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Abstract 

Mission-critical multimedia applications such m 
advanced command and control are dynamic and criticality 
driven. Taking into consideration of the application 
criticality as well as media quality-ofsewice (QoS} ar$ 
timing requirements, we develop a multiresource 
management system that enables criticality-based resource 
preemption and QoS-based dynamic resource negotiation 
and adaptation. Our peeomuznce study indicates that our 
approximation solution is near optimal ana! that it 
outpe$orms a criticality-cognitive baseline algorithm. We 
also show that the dynamic QoS adjustment technique 
largely improves the quality of service for  video streams. 
The criticality- and QoS-based multiresource management 
system is part of the Presto multimedia system 
environment prototyped at Honeywell for  mission-critical 
applications. 

1. Introduction 

Continuous multimedia, comprising video, audio, and 
image streams, is becoming an important element in the 
next generation of mission-critical applications such as 
crisis management and command and control. Unlike 
multimedia applications that are being developed for the 
entertainment (e.g., video-on-demand services) and office 
automation (e.g., video conferencing) industries, 
multimedia in mission-critical applications is unique in 
several ways. One characteristic is that media streams may 
be associated with an attribute of criticality-the 
importance of applications. For instance, an  application 
performing periodic image capturing and flaw detection in 
advanced process control [3] can be more important than 
one that monitors floor activities in the controlled plant, 
and consequently, the image stream is more critical than 
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the video stream. Therefore, processing such media streams 
requires that the underlying system services be criticality- 
cognitive and be able to support more critical multimedia 
data streams in the presence of multiple service requests. 

In addition to the criticality-driven nature, the 
multimedia applications are often dynamic and may vary 
greatly in their demands on system resources. In digital 
battlefield management, for example, detection of a mobile 
target may trigger a sequence of reactions such as video 
monitoring, infrared tracking, image library retrieval and 
target matching and recognition, media data fusion and 
filtering, and command and control [12]. Such dynamic 
workloads are not predictable a priori and therefore require 
applications to negotiate on line for, and adapt to, 
available system resources, including disk I/O bandwidth, 
CPU cycles, memory space, video compression/ 
decompression capacity, etc. Without sufficient resources 
and proper resource management, multimedia streams may 
lose their data or timeliness in a random fashion, causing 
application malfunction. 

Toward the goal of supporting mission-critical 
multimedia applications, we have developed and prototyped 
a resource management system that enables quality-of- 
service (QoS)-based dynamic resource negotiation and 
adaptation and criticality-based resource preemption [5].  
We characterize the applications with three attributes: 
media stream flow rate, QoS, and criticality, which are 
orthogonal to each other. Further, we model system 
resources as “buckets,” with each having a capacity limit 
defined by its scheduling algorithm. The media streams 
“flow” through the buckets, occupying a certain amount of 
space in each bucket. Then the problem is how to execute 
as many high-criticality media streams as possible and at 
the same time provide the best QoS support, without 
violating the bucket capacity constraints. 

Our approach to this (NP-complete) resource 
management problem consists of a number of new 
concepts. First, a two-phase QoS adjustment scheme is 
used for allocating resources for a new stream. The first 
phase of this scheme, called the shrinking phase, reduces 
the QoS of executing streams to accommodate the new 
stream, achieving the goal of maximizing the number of 
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concurrent streams. The second phase, called the expansion 
phase, expends the QoS of the concurrent streams once the 
new stream is admitted, achieving the goal of QoS 
maximization. Second, a criticality-based multiresource 
preemption scheme is employed in case of resource 
contention where the system has no sufficient resources to 
meet the minimum QoS requests. Using an approximation 
algorithm, the system preempts low-criticality stream@) 
and readjusts the QoS of executing streams toward the goal 
of supporting high-criticality applications as well as 
providing the best QoS service. Finally, as a result of QoS 
adjustment and criticality-based preemption, an on-line 
resource negotiation and adaptation mechanism is provided. 
It enables all the concurrent applications to participate in 
the negotiation (or re-negotiation) and adaptation process 
upon a rate, QoS, or criticality change made by any of the 
applications. 

The performance analysis shows that the designed 
resource management system performs much better than a 
criticality-cognitive baseline approach and that the 
difference between our approximation solution and the 
optimal solution is at most 4. We also show that the 
dynamic QoS expansion technique can significantly 
improve the quality of service for video streams. 
Currently, the system is running in a multimedia system 
environment, called Presto, comprising Sun 
SPARCstation 20, the Solaris 2.4 operating system, 
Parallax JPEG video, a multimedia file system, and user 
interface and a block-based application programming tool 
for command and control applications. 

