
On Supporting Mission-Critical Multimedia Applications*

J. Huang and P.-J. Wan
Honeywell Technology Center

3660 Technology Drive
Minneapolis, MN 55418, USA

huang @ htc.honeywell.com

Abstract

Mission-critical multimedia applications such m
advanced command and control are dynamic and criticality
driven. Taking into consideration of the application
criticality as well as media quality-ofsewice (QoS} ar$
timing requirements, we develop a multiresource
management system that enables criticality-based resource
preemption and QoS-based dynamic resource negotiation
and adaptation. Our peeomuznce study indicates that our
approximation solution is near optimal ana! that it
outpe$orms a criticality-cognitive baseline algorithm. We
also show that the dynamic QoS adjustment technique
largely improves the quality of service for video streams.
The criticality- and QoS-based multiresource management
system is part of the Presto multimedia system
environment prototyped at Honeywell for mission-critical
applications.

1. Introduction

Continuous multimedia, comprising video, audio, and
image streams, is becoming an important element in the
next generation of mission-critical applications such as
crisis management and command and control. Unlike
multimedia applications that are being developed for the
entertainment (e.g., video-on-demand services) and office
automation (e.g., video conferencing) industries,
multimedia in mission-critical applications is unique in
several ways. One characteristic is that media streams may
be associated with an attribute of criticality-the
importance of applications. For instance, an application
performing periodic image capturing and flaw detection in
advanced process control [3] can be more important than
one that monitors floor activities in the controlled plant,
and consequently, the image stream is more critical than

* This work was supported in part by Rome Laboratory under
Contract F30602-93-C-0172 and by Honeywell Initiative
R&D Program under Grant 14560-ME-2000.

0-8186-7436-9196 $5.00 0 1996 IEEE
Proceedings of MULTIMEDIA ’96

the video stream. Therefore, processing such media streams
requires that the underlying system services be criticality-
cognitive and be able to support more critical multimedia
data streams in the presence of multiple service requests.

In addition to the criticality-driven nature, the
multimedia applications are often dynamic and may vary
greatly in their demands on system resources. In digital
battlefield management, for example, detection of a mobile
target may trigger a sequence of reactions such as video
monitoring, infrared tracking, image library retrieval and
target matching and recognition, media data fusion and
filtering, and command and control [12]. Such dynamic
workloads are not predictable a priori and therefore require
applications to negotiate on line for, and adapt to,
available system resources, including disk I/O bandwidth,
CPU cycles, memory space, video compression/
decompression capacity, etc. Without sufficient resources
and proper resource management, multimedia streams may
lose their data or timeliness in a random fashion, causing
application malfunction.

Toward the goal of supporting mission-critical
multimedia applications, we have developed and prototyped
a resource management system that enables quality-of-
service (QoS)-based dynamic resource negotiation and
adaptation and criticality-based resource preemption [5].
We characterize the applications with three attributes:
media stream flow rate, QoS, and criticality, which are
orthogonal to each other. Further, we model system
resources as “buckets,” with each having a capacity limit
defined by its scheduling algorithm. The media streams
“flow” through the buckets, occupying a certain amount of
space in each bucket. Then the problem is how to execute
as many high-criticality media streams as possible and at
the same time provide the best QoS support, without
violating the bucket capacity constraints.

Our approach to this (NP-complete) resource
management problem consists of a number of new
concepts. First, a two-phase QoS adjustment scheme is
used for allocating resources for a new stream. The first
phase of this scheme, called the shrinking phase, reduces
the QoS of executing streams to accommodate the new
stream, achieving the goal of maximizing the number of

46

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 14:41:19 UTC from IEEE Xplore. Restrictions apply.

http://htc.honeywell.com

concurrent streams. The second phase, called the expansion
phase, expends the QoS of the concurrent streams once the
new stream is admitted, achieving the goal of QoS
maximization. Second, a criticality-based multiresource
preemption scheme is employed in case of resource
contention where the system has no sufficient resources to
meet the minimum QoS requests. Using an approximation
algorithm, the system preempts low-criticality stream@)
and readjusts the QoS of executing streams toward the goal
of supporting high-criticality applications as well as
providing the best QoS service. Finally, as a result of QoS
adjustment and criticality-based preemption, an on-line
resource negotiation and adaptation mechanism is provided.
It enables all the concurrent applications to participate in
the negotiation (or re-negotiation) and adaptation process
upon a rate, QoS, or criticality change made by any of the
applications.

