
Nearly Constant Approximation for Data
Aggregation Scheduling in Wireless Sensor

Networks
Scott C.-H. Huang∗, Peng-Jun Wan∗†, Chinh T. Vu‡, Yingshu Li‡ and Frances Yao∗

∗Computer Science Department, City University of Hong Kong
Kowloon, Hong Kong. Emails: {shuang,pwan,csfyao}@cityu.edu.hk
†Department of Computer Science, Illinois Institute of Technology

Chicago, IL 60616. Email: wan@cs.iit.edu
‡Department of Computer Science, Georgia State University

Atlanta, GA 30303. Emails: {yli,chinhvtr}@.cs.gsu.edu

Abstract— Data aggregation is a fundamental yet time-
consuming task in wireless sensor networks. We focus on the
latency part of data aggregation. Previously, the data aggregation
algorithm of least latency [1] has a latency bound of (∆ − 1)R,
where ∆ is the maximum degree and R is the network radius.
Since both ∆ and R could be of the same order of the network
size, this algorithm can still have a rather high latency. In this
paper, we designed an algorithm based on maximal independent
sets which has an latency bound of 23R + ∆ − 18. Here ∆
contributes to an additive factor instead of a multiplicative one;
thus our algorithm is nearly constant approximation and it has a
significantly less latency bound than earlier algorithms especially
when ∆ is large.

I. INTRODUCTION

A wireless sensor network consists of a self-configuring
network of sensors equipped with RF transceivers and thus
connected by wireless links. There is no infrastructure in
such network and nodes are to organize themselves arbitrar-
ily. These features make them suitable for a wide variety
of applications like emergency medical situations, battlefield
surveillance, traffic monitoring. In these applications, quite
often we need to gather data from those sensors to a fixed
sink and process them. If the data we gathered can be merged
such as taking the maximum or minimum of them, we call
this type of application data aggregation. Otherwise, we call
it data collection.

In this paper, we focus on data aggregation and try to
reduce its latency by constructing a good schedule. This is
a challenging issue [2] [1], since singling out the interference
issue and doing it at the MAC layer results in a latency too
high to be practical. There is a must to do scheduling while
dealing with it at the same time. Currently, the state-of-the-art
scheduling algorithm has a latency bound of (∆−1)R, where
∆ is the maximum degree and R is the network radius. Since
both ∆ and R could be of the same order of the network size,

This work was supported in part by the Research Grants Council of Hong
Kong under Project Numbers CityU 1165/04E and CityU 122105 and by the
National Science Foundation of the US under Grant Numbers 557904 and
CCF-0545667.

this algorithm can still have a rather high latency. In this paper,
we designed an algorithm based on maximal independent sets
which has an latency bound of 23R + ∆ − 18. Here ∆
contributes to an additive factor instead of a multiplicative
one; thus our algorithm is nearly constant approximation and
it has a significantly less latency bound than earlier algorithms
especially when ∆ is large.

The rest of this paper is organized as follows. In §II we
present related work. Problem formulation is presented in §III.
We present our main data aggregation algorithm and analyze
it in §IV. Conclusion and future work are presented in §VI.

II. RELATED WORK

In wireless sensor networks, broadcast and data aggregation
are the most fundamental and useful operations. Broadcast
algorithms have been studied extensively in the literature since
the 80’s [3],[4],[5], [6],[7], [8],[9], [10],[11],[12], [13],[14].
Data aggregation, by comparison, is still relatively new but
its importance cannot be overemphasized. Data aggregation,
sometimes called convergecast is about a sensor network
with a base station such that all (or some) nodes collect
data and report to the base station via wireless communi-
cation. Annamalai et al [2] designed a heuristic algorithm
for both broadcast and convergecast. The convergecast tree
constructed in their algorithm can be used for broadcast as
well. For convergecast alone, Upadhyayula et al [15] designed
another heuristic algorithm aiming at reducing energy and
latency. These two works mentioned above all used heuristic
approaches and ran simulations to verify their results without
doing theoretical analysis.