The problem of scheduling multiple system resources 
for concurrent media streams has been investigated recently 
[ I ,  4, IO]. The work presented in this paper uniquely 
incorporates the applications’ criticality as well as QoS 
properties into the scheduling framework and enables 
applications to make on-line tradeoffs between their 
criticality, QoS, and rate specifications. 

The rest of this paper is organized as follows. In Section 
2, we characterize the properties of mission-critical 
multimedia applications from the user perspective. Section 
3 establishes the system resource management architecture 
and associated scheduling algorithms for the individual 
resources. The core of this paper, namely dynamic QoS- 
based multiresource negotiation and adaptation and 
criticality-based resource preemption, is presented in 
Section 4. In Section 5, we discuss the related work. 
Finally, we conclude this paper and point out future work 
in Section 6. 

2. Application Characterization 

We characterize the mission-critical multimedia 
applications according to three factors: timing, quality of 
service (QoS), and criticality. These factors are specified by 
application users. 

0 Timing-We consider two parameters regarding the 
continuous media timing constraints: rate and latency. 
Rate (A) is defined in media data units per second, 
where a unit can be a video frame or a group of audio 
samples consisting of a certain number of bytes. 
Latency (L) is the tolerable end-toad delay from the 
time when the very first media unit is produced at the 
stream source to the time it reaches the stream 
destination. 
QoS-Quality of service specifies the degree of 
service quality expected by the application from the 
underlying computer system. Examples include image 
resolution, jitter, etc., which depend largely on 
application semantics. As a starting point, we define 
the QoS as Consecutive Loss Factor (CLF) in this 
work. CLF is the maximum number of consecutive 
data units allowed to be dropped between every two 
processed units. In particular, the application specifies 
its CLF using a range [O, CLF,,,]. At run time, the 
application may adapt its CLF between 0 and 
CLFmax depending on the availsbility of system 
resources. 
Criticality-Criticality refers to the degree of 
application importance among concurrent 
applications. Application criticality is classified by 
multiple levels. In the case of resource contention, 
applications with higher criticality shall be allocated 
resources first. 

Note that the timing constraints, QoS, and criticality are 
orthogonal to each other; i.e., a user may specify any of 
the parameter values independent of each other. For 
example, a high-rate application may have low criticality 
or low QoS requirements, and so on. Our objective is to 
allocate and schedule the system resources such that the 
applications’ timing constraints are met, QoSs are 
maximized, and the number of executing (high-criticality) 
applications are maximized. 

3. System Resource Management 
Architecture 

In this section, we briefly discuss the Presto resource 
management architecture initially developed for an end 
system and the scheduling algorithms used for the 
individual resources. Multiresource management with QoS 
negotiation and criticality preemption will be discussed in 
the next section. 
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3.1. Session Model 

We use the notion of session to capture the execution 
behavior of continuous media applications. Following the 
real-time producer-consumer paradigm [9, 41, a session 
consists of producer and consumer threads and a 
doublebuffer between the producer and the consumer. A 
session may demand a certain amount of disk I/O 
bandwidth for storage access, memory space for buffering, 
CPU cycle for media data processing, and/or video 
processing bandwidth. From the system resource 
management point of view, session is a unit of resource 
allocation and scheduling. 

Specifically, a session S i  is defined by (A;, L;, 
CLFmaxi, C i ,  Ti, mi), where 

0 a i ,  Li, CLFmaxj, ci-are the stream rate, latency 
constraint, and consecutive loss factor of QoS and the 
application criticality as described in Section 2. Note 
that the actual CLF of a session, denoted by CLFai, is 
determined on line by the underlying scheduling 
algorithm. Therefore, the actual stream flow rate of 
the session will be 

* Ti-are the producer and consumer threads with CPU 
execution time ei for processing one unit of media 
data and e’i for a disk U 0  operation. 

0 mi-is the double buffer allocated to a session. Its 
size is equal to ( 2niui ), where xi is the number of data 
units processed by either the producer thread or the 
consumer thread in every execution period, and U; is 
the size of one data unit. xi is determined on line by 
the scheduling algorithms to be discussed below. 

