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Wireless Sensor/Actuator Networks

Bridging the digital world and physical world
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Why large scale wireless network’
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Real World Systems

1. OceanSense (2007)
2. GreenOrbs (2009-)

3. CitySee (2011-)



OceanSense

2 FENEXE
lej THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

ILLINOIS INSTITUTEﬁV
OF TECHNOLOGY

Transfarming Lives.Inventing tha Future.

%44

Tsinghua University




Motivation

« Silt Deposition problem of Qingdao Port:
— Qingdao port :

» one of the ten busiest ports in the world

— Silt Deposition:
> Affect the water depth

» High uncertainty and high instant uncertainty (tide, wind,
etc. )




OceanSense

s Monitor the sea!

— The first sea environment monitoring sensor network
system in China

— More than 120 sensor nodes
— Temperature, Light, Sea depth

Sea
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Deployment

» Deployed in the Yellow sea near Qingdao, China

10



GreenOrbs

https//www.greenorbs.org/
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Motivation

Study on biodiversity

Fire risk evaluation
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GreenOrbs

< Go to the wild!
— Supporting forestry research and applications

— Multiple deployments, each> 330 sensor nodes
— Temperature, Light, CO2
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Deployment: Overview

Mountain

. Network Duty Data
Place Area Duration Battery Scale Diameter Cycle Volume
University ,
woodland #1 20,000 m 1 month (2008) 800 mAh 1.5V 50 6 hops No 15 Mbytes
University , .
woodland #2 20,000 m? | 10 months (2009) 2200 mAh 1.2V 120 10 hops 5% 272 Mbytes
University
woodland #2and | 40,000 m? | 1year (2009.12~) ~8000mAh, 1.5V 330 8% or No | 140 Mbytes
#3
200’200 1.5 months (2009) ~8000mAh, 1.5V 50 10 hops 5% 3 Mbytes
m
200,000 1.5 year _ r .
m2 (2009.10-) 8000mANh, 1.5V 200 ( 20 hops : 5% 10 Mbytes
TianMu
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CitySee

City-Wide Urban Sensing
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Motivation: Global Warming

< Starting from Global Climate Changes

— Emission of large volume of greenhouse gases is the
main reason for global warming
» CO2, N20, CH4, HFCs,PFCs,SF6

— The most greenhouse gases is CO2

— CO2 generation of human activities: in the city
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CitySee

< Back in the city!
— Large scale indoor/outdoor environment monitoring
— More than 1200 sensor nodes
— Temperature, Light, CO2
— Mesh routers
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System Architecture

MESH Networ

WSN
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Deployment: Locations

Cover more than 1.2 KM? urban area of the Wuxi City

Development Zone



System Deployment
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Deployment: Nodes Deployed

Normal node Carbon node Mesh node

Microcontroller MSP430f1611 MSP430f1611 ARM7
Type of sensor reading Temperature, humidity, light. CO, N/A
Radio module IEEE 802.15.4 IEEE 802.15.4 IEEE 802.11b

C(C2420 2.4GHz C(C2420 2.4GHz NetCard 5.8GHz
Communication range (m) 150-200 150~200 5000~-6000
Power 2 AA batteries (3V) 12V Rechargeable battery 110V-220V AC
Powe_l‘ consumption - 0.6-12 2448 N/A
sleeping (mW)
Pow_er consumption - 60-90 2160 N/A
sensimng (mW)
Power consuniption - 60~90 60~90 300025000
communication (mW)
Manufactory cost (USD) ~80 ~260 ~800
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LESSONS



Lesson 1

< System that work in labs fails horribly in practice

— OceanSense:
» System run out of battery in a week (labs run in months)
» Nodes destroyed by water
» Devices stolen by people: they are interested in the sticks!

— GreenOrbs:
» Nodes destroyed by flooding
— CitySee:

» Installation needs the coordination of various government
departments

» Require nice encapsulation



Lesson 2

< Encapsulation? Encapsulation!
— Solutions to many of the previously mentioned problems

— OceanSense:

» Waterproof, considering factors such as tide, wind, etc.
— GreenOrbs:

» Waterproof, allow accurate collection of humidity and luminosity
— CitySee:

» Made the nodes nice-looking!
|
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D:/Presentations/video-system/SeaMonitoring.mpg

Lesson 3

< Need good visualization tools
— Allow diagnostics
— Easy to interpret the data and locate the problems
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D:/Presentations/video-system/citysee_2min.avi

Lesson 4

< Deployment

— Balance between accuracy, coverage, sustainability
and cost

— Regions that doesn’t allow deployment
» Not allowed by the nature (physically infeasible)
» Not allowed due to bad signal (interference, obstruction, etc)

» Forbidden by the government
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Lesson 5

% Control the cost!