On the theoretical side, Kesselman and Kowalski [16]
designed a randomized, distributed algorithm that has latency
O(log n). In their model, they assume each node can vary its
transmission range to reduce links. Chen et al [1] designed a
(∆− 1)-approximation algorithm for data aggregation, where
∆ is the maximum degree of the network graph. They also
proved that the minimum data aggregation time problem is
NP-hard.

 
0743-166X/07/$25.00 ©2007 IEEE 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings. 
 

366
Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:22:18 UTC from IEEE Xplore.  Restrictions apply. 



Practical issues of data aggregation, especially about the
MAC layer, have also been studied in the literature. Huang
and Zhang [17] studied packet loss and focused on reliability
issues in data aggregation. Zhang et al [18] addressed the issue
of bursty convergecast in real-time applications and focused
on improving channel utilization and reducing retransmission-
incurred channel contention. Krishnamachari et al [19] viewed
data aggregation from another aspect. They considered the
case where there is a subset of nodes whose data need to
be sent to the base station and regard aggregating these data
as a way to save energy. Intanagonwiwat et al , in a short
paper [20], evaluated the impact greedy aggregation to increase
the amount of path sharing and reduce energy consumption.
Yu et al [21] also considered scheduling packet transmission
and energy-latency tradeoff. Their goal was to reduce sensor
nodes’ energy dissipation subject to some latency constraints.

III. PROBLEM FORMULATION

We consider a network consisting of n sensor nodes along
with one base station. Each (sensor) node is equipped with
an RF transceiver that can be used to send or receive data.
We consider omni-directional antennae only, and a node’s
transmission/reception range is roughly a disk centered at that
node. For simplicity, we further assume that all nodes have
the same transmission range, and this type of network can
be represented as a disk graph as follows. Let G be a graph
representing a network of n nodes. An arc (or directed edge)
exists from u to v if and only if v lies in u’s transmission
area (which is a disk). If all nodes have the same transmission
range, then we can normalize their radius to 1 and use a unit
disk graph to model it. In this case, an edge exists between
u, v if and only if the distance between them is less than 1.
For simplicity, we only consider unit disk graphs.

A node can either send or receive data at one time, and
it can receive data correctly only if exactly one of its neigh-
bors is transmitting at that moment. If two or more nodes
are transmitting simultaneously and there is a node in their
overlapped transmission area, then this node cannot receive
the message clearly since both transmissions are interfering
with each other. This type of situation is called collision. The
main task of sensor nodes is to collect data and transmit back
to the base station, and data can be ‘aggregated’ all the way
to the base station. In other words, if a node has received
one packet from its neighbor before its scheduled transmission
time, then it can merge this packet with its own data packet
and simply sends this merged packet later. This model is
particularly useful in situations like making a query about
the maximum temperature, in which two (or more) pieces
of data can be merged by taking their maximum. Another
situation where packets cannot be merged does exist, and it
is called data collection. In this paper we only focus on data
aggregation meaning that data can be merged all the way to
the base station.

Given a unit disk graph G = (V,E) along with a base
station b ∈ V . Consider two subsets A,B ⊂ V with A ⊃ B.
We say that data are aggregated from A to B by one time slot

if all nodes in A−B transmit in one slot simultaneously then
the data at all nodes of A−B will be received collision-free
by some nodes in B.

A data aggregation schedule can be thought of as a sequence
of senders {S1, S2, . . .} (in which Si ⊂ V , ∀i) satisfying the
data aggregation property. This sequence represents that all
nodes in S1 transmit in the first time slot, followed by all
nodes in S2 transmitting in the second time slot and so on so
forth. The data aggregation property simply means that after
S1 transmits data will be aggregated from V to V − S1 and
after S2 transmits data will be further aggregated from V −S1

to V −S1∪S2. If we continue this process, finally all data will
be aggregated to one single node b, which is the base station.
Without loss of generality we may assume each node only
transmits once, since multiple transmission does not result in
any advantage for the following reason. If, in a schedule, a
node transmits more than once, then the data at this node
will be aggregated many times to some other nodes. Since a
single piece of this information alone is enough as long as it
can eventually get to the base station collision-free, we can
always modify the schedule by properly removing multiple
transmissions while preserving the same latency (number of
time slots that all data are aggregated to b). The property of
single transmission is essentially equivalent to all Si’s being
disjoint. The formal definition of the data aggregation property
is as follows.

