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Abstract—Several localized routing protocols [1] guarantee the delivery
of the packets when the underlying network topology is the Delaunay tri-
angulation of all wireless nodes. However, it is expensive to construct the
Delaunay triangulation in a distributed manner. Given a set of wireless
nodes, we more accurately model the network as a unit-disk graph UDG ,
in which a link in between two nodes exist only if the distance in between
them is at most the maximum transmission range.

Given a graph H , a spanning subgraph G of H is a t-spanner if the
length of the shortest path connecting any two points in G is no more than
t times the length of the shortest path connecting the two points in H . In
this paper, we present a novel localized networking protocol that constructs
a planar 2.5-spanner of UDG , called the localized Delaunay triangulation,
as network topology. It contains all edges that are both in the unit-disk
graph and the Delaunay triangulation of all wireless nodes.

Our experiments show that the delivery rates of existing localized rout-
ing protocols are increased when localized Delaunay triangulation is used
instead of several previously proposed topologies. The total communication
cost of our networking protocol is O(n log n) bits. Moreover, the computa-
tion cost of each node u is O(du log du), where du is the number of 1-hop
neighbors of u in UDG .

I. INTRODUCTION

In a wireless ad hoc network (or sensor network), assume
that all wireless nodes have distinctive identities and each static
wireless node knows its position information, either through a
low-power Global Position System (GPS) receiver or through
some other way. For simplicity, we also assume that all wire-
less nodes have the same maximum transmission range and we
normalize it to one unit. By a simple broadcasting, each node u
can gather the location information of all nodes within the trans-
mission range of u. Consequently, all wireless nodes S together
define a unit-disk graph UDG(S), which has an edge uv if and
only if the Euclidean distance ‖uv‖ between u and v is less than
one unit.

One of the central challenges in the design of ad hoc networks
is the development of dynamic routing protocols that can effi-
ciently find routes between two communication nodes. In recent
years, a variety of routing protocols [2], [3], [4], [5], [6], [7], [8]
targeted specifically for ad hoc environment have been devel-
oped. For the review of the state of the art routing protocols, see
surveys by E. Royer and C. Toh [9] and by S. Ramanathan and
M. Steenstrup [10].

Several researchers proposed another set of routing proto-
cols, namely the localized routing, which select the next node
to forward the packets based on the information in the packet
header, and the position of its local neighbors. Bose and Morin
[1] showed that several localized routing protocols guarantee to
deliver the packets if the underlying network topology is the
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Delaunay triangulation of all wireless nodes. They also gave
a localized routing protocol based on the Delaunay triangula-
tion such that the total distance traveled by the packet is no
more than a small constant factor of the distance between the
source and the destination. However, it is expensive to construct
the Delaunay triangulation in a distributed manner, and routing
based on it might not be possible since the Delaunay triangu-
lation can contain links longer than one unit. Then, several re-
searchers proposed to use some planar network topologies that
can be constructed efficiently in a distributed manner. Lin et al.
[11], Bose at al.[12] and Karp et al. [13] proposed to use the
Gabriel graph. Routing according to the right hand rule, which
guarantees delivery in planar graphs [1], is used when simple
greedy-based routing heuristics fail.

Given a graph H , a spanning subgraph G of H is a t-spanner
if the length of the shortest path connecting any two points in G
is no more than t times the length of the shortest path connecting
the two points in H . In this paper, we design a localized algo-
rithm that constructs a planar t-spanner for the unit-disk graph
UDG(S), such that some of the localized routing protocols can
be applied on it. We obtain a value of approximately 2.5 for the
constant t.

Given a set of points S, let UDel(S), the unit Delaunay trian-
gulation, be the graph obtained by removing all edges of Del(S)
that are longer than one unit. We first prove that UDel(S) is a
t-spanner of the unit-disk graph UDG(S). We then give a local-
ized algorithm that constructs a graph, called localized Delaunay
graph LDel (1)(S). We prove that LDel (1)(S) is a t-spanner by
showing that it is also a supergraph of UDel(S). We then show
how to make the graph LDel (1)(S) planar efficiently. The total
communication cost of our approach is O(n log n) bits, which
is optimal within a constant factor.

Bose et al. [12] and Karp et al. [13] proposed similar algo-
rithms that route the packets using the Gabriel graph to guaran-
tee the delivery. Applying the routing methods proposed in [12],
[13] on the planarized localized Delaunay graph LDel(1)(S), a
better performance is expected because the localized Delaunay
triangulation is denser compared to the Gabriel graph, but still
withO(n) edges. Our simulations show that the delivery rates of
several localized routing protocols are increased when the local-
ized Delaunay triangulation is used. In our experiments, several
simple local routing heuristics, applied on the localized Delau-
nay triangulation, have always successfully delivered the pack-
ets, while other heuristics were successful in over 90% of the
random instances. Moreover, because the constructed topology
is planar, a localized routing algorithm using the right hand rule
guarantees the delivery of the packets from source node to the
destination when simple heuristics fail. The experiments also
show that several localized routing algorithms (notably, com-
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pass routing [14] and greedy routing) also result in a path whose
length is within a small constant factor of the shortest path; we
already know such a path exists since the localized Delaunay
triangulation is a t-spanner.

The remaining of the paper is organized as follows. In Sec-
tion II, we review some structures that are often used to con-
struct the topology for wireless networks. In Section III, we
show that the unit Delaunay triangulation UDel is a t-spanner,
where t = 1+

√
5

2 π. We also claim that t can be reduced to
4
√

3
9 π ≈ 2.42. We define localized Delaunay triangulations

LDel (k)(S) and study their properties in Section IV. Section
V presents the first localized efficient algorithm that constructs
a planar graph, PLDel(S), which contains UDel(S) as a sub-
graph. Thus, PLDel(S) is a planar t-spanner. The correctness
of our algorithm is justified in the Appendix. We demonstrate
the effectiveness of the localized Delaunay triangulation in Sec-
tion VI by studying the performance of various routing proto-
cols on it. We conclude our paper and discuss possible future
research directions in Section VII.

