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Wide Applications: CPS, IOT 
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Why large scale wireless network? 
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Presentation Outline 
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OceanSense GreenOrbs CitySee 

Networking observations 

ZIMO: 
Coexistence 

Capacity: 
the Limit 



 

  

1. OceanSense (2007) 

2. GreenOrbs (2009-) 

3. CitySee (2011-) 
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Real World Systems 



7 

OceanSense 



Motivation 

Silt Deposition problem of Qingdao Port: 

– Qingdao port : 

  one of the ten busiest ports in the world 

– Silt Deposition: 

Affect the water depth  

High uncertainty and high instant uncertainty (tide, wind, 
etc. ) 
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OceanSense 

Monitor the sea! 

– The first sea environment monitoring sensor network 

system in China 

– More than 120 sensor nodes 

– Temperature, Light, Sea depth 
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Deployment 
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• Deployed in the Yellow sea near Qingdao, China 
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GreenOrbs 



Motivation 
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Carbon sequestration 

Study on biodiversity Fire risk evaluation 

Canopy closure estimates 



GreenOrbs 

Go to the wild! 

– Supporting forestry research and applications 

– Multiple deployments,  each> 330 sensor nodes 

– Temperature, Light, CO2 
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Deployment: Overview 

Place Area Duration Battery Scale 
Network 

Diameter 

Duty 

Cycle 

Data 

Volume 

University 

woodland #1 
20,000 m2 1 month (2008) 800 mAh 1.5V 50 6 hops No 15 Mbytes 

University 

woodland #2 
20,000 m2 10 months (2009) 2200 mAh 1.2V 120 10 hops 5% 272 Mbytes 

University 

woodland #2 and 

#3 

40,000 m2 1 year  (2009.12~) ~8000mAh, 1.5V 330 12 hops 8% or No 140 Mbytes 

Tianmu Mountain 
200,000 

m2 
1.5 months (2009) ~8000mAh, 1.5V 50 10 hops 5% 3 Mbytes 

Tianmu Mountain 
200,000 

m2 

1.5 year 

(2009.10~) 
~8000mAh, 1.5V 200 ~ 20 hops 5% 10 Mbytes 
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Campus TianMu 

Mountain 
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Deployment: Nodes in the Wild 
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CitySee 
 City-Wide Urban Sensing 



Motivation: Global Warming 

Starting from Global Climate Changes 

– Emission of large volume of greenhouse gases is the 
main reason for global warming 

CO2, N2O, CH4, HFCs,PFCs,SF6 

– The most greenhouse gases is CO2 

– CO2 generation of human activities: in the city 
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CitySee 

Back in the city! 

– Large scale indoor/outdoor environment monitoring 

– More than 1200 sensor nodes 

– Temperature, Light, CO2 

– Mesh routers 
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System Architecture 
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Data Center and 
Apps 

MESH Networks 

WSN 



Deployment: Locations 

Cover more than 1.2 KM2 urban area of the Wuxi City 

Thermal Power Plant 

 

Water Source 

High emission Factories 

Development Zone 

Residential Area 

Railway Station 



System Deployment 



Deployment: Nodes Deployed 



Presentation Outline 
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OceanSense GreenOrbs CitySee 

Networking observations 

ZIMO: 
Coexistence 

Capacity: 
the Limit 



LESSONS 



Lesson 1 

System that work in labs fails horribly in practice 

– OceanSense:  

System run out of battery in a week (labs run in months) 

Nodes destroyed by water 

Devices stolen by people: they are interested in the sticks! 

– GreenOrbs: 

Nodes destroyed by flooding 

– CitySee: 

Installation needs the coordination of various government 
departments  

Require nice encapsulation 

 



Lesson 2  

 Encapsulation? Encapsulation! 

– Solutions to many of the previously mentioned problems 

– OceanSense: 

Waterproof, considering factors such as tide, wind, etc. 

– GreenOrbs: 

Waterproof, allow accurate collection of humidity and luminosity 

– CitySee: 

Made the nodes nice-looking! 
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D:/Presentations/video-system/SeaMonitoring.mpg


Lesson 3 

Need good visualization tools 

– Allow diagnostics 

– Easy to interpret the data and locate the problems 
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D:/Presentations/video-system/citysee_2min.avi


Lesson 4 

Deployment 

– Balance between accuracy, coverage, sustainability 
and cost 

– Regions that doesn’t allow deployment 

Not allowed by the nature (physically infeasible) 

Not allowed due to bad signal (interference, obstruction, etc) 

Forbidden by the government 

– Deployment challenges: bamboo, large trees 
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Lesson 5  

Control the cost! 

– Cost reduction is a must when you need so many 
nodes 

Node cost 

Labor cost 
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NETWORK OBSERVATIONS: 
GREENORBS 



Traffic distribution : balanced in CTP? 

5% nodes account 80% 
traffic. 
 