3.2. Resource Management Infrastructure 

To schedule the application sessions, we employ a three- 
level resource management approach as shown in Figure 3- 
1. At the bottom level is a commercial (real-time) 
operating system. Its function is to provide system 
primitive services such  as set t ing the priority of a thread 
and preempting an executing thread. Currently, these 
services are provided through the POSIX standard operating 
system interface. Our design philosophy is to make the 
Presto system open and portable as opposed to inventing 
yet another operating system. 

At the middle level are individual resource schedulers 
that manage their own resources on the basis of threads, 

110 processes, buffer requests, and video processing and 
display, respectively. In particular, they carry out 
scheduling operations. Their scheduling algorithms are 
actually exercised by the system resource manager for 
systemwide resource management. 

At the top level is the system resource manager, which 
allocates system resources on the basis of sessions. It uses 
the scheduling algorithms o f  the individual resource 
schedulers for systemwide schedulability analysis and 
coordinates the individual schedulers for session execution. 
As high-lighted in the figure, this paper focuses on the 
system resource manager, discussing its criticality-and 
QoS-based multiresource scheduling. 

Commercial (Real-Time) Operating System 

- Priority-based preemptive CPU scheduling 
- Memory management 

- Thread management 
- Disk VO management 

Figure 3-1. System Resource Management 
Infrastructure 

3.3. Scheduling of Individual Resources 

Before presenting our systemwide resource management 
approach, let us briefly review the scheduling algorithms 
used for the individual resources. 

Disk 110 Scheduler-Commercial disk subsystems 
usually provide U 0  scheduling support, often with a 
SCAN algorithm, at the SCSI controller level. To d u c e  
the disk head movement overhead and guarantee a bounded 
access time, we employ a simple interval-based U 0  access 
policy [2] .  Let 

L = min(Li), where 1 < i i n 

That is, L is the latency tolerable by all the n 
applications. We use L as the time interval for scheduling 
of concurrent media streams. Assume that the amount of 
contiguous data that the disk can transfer in one second is 
Dm and the average disk seek time for serving each U 0  
request within L is S. Then, during the time interval L ,  

48 

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 14:41:19 UTC from IEEE Xplore.  Restrictions apply. 



the effective transfer time is L-ns.  Therefore, the n 
sessions can be schedulable only if 

i = l  

where x .  = r.L , which is the number of data units 

processed within L. Or equivalently, 
1 r 2  1 

n 
xiui + nSD,, I LD,,,, 

i=l  

CPU Scheduler-As discussed in Section 2, all the 
threads are periodic in nature. Further, thread access to 
media data buffers is nonblocking when a double-buffering 
technique is employed. Thus, we simply adopt the rate- 
monotonic analysis ( M A )  approach [ l l ]  for the CPU 
scheduling: that is, a number of n sessions are schedulable 
at the CPU if 

n 
2 ( e i r i + e i / L ) ~ I n 2 = C m , ,  

i=l 

The condition is reasonable when n becomes greater than 
5. In practice, n takes a much larger value. 

Video a n d  Window Display Scheduler-Under 
the current Presto system, we treat the JPEG video 
processor and its window display as one “black box” 
without real-time control. The associated scheduler 
performs only an admission control function as part of the 
system resource manager. 

The n sessions may deliver video frames at the 
aggregated rate of$ Let Vmax be the maximum 

supportable video rate. Then n sessions can be schedulable 
if 

* = I  

I 1  

cri 5 Vmax ( 3 )  
I = I  

Buffer Manager-The buffer manager is responsible 
for admission control as part of the system resource 
manager. Its operations consists of memory allocation and 
deallocation using the underlying operating system 
services. The n sessions consumes 2 x.u, bytes of 

memory. If the maximum memory space available is 
Mmax bytes, n sessions can be supported if 

i=l 1 1 

2 c x i u i  I M,,, (4) 
i= l  

Clearly, n sessions are schedulable systemwide if 
conditions ( l ) ,  (2), (3), and (4) are met. 