II. PRELIMINARIES

A. Voronoi Diagram and Delaunay Triangulation

We begin with definitions of the Voronoi diagram and the De-
launay triangulation [15]. We assume that all wireless nodes are
given as a set S of n nodes in a two dimensional space. Each
node has some computational power. We also assume that there
are no four nodes of S that are co-circular. A triangulation of S
is a Delaunay triangulation, denoted by Del(S), if the circum-
circle of each of its triangles does not contain any other nodes
of S in its interior. A triangle is called the Delaunay triangle
if its circumcircle is empty of nodes of S. The Voronoi region,
denoted by Vor(p), of a node p in S is the collection of two
dimensional points such that every point is closer to p than to
any other node of S. The Voronoi diagram for S is the union
of all Voronoi regions Vor(p), where p ∈ S. The Delaunay tri-
angulation Del(S) is also the dual of the Voronoi diagram: two
nodes p and q are connected in Del(S) if and only if Vor(p)
and Vor(q) share a common boundary. The shared boundary of
two Voronoi regions Vor(p) and Vor(q) is on the perpendicular
bisector line of segment pq. The boundary segment of a Voronoi
region is called the Voronoi edge. The intersection point of two
Voronoi edge is called the Voronoi vertex. Each Voronoi vertex
is the circumcenter of some Delaunay triangle.

B. Spanner

Constructing a spanner of a graph has been well studied. Let
ΠG(u, v) be the shortest path connecting u and v in a weighted
graph G, and ‖ΠG(u, v)‖ be the length of ΠG(u, v).

Then a graphG is a t-spanner of a graphH if V (G) = V (H)
and, for any two nodes u and v of V (H), ‖ΠH(u, v)‖ ≤
‖ΠG(u, v)‖ ≤ t‖ΠH(u, v)‖. With H understood, we also call
t the length stretch factor of the spanner G. There are sev-
eral geometrical structures which are proved to be t-spanners
for the Euclidean complete graph K(S) of a point set S. For
example, the Yao graph [16] and the θ-graph [17] have been
shown to be t-spanners. However, both these two geometrical

structures are not guaranteed to be planar in two dimensions.
Given a set of points S, it is well-known that the Delaunay tri-
angulation Del(S) is a planar t-spanner of the completed Eu-
clidean graph K(S). This is first proved by Dobkin, Friedman
and Supowit [18] with upper bound 1+

√
5

2 π ≈ 5.08 on t. Then
Kevin and Gutwin [19], [17] improved the upper bound on t to
be 2π

3 cos π
6

= 4
√

3
9 π ≈ 2.42. The best known lower bound on t is

π/2, which is due to Chew [20].

C. Proximity Graphs

Let S be a set of n wireless nodes distributed in a two-
dimensional plane. These nodes induce a unit-disk graph
UDG(S) in which there is an edge uv if and only if ‖uv‖ ≤ 1.
Various proximity subgraphs of the unit-disk graph can be de-
fined [21], [22], [23], [24], [16].

For convenience, let disk(u, v) be the closed disk with di-
ameter uv, let disk(u, v, w) be the circumcircle defined by the
triangle �uvw, and let B(u, r) be the circle centered at u with
radius r. Let x(v) and y(v) be the value of the x-coordinate and
y-coordinate of a node v respectively.

• The constrained relative neighborhood graph, denoted by
RNG(S), consists of all edges uv such that ‖uv‖ ≤ 1 and there
is no point w ∈ S such that ‖uw‖ < ‖uv‖, and ‖wv‖ < ‖uv‖.
• The constrained Gabriel graph, denoted by GG(S), consists
of all edges uv such that ‖uv‖ ≤ 1 and disk(u, v) does not
contain any node from S.
• The constrained Yao graph with an integer parameter k ≥ 6,
denoted by

−−→
Y Gk(S), is defined as follows. At each node u,

any k equal-separated rays originated at u define k cones. In
each cone, choose the closest node v to u with distance at most
one, if there is any, and add a directed link −→uv. Ties are broken
arbitrarily. Let Y Gk(S) be the undirected graph obtained by

ignoring the direction of each link in
−−→
Y Gk(S).

Bose et al. [25] showed that the length stretch factor of
RNG(V ) is at most n − 1 and the length stretch factor of
GG(V ) is at most 4π

√
2n−4
3 . Several papers [26], [27], [21]

showed that the Yao graph Y Gk(V ) has length stretch factor at
most 1

1−2 sin π
k

. However, the Yao graph is not guaranteed to be
planar. The relative neighborhood graph and the Gabriel graph
are planar graphs, but they are not a spanner for the unit-disk
graph. In this paper, we are interested in locally constructing a
planar graph that is a spanner of the unit-disk graph. In our ex-
periments, routing packets using several simple localized rout-
ing algorithms such as compass routing on this localized De-
launay triangulation was always or almost always successful,
improving on routing on the Gabriel graph or the relative neigh-
borhood graph.

D. Localized Routing Algorithms

LetNk(u) be the set of nodes of S that are within k hops dis-
tance of u in the unit-disk graph UDG(S). A node v ∈ Nk(u)
is called the k-neighbor of the node u. Usually, here the constant
k is 1 or 2, which will be omitted if it is clear from the context.
In this paper, we always assume that each node u of S knows its
location and identity. Then, after one broadcast by every node,
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each node u of S knows the location and identity information of
all nodes in N1(u). The total communication cost of all nodes
to do so is O(n log n) bits.

A distributed algorithm is a localized algorithm if it uses only
the information of all k-local nodes of each node plus the in-
formation of a constant number of additional nodes. In this pa-
per, we concentrate on the case k = 1. That is, a node uses
only the information of the 1-hop neighbors. A graph G can be
constructed locally in the ad hoc wireless environment if each
wireless node u can compute the edges of G incident on u by
using only the location information of all its k-local nodes. In
this paper, we design a localized algorithm that constructs a pla-
nar t-spanner for the unit-disk graph UDG(S) such that some
localized routing protocols can be applied on it.

Assume a packet is currently at node u, and the destination
node is t. Several localized routing algorithms that just use the
local information of u to route packets (i.e., find the next node
v of u) were developed. Kranakis et al. [14] proposed to use
the compass routing, which basically finds the next relay node
v such that the angle ∠vut is the smallest among all neighbors
of u in a given topology. Lin et al. [11], Bose et al. [12], and
Karp et al. [13] proposed similar greedy routing methods, in
which node u forwards the packet to its neighbor v in a given
topology which is closest to t. Recently, Bose at al.[28], [1],
[12] proposed several localized routing algorithm that route a
packet from a source node s to a destination node t. Specifically,
Bose and Morin [1] proposed a localized routing method based
on the Delaunay triangulation. They showed that the distance
traveled by the packet is within a small constant factor of the
distance between s and t. They also proved that the compass
routing and the greedy routing method guarantee to deliver the
packet if the Delaunay triangulation is used.