— Cost reduction is a must when you need so many
nodes

» Node cost
> Labor cost
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NETWORK OBSERVATIONS:
GREENORBS



Traffic distribution : balanced in CTP?

sl L) .
ae® ® ] [ ]
L ] L ] L ]
[ ) ® . [ ) L [ ) .
L
. . & . &
L)
) ae [
L ] L ] L ]
[ L [ L )
®
=
[ )

traffic.

0.6

5% nodes account 80% Z/'

04

0.2

Cumulative Percentage of Traffic
Cumulative Distribution Function

90% nodes have very low
traffic. :

i 50 100

150 200 250 300
Node ID

The traffic distribution is relatively stable over time

0.6

0.6f

041

0.2r

% 2 4 5 8
Number of Periods under High Traffic Load

31



Causes of Packet Losses

» Packet Delivery Ratio (PDR) about 85%
* Linkloss (61%) vs. Node drops (39%)

 Faulty behavior on forwarding nodes
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Packet Loss Diagnosis

December 10, 2010; 400 nodes, 60,000m?  Data of 10 days:
1,137,430 packets received

181,862 packets lost

— The green nodes with PRR > 90%.
— The red nodes with PRR < 90%,
— The radius indicates the number of lost packets
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acket Losses: Non-ACK

< 84,030 packet loss due to non-ack
— 46.2% of total losses
— 68,444 caused by physical environment (bad links)
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Packet Losses: Non-ACK

<+ 84,030 packet loss due to non-ack
— 46.2% of total losses
— 4,361 caused by interferences (contention <--reboot, loop)
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Packet Losses: Corrupted Packets

< 9,511 corrupted packets
— 9037 real losses (after consider retransmission)
— ~ 5% of total loss
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Packet Losses: Routing Loop

<+ 5,178 packet loss due to overtlow from routing loop
— 2.9% of total losses
— 93% of overflow events did not result in packet loss
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Packets Loss Summary

Root cause %

[. sink-side failure 12.5%
[.1 vertical banding 12.45%

2. corruption 5%

3. overflow drops 2.87%
3.1 loop overflow drops 2.85%
3.2 non-loop overflow drops 0.02%

4. no-ack drops 46.2%
4.1 env-no-ack drops 37.6%
4.2 intertference-no-ack drops 2.4%

d. reboot (direct impact on 1oss) ~()

About 35% packet losses are unidentified now.




NETWORK OBSERVATIONS:
CITYSEE



Where Packets are Lost ?
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Traffic Distribution

» Small portion of
“critical nodes”,

verifies the same -_' __ | B 0w ¥
finding observed | ' ea g T
from GreenOrbs L o

« Traffic dynamics
exhibits different
pattern, e.g.

burstness on some
nOdeS [ . ‘

Time Traffic Sink
volume "




Network Topology

Nodes closer to the sink have a more stable topology
than nodes that are far away.
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Summary

Many challenges to make it

1. Sustainable --- energy efficiency and
fault diagnosis?

2 Robust - co-existence?
3-[Scalable -—-large scale performance?
4. Predictable ---- under varying
environment?
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ZIMO: CROSS-TECHNOLOGY MIMO TO
HARMONIZE COEXISTENCE OF ZIGBEE
WITH WIFI



Coexistence in ISM Band

ISM band interferences are pervasive and crowded
WiFi signal is the primary and first class passenger

O Existing Works mainly protect WiFi signal and mitigate cross technology interference [TIMO]
O Some ZigBee signal protection works need modifications or degrade WiFi [Sensys10, Liang]




Experiment Setup

: Recei
< Two ZigBee Nodes e

(TX&RX)
<+ WiF1 APs are in IIT campus

< ZigBee nodes are
configured to receive full
spectrum interference in

full time scale Transmitter (1)

< Adding controllable AP for
tunable interference
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Effect of WiFi interference on ZigBee
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main role of WiFI interference on ZigBee.
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drastic threat for ZigBee signal.