The performance analysis shows that the designed
resource management system performs much better than a
criticality-cognitive baseline approach and that the
difference between our approximation solution and the
optimal solution is at most 4. We also show that the
dynamic QoS expansion technique can significantly
improve the quality of service for video streams.
Currently, the system is running in a multimedia system
environment, called Presto, comprising Sun
SPARCstation 20, the Solaris 2.4 operating system,
Parallax JPEG video, a multimedia file system, and user
interface and a block-based application programming tool
for command and control applications.

The problem of scheduling multiple system resources
for concurrent media streams has been investigated recently
[I , 4, IO]. The work presented in this paper uniquely
incorporates the applications’ criticality as well as QoS
properties into the scheduling framework and enables
applications to make on-line tradeoffs between their
criticality, QoS, and rate specifications.

The rest of this paper is organized as follows. In Section
2, we characterize the properties of mission-critical
multimedia applications from the user perspective. Section
3 establishes the system resource management architecture
and associated scheduling algorithms for the individual
resources. The core of this paper, namely dynamic QoS-
based multiresource negotiation and adaptation and
criticality-based resource preemption, is presented in
Section 4. In Section 5, we discuss the related work.
Finally, we conclude this paper and point out future work
in Section 6.

2. Application Characterization

We characterize the mission-critical multimedia
applications according to three factors: timing, quality of
service (QoS), and criticality. These factors are specified by
application users.

0 Timing-We consider two parameters regarding the
continuous media timing constraints: rate and latency.
Rate (A) is defined in media data units per second,
where a unit can be a video frame or a group of audio
samples consisting of a certain number of bytes.
Latency (L) is the tolerable end-toad delay from the
time when the very first media unit is produced at the
stream source to the time it reaches the stream
destination.
QoS-Quality of service specifies the degree of
service quality expected by the application from the
underlying computer system. Examples include image
resolution, jitter, etc., which depend largely on
application semantics. As a starting point, we define
the QoS as Consecutive Loss Factor (CLF) in this
work. CLF is the maximum number of consecutive
data units allowed to be dropped between every two
processed units. In particular, the application specifies
its CLF using a range [O, CLF,,,]. At run time, the
application may adapt its CLF between 0 and
CLFmax depending on the availsbility of system
resources.
Criticality-Criticality refers to the degree of
application importance among concurrent
applications. Application criticality is classified by
multiple levels. In the case of resource contention,
applications with higher criticality shall be allocated
resources first.

Note that the timing constraints, QoS, and criticality are
orthogonal to each other; i.e., a user may specify any of
the parameter values independent of each other. For
example, a high-rate application may have low criticality
or low QoS requirements, and so on. Our objective is to
allocate and schedule the system resources such that the
applications’ timing constraints are met, QoSs are
maximized, and the number of executing (high-criticality)
applications are maximized.

3. System Resource Management
Architecture

In this section, we briefly discuss the Presto resource
management architecture initially developed for an end
system and the scheduling algorithms used for the
individual resources. Multiresource management with QoS
negotiation and criticality preemption will be discussed in
the next section.

47

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 14:41:19 UTC from IEEE Xplore. Restrictions apply.

3.1. Session Model

We use the notion of session to capture the execution
behavior of continuous media applications. Following the
real-time producer-consumer paradigm [9, 41, a session
consists of producer and consumer threads and a
doublebuffer between the producer and the consumer. A
session may demand a certain amount of disk I/O
bandwidth for storage access, memory space for buffering,
CPU cycle for media data processing, and/or video
processing bandwidth. From the system resource
management point of view, session is a unit of resource
allocation and scheduling.