III. GRAPH UDel(S) IS A SPANNER

In this section, we prove that UDel(S) is a spanner with
stretch factor t = 1+

√
5

2 π. We claim the stronger result that

UDel(S) is a 4
√

3
9 π-spanner, but omit the proof due to space

limitations.
Dobkin, Friedman and Supowit proved that, for any two

points u and v of a point set S, the shortest path connecting u
and v in the Delaunay triangulation Del(S) has length no more
than 1+

√
5

2 π‖uv‖. However, it is not appropriate to require the
construction of the Delaunay triangulation in the wireless com-
munication environment because of the possible massive com-
munications it requires. Therefore, we consider the following
subset of the Delaunay triangulation. Let UDel(S) be the graph
by removing all edges of Del(S) that are longer than one unit,
i.e., UDel(S) = Del(S) ∩ UDG(S). Call UDel(S) the unit
Delaunay triangulation. For the remainder of this section, we
will prove that UDel(S) is a t-spanner of the unit-disk graph
UDG(S).

Our proof is based on the remarkable proof by Dobkin et
al.[18]. They proved that the Delaunay triangulation is a t-
spanner by constructing a path Πdfs(u, v) in Del(S) with length

no more 1+
√

5
2 π‖uv‖. The constructed path consists of at most

two parts: one is some direct DT paths, the other is some short-
cut subpaths.

Given two nodes u and v, let b0 = u, b1, b2, · · · , bm−1,
bm = v be the nodes corresponding to the sequence of Voronoi
regions traversed by walking from u to v along the segment uv.
See Figure 1 for an illustration. If a Voronoi edge or a Voronoi
vertex happens to lie on the segment uv, then choose the Voronoi
region lying above uv. Assume that the line uv is the x-axis.
The sequence of nodes bi, 0 ≤ i ≤ m, defines a path from u
to v. In general, they [18] refer to the path constructed this way
between some nodes u and v as the direct DT path from u to v.
Then Dobkin et al. proved the following lemma.

u b
1

2

3b

4 v
b

b

3

b
i bj

bi b
j
’’

z z z1
2

Fig. 1. Left: The direct DT path ub1b2b3b4v between u and v shown by dashed
lines; Right: The short cut from node bi to node bj .

Lemma 1: For all i, 0 ≤ i ≤ m, bi is contained within or on
the boundary of disk(u, v).

A stronger result is that all nodes bi, 0 ≤ i ≤ m, are on
the boundary of the union of all circles Ci, 1 ≤ i ≤ m, where
Ci = B(pi, ‖pibi‖) and pi is the point on the x-axis that also
lies on the boundary between the Voronoi regions Vor(bi−1)
and Vor(bi). The boundary of the union of all circles Ci has
length at most π · ‖uv‖; For details, see [18]. This implies that if
a direct DT path always lies above (or below) uv, then its length
is at most π

2 · ‖uv‖. If the direct DT path connecting u and v
is lying entirely above or entirely below the segment uv, it is
called one-sided; see [18].

The Lemma 1 also implies that the distance ‖bibj‖ between
any two nodes bi and bj is at most ‖uv‖. Consequently, we have
the following corollary.

Corollary 2: All edges of the direct DT path connecting two
nodes s and t have length at most ‖st‖.

The path constructed by Dobkin et al. uses the direct DT
path as long as it is above the x-axis. Assume that the path
constructed so far has brought us to some node bi such that
y(bi) ≥ 0, bi �= v, and y(bi+1) < 0. Let j be the least inte-
ger larger than i such that y(bj) ≥ 0. Notice that here j exists
because y(bm) = 0 by assuming that uv is the x-axis. Then the
path constructed by Dobkin et al. uses either the direct DT path
to bj or takes a shortcut as follows1. Construct the lower convex
hull z0 = bi, z1, · · · , zl−1, zl = bj of the following set of nodes:

{q ∈ S | x(bi) ≤ x(q) ≤ x(bj) and y(q) ≥ 0
and q lies under bibj }.

1See [18] for more detail about the condition when to choose the direct DT
path from bi to bj and when to choose the shortcut path from bi to bj .
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Notice that except z0 and zl, all nodes z1, · · · , zl−1 do not be-
long to {b1, b2, · · · , bm−1, bm} and the edges of the convex hull
are not on the direct DT path from u to v. The shortcut path
consists of taking the direct DT path from zk to zk+1 for each
0 ≤ k ≤ l − 1, which is shown to be on one side of line zkzk+1

if the shortcut path is chosen.

Dobkin et al. then proved that the length of the path traversed
from u to v has length at most 1+

√
5

2 π‖uv‖. Similar to the direct
DT path, we prove the following lemma.

Lemma 3: All edges of the shortcut path connecting two
nodes bi and bj have length at most ‖uv‖.

Proof: Figure 1 gives intuition on the proof that follows.
Let b′i, b

′
j be the projection points of nodes bi and bj on the x-

axis (segment uv), respectively. Then from the definition of z0,
z1, · · · , zl−1, zl, we know that zk, 0 ≤ k ≤ l lies inside or
on the boundary of the trapezoid bibjb′jb

′
i, which lies inside the

disk(u, v). Consequently, edge zkzk+1, for each 0 ≤ k ≤ l − 1
has length at most ‖uv‖. From Corollary 2, we know that all
edges of the direct DT path from zk to zk+1 have length at most
‖zkzk+1‖. Then the lemma follows.

Consequently, we have the following lemma.

Lemma 4: Let Πdfs(u, v) be the path constructed by Dobkin
et al. from u to v in the Delaunay triangulation. All edges in
Πdfs(u, v) have length at most ‖uv‖.

Then the following theorem is straightforward.

Theorem 5: For any two nodes u and v of S,

‖ΠUDel(S)(u, v)‖ ≤ 1 +
√

5
2

π · ‖ΠUDG(S)(u, v)‖.
Proof: Assume ΠUDG(S)(u, v) = v0v1 · · · vh−1vh, where

u = v0 and v = vh, is the shortest path connecting u and v
in UDG(S). Then for each link vivi+1, 0 ≤ i ≤ h − 1, there
is a path ΠDel(S)(vi, vi+1) in the Delaunay triangulation (con-
structed using the method proposed in [18]) Del(S) with length
at most 1+

√
5

2 π · ‖vivi+1‖. Notice that ‖vivi+1‖ ≤ 1 and all
edges in ΠDel(S)(vi, vi+1) have length at most ‖vivi+1‖. There-
fore each path ΠDel(S)(vi, vi+1), 0 ≤ i ≤ h − 1, is also in
the graph UDel(S). Then the path formed by concatenating all
paths ΠDel(S)(vi, vi+1), i = 0, · · · , h − 1 has length at most
1+

√
5

2 π · ‖ΠUDG(S)(u, v)‖. The theorem follows.

