
© 1996, Virgil Bistriceanu

Exceptions in MIPS

Objectives
After completing this lab you will:

• know the exception mechanism in MIPS

• be able to write a simple exception handler for a MIPS machine

Introduction
Branches and jumps provide ways to change the control flow in a program. Exceptions can also change the
control flow in a program.

The MIPS convention calls an exception any unexpected change in control flow regardless of its source (i.e.
without distinguishing between a within the processor source and an external source).

An exception is said to be synchronous if it occurs at the same place every time a program is executed with
the same data and the same memory allocation. Arithmetic overflows, undefined instructions, page faults are
some examples of synchronous exceptions. Asynchronous exceptions, on the other hand, happen with no
temporal relation to the program being executed. I/O requests, memory errors, power supply failure are exam-
ples of asynchronous events.

An interrupt is an asynchronous exception. Synchronous exceptions, resulting directly from the execution of
the program, are called traps.

When an exception happens, the control is transferred to a different program named exception handler, writ-
ten explicitly for the purpose of dealing with exceptions. After the exception, the control is returned to the
program that was executing when the exception occurred: that program then continues as if nothing hap-
pened. An exception appears as if a procedure (with no parameters and no return value) has been inserted in
the program.

Since the code for the exception handler might be executed at any time, there can be no parameters passed to
it: passing parameters would require prior preparation. For the same reason there may not be any return value.
It is important to keep in mind that the exception handler must preserve the state of the program that was inter-
rupted such that its execution can continue at a later time.

As with any procedure, the exception handler must save any registers it may modify, and then restore them
before returning control to the interrupted program. Saving registers in memory poses a problem in MIPS:
addressing the memory requires a register (the base register) in which the address is formed. This means that

7

© 1996, Virgil Bistriceanu

a register must be modified before any register can be saved! The MIPS register usage convention (see Lab-
oratory 4) reserves registers $26 and $27 ($k0 and $k1) for the use of the interrupt handler. This means
that the interrupt handler can use these registers without having to save them first. A user program that uses
these registers may find them unexpectedly changed.

The MIPS exception mechanism
The exception mechanism is implemented by the coprocessor 0 which is always present (unlike coprocessor
1, the floating point unit, which may or may not be present). The virtual memory system is also implemented
in coprocessor 0. Note however that SPIM does not simulate this part of the coprocessor.

The CPU operates in one of the two possible modes, user and kernel. User programs run in user mode. The
CPU enters the kernel mode when an exception happens. Coprocessor 0 can only be used in kernel mode.

The whole upper half of the memory space is reserved for the kernel mode: it can not be accessed in user
mode. When running in kernel mode the registers of coprocessor 0 can be accessed using the following
instructions:

The relevant registers for the exception handling, in coprocessor 0 are

The BadVAddr register
This register (its name stands for Bad Virtual Address) will contain the memory address where the exception
has occurred. An unaligned memory access, for instance, will generate an exception and the address where
the access was attempted will be stored in BadVAddr.

Instructions which access the registers of coprocessor 0

Instruction Comment

mfc0 Rdest, C0src Move the content of coprocessor’s register C0src to Rdest

mtc0 Rsrc, C0dest Integer register Rsrc is moved to coprocessor’s register C0dest

lwc0 C0dest, address Load word from address in register C0dest

swc0 C0src, address Store the content of register C0src at address in memory

Exception handling registers in coprocessor 0

Register Number Register Name Usage

8 BadVAddr Memory address where exception occurred

12 Status Interrupt mask, enable bits, and status when exception
occurred

13 Cause Type of exception and pending interrupt bits

14 EPC Address of instruction that caused exception

© 1996, Virgil Bistriceanu

The Cause register
The Cause register provides information about what interrupts are pending (IP2 to IP7) and the cause of the
exception. The exception code is stored as an unsigned integer using bits 6-2 in the Cause register. The layout
of the Cause register is presented below.