Specifically, a session S i is defined by (A;, L;,
CLFmaxi, C i , Ti, mi), where

0 a i , Li, CLFmaxj, ci-are the stream rate, latency
constraint, and consecutive loss factor of QoS and the
application criticality as described in Section 2. Note
that the actual CLF of a session, denoted by CLFai, is
determined on line by the underlying scheduling
algorithm. Therefore, the actual stream flow rate of
the session will be

* Ti-are the producer and consumer threads with CPU
execution time ei for processing one unit of media
data and e’i for a disk U 0 operation.

0 mi-is the double buffer allocated to a session. Its
size is equal to (2niui), where xi is the number of data
units processed by either the producer thread or the
consumer thread in every execution period, and U; is
the size of one data unit. xi is determined on line by
the scheduling algorithms to be discussed below.

3.2. Resource Management Infrastructure

To schedule the application sessions, we employ a three-
level resource management approach as shown in Figure 3-
1. At the bottom level is a commercial (real-time)
operating system. Its function is to provide system
primitive services such as set t ing the priority of a thread
and preempting an executing thread. Currently, these
services are provided through the POSIX standard operating
system interface. Our design philosophy is to make the
Presto system open and portable as opposed to inventing
yet another operating system.

At the middle level are individual resource schedulers
that manage their own resources on the basis of threads,

110 processes, buffer requests, and video processing and
display, respectively. In particular, they carry out
scheduling operations. Their scheduling algorithms are
actually exercised by the system resource manager for
systemwide resource management.

At the top level is the system resource manager, which
allocates system resources on the basis of sessions. It uses
the scheduling algorithms o f the individual resource
schedulers for systemwide schedulability analysis and
coordinates the individual schedulers for session execution.
As high-lighted in the figure, this paper focuses on the
system resource manager, discussing its criticality-and
QoS-based multiresource scheduling.

Commercial (Real-Time) Operating System

- Priority-based preemptive CPU scheduling
- Memory management

- Thread management
- Disk VO management

Figure 3-1. System Resource Management
Infrastructure

3.3. Scheduling of Individual Resources

Before presenting our systemwide resource management
approach, let us briefly review the scheduling algorithms
used for the individual resources.

Disk 110 Scheduler-Commercial disk subsystems
usually provide U 0 scheduling support, often with a
SCAN algorithm, at the SCSI controller level. To d u c e
the disk head movement overhead and guarantee a bounded
access time, we employ a simple interval-based U 0 access
policy [2] . Let

L = min(Li), where 1 < i i n

That is, L is the latency tolerable by all the n
applications. We use L as the time interval for scheduling
of concurrent media streams. Assume that the amount of
contiguous data that the disk can transfer in one second is
Dm and the average disk seek time for serving each U 0
request within L is S. Then, during the time interval L ,

48

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 14:41:19 UTC from IEEE Xplore. Restrictions apply.

the effective transfer time is L-ns. Therefore, the n
sessions can be schedulable only if

i = l

where x . = r.L , which is the number of data units

processed within L. Or equivalently,
1 r 2 1

n
xiui + nSD,, I LD,,,,

i=l

CPU Scheduler-As discussed in Section 2, all the
threads are periodic in nature. Further, thread access to
media data buffers is nonblocking when a double-buffering
technique is employed. Thus, we simply adopt the rate-
monotonic analysis (M A) approach [l l] for the CPU
scheduling: that is, a number of n sessions are schedulable
at the CPU if

n
2 (e i r i + e i / L) ~ I n 2 = C m , ,

i=l

The condition is reasonable when n becomes greater than
5. In practice, n takes a much larger value.

Video a n d Window Display Scheduler-Under
the current Presto system, we treat the JPEG video
processor and its window display as one “black box”
without real-time control. The associated scheduler
performs only an admission control function as part of the
system resource manager.

The n sessions may deliver video frames at the
aggregated rate of$ Let Vmax be the maximum

supportable video rate. Then n sessions can be schedulable
if

* = I

I 1

cri 5 Vmax (3)
I = I

Buffer Manager-The buffer manager is responsible
for admission control as part of the system resource
manager. Its operations consists of memory allocation and
deallocation using the underlying operating system
services. The n sessions consumes 2 x.u, bytes of

memory. If the maximum memory space available is
Mmax bytes, n sessions can be supported if

i=l 1 1

2 c x i u i I M,,, (4)
i= l

Clearly, n sessions are schedulable systemwide if
conditions (l) , (2), (3), and (4) are met.