Kevin and Gutwin [19], [17] showed that the Delaunay trian-
gulation is a t-spanner for a constant t = 2π

3 cos π
6

= 4
√

3
9 π ≈

2.42. They proved this using induction on the order of the
lengths of all pair of nodes (from the shortest to the longest). We
can show that the path connecting nodes u and v constructed by
the method given in [19], [17] also satisfies that all edges of that
path is shorter than ‖uv‖. Due to space limitations, we omit the
proof. Consequently, we have:

Theorem 6: UDel(S) is a 4
√

3
9 π-spanner of UDG .

IV. LOCAL DELAUNAY TRIANGULATION

In this section, we will define a new topology, called local
Delaunay triangulation, which can be constructed in a localized

manner. We first introduce some geometric structures and no-
tations to be used in this section. All angles are measured in
radians and take values in the range [0, π]. For any three points
p1, p2, and p3, the angle between the two rays p1p2 and p1p3
is denoted by ∠p3p1p2 or ∠p2p1p3. The closed infinite area in-
side the angle ∠p3p1p2, also referred to as a sector, is denoted by
�p3p1p2. The triangle determined by p1, p2, and p3 is denoted
by �p1p2p3.

An edge uv is called Gabriel edge if ‖uv‖ ≤ 1 and the open
disk using uv as diameter does not contain any node from S.
It is well known [15] that the constrained Gabriel graph is a
subgraph of the Delaunay triangulation. Recall that a triangle
�uvw belongs to the Delaunay triangulation Del(S) if its cir-
cumcircle disk(u, v, w) does not contain any other node of S in
its interior. Here we often assume that there are no four nodes
of S co-circumcircle. It is easy to show that nodes u, v and
w together can not decide if they can form a triangle �uvw in
Del(S) by using only their local information. We say a node x
can see another node y if ‖xy‖ ≤ 1. The following definition is
one of the key ingredients of our localized algorithm.

Definition 1: A triangle �uvw satisfies k-localized Delau-
nay property if the interior of disk(u, v, w) does not contain any
node of S that is a k-neighbor of u, v, or w; and all edges of
the triangle �uvw have length no more than one unit. Triangle
�uvw is called a k-localized Delaunay triangle.

Triangle �uvw is called localized Delaunay if it is a k-
localized Delaunay triangle for some integer k ≥ 1.

Definition 2: The k-localized Delaunay graph over a node
set S, denoted by LDel (k)(S), has exactly all Gabriel edges and
edges of all k-localized Delaunay triangles.

When it is clear from the context, we will omit the integer k
in our notation of LDel (k)(S). Our original conjecture was that
LDel (1)(S) is a planar graph and thus we can easily construct
a planar t-spanner of UDG(S) by using a localized approach.
Unfortunately, as we will show later, the edges of the graph
LDel (1)(S) may intersect. While LDel (1)(S) is a t-spanner,
its construction is a little bit more complicated than some other
non-planar t-spanners, such as the Yao structure [16] and the θ-
graph [17]. But we can make LDel (1)(S) planar efficiently, a
result we describe later in this paper.

Notice that the k-localized Delaunay graph LDel (k)(S) over
a node set S satisfies a monotone property: LDel (k+1)(S) is
always a subgraph of LDel (k)(S) for any positive integer k.

A. LDel (1)(S) may be non-planar

The definition of the 1-localized Delaunay triangle does not
prevent two triangles from intersecting or prevent a Gabriel edge
from intersecting a triangle. Figure 2 gives such an example
with 6 nodes {u, v, w, x, y, z} that LDel (1)(S) is not a planar
graph. Here ‖uv‖ = 1. Triangle �uvw is a 1-localized Delau-
nay triangle. If the node z does not exist, edge xy is an Gabriel
edge. The triangle �uvw intersects the Gabriel edge xy if z
does not exist, otherwise it intersects the 1-localized Delaunay
triangle �xyz.
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z
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w

Fig. 2. LDel(1)(S) is not planar.

B. LDel (k)(S) is a t-spanner

Theorem 7: Graph UDel(S) is a subgraph of the k-localized
Delaunay graph LDel (k)(S).

Proof: We prove the theorem by showing that each edge
uv of the unit Delaunay triangulation graph UDel(S) appears
in the localized Delaunay graph LDel (k)(S). For each edge uv
of UDel(S), the following five cases are possible (see Figure 3
for illustrations).
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Fig. 3. The neighborhood configuration of edge uv. Dashed lines (solid lines)
denote edges with length > 1(≤ 1).

Case 1: there is a triangle �uvw incident on uv such that all
edges of �uvw have length at most one unit. Because the cir-
cumcircle disk(u, v, w) is empty of nodes of S, triangle �uvw
satisfies the k-localized Delaunay property and thus edge uv be-
longs to LDel (k)(S).

Case 2: each of the two triangles incident on uv has only one
edge with length larger than one unit.

Case 3: one triangle �uvw incident on uv has only one edge
with length larger than one unit and the other triangle �uvz has
two edges with length larger than one unit.

Case 4: each of the two triangles incident on uv has two edges
with length larger than one unit.

We prove the cases 2, 3, and 4 together. Assume the two tri-
angles are �uvw and uvz. Let Huv,w be the half-plane that is
divided by uv and contains node w. Then edge uv is not the
longest edge in triangle �uvw and thus the angle ∠uwv < π

2 ;
for an illustration, see Figure 4. This implies that the circum-
circle disk(u, v, w) contains disk(u, v) ∩ Huv,w. Similarly,
the other half of disk(u, v) is contained inside the circumcircle
disk(u, v, z). Notice that both disk(u, v, w) and disk(u, v, z)
do not contain any node of S inside. It implies that disk(u, v)
is empty, i.e., edge uv is a Gabriel edge. Consequently, edge uv
will be inserted to LDel (k)(S).

Case 5: there is only one triangle incident on uv and it has at
least one edge with length larger than one unit. Similar to cases
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Fig. 4. Gabriel edges.

2-4, we can show that disk(u, v) is empty and therefore edge uv
will be inserted to LDel (k)(S) as a Gabriel edge.

C. LDel (k)(S), k ≥ 2, is planar

The above proof implies that each edge uv of UDel(S) is
either a Gabriel edge or forms a 1-localized Delaunay triangle
with some edges from UDel(S). Any two edges in UDel(S) do
not intersect. Thus, each possible intersection in LDel (k)(S) is
caused by at least one localized Delaunay triangle. We begin the
proof that LDel (k)(S), k ≥ 2, is planar by giving some simple
facts and lemmas.