Bit IPi becomes 1 if an interrupt has occurred at level i and is pending (has not been serviced yet). The bits
IP1 and IP0 are used for simulated interrupts that can be generated by software. Note that IP1 and IP0 are not
visible in SPIM (please refer to the SPIM documentation).

The exception code indicates what caused the exception.

Code 0 indicates that an interrupt has occurred. By looking at the individual IPi bits the processor can learn
what specific interrupt happened.

The Status register
The Status register contains an interrupt mask on bits 15-10 and status information on bits 5-0. The layout of

a. Codes from 1 to 3 are reserved for virtual memory,
(TLB exceptions), 11 is used to indicate that a partic-
ular coprocessor is missing, and codes above 12 are
used for floating point exceptions or are reserved.

Exception codesa implemented by SPIM

Code Name Description

0 INT Interrupt

4 ADDRL Load from an illegal address

5 ADDRS Store to an illegal address

6 IBUS Bus error on instruction fetch

7 DBUS Bus error on data reference

8 SYSCALL syscall instruction executed

9 BKPT break instruction executed

10 RI Reserved instruction

12 OVF Arithmetic overflow

31-16

IP7 IP6 IP5 IP4 IP3 IP2

15 14 13 12 11 10

IP1 IP00

9 8

0

7

ExcCode

6 5 4 3 2 1 0

0

© 1996, Virgil Bistriceanu

the Status register is presented below.

If bit IMi is 1 then interrupts at level i are enabled. Otherwise they are disabled. In SPIM IM1 and IM0 are
not visible to the programmer.

KUc (bit 1 in the register) indicates whether the program is running in user (KUc = 1) or kernel (KUc = 0)
mode. KUp (bit 3 in the register) indicates whether the processor was in kernel (KUp = 0) or user mode when
last exception occurred. This information is important since at the return from the exception handler the pro-
cessor must be in the same state it was when the exception happened. Bits 5-0 in the Status register implement
a simple, three level stack with information about previous exceptions. When an exception occurs, the pre-
vious state (bits 3 and 2) is saved as the old state and the current state is saved as the previous state.
The old state is lost. The current state bits are both set to 0 (kernel mode with interrupts disabled). At the
return from the exception handler (by executing a rfe instruction), the previous state becomes the cur-
rent state and the old state becomes the previous. The old state is not changed.

The Interrupt Enable bits (IEj) indicate whether interrupts are enabled (IEj = 1) or not (IEj = 0) in the respec-
tive state. If for instance IEc is zero, then the processor is currently running with the interrupts disabled.

The EPC register
When a procedure is called using jal, two things happen:

• control is transferred at the address provided by the instruction

• the return address is saved in register $ra

In the case of an exception there is no explicit call. In MIPS the control is transferred at a fixed location,
0x80000080 when an exception occurs. The exception handler must be located at that address.

The return address can not be saved in $ra since it may clobber a return address that has been placed in that
register before the exception. The Exception Program Counter (EPC) is used to store the address of the
instruction that was executing when the exception was generated.

Returning from exception
The return sequence is standard:

Ex 1:
#
the return sequence from the exception handler for the case of an
external exception (interrupt)
#

mfc0 $k0, $14 # get EPC in $k0
rfe # return from exception
jr $k0 # replace PC with the return address ■

IM7 IM6 IM5 IM4 IM3 IM2

31-16 15 14 13 12 11 10

IM1 IM0 KUo IEo KUp IEp KUc IEc

9 8 5 4 3 2 1 0

old previous current

7-6

© 1996, Virgil Bistriceanu

The architecture makes a clear distinction between interrupts (external exceptions) and traps (including
explicit software invocations such as syscall). In the case of an interrupt the Program Counter has already
been advanced to point to the next instruction at the moment the control was transferred to the exception han-
dler. In other words, the EPC contain the address of the instruction to execute after the return from the
exception handler. In the case of a trap or a syscall, the EPC contains the address of the instruction that
has generated the trap. To avoid executing the instruction again at the return from the exception handler, the
return address must be incremented by four, thus making sure the instruction that follows in the flow will be
executed.