4. QoS- and Criticality-Based Resource 
Negotiation and Adaptation 

4.1. Approach 

Our approach to the multiresource scheduling problem 
consists of a scheduling mechanism, a scheduling strategy, 
and a set of scheduling algorithms. The scheduling 
mechanism is shown in Figure 4-1. The system resource 
manager (SRM) maintains a criticality-ordered waiting 
queue for arrival sessions and preempted sessions. The 
queues associated with the individual resources are managed 
by the individual resource schedulers. If there are sufficient 
resources, the system resource manager will dispatch a 
session for execution. Otherwise, it conducts “automatic 
QoS negotiation” within the QoS range [0, CLFma,] of 
the sessions for the available resources. Criticality-based 
session preemption may take place when a hi,gher- 
criticality session arrives but there are no sufficient 
resources after QoS negotiation. The session preemption 
differs from the thread (or process) preemption in 
traditional operating systems in that the session is 
preempted from the multiple resources as opposed to from 
a single CPU. If a session cannot be scheduled with QoS 
negotiation and preemption operations, the system 
resource manager may re-negotiate on line, called 
“interactive QoS negotiation”, with the application for its 
willingness to lower its QoS specification. 

Waiting Executing 
Sessions Sessions 

Interactive QoS Negotiation 

Criticality-Ordered 

I Session Scheduling & - 
Automatic QoS 
Negotiation \-- 1 

Thread Preempi ion 

I Session Preemption I 
Figure 4-1. Scheduling Mechanism 

Our scheduling strategy is illustrated in Figure 4-2. The 
system resource manager is triggered by either arrival of a 
new session or departure of a finished session. In general, 
as highlighted in the diagram, the scheduling process 
consists of a two-phase QoS adjustment and a session 
preemption, if necessary. The two-phase QoS adjustiment 
consists of a QoS shrinking phase and a QoS expansion 
phase. During the shrinking phase, the system resource 
manager virtually shrinks the QoS of all the executing 
sessions to their minimums (i.e., CLFa = CLF,,,) to 
yield the resources to waiting sessions. Its objective is to 
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execute as many waiting sessions as possible. During the 
expansion phase, the system resource manager tries to 
increase the QoS of all the executing sessions toward their 
maximums (i.e., CLFa = 0). Its goal is to maximize the 
QoS of the executing sessions. The preemption of lower- 
criticality session(s) takes place between the QoS 
shrinking and expansion phases when a 

session 
there is some 
waiting session(s) I 

4 1  
scheduble w/o 

Figure 4-2. The Schedul ing Strategy 

higher-criticality session is not schedulable. The goal is 
to serve the higher-criticality session and at the same time 
to preempt as fewer sessions as possible. 

In the following, we discuss the design of the 
algorithms in detail. 

QoS Shrinking-Each time when scheduling a 
candidate session in the waiting queue, we first reduce the 
QoSs of all executing sessions to their lowest level, i.e., 
CLFai = CLFmaxi. Then we check if the new session is 
executable without any preemption. If so, we expand the 
QoS of all the executing sessions in the QoS expansion 
phase. If not, we consider session preemption. 

Session Preemption-To conduct session 
preemption, we classify the executing sessions into 
criticality levels according to their criticality value. In 
other words, each criticality level may contain a number of 
sessions with the same criticality value. As illustrated in 
Figure 4-3, there can be h different criticality levels below 
the level of the candidate session being scheduled. Among 
the h levels, we define one level as the schedulable 
criticality level, above which all the sessions are 
schedulable after insertion of the candidate session. The 
executing sessions, some in the schedulable criticality 

level and some below the schedulable level, must be 
preempted. For the preemption process, we first need to 
find the schedulable criticality level and then add back as 
many sessions as possible from the levels at or below the 
schedulable criticality level. 

Highest Criticality Level 

Level h+l Candidate Session 

Level h 

Schedulable Criticality Level 

Lowest Criticality Level 

Figure 4-3. Criticality Levels 

Find the Schedulable Criticality Level-We use a binary 
search procedure to find the schedulable criticality level, m, 
among the h levels. 

Add Back-We try to add back as many sessions as 
possible from the m levels. This process is performed 
level by level from the criticality level m to the lowest 
criticality level 1. At each level, we assign priorities to 
individual sessions such that the session with the highest 
priority is added back first whenever the resources are 
available. Since finding the optimal priority assignment is 
"-hard, we consider a suboptimal priority assignment 
algorithm. Let the remaining CPU, video processor, 
memory, and disk I/O resources available to sessions at or 
below level k be denoted by Crem, Vrem, Mrem, and Drem. 
Suppose that at level k there are nk sessions 
Sk,, , Sk,2,.  . . , Sk,nL . We associate each session &,, with a 

variable ykl and solve the following linear programming. 

'k 
s.t.  

nk 

50 

Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 14:41:19 UTC from IEEE Xplore.  Restrictions apply. 