4. QoS- and Criticality-Based Resource
Negotiation and Adaptation

4.1. Approach

Our approach to the multiresource scheduling problem
consists of a scheduling mechanism, a scheduling strategy,
and a set of scheduling algorithms. The scheduling
mechanism is shown in Figure 4-1. The system resource
manager (SRM) maintains a criticality-ordered waiting
queue for arrival sessions and preempted sessions. The
queues associated with the individual resources are managed
by the individual resource schedulers. If there are sufficient
resources, the system resource manager will dispatch a
session for execution. Otherwise, it conducts “automatic
QoS negotiation” within the QoS range [0, CLFma,] of
the sessions for the available resources. Criticality-based
session preemption may take place when a hi,gher-
criticality session arrives but there are no sufficient
resources after QoS negotiation. The session preemption
differs from the thread (or process) preemption in
traditional operating systems in that the session is
preempted from the multiple resources as opposed to from
a single CPU. If a session cannot be scheduled with QoS
negotiation and preemption operations, the system
resource manager may re-negotiate on line, called
“interactive QoS negotiation”, with the application for its
willingness to lower its QoS specification.

Waiting Executing
Sessions Sessions

Interactive QoS Negotiation

Criticality-Ordered

I Session Scheduling & -
Automatic QoS
Negotiation \-- 1

Thread Preempi ion

I Session Preemption I
Figure 4-1. Scheduling Mechanism

Our scheduling strategy is illustrated in Figure 4-2. The
system resource manager is triggered by either arrival of a
new session or departure of a finished session. In general,
as highlighted in the diagram, the scheduling process
consists of a two-phase QoS adjustment and a session
preemption, if necessary. The two-phase QoS adjustiment
consists of a QoS shrinking phase and a QoS expansion
phase. During the shrinking phase, the system resource
manager virtually shrinks the QoS of all the executing
sessions to their minimums (i.e., CLFa = CLF,,,) to
yield the resources to waiting sessions. Its objective is to

49

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 14:41:19 UTC from IEEE Xplore. Restrictions apply.

execute as many waiting sessions as possible. During the
expansion phase, the system resource manager tries to
increase the QoS of all the executing sessions toward their
maximums (i.e., CLFa = 0). Its goal is to maximize the
QoS of the executing sessions. The preemption of lower-
criticality session(s) takes place between the QoS
shrinking and expansion phases when a

session
there is some
waiting session(s) I

4 1
scheduble w/o

Figure 4-2. The Schedul ing Strategy

higher-criticality session is not schedulable. The goal is
to serve the higher-criticality session and at the same time
to preempt as fewer sessions as possible.

In the following, we discuss the design of the
algorithms in detail.

QoS Shrinking-Each time when scheduling a
candidate session in the waiting queue, we first reduce the
QoSs of all executing sessions to their lowest level, i.e.,
CLFai = CLFmaxi. Then we check if the new session is
executable without any preemption. If so, we expand the
QoS of all the executing sessions in the QoS expansion
phase. If not, we consider session preemption.

Session Preemption-To conduct session
preemption, we classify the executing sessions into
criticality levels according to their criticality value. In
other words, each criticality level may contain a number of
sessions with the same criticality value. As illustrated in
Figure 4-3, there can be h different criticality levels below
the level of the candidate session being scheduled. Among
the h levels, we define one level as the schedulable
criticality level, above which all the sessions are
schedulable after insertion of the candidate session. The
executing sessions, some in the schedulable criticality

level and some below the schedulable level, must be
preempted. For the preemption process, we first need to
find the schedulable criticality level and then add back as
many sessions as possible from the levels at or below the
schedulable criticality level.