A data aggregation schedule is a sequence of senders
{S1, S2, . . .} satisfying the following conditions.

1) Si ∩ Sj = ∅, ∀i �= j

2)
⋃l

i=1 Si = V − {b}
3) Data are aggregated from

⋃k
i=1 Si to

⋃k+1
i=1 Si for all

k = 1, 2, , . . . , l−2 and finally data are aggregated from
S1 ∪ · · ·Sl−1 to b in time slot l.

The number l is called the data aggregation latency. Now, the
minimum data aggregation time problem can be formulated as
follows. Given a graph G = (V,E) and a base station b ∈ V ,
find a data aggregation schedule with minimum latency. This
problem is proven to be NP-hard even for unit disk graphs
[1]. So far, there is no good approximation algorithm for this
problem, since the best known algorithm has ratio ∆−1 (where
∆ is the maximum degree and it can be as large as the number
of nodes in the network).

In the next section, we will present an approximation
algorithm for this problem that has latency 23R + ∆ − 18,
where R is the network radius. Since the farthest node has
to transmit back to the base station, data aggregation latency
cannot be less than the network radius. If R is large, our
algorithm has approximation ratio 27 from an asymptotic point
of view.

IV. OUR DATA AGGREGATION SCHEDULING ALGORITHM

We present our approximation algorithm in this section. Our
algorithm has a data aggregation latency 23R+∆−18 where
R is the network radius and ∆ is the maximum degree of the
network. This result is significantly better than the currently

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings. 
 

367
Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:22:18 UTC from IEEE Xplore.  Restrictions apply. 



best known algorithm [1] whose latency is (∆ − 1)R, since
∆ becomes an additive term instead of multiplicative. If ∆ is
large, our algorithm achieves a significantly shorter latency.
Scenarios with large ∆ happens frequently in large-scale,
dense networks in real life. Our algorithm has two phases.

(1) Data Aggregation Tree Construction (2) Data Aggrega-
tion Scheduling. Their details will be presented in next two
subsections.

A. Data Aggregation Tree Construction

In this phase, we first construct a breadth first search tree for
the network and divide all nodes into layers (where the 0-th
layer is the base station and the 1st layer is its neighbors). We
then form a maximal independent set BLACK layer by layer
(Algorithm 1) as follows. Starting from the 1st layer, we pick
up a maximal independent set and mark these nodes black.
We then move on to the 2nd layer and pick up a maximal
independent set and mark these nodes black again. Note that
the black nodes of the 2nd layer also need to be independent
of those of the 1st layer. We repeat this process until all
layers have been worked on. Those who are not marked black
are marked white at last. The pseudocode of layered MIS
construction is given in Algorithm 1.

Algorithm 1 Construct an MIS layer by layer
1: Divide all nodes into layers L1, L2, . . . , Ll

2: BLACK ← ∅
3: for i← 1 to l do
4: Find an MIS BLACKi ⊂ Li indep. of BLACK
5: BLACK ← BLACK ∪BLACKi

6: end for
7: return BLACK

To construct the data aggregation tree, we then pick some
of the white nodes and color them blue to interconnect all
black nodes as follows. To connect the 1st and 2nd layer, we
look at the 2nd layer’s black nodes. Each black node must
have a parent on the 1st layer and this parent node must be
white since black nodes are independent of each other. We
add this white parent for each black node on the 2nd layer
and also add an edge between them. These added white nodes
are colored blue. Moreover, we know that this blue node must
be dominated by a black node either on the 1st layer or the
0-th layer. We then add an edge between this blue node and
its dominator. We repeat this process layer by layer and finally
obtain the desired data aggregation tree in this manner. Note
that, in this tree, each black node has a blue parent at the
upper layer and each blue node has a black parent at the same
layer or the layer right above. The pseudocode is given in
Algorithm 2.

B. Data Aggregation Scheduling

The scheduling for data aggregation is quite straightforward.
We use first-fit scheduling (Algorithm 3) throughout this part.