Here we propose an approximation algorithm for the 
priority assignment process. 

Approximat ion A lgor i thm 

m. Solve (SLPk). Let ( y  

optimal solution. 
Step 2. Order yk‘ such that J 

kl k2 kn 

j = 1, ... , n ) bean 
kj ’ k 

y , r y  , z..r y , 

k 
Step 3. Assign session priorities according to the order 
obtained from Step 2. 

After finishing the priority assignment, the adding back 
process can be performed according to the order of 
priorities. 

QoS Expansion-Now we expand the QoS of all the 
schedulable sessions. We consider this process to be a 
policy issue. We first sort all the schedulable sessions in 
increasing order of QoS and put them in a circular list. 
Then we expand their QoS in round-robin order. 

QoS Expansion: 
Sort all selected sessions and put them in a circular linkc 
list. 
Let S be the first session. 
while ( the circular list is not empty) do 

If (decreasing S.CLFa by 1 will still satisfy the resour( 
constraints) then 

S.CLFa = S.CLFa - I ;  
if(S.CLFa==O) then remove S from the circular list; 

remove S from the circular list; 
else 

S = S.next: 

Suppose the maximum of CLFmax is Q and the 
maximum number of sessions is N, then the QoS 
expansion procedure will take time O(QN). 

4.2. Performance Analysis 

4.2.1. Optimali ty  Analysis 
The following theorem states the suboptimality of our 

approximation algorithm used in the criticality-based 
session preemption process. 

Theorem. The difference between the number of 
sessions added back under our priority assignment and the 
maximum number of sessions that coulld be added is at 
most four. 

For proof of this theorem, the reader is referred to [7]. 

4.2.2. Performance Evaluation 

We have conducted performance evaluation of the 
scheduling algorithms through simulation. For 
comparison, we consider three system resource schedulers 
in terms of their criticality-preemption and QoS- 
adjustment schemes. The first scheduler is our system 
resource manager (SRM) that employs an approximation 
optimization algorithm for criticality-based preemption and 
performs both QoS shrinking and expansion for QoS 
negotiation. The second scheduler is a criticality baseline 
scheduler (CB) in the sense that like SRM, it performs 
session preemption in the order of increasing criticality 
levels. But different from SRM, it does not consider 
optimization while performing preemption within a 
criticality level. The third scheduler is a QoS baseline 
scheduler (QB) which uses the same approximation 
algorithm as SRM for preemption optimization, but it 
does not perform QoS expansion. Our objective is to 
understand the effect of our optimized preemption scheme 
by comparing SRM against CB, and the effect of our QoS 
expansion technique by comparing SRM against QB. 

(For detailed information about the simulation worlkload 
and system parameter settings, the reader is referred to [7].) 

Effect of Criticality-Based Preemption--As 
shown in Table 4-1, we run our simulation with the 
workloads of 50, 100, 150, 200, 250, and 300 sessions, 
respectively. For each workload, we compare the 
performance of the system resource manager (SRM) and 
the baseline approach (CB) in terms of the number of 
sessions actually being executed. As indicated in the table, 
SRM and CB are comparable when the number of ses !;ions ’ 

in the system is set at 50. This is because there are 
sufficient system resources. The effect of session 
pieemption can be observed at 100, where sessions 
belonging to the lower-criticality levels are preempted. 
Specifically, the sessions at the level 1 are completely 
preempted at the level 1 under CB. When there are more 
sessions in the system (300), only higher-criticality 
sessions can be executed. Now compare SRM and CB at 
the criticality level 4: SRM scheduled 42 session, while 
CB scheduled 23. Clearly, our approximate optimization 
algorithm performs significantly better than the baseline 
approach which is criticality-cognitive, but does random 
preemption within each criticality level. 

Effect of QoS-Based Resource Negot ia t ion  
and Adaptation-Next we examine the effect of the 
QoS expansion mechanism employed by the system 
resource manager as described in Subsection 4.1. In 
particular, we compare SRM with QB-a baseline 
approach which does not increase QoS of the scheduled 
sessions even if there are some “left-over’’ resources. We 
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Table 4-1. Effect of criticality-based session preemption 

Total Number of Sessions vs. Number of Scheduled Sessions 

define a performance metric, called Accumulated QoS 
Improvement (AQI), as 

Cmdx n ,  

AQl = c c(CLFmax,  - CLFa,) 
, = I  , = I  

where ni is the number of sessions being executed at the 
criticality level i. This metric measures how many 
number of data units (specifically JPEG video frames) are 
saved from unnecessary dropping, given the possible 
worst case dropping, CLFmax, specified by the 
application users. In this experiment, we vary the total 
number of sessions submitted to the system from 50 to 
400, in increment of 50. 