Highest Criticality Level

Level h+l Candidate Session

Level h

Schedulable Criticality Level

Lowest Criticality Level

Figure 4-3. Criticality Levels

Find the Schedulable Criticality Level-We use a binary
search procedure to find the schedulable criticality level, m,
among the h levels.

Add Back-We try to add back as many sessions as
possible from the m levels. This process is performed
level by level from the criticality level m to the lowest
criticality level 1. At each level, we assign priorities to
individual sessions such that the session with the highest
priority is added back first whenever the resources are
available. Since finding the optimal priority assignment is
"-hard, we consider a suboptimal priority assignment
algorithm. Let the remaining CPU, video processor,
memory, and disk I/O resources available to sessions at or
below level k be denoted by Crem, Vrem, Mrem, and Drem.
Suppose that at level k there are nk sessions
Sk,, , Sk,2,. . . , Sk,nL . We associate each session &,, with a

variable ykl and solve the following linear programming.

'k
s.t.

nk

50

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 14:41:19 UTC from IEEE Xplore. Restrictions apply.

Here we propose an approximation algorithm for the
priority assignment process.

Approximat ion A lgor i thm

m. Solve (SLPk). Let (y

optimal solution.
Step 2. Order yk‘ such that J

kl k2 kn

j = 1, ... , n) bean
kj ’ k

y , r y , z..r y ,

k
Step 3. Assign session priorities according to the order
obtained from Step 2.

After finishing the priority assignment, the adding back
process can be performed according to the order of
priorities.

QoS Expansion-Now we expand the QoS of all the
schedulable sessions. We consider this process to be a
policy issue. We first sort all the schedulable sessions in
increasing order of QoS and put them in a circular list.
Then we expand their QoS in round-robin order.

QoS Expansion:
Sort all selected sessions and put them in a circular linkc
list.
Let S be the first session.
while (the circular list is not empty) do

If (decreasing S.CLFa by 1 will still satisfy the resour(
constraints) then

S.CLFa = S.CLFa - I ;
if(S.CLFa==O) then remove S from the circular list;

remove S from the circular list;
else

S = S.next:

Suppose the maximum of CLFmax is Q and the
maximum number of sessions is N, then the QoS
expansion procedure will take time O(QN).

4.2. Performance Analysis

4.2.1. Optimali ty Analysis
The following theorem states the suboptimality of our

approximation algorithm used in the criticality-based
session preemption process.

Theorem. The difference between the number of
sessions added back under our priority assignment and the
maximum number of sessions that coulld be added is at
most four.

For proof of this theorem, the reader is referred to [7].

4.2.2. Performance Evaluation

We have conducted performance evaluation of the
scheduling algorithms through simulation. For
comparison, we consider three system resource schedulers
in terms of their criticality-preemption and QoS-
adjustment schemes. The first scheduler is our system
resource manager (SRM) that employs an approximation
optimization algorithm for criticality-based preemption and
performs both QoS shrinking and expansion for QoS
negotiation. The second scheduler is a criticality baseline
scheduler (CB) in the sense that like SRM, it performs
session preemption in the order of increasing criticality
levels. But different from SRM, it does not consider
optimization while performing preemption within a
criticality level. The third scheduler is a QoS baseline
scheduler (QB) which uses the same approximation
algorithm as SRM for preemption optimization, but it
does not perform QoS expansion. Our objective is to
understand the effect of our optimized preemption scheme
by comparing SRM against CB, and the effect of our QoS
expansion technique by comparing SRM against QB.

(For detailed information about the simulation worlkload
and system parameter settings, the reader is referred to [7].)

Effect of Criticality-Based Preemption--As
shown in Table 4-1, we run our simulation with the
workloads of 50, 100, 150, 200, 250, and 300 sessions,
respectively. For each workload, we compare the
performance of the system resource manager (SRM) and
the baseline approach (CB) in terms of the number of
sessions actually being executed. As indicated in the table,
SRM and CB are comparable when the number of ses !;ions ’

in the system is set at 50. This is because there are
sufficient system resources. The effect of session
pieemption can be observed at 100, where sessions
belonging to the lower-criticality levels are preempted.
Specifically, the sessions at the level 1 are completely
preempted at the level 1 under CB. When there are more
sessions in the system (300), only higher-criticality
sessions can be executed. Now compare SRM and CB at
the criticality level 4: SRM scheduled 42 session, while
CB scheduled 23. Clearly, our approximate optimization
algorithm performs significantly better than the baseline
approach which is criticality-cognitive, but does random
preemption within each criticality level.