90% nodes have very low 
traffic. 
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The traffic distribution is relatively stable over time 



Causes of Packet Losses 

• Packet Delivery Ratio (PDR) about 85% 

• Link loss (61%) vs. Node drops (39%) 

• Faulty behavior on forwarding nodes 

 

Causes of packet drops on 
sensor nodes 

Cumulative distribution of 
packet loss 
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Packet Loss Diagnosis 

– The green nodes with PRR > 90%.  

– The red nodes with PRR < 90%,  

– The radius indicates the number of lost packets 
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December 10, 2010;  400 nodes, 60,000m2 Data of 10 days: 

 1,137,430 packets received 

181,862 packets lost 



Packet Losses: Non-ACK 

84,030 packet loss due to non-ack 

– 46.2% of total losses 

– 68,444 caused by physical environment (bad links) 
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Packet Losses: Non-ACK 

84,030 packet loss due to non-ack 

– 46.2% of total losses 

– 4,361 caused by interferences (contention <--reboot, loop) 
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Packet Losses: Corrupted Packets 

9,511 corrupted packets 

– 9037 real losses (after consider retransmission)  

– ~ 5% of total loss 
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Packet Losses: Routing Loop 

 5,178 packet loss due to overflow from routing loop 

– 2.9% of total losses 

– 93% of overflow events did not result in packet loss 
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Packets Loss Summary 
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About 35% packet losses are unidentified now. 



NETWORK OBSERVATIONS: 
CITYSEE 



• From figure (b)(c)(d),  the load 
distribution is closely related with the 
spatial property of the deployment. 

Is there any node suffering from 
heavy packet drops? 

Where Packets are Lost ? 

40 

(a) # of packets at sink 

• From figure (a), no apparent correlation 
between packet drop and the node location 
 
 

Does each node play the same 
role in the network? 

(b) # of packets transmitted (c) Radio duty cycle (d) # of task executions 



Traffic Distribution  

• Small portion of 
“critical nodes”, 
verifies the same 
finding observed 
from GreenOrbs 

 

• Traffic dynamics 
exhibits different 
pattern, e.g. 
burstness on some 
nodes 

 Time Traffic 
volume 

 Sink 
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Network Topology 

Nodes closer to the sink have a more stable topology 
than nodes that are far away. 
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Summary 

Many challenges to make it  

1. Sustainable --- energy efficiency and 
fault diagnosis?  

2. Robust --- co-existence? 

3. Scalable ---large scale performance?  

4. Predictable ---- under varying 
environment? 
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Presentation Outline 
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OceanSense GreenOrbs CitySee 

Networking observations 

ZIMO: 
Coexistence 

Capacity: 
the Limit 



ZIMO: CROSS-TECHNOLOGY MIMO TO 
HARMONIZE COEXISTENCE OF ZIGBEE 
WITH WIFI 



Coexistence in ISM Band 

ISM band interferences are pervasive and crowded 
WiFi signal is the primary and first class passenger 

 Existing Works mainly protect WiFi signal  and mitigate cross technology interference [TIMO] 

 Some ZigBee signal protection works need modifications or degrade WiFi [Sensys10, Liang]  



Experiment Setup 

 Two ZigBee  Nodes 
(TX&RX) 

 

 WiFi APs are in IIT campus  

 

 ZigBee nodes are 
configured to receive full 
spectrum interference in 
full time scale 

 

 Adding controllable AP for 
tunable interference 



Effect of WiFi interference on ZigBee 

Short and frequent WiFi data transmission (i.e.,  flash) play the 

main role of WiFi interference on ZigBee.  

 

Power-law like distribution indicates the shorter flashes interfere 

ZigBee signal with exponentially increasing probability, which is a 

drastic threat for ZigBee signal. 



Effect of WiFi interference on ZigBee 

  The WiFi interference is distributed across ZigBee symbols, 

rather than concentrated on particular positions.  

  We need to resort to the signal processing techniques for 

fundamental solutions. 



ZIMO: Sink Based Design 

 Cons No.1: ZIMO has more antennas than WiFi AP (N+1) 

 Cons No.2: ZIMO needs at least one preamble is clear 

 Cons No.3: Can work with one ZigBee and multiple WiFi  



How ZIMO works? 

Frame  
Detection & 

Identification ZigBee  
Nullification 

WiFi 
Nullification 

ZigBee 

Decoding 

WiFi 

Decoding 
Interference  

Nullification 

’ 
WiFi Signal  
Cancellation 

ZigBee 

Decoding 

 Accurate 

WiFi Signal  
Recovery 

Cross Technology Interference Cancellation 



Main challenges 

Channel Coefficient Recovery 

– Interference in frequency domain 

– Sufficient for decoding, insufficient for accurate signal 
recovery 

 

CFO Compensation 

– Well done for preamble, insufficient for whole data 
scale 

– Extremely large with the increasing packet length 



Where are opportunities? 

Frequency domain is partially overlapped 

Time domain also partially overlapped 

Power domain shows significant difference 



Where are opportunities? 

For channel coefficient: 

Interpolation is simple, effective  



Where are opportunities? 