Lemma 8: If an edge xy intersects a localized Delaunay tri-
angle �uvw, then x and y can not be both inside the circumcir-
cle disk(u, v, w).

Proof: For the sake of contradiction, assume that x and
y are both inside disk(u, v, w). Notice that disk(u, v, w) is di-
vided into four regions by the triangle �uvw. Let ûv, v̂w, and
ŵu be the three fan regions defined by edges uv, vw, and wu
respectively. First of all, neither x nor y can be inside the trian-
gle �uvw. Assume that x is inside the region ûv and y is inside
the region v̂w. Then one of the angles ∠uwv and ∠vuw is less
than π

2 , which implies that one of the angle ∠uxv and ∠vyw is
larger than π

2 . Thus, either vy < vw ≤ 1 or vx < vu ≤ 1.
In other words, the disk(u, v, w) contains a node from N1(v).
This contradicts that �uvw is a k-localized Delaunay triangle.

Lemma 9: If a Gabriel edge xy intersects a localized Delau-
nay triangle �uvw, then x and y can not be both outside the
circumcircle disk(u, v, w).

Proof: Let c be the circumcenter of the triangle �uvw.
Then at least one of the u, v, and w must be on the different side
of line xy with the center c; Let’s say u. If both x and y are
outside, then ∠yux > π

2 . Thus, u is inside disk(x, y), which
contradicts that xy is a Gabriel edge.

Theorem 10: Assume two triangles �uvw and �xyz intro-
duced to LDel (k)(S), k ≥ 1, intersect, then either disk(u, v, w)
contains at least one of the nodes of {x, y, z} or disk(x, y, z)
contains at least one of the nodes of {u, v, w}.

See the appendix for the proof. The above theorem guaran-
tees that if two k-localized Delaunay triangles �uvw and �xyz
intersect, then either disk(u, v, w) or disk(x, y, z) violates the
Delaunay property by just considering the nodes {u, v, w, x, y,
z}. We then show that LDel (2)(S) is a planar graph.

Theorem 11: LDel (2)(S) is a planar graph.
Proof: Notice that two Gabriel edges do not intersect.

Then every intersection must involves a localized Delaunay tri-
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angle. Assume that an edge xy of LDel (2)(S) intersects a lo-
calized Delaunay triangle �uvw. Edge xy is either a Gabriel
edge or an edge of a localized Delaunay triangle, say �xyz. If
xy is a Gabriel edge, then Lemma 9 implies that either x or y is
inside the disk(u, v, w), say y. If xy is an edge of a localized
Delaunay triangle �xyz, then Theorem 10 implies that either x
or y is inside the disk(u, v, w), say y. The triangle inequality
implies that

‖xu‖ + ‖yv‖ < ‖xy‖ + ‖uv‖ ≤ 2.

The existence of the 2-localized Delaunay triangle �uvw im-
plies that y /∈ N1(u) ∪ N1(v) ∪ N1(w). Thus, ‖yv‖ > 1,
which implies that ‖xu‖ < 1. In other words, x ∈ N1(u).
Consequently, y ∈ N2(u) because of the path yxu in the unit-
disk graph UDG(S), which contradicts to the existence of 2-
localized Delaunay triangle �uvw. The theorem follows.

We defined a sequence of localized Delaunay graphs
LDel (k)(S), where 1 ≤ k ≤ n. All graphs are t-spanner of
the unit-disk graph with the following properties:
• UDel(S) ⊆ LDel (k)(S), for all 1 ≤ k ≤ n;
• LDel (k+1)(S) ⊆ LDel (k)(S), for all 1 ≤ k ≤ n;
• LDel (k)(S) are planar graphs for all 2 ≤ k ≤ n;
• LDel (1)(S) is not always planar.

D. LDel (1)(S) has thickness 2

In this subsection, we claim that LDel (1)(S) has thickness
two, or in other words, its edges can be partitioned in two planar
graphs. From Euler’s formula, it follows that a simple planar
graph with n nodes has at most 3n − 6 edges, and therefore
LDel (1)(S) has at most 6n edges. Due to space limitations, we
omit the proof.

Theorem 12: Graph LDel (1)(S) has thickness 2.

V. LOCALIZED ALGORITHM

In this section, we study how to locally construct a planar
t-spanner of UDG(S). We assume that the identity of a node
u can be represented by O(log n) bits and its location can be
represented by O(1) bits.

Although the graph UDel(S) is a t-spanner for UDG(S),
we do not know how to construct it locally. We can con-
struct LDel (2)(S), which is guaranteed to be a planar spanner
of UDel(S), but with a total communication cost of this ap-
proach is O(m log n) bits , where m is the number of edges in
UDG(S) and could be as large as O(n2). In order to reduce the
total communication cost toO(n log n) bits, we do not construct
LDel (2)(S), and instead we extract a planar graph PLDel(S)
out of LDel (1)(S).

A. Algorithm

Recall that LDel (1)(S) is not guaranteed to be a planar graph.
We propose an algorithm that constructs LDel (1)(S) and then
makes it a planar graph efficiently. The final graph still contains
UDel(S) as a subgraph. Thus, it is a t-spanner of the unit-disk
graph UDG(S).

In the following, the order of three nodes in a triangle is im-
material.

Algorithm 1: Localized Unit Delaunay Triangulation
1. Each wireless node u broadcasts its identity and location and
listens to the messages from other nodes.
2. Assume that node u gathered the location information of
N1(u). It computes the Delaunay triangulation Del(N1(u)) of
its 1-neighbors N1(u), including u itself.
3. For each edge uv of Del(N1(u)), let �uvw and �uvz be
two triangles incident on uv. Edge uv is a Gabriel edge if both
angles ∠uwv and ∠uzv are less than π/2. Node u marks all
Gabriel edges uv, which will never be deleted.
4. Each node u finds all triangles �uvw from Del(N1(u)) such
that all three edges of �uvw have length at most one unit. If an-
gle ∠wuv ≥ π

3 , node u broadcasts a message proposal(u, v, w)
to form a 1-localized Delaunay triangle �uvw in LDel (1)(V ),
and listens to the messages from other nodes.
5. When a node u receives a message proposal(u, v, w), u ac-
cepts the proposal of constructing �uvw if �uvw belongs to
the Delaunay triangulation Del(N1(u)) by broadcasting mes-
sage accept(u, v, w); otherwise, it rejects the proposal by
broadcasting message reject(u, v, w).
6. A node u adds the edges uv and uw to its set of incident
edges if the triangle �uvw is in the Delaunay triangulation
Del(N1(u)) and both v and w have sent either accept(u, v, w)
or proposal(u, v, w).