Effect of QoS-Based Resource Negot ia t ion
and Adaptation-Next we examine the effect of the
QoS expansion mechanism employed by the system
resource manager as described in Subsection 4.1. In
particular, we compare SRM with QB-a baseline
approach which does not increase QoS of the scheduled
sessions even if there are some “left-over’’ resources. We

51

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 14:41:19 UTC from IEEE Xplore. Restrictions apply.

Table 4-1. Effect of criticality-based session preemption

Total Number of Sessions vs. Number of Scheduled Sessions

define a performance metric, called Accumulated QoS
Improvement (AQI), as

Cmdx n ,

AQl = c c(CLFmax, - CLFa,)
, = I , = I

where ni is the number of sessions being executed at the
criticality level i. This metric measures how many
number of data units (specifically JPEG video frames) are
saved from unnecessary dropping, given the possible
worst case dropping, CLFmax, specified by the
application users. In this experiment, we vary the total
number of sessions submitted to the system from 50 to
400, in increment of 50.

Figure 4-4 shows the performance of SRM and QB
against the AQI metric. The x axis values shown in the
square brackets represent the number of executing
sessions measured at run time. Of course, the AQI value
under QB is zero, meaning no QoS improvement, since
QB never readjusts the QoS of the scheduled sessions.
Under SRM, the AQI value increases as the number of
schedulable sessions increases. A saturation point is
reached at 300 [99], beyond which the AQI start
decreasing. This is because as the degree of resource

-a- SRM

-QB

5 0 100 150 200 250 300 350 400
[501 [671 [go1 [go1 [931 [991 [981 [BSI

Total Sessions [Executing Sessions]

contention becomes higher, there is less room available
for QoS expansion. Overall, SRM significantly improves
the application performance with respect to AQI.

5. Related Work

In recent years, many system resource management and
scheduling techniques have been developed to support
continuous multimedia applications [6]. Among them, a
few address the issue of multiresource scheduling. D.
Anderson proposed a metascheduling approach and
formulated high-level admission control conditions with
CPU, buffer space, and disk I/O resources [I]. However,
the low-level system activities, such as thread scheduling
and stream preemption, were not addressed. K.
Ramakrishnan et al. prototyped a multiresource
management system for multimedia servers [101. It
supports not only media streams but also aperiodic tasks
and non-real-time tasks. On the other hand, the system
admission control is static in the sense that it does not
support resource negotiation. The issue of multiresource
allocation optimization was investigated by J . Huang and
D.-Z. Du [4]. But they did not consider application QoS
and criticality requirements.

System support for application QoS has been an
important topic for multimedia system researchers and
developers [15]. H. Tokuda and T. Kitayama develoged a
QoS-based admission control technique in an end system
that allows on-line resource negotiation in terms of
spatial and temporal constraints of media data [14].
Although their work did not deal with application
criticality and multiresource optimization issues, i t
inspired our work on dynamic QoS negotiation.

Supporting application criticality has long been an
issue of system resource management in the real-time
community [13]. However, it was not addressed in the
context of either multimedia or multiresource allocation
optimization.

Figure 4-4. Effect of QoS Expansion

52

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 14:41:19 UTC from IEEE Xplore. Restrictions apply.

The uniqueness of our work lies in the fact that it
considers application criticality as well as QoS and stream
rate in multiresource scheduling and that it addresses
optimization issues in the context of dynamic resource
negotiation. It also provides a scheduling mechanism that
enables application users to on line make tradeoffs
between application criticality and QoS.