Effect of WiFi interference on ZigBee
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v The WiFi interference is distributed across ZigBee symbols,
rather than concentrated on particular positions.

v We need to resort to the signal processing techniques for
fundamental solutions.




ZIMO: Sink Based Design

|

Ettus Research ;- @ @ USRP N210
3 ’(:% — . .
00 mm N ::p

Cons No.1: ZIMO has more antennas than WiFi AP (N+1)
Cons No.2: ZIMO needs at least one preamble is clear

Cons No.3: Can work with one ZigBee and multiple WiFi




How ZIMO works?

:> ZigBee
: Decoding

Nullification ==t = WiFi
: Decoding

: WiFi
|:>§ Nullification

Frame

Detection &
Identification

ZigBee

Interference :
Nullification -

- . Accurate
ZigBee i Lt aceur
Decoding<:|: 5 WiFi Signal

Cancellation

Recovery




Main challenges

< Channel Coefficient Recovery
— Interference in frequency domain

— Sufficient for decoding, insufficient for accurate signal
recovery

<+ CFO Compensation

— Well done for preamble, insufficient for whole data
scale

— Extremely large with the increasing packet length



Where are opportunities?

< Frequency domain is partially overlapped
< Time domain also partially overlapped
< Power domain shows significant difference

0dB
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Where are opportunities?

Amplitude

0.154

Phase

28 " . o
— 40

Subcarrier Number Symbol Number

Subcarrier Number Symbol Number

For channel coefficient:

Interpolation iIs simple, effective




Where are opportunities?

Imaginary Part of H(f)

0.03
0.02;

0.01;

0_

~ Calculated
© Interpolated

0808 ~006 -004 -0.02

Real Part of H(f)

0

Phase Offset

—Calculated_

---Fitted

50

Symbol Index

CFO

Linear regression is accurate

enough for CFO
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Implementation

25 meters

—-d

* Implement using USRP2 N200

e |EEE STD 802.15.4, 2 MHz Bandwidth
e OFDM is 20 MHz Bandwidth

* Real trace driven ZIMO decoding

* No carrier sense and MAC timing control



Experimental Results: Macro Benchmark

< Recovery ratio
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Experimental Results: Macro Benchmark
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Asymptotical Capacity



Two Capacity metrics - channel

C = log(1+ SINR)

Shannon channel theory




Two Capacity metrics - transport

< transport capacity
— end-to-end multi-hop throughput




Impact factors :

< Network Size
<+ Networking Models

< Inference Models

% Traffic Models

a meters

a meters
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Various Models

* deployment models
— arbitrary networks [——
— random networks -
<+ network scaling models
— dense networks
— extended networks
% Communication (Interference) models
— the protocol model (PrIM)
— Fixed Range Protocol Model (fPrIM)

— physical model (PhIM)
— generalized physical model (GphM also called GCM) |
— Others
< Traffic models
— Unicast
— Broadcast |t el
— Multicast ﬂ m——-F
— Anycast

— Many-to-one



Results Summary



Milestone Results : Unicast, PrIM

Aggregated capacity: scales n

JXH{: Grossglauser and Tse, 2002,
n & with mobility & large delay

Upper Bound Vv
Lower Bound A

\/HV \ Overlapping Bounds XX

T&AN, Gupta & Kumar, 2000
19 RDN,

n :
X {8 Li, Goeckel and Towsley, 2006, RDN
logn \Ig Network Coding does NOT Matter

{8 Alireza Keshavarz-Haddad et al, 2014, AN

jg Capacity gain of NC < =n for all IM

1 : Thomas Moscibroda, 2007,
® Worst-Case Deployment, no BC
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Milestone Results : Unicast, PhIM

Aggregated capacity

A .