Linear regression is accurate 
enough for CFO 

CFO 



Implementation 

• Implement using USRP2 N200  

• IEEE STD 802.15.4, 2 MHz Bandwidth 

• OFDM  is 20 MHz Bandwidth  

• Real trace driven ZIMO decoding 

• No carrier sense and MAC timing control  

 



Experimental Results: Macro Benchmark 

Recovery ratio 



Experimental Results: Macro Benchmark 

Throughput 

Zigbee Baseline WiFi Baseline Interference patterns 



Asymptotical Capacity 
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Two Capacity metrics - channel 

Channel capacity 
– achievable single-hop data rate 

)1log( SINRC 

Shannon channel theory 

ACK 



Two Capacity metrics - transport  

 transport capacity  

– end-to-end multi-hop throughput 

 

Capacity 



Impact factors : 

Network Size 

Networking Models 

 Inference Models 

Traffic Models 
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Various Models 

 deployment models 
– arbitrary networks 

– random networks 

 network scaling models 
– dense networks 

– extended networks 

 Communication (Interference) models 
– the protocol model (PrIM) 

– Fixed Range Protocol Model (fPrIM) 

– physical model (PhIM) 

– generalized physical model (GphM, also called GCM) 

– Others 

 Traffic models 
– Unicast 

– Broadcast 

– Multicast 

– Anycast  

– Many-to-one 

Fixed Range Protocol Interference Model

(fPrIM)

• Link rate w bps

• Transmission range r

• Interference range R

• Receiver v should not 

be interfered by other 

senders

1

Idealistic, but give us a reasonable scenario to study

Gaussian Channel ModelGaussian Channel Model

Random deploymentRandom deployment

• Np(ζ, n): place nodes in 2-D 

plane according to a 

Poisson point process of 

density ζ
– focus on a square [0,(n/ ζ)1/2]2

• ns sources S for ns multicast 

flows, each with nd nodes

– Each source randomly selects   

nd − 1 receivers

• Each source vi sends λi

bits/second to all receivers.

Minimum Capacity: ϕnd
(n) = min vi∈S λi

Unicast

Multicast

Broadcast

Anycast

Many-to-one

Physical Interference ModelPhysical Interference Model

• Node u can send 

to v successfully at 

a given data rate 

only if

at node v is at least a 

threshold value

1



Results Summary 
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Milestone Results : Unicast, PhIM 
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Milestone Results : Broadcast, PrIM 
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Brief Summary 

 The aggregate multicast capacity of n sessions is 

 

 

 

 

 Our results unify previous results 

1. Unicast (when nd=2):        by Gupta and Kumar 

2. Broadcast (when nd=n):   by Keshavarz-Haddad et al., Mobicom’06 

3. Multicast (ns=nε and nd=n1-ε),   by Shakkottai et al., Mobihoc’07 
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General Approaches 

Protocol Interference Model 



Multicast under Protocol Model 

Data Copies Argument (upper bound) 

– Estimate the expected (or asymptotic lower bound) 
number of nodes N(b) that received (or listened) a bit b. 

– Capacity at most n·W/N(b)  

since all nodes receive at rate at most n ·W. 
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Upper-bound Proof Flow 



Lower-Bound: Routing and Scheduling 

Build EMST 

– Routing structure using EMST as backbone 

– Need to bound the conflict and total data copies 

The lower-bound of multicast tree length w.h.p.? EMST? 

Maximum number conflicting flows in the network w.h.p 

– Using VC dimension (proved to be O(log nd)), and VC theorem 
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Lower-bound Proof Flow 
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General Approaches 

Gaussian Channel Model 



Multicast under Gaussian Model 

Two kind of links 

– Inside Links 

– Outside Links 
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Relationship between links 

 lc  : max link length in giant component. 

     : the max distance between any node not in GC 
and the giant cluster 

 

cl

)(log then )/log( If nllnol ccc  
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Cl

Cl

● outside node

○   inside node



Upper-bound Proof Techniques 1 

There is a link uv, that will be used by many 
flows (say f ) ⇒ the minimum data rate  

– min λi ≤ rate supported by uv / f 
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Upper-bound Proof Techniques 2 

There is an isolated cluster C of nodes, and f 
flows will have links going inside this cluster   

 

– min λi ≤ total rate supported by links reaching C / f 
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Lower Bounds Techniques 

Highway systems 

– Cell is of O(1) nodes inside 

– from percolation theory  

– First used by Tse et al 
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Two 

paths 

Two 

highways 



Low Bound: Routing, Scheduling 

 First build EMST of receivers 

 Build highway using cell size 1 

– Each highway link data rate O(1) 

 Build second-class highway 
using cell size (log n)^1/2 

 Node sends its data to high-
way (solid lines) by multi-hop 
second class highway (dashed 
line) 
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Our New Techniques 

 Parallel Arterial 
Road Systems 

– longer links to 
connect isolated 
nodes to highway 
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Parallel Scheduling 

(a) (b) 

(c) (d) 



Other Research 



Cyber Physical Systems 
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Cognitive Radio Networks 



 

Our iGaze Glasses 
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Drawing in the Air 
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