The first-fit procedure takes in an input of a sender set S, a
receiver set R, the network graph G, and the data aggregation

Algorithm 2 Data aggregation tree construction

1: T = (VT , ET ), VT = V , ET ← ∅
2: � /* Connect black nodes layer by layer */
3: for i← 1 to l − 1 do
4: for all black nodes v ∈ BLACKi+1 do
5: Find its parent p(v) in BFS tree
6: Color p(v) blue
7: Find p(v)’s dominator dp(v) in

BLACKi ∪BLACKi−1

8: Add an edge between p(v), v to ET

9: Add an edge between dp(v), p(v) to ET

10: end for
11: end for
12: � /* Connect remaining white nodes */
13: for all remaining white nodes u do
14: Find u’s dominator du

15: Add an edge between u, du to ET

16: end for
17: return T

tree T . The senders are scheduled as follows. First we pick
a node s1 from S and look at whether it conflicts with any
nodes or not. Obviously since it is the only node, it does not
conflict with any nodes. We then add s1 to a temporary set
X and remove s1 from S. Now we pick up another node s2

from S and look at whether it conflicts with any node in X
or not. We look at the parent of all nodes in X in T . Since
there is only one node s1 in X , we only look at the parent of
s1 in T , denoted by pT (s1), and see whether s2 is adjacent
to pT (s1) in G. If yes, we do nothing. If not, s2 does not
conflict with X and we add s2 to X and remove s2 from S.
We repeat this process until we find the largest set X such
that all other nodes in S will conflict at least one node in
X . This X is the maximal possible set that we can schedule
them to transmit for the same time slot, so we add X to the
schedule. Now we initialize X to ∅ and repeat this process to
find the maximal possible set to transmit simultaneously for
the second time slot, and so on so forth until all elements in
S are scheduled this way. The pseudocode for this is given in
Algorithm 3.

Now we have all white nodes transmit to black nodes using
the first-fit subroutine described above. Then, from the last
layer Sl we aggregate data layer by layer as follows. The
black nodes at layer l, denoted by BLACKl, first transmit to
their parent blue nodes BLUEl−1, then BLUEl−1 transmit
to their parent black nodes pT (BLUEl−1) in T . Note that
pT (BLUEl−1) must be a set of black nodes in BLACKl−1∪
BLACKl−2 because the black nodes were selected layer by
layer. These transmissions are all scheduled using the first-fit
subroutine to avoid collision and we repeat this process layer
by layer. Data will therefore be aggregated layer by layer and
going all the way to the base station. The pseudocode for this
is given in Algorithm 3.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings. 
 

368
Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:22:18 UTC from IEEE Xplore.  Restrictions apply. 



s
s0

1

1

1

2

2

2

2

3

3

3

3

3

4

4

4

4

5

black

non-black

Fig. 1. (a) Topology of G (b) Black node selection (numbers represent hop-distance from s)

s0

1

1

1

2

2

2

2

3

3

3

3

3

4

4

4

4

5

black

non-black

s0

1

1

1

2

2

2

2

3

3

3

3

3

4

4

4

4

5

black

blue

white

Fig. 2. (a) BFS tree of G (b) Blue node selection

Algorithm 3 First-fit scheduling

Input: Sender set S, Receiver set R, network G = (V,E),
data aggregation tree T

Output: Schedule W , a collection of subsets in V
1: procedure FIRSTFIT(S,R,G, T )
2: X ← ∅
3: W ← {∅}
4: while S �= ∅ do
5: for all u ∈ S do
6: if ∀x ∈ X,

(
pT (x), u

)
/∈ E then

7: Add u to X and remove u from S
8: end if
9: end for

10: Add X to W
11: end while
12: return W
13: end procedure

� pT (x) = parent of x in T

Algorithm 4 Data aggregation scheduling
1: Construct an MIS layer by layer � Algorithm 1
2: Construct the data aggregation tree T � Algorithm 2
3: FIRSTFIT(WHITE,BLACK,G, T )
4: for i← l − 1 to 1 do
5: FIRSTFIT