We first claim that the graph constructed by the above al-
gorithm is LDel (1)(S). Indeed, for each triangle �uvw of
LDel (1)(S), one of its interior angle is at least π/3 and �uvw
is in Del(N1(u)), Del(N1(v)) and Del(N1(w)). So one of
the nodes amongst {u, v, w} will broadcast the message pro-
posal(u, v, w) to form a 1-localized Delaunay triangle �uvw.

As Del(N1(u)) is a planar graph, and a proposal is made only
if ∠wuv ≥ π

3 , node u broadcasts at most 6 proposals. And each
proposal is replied by at most two nodes. Therefore, the total
communication cost is O(n log n) bits. The above algorithm
also shows that LDel (1)(S) has O(n) edges, which we know
from Theorem 12. Putting together the arguments above, we
have:

Theorem 13: Algorithm 1 constructs LDel (1)(S) with total
communication cost O(n log n).

We then propose an algorithm to extract from LDel (1)(S) a
planar subgraph.

Algorithm 2: Planarize LDel (1)(S)
1. Each wireless node u broadcasts the Gabriel edges incident
on u and the triangles �uvw of LDel (1)(S) and listens to the
messages from other nodes.
2. Assume node u gathered the Gabriel edge and 1-local De-
launay triangles information of all nodes from N1(u). For two
intersected triangles �uvw and �xyz known by u, node u re-
moves the triangle �uvw if its circumcircle contains a node
from {x, y, z}.
3. Each wireless node u broadcasts all the triangles incident on
u which it has not removed in the previous step, and listens to
the broadcasting by other nodes.
4. Node u keeps the edge uv in its set of incident edges if it is a
Gabriel edge, or if there is a triangle �uvw such that u, v, and
w have all announced they have not removed the triangle �uvw
in Step 2.
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We denote the graph extracted by the algorithm above by
PLDel(S). Note that any triangle of LDel (1)(S) not kept
in the last step of the Planarization Algorithm is not a trian-
gle of LDel (2)(S), and therefore PLDel(S) is a supergraph of
LDel (2)(S). Thus, by using Theorem 7, we have:

UDel(S) ⊆ LDel (2)(S) ⊆ PLDel(S) ⊆ LDel (1)(S)

Similar to the proof that LDel (2)(S) is a planar graph, we
can show that our algorithm does generate a planar graph
PLDel(S). Due to space limitation, we omit the proof.

The total communication cost to construct the graph
PLDel(S) is aO(log n) times the number of edges of the graph
LDel (1)(S), which by Theorem 12 is O(n). Putting together all
the arguments above and Theorem 6, we have:

Theorem 14: PLDel(S) is planar 4
√

3
9 π-spanner of UDG(S),

and can be constructed with total communication cost
O(n log n).

VI. ROUTING

We discuss how to route packets on the constructed graph.
Recently, Bose and Morin [1] first proposed a localized routing
algorithm that routes a packet from a source node s to a destina-
tion node t. Here a routing algorithm is localized if each relay-
ing node decides to which node to forward the packet only based
on the following information: the source node s, the destination
node t, the current node u and all nodes of Nk(u). We only
use k = 1. Sometimes, the algorithm may use at most a con-
stant number of bits of additional information. Their algorithm
is based on the remarkable proof of Dobkin et al. [18] that the
Delaunay triangulation is a t-spanner of the complete Euclidean
graph. Bose and Morin [1] showed how to find another path lo-
cally with length no more than Πdfs(u, v). However their algo-
rithm has a major deficiency by requiring the construction of the
Delaunay triangulation and the Voronoi diagram of all wireless
nodes, which could be very expensive in distributed computing.

Bose et al. [12] proposed another algorithm that routes the
packets using the Gabriel graph to guarantee the delivery. No-
tice that the Gabriel graph is a subgraph of PLDel(S). Thus, if
we apply the routing method proposed in [12] on the newly pro-
posed planar graph PLDel(S), we expect to achieve better per-
formance because PLDel(S) is denser than the Gabriel graph
(but still with O(n) edges). The constructed local Delaunay tri-
angulation not only guarantees that the length of the shortest
path connecting any two wireless nodes is at most a constant
factor of the minimum in the unit-disk graph, it also guarantees
that the energy consumed by the path is also minimum, as it
includes the Gabriel graph (see [29], [21]). Moreover, because
the constructed topology is planar, then a localized routing al-
gorithm using the right hand rule guarantees the delivery of the
packets from source node to the destination node.

We study the following routing algorithms on the graphs pro-
posed in this paper.

Compass Routing Let t be the destination node. Current node
u finds the next relay node v such that the angle ∠vut is the

v

t
u

v2

u
t

v1 v

u
t

Compass Random Compass Greedy

v

u
t

v

u
tα α

u
t

v

Most Forwarding Nearest Neighbor Farthest Neighbor

Fig. 5. Shaded area is empty and v is next node.

smallest among all neighbors of u in a given topology. See[14].

Random Compass Routing Let u be the current node and t be
the destination node. Let v1 be the node on the above of line ut
such that ∠v1ut is the smallest among all such neighbors of u.
Similarly, we define v2 to be nodes below line ut that minimizes
the angle ∠v2ut. Then node u randomly choose v1 or v2 to
forward the packet. See[14].

Greedy Routing Let t be the destination node. Current node u
finds the next relay node v such that the distance ‖vt‖ is the
smallest among all neighbors of u in a given topology. See [12].

Most Forwarding Routing (MFR) Current node u finds the next
relay node v such that ‖v′t‖ is the smallest among all neigh-
bors of u in a given topology, where v′ is the projection of v on
segment ut. See [11].

Nearest Neighbor Routing (NN) Given a parameter angle α,
node u finds the nearest node v as forwarding node among all
neighbors of u in a given topology such that ∠vut ≤ α.

Farthest Neighbor Routing (FN) Given a parameter angle α,
node u finds the farthest node v as forwarding node among all
neighbors of u in a given topology such that ∠vut ≤ α.

Notice that it is shown in [12], [14] that the compass routing,
random compass routing and the greedy routing guarantee to de-
liver the packets from the source to the destination if Delaunay
triangulation is used as network topology. They proved this by
showing that the distance from the selected forwarding node v
to the destination node t is less than the distance from current
node u to t. However, the same proof cannot be carried over
when the network topology is Yao graph, Gabriel graph, relative
neighborhood graph, and the localized Delaunay triangulation.
When the underlying network topology is a planar graph, the
right hand rule is often used to guarantee the packet delivery
after simple localized routing heuristics fail [12], [11], [13].