6. Concluding Remarks

Presented in this paper is the design, implementation,
and performance analysis of a multiresoiirce scheduler of
the Presto multimedia system developed at Honeywell for
mission-critical multimedia applications. We introduced
the notion of application criticality to capture the
semantics of application importance. We developed a
multiresource scheduling scheme that is able to support
higher-criticality applications through the mechanisms of
on-line QoS negotiation and session preemption. As part
of the scheduling scheme, a dynamic two-phase QoS
adjustment technique was developed to maximize the
application QoS and the number of executing
applications.

Through theoretical analysis and simulation, we
compared the performance of our algorithm against both
its upper bound (optimum) and lower bound (baseline).
For the criticality-based preemption technique, we showed
that the difference between our approximation solution
and the optimal solution is at most 4, and that the
approximation algorithm performs significantly better
than the baseline scheme which does random preemption
(no optimization) within a criticality level. We further
showed that the QoS expansion technique can
significantly increase the QoSs of executing video
streams. An early version of the multiresource scheduler
has been implemented and being used in the Presto
system.

This work is being extended in several ways. We are
currently extending the central multiresource scheduler to
a set of distributed, decentralized end-to-end scheduling
components for distributed multimedia applications [8].
Our future work will extend the dynamic QoS adjustment
technique to handle MPEG-like medial streams, which
must take into account the relationship between frames.

Acknowledgment

The authors would like to thank IVl. Agrawal, D.
Kenchamana-Hosekote, Jim Richardson, Satya Prabhakar,
and Eric Engtrom for their work on design and
implementation of Presto softwarie infrastructure,
multimedia file system, user interface, and block-based
programming tool.

References

D. Anderson, “Metascheduling for Continuous Media,”
ACM Transactions on Computer Systems, Vol. 1 I , No.
3, August 1993.
J. Gemmell, et al. “Multimedia Storage Servers: A
Tutorial,” IEEE Computer, May 1995.
A. Guha, et al., “Controlling the Process wilth
Distributed Multimedia,” IEEE Multimedia, Summer
1995.

J. Huang, and D.-Z. Du, “Resource Management for
Continuous Multimedia Database Applications,”
Proceedings of the 15th IEEE Real-Time Systems
Symposium, Puerto Rico, December 1994.
J. Huang, “A System Software that On-line Supports
Criticality and QoS of Continuous Multimedia
Streams,” Honeywell Patent Disclosure HI6 161 20,
February 1995.
J. Huang, “Real-Time Scheduling Technology for
Continuous Multimedia Applications,” Lecture Notes of
the 3rd ACM Multimedia Confereizce, San Francisco,
November 1995.
J. Huang and P. Wan, “On Supporting Mission-Critical
Multimedia Applications,” Honeywell Technical
Report SST-R95-01 I , November 1995.
J. Huang, Y. Wang, and D. Kenchammana-Hosekote, “‘A
Decentralized End-to-End Scheduling Approach for
Continuous Multimedia Applications,” Proceedings of
the 6th International Workshop on Network and
Operating System Support for Digital Audio and Video,
Japan, April 1996.
K. Jeffay, “The Real-Time Producer/Consunier
Paradigm: A Paradigm for the Construction of Effecti,ve,
Predictable Real-Time Systems,” Proceedings of the 8th
SIGAPP Symposium on Applied Computing, 1993.
K.K. Ramakrishnan, et al., “Operating System Support
for a Video-on-Demand File Service,” ACM Multimedia
Systems (3) , 1995.
C.L. Liu and J.W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment,”
JACM, 20, January 1973.
S.R. Robinson, Editor, “Emerging Systems and
Technologies,” SPlE Optical Engineering Press, 199l3.
J. Stankovic and K. Ramaritham, Editors, “Tutoriial:
Hard Real-Time Systems,” IEEE Computer Society
Press, 1988.
H. Tokuda and T. Kitayama, “Dynamic QoS Control
Based on Real-Time Threads,” Proceedings of the 4th
International Workshop on Network Support for
Digital Audio and Video, Lancaster, U.K., November
1993.

A. Vogel, et. al., “Distributed Multimedia and QoS: A
Survey,” IEEE Multimedia, Summer 1995.

53

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 14:41:19 UTC from IEEE Xplore. Restrictions apply.