(
BLACKi, BLUEi−1, G, T

)
6: FIRSTFIT

(
BLUEi−1, pT (BLUEi−1), G, T

)
7: end for

C. An Example

Figure 1(a) shows the topology of G, and figure 1(b) shows
the selection of layered MIS (i.e. black nodes) as described in
algorithm 1. In the first step, the source s is selected in the
MIS and colored black. In the second step, since the source
is black, all nodes at layer 1 must all be white, otherwise it
won’t be independent of s. In the third step, we will select an
independent set at layer 2, which must also be independent
of the nodes at the previous layer, namely layer 1, although
there is no black node at layer 1 and this restriction does not
have any effect on selecting independent set at layer 2. In
figure 1(b), we show the hop-distance of each node to s. Note
that 3 black nodes were selected at layer 2, 1 black node was
selected at layer 3, and 2 black nodes were selected at layer
4. We keep doing this until all layers have been worked on.
The black node selection merely depends on the topology of
G and it has nothing to do with the BFS tree. Not until we
select blue nodes do we need to consider the BFS tree.

Figure 2(a) shows the BFS tree of G as well as the
black nodes. Now, we try to add appropriate blue nodes to
interconnect those black ones, as described in algorithm 2.
Since the source does not have an upper layer and there are
no black nodes at layer 1, we start from layer 2 directly. For
each black node v at layer 2 (there are 3 of them), we find its
parent p(v) in the BFS tree, color it blue, and connect v to
p(V ) as shown in figure 2(b). Here we see 2 nodes at layer 1
are colored blue and connected to their black children at layer
2. Those which are not colored blue remain white, and there is
1 such node. We also connect these 2 blue nodes and the white
node to the source s since they are dominated by s. We keep
working on layer 3, find 1 black node at this layer, and color

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings. 
 

369
Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:22:18 UTC from IEEE Xplore.  Restrictions apply. 



c4

s

white

blue

black

w1

w2 w3

w4
w5

w6

d1

d2 d3

d4

d5

d6

c1 c2
c3

c5

Fig. 3. Data aggregation tree

its parent blue. Note that this black node has to be independent
of all black nodes at above layers (i.e. layers 0,1,2) as well. We
then connect the blue node at layer 2 to its black dominator,
as shown in Figure 3. We repeat this process for every layer
until all nodes are connected and the data aggregation tree is
fully built, as shown in figure3.

To schedule the data aggregation transmission, we follow
algorithm 3. First we schedule the white nodes. We arbitrary
pick a node, say w1, and schedule its transmission for the
most available time slot, which is slot #1. We then pick w2
and find that we cannot schedule its transmission in slot #1
since w1 is already scheduled to transmit in this slot which
will interfere w2’s transmission. Then we move to w3 and
find we can schedule it for #1 as well. However, when we
look at w4 we find we cannot schedule it for #1 because of
w3. We keep doing this until we examine all white nodes and
find that w1,w3,w5,w6 can be scheduled concurrently for time
slot #1. Now we schedule the remaining white nodes w2 and
w4 using the same method, and we find that, similarly, they
can be scheduled concurrently for #2. Now we schedule the
transmission from BLACK4 to BLUE3. We find the there
are only two nodes in BLACK4, namely d1 and d5, and we
use the first-fit algorithm to schedule them. We find that they
can both be scheduled for #3. Then we schedule BLUE3

to pT (BLUE3) and schedule c1 and c4 for #4. Note that
pT (BLUE3) could be at layer 2 or 3. We use this method
layer by layer until all nodes have been scheduled this way.

D. Analysis

Here we show that it takes 23R+∆− 18 to aggregate data
to the base station. We look at the abovementioned 3 parts
separately.

(1) WHITE to BLACK: This part only has to be done once
for the whole schedule and it has nothing to do with layers.
We claim that it takes at most ∆− 1 time slots to finish this
part. This can be proved in a straightforward manner. Note that
each black node has at most ∆ neighbors. Since black nodes
are mutually independent, black nodes cannot be neighbors of
each other. Thus, these ∆ (or less) neighbors must be either
white or blue. However, each black node must have one blue
parent, so there must be at least one blue nodes among these ∆
neighbors. As a result, a black node can have at most ∆− 1

white neighbors and the first-fit scheduling is guaranteed to
finish within ∆− 1 time slots.