Figure 4-4 shows the performance of SRM and QB 
against the AQI metric. The x axis values shown in  the 
square brackets represent the number of executing 
sessions measured at run time. Of course, the AQI value 
under QB is zero, meaning no QoS improvement, since 
QB never readjusts the QoS of the scheduled sessions. 
Under SRM, the AQI value increases as the number of 
schedulable sessions increases. A saturation point is 
reached at 300 [99], beyond which the AQI start 
decreasing. This is because as the degree of resource 

-a- SRM 

-QB 

5 0  100  150 200 250 300 350 400  
[501 [671 [go1 [go1 [931 [991 [981 [BSI 

Total Sessions [Executing Sessions] 

contention becomes higher, there is less room available 
for QoS expansion. Overall, SRM significantly improves 
the application performance with respect to AQI. 

5. Related Work 

In recent years, many system resource management and 
scheduling techniques have been developed to support 
continuous multimedia applications [6]. Among them, a 
few address the issue of multiresource scheduling. D. 
Anderson proposed a metascheduling approach and 
formulated high-level admission control conditions with 
CPU, buffer space, and disk I/O resources [I]. However, 
the low-level system activities, such as thread scheduling 
and stream preemption, were not addressed. K. 
Ramakrishnan et al. prototyped a multiresource 
management system for multimedia servers [ 101. It 
supports not only media streams but also aperiodic tasks 
and non-real-time tasks. On the other hand, the system 
admission control is static in the sense that it does not 
support resource negotiation. The issue of multiresource 
allocation optimization was investigated by J .  Huang and 
D.-Z. Du [4]. But they did not consider application QoS 
and criticality requirements. 

System support for application QoS has been an 
important topic for multimedia system researchers and 
developers [15]. H. Tokuda and T. Kitayama develoged a 
QoS-based admission control technique in an end system 
that allows on-line resource negotiation in terms of 
spatial and temporal constraints of media data [14]. 
Although their work did not deal with application 
criticality and multiresource optimization issues, i t  
inspired our work on dynamic QoS negotiation. 

Supporting application criticality has long been an 
issue of system resource management in the real-time 
community [13]. However, it was not addressed in the 
context of either multimedia or multiresource allocation 
optimization. 

Figure 4-4. Effect of QoS Expansion 
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The uniqueness of our work lies in the fact that it 
considers application criticality as well as QoS and stream 
rate in multiresource scheduling and that it addresses 
optimization issues in the context of dynamic resource 
negotiation. It also provides a scheduling mechanism that 
enables application users to on line make tradeoffs 
between application criticality and QoS. 

6. Concluding Remarks 

Presented in this paper is the design, implementation, 
and performance analysis of a multiresoiirce scheduler of 
the Presto multimedia system developed at Honeywell for 
mission-critical multimedia applications. We introduced 
the notion of application criticality to capture the 
semantics of application importance. We developed a 
multiresource scheduling scheme that is able to support 
higher-criticality applications through the mechanisms of 
on-line QoS negotiation and session preemption. As part 
of the scheduling scheme, a dynamic two-phase QoS 
adjustment technique was developed to maximize the 
application QoS and the number of executing 
applications. 

Through theoretical analysis and simulation, we 
compared the performance of our algorithm against both 
its upper bound (optimum) and lower bound (baseline). 
For the criticality-based preemption technique, we showed 
that the difference between our approximation solution 
and the optimal solution is at most 4, and that the 
approximation algorithm performs significantly better 
than the baseline scheme which does random preemption 
(no optimization) within a criticality level. We further 
showed that the QoS expansion technique can 
significantly increase the QoSs of executing video 
streams. An early version of the multiresource scheduler 
has been implemented and being used in the Presto 
system. 

This work is being extended in several ways. We are 
currently extending the central multiresource scheduler to 
a set of distributed, decentralized end-to-end scheduling 
components for distributed multimedia applications [8]. 
Our future work will extend the dynamic QoS adjustment 
technique to handle MPEG-like medial streams, which 
must take into account the relationship between frames. 
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