost, maximum cost, average payment and maximum payment,
average overpayment ratio and maximum payment ratio.
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Figure 1.5: Results when the number of nodes in the networks are different (from 100 to
320). Here, we fix the transmission range to 300ft.

In wireless ad hoc networks with nodes having fixed transmission range, as shown in
Figure 1.5, all structures’ cost and payment decrease as the number of terminals increase.
Notice for all structures, we assume all receivers(senders) will relay the message for free.
The cost and payment of VMST and NST are much lower than the cost and payment of
LCPS. As we expected, due to the low cost of the VMST and NST structures, the maximum
overpayment ratio of these two structures are very unsteady and much high than the max
overpayment ratio of LCPS. We still prefer the later structures VMST and NST since they
incur smaller costs and more importantly smaller payments.

In our second experiment, we vary the transmission range of each wireless node from
100m to 500m. We assume that the cost ci of a terminal vi is c1 + c2ri

κ, where c1 takes value
from 300 to 500, c2 takes value from 10 to 50 and ri is vi’s transmission range. The ranges
of c1 and c2 we used here reflects the actual power cost in one second of a node to send data
at 2Mbps rate.

Similar to the fixed transmission experiment, we vary the number of terminals in the
region from 100 to 320, and fix number of sender to 1 and the number of receivers to 15. For
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Figure 1.6: Results when the number of nodes in the networks are different (from 100 to
320). Here, we randomly set the transmission range from 100ft to 500ft.

a specific number of terminals, we generate 500 different networks, and compare the average
cost, maximum cost, average payment and maximum payment, average overpayment ratio
and maximum payment ratio.

Figure 1.6 shows the similar result for both link weighted network and node weighted
network as the fixed transmission range experiments.

1.4.1 Vary Number of Receivers and Random Transmission Range

For a structure H, if there are r receivers, we define the cost density as

CD(H) =
c(H)

r

and the payment density as

PD(H) =
p(H)

r
.

Now we study the relationship between cost, payment, overpayment ratio, cost density,
payment density and the number of the terminals. We use the same power cost model in the
previous experiment and the number of nodes in the region is set to 300. We fix the sender
to 1 and vary the number of receivers from 5, 10, 20, · · · to 50.

Figure 1.7 shows that when the number of the receivers increases, under most circum-
stances, the overall payment and cost increases while the average cost and payment for every
terminal decreases. One exception is for a node weighted network. Notice that in a node
weighted network, we set all terminals’ cost to 0. It is natural to expected that when the
number of receivers is larger than some threshold, the total cost and payment will decrease
since we assume that receivers will relay for free. This experiment shows that more terminals
in a multicast group can incur a lower cost and payment per terminal, which is an attractive
property of multicast.
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Figure 1.7: Results when the number of receivers in the networks are different (from 10 to
50). We randomly set the transmission range from 100ft to 500ft.

1.5 Conclusion

In this chapter, we studied how to conduct efficient multicast in selfish wireless networks
by assuming that each wireless node will incur a cost when it has to transit some data,
and the cost is privately known to the wireless terminal node. For each of the widely
used structures for multicast, we designed a strategyproof multicast mechanism such that
each agent maximizes its profit when it truthfully reports its cost. The structures studied
in this chapter are: least cost path star(LCPS), virtual minimum spanning tree(VMST)
and the node weighted Steiner tree(NST). We showed that the VMST approximates the
optimal multicast tree for the homogeneous network when all wireless nodes have the same
transmission range.

Extensive simulations were conducted to study the practical performances of the proposed
protocols, especially the total payment of these protocols compared with the actual cost of
agents. Although, theoretically, the overpayment ratio of the protocols designed here could
be large in the worst scenario, we found by experiments that the overpayment ratios of all
our strategyproof mechanisms are small when the costs of agents are randomly drawn from
a distribution.
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