(2) BLACK to BLUE: This part and the next one have to
be done repeatedly. When data are aggregated to the previous
layer this part has to repeat. We claim that it takes at most 4
time slots to finish the transmission. We pick up a black node.
This black node has to transmit to its blue parent. Now we
look at this blue parent node and observe that it has at most
5 black neighbors. This follows from the fact that there are at
most 5 independent points in a unit disk. Among this 5 or less
black neighbors, one of them must be this blue node’s parent.
Therefore, there can be at most 4 black node competing to
transmit with respect to this blue node and it takes at most 4
time slots to finish the transmission.

(3) BLUE to BLACK: This part has to be done layer by
layer as described above. We claim that it takes at most 19
time slots to finish the transmission except on the second
layer’s transmission to the first, which needs 20 time slots.
Similarly, picking up a blue node, we need to estimate how
many other blue nodes are competing to transmit to the same
black parent. Fix this black parent node u and consider the
unit disc D1 centered at it, and we count how many blue
nodes lie inside this disk. Note that each blue node must
have at least a black child because blue nodes are selected to
interconnect black nodes. For this reason the number of blue
nodes lying inside this unit disk cannot exceed the number
of black nodes lying inside D2, the disk of radius 2 centered
at u. According to Lemma 1.1 in the appendix, there can be
at most 21 independent points in a disk of radius 2. In other
words, there can be at most 21 black nodes in a disk or radius
2 centered at every black node, and each black node u can
have at most 20 2-hop black neighbors (since we can exclude
u itself). Moreover, we are going to show that we can subtract
one more black node except for the second layer. The reason
is that among these black points in D2 one of them must be
node u’s parent’s parent (which must also be black and lie
inside D2). Therefore, for all other layers, 19 time slots are
enough.

Now we estimate the data aggregation latency. WHITE-
to-BLACK needs ∆ − 1 time slots. From layer R to layer
2, BLACK-to-BLUE and BLUE-to-BLACK together needs
(19 + 4) · (R − 2) time slot. Transmission from layer 2 to
layer 1 needs 20+4 time slots and transmission from layer 1
to the base station needs 5 time slots (since there are at most 5
independent points in a unit disk). Altogether, it takes at most
∆− 1 + 23(R − 2) + 24 + 5 = 23R + ∆− 18 time slots, as
desired.

V. SIMULATION RESULTS

For the simulation part, we randomly deploy sensors into a
fixed region of size 100m× 100m. All sensors have the same
transmission range. We compare our algorithm with Chen et
al [1]. All comparisons are fairly conducted on the same graph,
and on each graph data are aggregated from the same set of
nodes to the same base station. Throughout this simulation,
we always use number 0 as the root node and all leaves of the

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings. 
 

370
Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:22:18 UTC from IEEE Xplore.  Restrictions apply. 



150 200 250 300

20

30

40

50

60

70

80

Number of nodes

T
im

es
Aggregation times when the trasmission range fixed to 30

 

 
Our algorithm
Chen et al.

15 20 25 30 35 40 45 50

10

15

20

25

30

35

40

45

50

55

Transmission range

T
im

e

Time when the number of nodes is 200

 

 

Our algorihm
Chen et al.

Fig. 4. (a) (b)

BFS tree rooted at node 0 as the data-storing nodes, i.e., nodes
that we aggregate data from. Figures 4(a) and (b) represent
the fluctuation in those graphs. For each configuration (same
number of nodes, same transmission range), we do comparison
with 100 random graphs.

In Figure 4(a), the transmission range of each sensor is
fixed to 30m. We measure the number of time slots needed to
aggregate data from the leaves to the roots when the number
of nodes varies from 150 to 300. In [1], the data aggregation
latency (vertical axis: time) is basically proportional to the
number of nodes, while in our algorithm it is not influenced
much by the number of nodes. The pattern of those curves
matched with our theoretically estimated latency bound. The
bigger the number of nodes, the better the improvement of
our algorithm in comparison with Chen’s. Our algorithm’s
latencies are from 2.02 to 3.87 times smaller than that in [1].