We present our experimental results of various routing meth-
ods on different network topologies. Figure 6 illustrates some
network topologies discussed in this paper. Recall that Gabriel
graph, relative neighborhood graph, Delaunay triangulation,
LDel (2)(S), and PLDel(S) are always planar graphs. The Yao
structure, Delaunay triangulation, LDel (2)(S), and PLDel(S)
are always a t-spanner of the unit-disk graph. We use integer pa-
rameter k = 8 in constructing the Yao graph. In the experimen-
tal results presented here, we choose total n = 50 wireless nodes
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Fig. 6. Various planar network topologies (except Yao).

which are distributed randomly in a square area with side length
100 meters. Each node are specified by a random x-coordinate
value and a random y-coordinate value. The transmission radius
of each wireless node is set as 30 meters. We randomly select
10% of nodes as source nodes; and for every source node, we
randomly choose 10% of nodes as destination nodes. The statis-
tics are computed over 10 different node configurations. Inter-
estingly, we found that when the underlying network topology
is Yao graph, LDel (2)(S), or PLDel(S), the compass routing,
random compass routing and the greedy routing delivered the
packets in all our experiments. Table I illustrates the deliver
rates of different localized routing protocols on various network
topologies. For nearest neighbor routing and farthest neighbor
routing, we choose the angle α = π/3. The LDel (2)(S) and
PLDel(S) graphs are preferred over the Yao graph because we
can apply the right hand rule when previous simple heuristic
localized routing fails. Both [12] and [13] use the greedy rout-
ing on Gabriel graph and use the right hand rule when greedy
fails. Table II illustrates the maximum ratios of ‖Π(s, t)‖/‖st‖,
where Π(s, t) is the path traversed by the packet using different
localized routing protocols on various network topologies from
source s to destination t. In our experiment, we found that the
ratios ‖Π(s, t)‖/‖st‖ are small.

TABLE I

THE DELIVERY RATE OF DIFFERENT LOCALIZED ROUTING METHODS ON

VARIOUS NETWORK TOPOLOGIES.

Yao RNG GG Del LDel(2) PLDel

NN 98.7 44.9 83.2 99.1 97.8 98.3
FN 97.5 49 81.7 92.1 97 97.6
MFR 98.5 78.5 96.6 95.2 96.6 99.7
Compass 100 86.6 99.6 100 100 100
RndCmp 100 91.7 99.9 100 100 100
Greedy 100 87.5 99.6 100 100 100

VII. CONCLUSION

It is well-known that Delaunay triangulation Del(S) is a t-
spanner of the completed graph K(S). In this paper, we first

TABLE II

THE MAXIMUM SPANNING RATIO OF DIFFERENT LOCALIZED ROUTING

METHODS ON VARIOUS NETWORK TOPOLOGIES.

Yao RNG GG Del LDel(2) PLDel

NN 1.9 2.1 1.9 1.7 1.8 1.9
FN 4.2 2.8 2.7 5.2 3.4 3.1
MFR 4.8 3.2 2.4 4.5 3.9 4.1
Compass 3.3 2.9 2.8 1.6 1.8 2.0
RndCmp 2.7 3.0 2.4 1.7 2.0 1.8
Greedy 2.1 3.5 2.2 2.0 1.9 1.9

proved that the UDel(S) is a t-spanner of the unit-disk graph
UDG(S). We then gave a localized algorithm that constructs a
graph, namely PLDel(S). We proved that PLDel(S) is a planar
graph and it is a t-spanner by showing that UDel(S) is a sub-
graph of PLDel(S). The total communication cost of all nodes
of our algorithm is O(n log n) bits. The computation cost of
each node u is O(du log du), where du is the number of 1-hop
neighbors of u in UDG . Our experiments showed that the de-
livery rates of existing localized routing protocols are increased
when localized Delaunay triangulation is used instead of several
previously proposed planar topologies.

We proved that the shortest path in PLDel(S) connecting any
two nodes u and v is at most a constant factor of the shortest
path connecting u and v in UDG. It remain open designing
a localized algorithm such that the path traversed by a packet
from u to v has length within a constant of the shortest path
connecting u and v in UDG.
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IX. APPENDIX

Lemma 15: If an edge xy intersects a localized Delaunay tri-
angle �uvw, then it intersects two edges of �uvw.

Proof: If it intersects one edge of �uvw, then either x
or y must be inside the triangle �uvw, say x. Then xu <
max(uv, uw) ≤ 1, which contradicts that �uvw is a localized
Delaunay triangle.

Then we present the proof of Theorem 10.

Proof: There are three cases: triangles �uvw and �xyz
share two nodes (i.e., one edge), one node or do not share any
node.

Case 1: triangles �uvw and �xyz share one edge. We prove
that this case is impossible. For the sake of contradiction, as-
sume that it is possible and they share an edge uv. In other
words, we have two localized Delaunay triangles �uvw and
�uvz that intersect. Notice that ∠uwv and ∠uzv can not be
equal because we assume that no four nodes are co-circle. As-
sume that ∠uwv < ∠uzv. Then the circumcircle disk(u, v, w)
contains node z inside. Notice that node z ∈ N1(u). Thus,
triangle �uvw does not satisfy the localized Delaunay prop-
erty. It is a contradiction to the existence of triangle �uvw in
LDel (1)(S).
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Case 1 Subcase 2.1

Fig. 7. Two intersected triangles share an edge or a node.

Case 2: triangles �uvw and �xyz share one node. We also
prove that this case is impossible. For the sake of contradic-
tion, assume that it is possible and u = x. Then the existence
of the triangle �uvw implies that y and z must be outside of
disk(u, v, w) because both y and z are from N1(u). Then there
are three subcases about the locations of the segment xy and xz.
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Subcase 2.2 Subcase 2.3

Fig. 8. Two intersected triangles share a node.

Subcase 2.1: none of the segments xy and xz intersects the
triangle �uvw. Then segment yz must intersect both uv and
uw. It can not intersect segment wv; otherwise, either w or v
is inside the triangle �xyz. The right figure in Figure 7 illus-
trates the proof that follows. Let z′ be the intersection point
of segment zy with disk(u, v, w), which is close to z. Let
y′ be the other intersection point of zy with the circumcircle
disk(u, v, w). Then ∠zxy + ∠yvz > ∠z′xy′ + ∠y′vz′ = π.
It implies that node v is inside the circumcircle disk(x, y, z).
Notice that xv = uv ≤ 1. Therefore there exists a node from
N1(x) that is inside disk(x, y, z), which contradicts that �xyz
is a localized Delaunay triangle.