Franceschetti et al. , 2007, AN,RDN
Gap in [Gupta] can be closed

gdddd

lo AN, Gupta & Kumar, 2000
Jlg RDN,  Gap exists
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Milestone Results : Broadcast, PrIM

Aggregated capacity

A

n ___________________

Jn

logn

(€]

A. Keshavarz-Haddad et al, 2006, RDN
nodes number , radio range, the area,
and mobility do not matter
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Milestone Results : Multicast, PrIM

Capacity, A(n, ng)

n

[
X. Shakkottai et al, Mobihoc, 2007, RDN
Upper Boud
Ns=n°, nsng=0(n), ¢ €(0,1]

=
[T eTe




Our Results : Multicast, PrIM

A

Li et al, MobiCom 2007, REN, n, = @(n)




Brief Summary

< The aggregate multicast capacity of n sessions is

N O( Iogn \/Tl) when n, = O(ogn)

OW) when n, = Q(ﬁ)

’0

* Our results unify previous results

1. Unicast (when nd=2): O( | n eW) by Gupta and Kumar
ogn
2. Broadcast (when ng=n): ®(W) by Keshavarz-Haddad et al., Mobicom’06

) by Shakkottai et al., Mobihoc’o7

3. Multicast (ng=n®and n;=n'¥), of
n, logn
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Our Results : Multicast, GCM

4+ A(n, Ng)
. 1
W w/ndn 1
a+l
ny(logn)

]
| 1
| a-1
| Jnn, e(logn)
|

N R

n(logn)

|

I

1 n n n n
(logn)®*®  (logn)“*™ (logn)>  logn

Multicast Capacity for REN, n, = O(n),
Li et al. [MobiCom 2008]. Wang, Li et al. [INFOCOM 2010, 2011].



Protocol Interference Model

General Approaches



Multicast under Protocol Model

<+ Data Copies Argument (upper bound)

— Estimate the expected (or asymptotic lower bound)
number of nodes N(b) that received (or listened) a bit b.

— Capacity at most n-W/N(b)

» since all nodes receive at rate at most n -W.
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Upper-bound Proof Flow

: w
Capacity Up;er-Bound I:;(b)
Data Copies Lower-Bound N(b) > 2222 1« Density & w.h.p.

T

Edge Length of T > or\/nga w.h.p. 4— Area D(T) = O(||T| - r)

?

Area D(T) of active nodes > XL wh.p. 4——— ||T| > o||[EMST||

?

Length of EMST > 7./nhya w.h.p.




Lower-Bound: Routing and Scheduling

< Build EMST

— Routing structure using EMST as backbone

— Need to bound the conflict and total data copies
» The lower-bound of multicast tree length w.h.p.? EMST?

» Maximum number conflicting flows in the network w.h.p
— Using VC dimension (proved to be O(log n;)), and VC theorem
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Lower-bound Proof Flow

Capacity Lower-Bound

nW
A-N(b)

!

Data Copies Upper-Bound N(b)

/

\

Area D(T) of active nodes <

Density < 2= w.h.p.

/'\

Edge Length of T < | | Area D(T

=O(TI-r)

/

\

Length of EMST <

|T| < 02| EMST ||
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Gaussian Channel Model

General Approaches



Multicast under Gaussian Model

% Two kind of links
— Inside Links
— Qutside Links

' Outside Link
Giant Component |
f”ﬁ.
- Inside Link

DutmdeLk




Relationship between links

< [, : max link length in giant component.
< |. : the max distance between any node not in GC
and the giant cluster

e OUtsIde node

o inside node

IC .- : : . : . e . . : : : =
Z% . . : : : : iy . : . - SIC
RS RONO £ 2
* - . N
|

If I, =o(y/logn/ <) then -1 -1, = Q(log n)



Upper-bound Proof Techniques 1

< There is a link uv, that will be used by many
flows (say f ) = the minimum data rate

— min A, < rate supported by uv / f
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Upper-bound Proof Techniques 2

< There is an isolated cluster C of nodes, and f
flows will have links going inside this cluster

— min A: < total rate supported by links reaching ¢/ f
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Lower Bounds Techniques

<+ Highway systems
— Cell is of O(1) nodes inside
— from percolation theory
— First used by Tse et al
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Low Bound: Routing, Scheduling

First build EMST of receivers

Build highway using cell size 1
— Each highway link data rate O(1)
Build second-class highway
using cell size (log n)"1/2
Node sends its data to high-

way (solid lines) by multi-hop
second class highway (dashed
line)
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Our New Techniques

% Parallel Arterial
Road Systems

— longer links to
connect isolated
nodes to highway

<Parallel Scheduling
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