In Figure 4(b), we do it with the graph of 200 nodes but
the transmission range varies from 15m to 50m. Similar to
Figure 4(a), the curve representing time generated by Chen’s
algorithm is nearly linear, while the one generate by algorithm
is so close to a horizontal line. The pattern of those curves
illustrates the theoretical analysis in § IV-D.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated the data aggregation problem
and considered its latency. We used the techniques of maximal
independent sets and designed an algorithm of latency 23R +
∆−18. For future work, we describe our short-term, medium-
term, and long-term goals as follows.

Our short-term goal is applying our techniques to directional
antennae. We believe that most techniques we developed here
can be applied to the case of directional antennae immediately
by simply re-investigating the geometrical property of it.
Also, we will consider more general models than UDGs.
For example, distinguishing the transmission range from the
interference range and using two disks or other geometrical

objects to represent them. Also, we’ll investigate the data
aggregation scheduling in Signal-to-Noise model.

Our medium-term goal is to find a better lower bound for
optimal solution. In analyzing the approximation ratio, we
actually used R as the lower bound. This is a very loose
estimation and according to our test cases it is significantly
larger than R, in most cases at least the clique number ω.
However, we did find a counterexample such that the optimal
latency is O(log ω) and we simply could not find anything
better so far. In the future work, we think it is likely to find a
tighter lower bound for optimal latency, and the analysis part
of this algorithm may be improved this way.

Our long-term goal is data collection scheduling. We studied
data aggregation first because it has a simple model. In data
collection, since data cannot be merged, nodes may need
to transmit multiple times. This will essentially make our
scheduling impractical. However, we believe that the MIS or
some similar techniques may still be applied.

APPENDIX

We state the following theorem from [22] and we’ll use it
to prove Lemma 1.1 later.

Theorem 1.1 (Wegner Theorem): The area of the convex
hull of any n ≥ 2 non-overlapping unit-radius circular disks
is at least 2

√
3 (n− 1) +

(
2−√3

) ⌈√
12n− 3− 3

⌉
+ π.

Lemma 1.1: There can be at most 21 black nodes within
any disk of radius two.
(Proof.) Fix a disk D2 centered at a point u. Let S denote
the set of black nodes in D2. Since black nodes are mutually
independent. If, for each node in S, we consider a disk of
radius 1/2 centered at this node, then all of those disks must
be disjoint. Therefore, the convex hull of S must be contained
in the disk of radius 2.5 centered at u. By applying Wegner
Theorem with proper scaling, we have

2
√

3 (|S| − 1) +
(
2−
√

3
) ⌈√

12 |S| − 3− 3
⌉

+ π < 25π.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings. 
 

371
Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:22:18 UTC from IEEE Xplore.  Restrictions apply. 



Straightforward calculation shows that the maximum integer
to make the above expression hold is |S| = 21. �

REFERENCES

[1] X. Chen, X. Hu, and J. Zhu, “Minimum data aggregation time problem
in wireless sensor networks,” in 1st Int’l Conference on Mobile Ad-hoc
and Sensor Networks–MSN’05, pp. 133–142, 2005.

[2] V. Annamalai, S. K. S. Gupta, and L. Schwiebert, “On tree-based
convergecasting in wireless sensor networks,” in IEEE Wireless Com-
munications and Networking–WCNC’03, vol. 3, pp. 1942–1947, 2003.

[3] N. Alon, A. Bar-Noy, N. Linial, and D. Peleg, “A lower bound for radio
broadcast,” Journal of Computer and System Sciences, vol. 43, no. 2,
pp. 290–298, 1991.

[4] R. Bar-Yehuda, O. Goldreich, and A. Itai, “On the time-complexity of
broadcast in multi-hop radio networks: An exponential gap between
determinism and randomization,” Journal of Computer and System
Sciences, vol. 45, no. 1, pp. 104–126, 1992.

[5] D. Bruschi and M. Del Pinto, “Lower bounds for the broadcast problem
in mobile radio networks,” Distributed Computing, vol. 10, no. 3,
pp. 129–135, 1997.