Subcase 2.2: only one edge of xy and xz that intersects the
triangle �uvw. Let’s say xz. Then segment yz must inter-
sect both edges vw and vu. Otherwise v is inside the triangle
�xyz, which contradicts the existence of triangle �xyz. The
left figure in Figure 7 illustrates the proof that follows. Let z′

be another intersection point of segment uz with disk(u, v, w).
Let y′ be the intersection point of segment yz with the circum-
circle disk(u, v, w), which is close to y. Then ∠zxy + ∠yvz >
∠zxy′ + ∠y′vz > ∠zxy′ + ∠y′vz′ = π. It implies that
node v is inside the circumcircle disk(x, y, z). Notice that
xv = uv ≤ 1. Therefore there exists a node from N1(x) that is
inside disk(x, y, z), which contradicts that �xyz is a localized
Delaunay triangle.

Subcase 2.3: Both segments xy and xz intersect the triangle
�uvw. The right figure in Figure 7 illustrates the proof that
follows. Let z′ be another intersection point of segment uz with
disk(u, v, w). Let y′ be another intersection point of segment
uy with the circumcircle disk(u, v, w). Then ∠wuv+ ∠wzu+
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∠vyu < ∠wuv+∠wz′u+∠vy′u = ∠wuv+∠wz′u+∠vz′u =
π. It implies that (∠xwz + ∠xyz) + (∠xvy + ∠xzy) = 3π −
(∠wuv + ∠wzu + ∠vyu) > 2π. Then from the pigeonhole
principle, we have either ∠xwz+∠xyz > π or ∠xvy+∠xzy >
π. Consequently, the circumcircle disk(x, y, z) of the triangle
�xyz contains either w or v in its interior. This contradicts
to that �xyz is a localized Delaunay triangle. From the above
analysis of case 2, two intersected triangles �uvw and �xyz
can not share one common node, say u = x, because in all three
cases, y or z must be in the interior of the circumcircle of �uvw
and y ∈ N1(u) or z ∈ N1(u).

Case 3: triangles �uvw and �xyz do not share any node.
Without loss of generality, assume that none of the nodes of
�xyz is contained inside the circumcircle disk(u, v, w). It is
not difficulty to show that there are only two possible subcases
as illustrated by Figure 9. We then prove that disk(x, y, z) con-
tains at least one of the nodes of u, v, and w.
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Subcase 3.1 Subcase 3.2

Fig. 9. All or four edges of two triangles intersect.

Subcase 3.1: all edges of �xyz and �uvw are intersected
by some edges of the other triangle. Assume that the nodes
have the order as illustrated by the left figure in Figure 9. Then
it is easy to show that all angles ∠wxu, ∠xuy, ∠uyv, ∠yvz,
∠vzw, ∠zwx are less than π. Notice that ∠wxu + ∠wvu < π
because x is not inside the circumcircle disk(u, v, w). Simi-
larly ∠uyv + ∠uwv < π and ∠vzw + ∠vuw < π. Therefore
∠wxu+∠uyv+∠vzw < 3π−(∠wvu+∠uwv+∠vuw) = 2π.
Notice that ∠wxu+∠uyv+∠vzw+∠xuy+∠yvz+∠zwx =
4π. It implies that ∠xuy+∠yvz+∠zwx > 2π. Then we know
that at least one of the nodes of u, v, and w is contained inside
the circumcircle disk(x, y, z) (otherwise by symmetry, similarly
we would have ∠xuy + ∠yvz + ∠zwx < 2π). We then prove
that subcase 3.1 is impossible. For the sake of contradiction, as-
sume that it is possible. Then from the proof of the subcase 3.1,
either disk(u, v, w) contains one of the nodes of x, y and z; or
disk(x, y, z) contains at least one of the nodes of u, v, and w.
Without loss of generality, assume that node x is contained in
the interior of disk(u, v, w). Then Lemma 8 implies that both y
and z are outside of disk(u, v, w). The following Figure 10 il-
lustrates the proof that follows. The existence of triangle �uvw
implies that ‖xu‖ > 1, ‖xv‖ > 1, and ‖xw‖ > 1. Notice that
‖xy‖ ≤ 1 and ‖xz‖ ≤ 1. Let c be the circumcenter of the trian-
gle �uvw. Here c can not be x because xu > 1, xy ≤ 1 and y
is outside of the circle. Notice that the angle ∠uxv < π

3 because
uv must be the shortest edge of triangle �uxv. Consider the fol-
lowing five segments lying in the interior of the wedge uxv: xv,
xz, xw, xy, and xu. From the pigeonhole principle, there are at
least three such segments lying on the same side of the line xc.
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Fig. 10. Subcase 3.1 is impossible.

More precisely, we have either xv, xz and xw are on the same
side of xc or xw, xy and xu are on the same side of xc. Without
loss of generality, assume that the first scenario happens. Then it
is easy to prove that ‖xz‖ > min(xv, xw) > 1.This contradicts
to ‖xz‖ ≤ 1. The right figure of Figure 10 illustrates the proof
using that ‖xv‖2 = ‖xc‖2+‖cv‖2−2‖xc‖·‖cv‖·cos(∠xcv),and
‖cv‖ = ‖cz′‖ = ‖cw‖. Therefore, the assumption that subcase
3.1 is possible does not hold.

Subcase 3.2: one edge of each triangle is not intersected by
the edges of the other triangle. We then prove that disk(x, y, z)
contains at least one of the nodes of u, v, and w. The right
figure of Figure 9 illustrates the proof that follows. Let x′

be the intersection point of segment xz with the circumcir-
cle disk(u, v, w), which is close to x. Let z′ be the intersec-
tion point of segment uz with the circumcircle disk(u, v, w).
Let x′′ and y′ be the two intersection points of segment xy
with the circumcircle disk(u, v, w), where x′′ is close to x
and y′ is close to y. Then ∠xzu < ∠x′z′u = ∠x′wu <
∠xwu,and ∠wyx < ∠wy′x′′ = ∠wux′′ < ∠wux.Notice
that ∠yzu + ∠zux + ∠uxw + ∠xwy + ∠wyz = 3π.Then
(∠yzx+ ∠ywx) + (∠zyx+ ∠zux) = 3π− (∠xzu+ ∠wyx+
∠uxw) > 3π − (∠xwu + ∠wux + ∠uxw) = 2π. So either
∠yzx+ ∠ywx > π or ∠zyx+ ∠zux > π from the pigeonhole
principle. Consequently, disk(x, y, z) contains either node w or
node u.
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