[6] I. Chlamtac and S. Kutten, “On broadcasting in radio networks–problem
analysis and protocol design,” IEEETransactions on Communications,
vol. 33, pp. 1240–1246, 1985.

[7] I. Chlamtac and O. Weinstein, “The wave expansion approach to
broadcasting in multihop radio networks,” IEEETransactions on Com-
munications, vol. 39, pp. 426–433, 1991.

[8] M. Elkin and G. Kortsarz, “Logarithmic inapproximability of the radio
broadcast problem,” Journal of Algorithms, vol. 52, pp. 8–25, 2004.

[9] M. Elkin and G. Kortsarz, “Polylogarithmic additive inapproximability
of the radio broadcast problem,” in 7th Int’l Workshop on Approxima-
tion Algorithms for Combinatorial Optimization Problems–APPROX’04,
2004.

[10] M. Elkin and G. Kortsarz, “An improved algorithm for radio networks,”
2005. An earlier version appeared in SODA’05.

[11] I. Gaber and Y. Mansour, “Centralized broadcast in multihop radio
networks,” Journal of Algorithms, vol. 46, no. 1, pp. 1–20, 2003.

[12] R. Gandhi, S. Parthasarathy, and A. Mishra, “Minimizing broadcast
latency and redundancy in ad hoc networks,” in ACM MobiHoc’03,
pp. 222–232, 2003.

[13] D. R. Kowalski and A. Pelc, “Centralized deterministic broadcasting in
undirected multi-hop radio networks,” in 7th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems–
APPROX-RANDOM’04, pp. 171–182, 2004.

[14] E. Kushilevitz and Y. Mansour, “An Ω(D log(N/D)) lower bound for
broadcast in radio networks,” SIAM Journal on Computing, vol. 27,
pp. 702–712, 1998.

[15] S. Upadhyayula, V. Annamalai, and S. K. S. Gupta, “A low-
latency and energy-efficient algorithm for convergecast in wireless
sensor networks,” in IEEE Global Telecommunications Conference–
GLOBECOM’03, vol. 6, pp. 3525–3530, 2003.

[16] A. Kesselman and D. Kowalski, “Fast distributed algorithm for converge-
cast in ad hoc geometric radio networks,” in 2nd Annual Conference on
Wireless On-demand Network Systems and Services–WONS’05, pp. 119–
124, 2005.

[17] Q. Huang and Y. Zhang, “Radial coordination for convergecast in wire-
less sensor networks,” in 29th Annual IEEE International Conference on
Local Computer Networks–LCN’04, (Washington, DC, USA), pp. 542–
549, IEEE Computer Society, 2004.

[18] H. Zhang, A. Arora, Y.-R. Choi, and M. G. Gouda, “Reliable bursty
convergecast in wireless sensor networks,” in 6th ACM int’l Symposium
on Mobile Ad Hoc Networking and Computing–MobiHoc’05, (New
York, NY, USA), pp. 266–276, ACM Press, 2005.

[19] B. Krishnamachari, D. Estrin, and S. B. Wicker, “The impact of data
aggregation in wireless sensor networks,” in 22nd Int’l Conference on
Distributed Computing Systems–ICDCSW’02, (Washington, DC, USA),
pp. 575–578, IEEE Computer Society, 2002.

[20] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, “Impact
of network density on data aggregation in wireless sensor networks,” in
22 nd Int’l Conference on Distributed Computing Systems–ICDCS’02,
(Washington, DC, USA), p. 457, IEEE Computer Society, 2002.

[21] Y. Yu, B. Krishnamachari, and V. K. Prasanna, “Energy-latency tradeoffs
for data gathering in wireless sensor networks,” in IEEE INFOCOM’04,
(Hong Kong), Mar. 2004.

[22] G. Wegner, “Über endliche kreispackungen in der ebene,” Studia Scien-
tiarium Mathematicarium Hungarica, vol. 21, pp. 1–28, 1986.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings. 
 

372
Authorized licensed use limited to: CityU. Downloaded on May 22,2010 at 06:22:18 UTC from IEEE Xplore.  Restrictions apply. 