Ex 2:
#
the return sequence from the exception handler for the case of a
trap (including a syscall).
#

mfc0 $k0, $14 # get EPC in $k0
addiu $k0, 4 # make sure it points to next instruction
rfe # return from exception
jr $k0 # replace PC with the return address ■

Laboratory 7: Prelab Exceptions in MIPS

© 1996, Virgil Bistriceanu

Laboratory 7: Prelab

Date Section

Name

Making Sense Of An Exception Handler
During the prelab you will study an existing exception handler, the one that comes with the SPIM simulator.
You will then be able to write one on your own (this will be the inlab task).

Introduction
When an exception occurs, the processor enters the kernel mode and control is transferred at address
0x80000080. Part of the invocation process is disabling interrupts: the hardware takes care of it. This is
needed since the exception handler has to save the state of the processor before doing any processing for that
interrupt. At the very least, the processor must be able to execute uninterrupted long enough to

• find out what caused the exception and save the relevant information (EPC, the Cause register, the Sta-
tus register)

• save the state of the processor (actually save all registers the trap handler may use)

Disabling interrupts does not mean they are eliminated. It only means their effect is deferred. Since interrupts
inform the processor about significant events, one may not indefinitely disable them. But it is safe to ignore
interrupts for short periods of time. At the time interrupts are enabled again, the hardware will treat any pend-
ing interrupt as if it just occurred and immediately invoke the exception handler.

As noted before, the exception handler is invoked with the interrupts being disabled. However, there is noth-
ing to prevent traps from occurring within the handler. It is the programmer’s responsibility to make sure the
exception handler does not execute any instruction that cause an exception.

If the exception handler returns control to the interrupted program after a short period of time, then it may run
without enabling interrupts. In this case there is no need to save the exception information (EPC, Cause, Sta-
tus). The registers the handler uses must be saved. Of course the two dedicated registers, $k0 and $k1, need
not be saved and can be used right away.

If the exception handler contains code that may run for long times, then it would be unsafe to execute that
code with the interrupts disabled since some events may be lost. Imagine for instance the exception handler
executing code for a communication interface and ignoring an interrupt that indicates a power failure. In gen-
eral, a correctly written exception handler should be itself interruptible. Such a handler is said to be re-
entrant.

If interrupts are enabled within the exception handler, then the relevant information (EPC, Cause, Status)
must be saved before enabling interrupts exception. All registers the handler may use must be saved anyway.

Laboratory 7: Prelab Exceptions in MIPS

© 1996, Virgil Bistriceanu

Two things must be properly set to enable interrupts:

• IEc (bit 0 in the Status register) must be 1: this indicates that interrupts are allowed in the current state

• the interrupt mask (IM) which indicates what specific interrupt(s) to enable

The IEc bit enables or disables all interrupts while the individual bits (IMi) in the interrupt mask enable or
disable individual interrupts. Either can disable an interrupt but both (IEc and IMi must be set for interrupt i
to be enabled).

The Interrupt Pending bits (IPi) in the Cause register indicate whether or not an interrupt is pending. Note
here that an IPi bit in this register will be set, thus indicating a pending interrupt, even if the interrupts are
disabled. This way the exception handler can determine whether there are pending interrupts which would
cause an exception had they not been disabled.

Step 1
Begin by making a copy of the file called trap.handler: call the copy trap.handler.original. You will work on
the file trap.handler which the SPIM simulator loads by default. Look at the file and, based on what you see,
try to answer a few questions. The ‘.set noat’ assembler directive instructs the assembler not to complain
about using the $at register (which is reserved for the assembler’s usage).

Q 1:
An exception handler needs to save the registers it may change. Can this be done on the stack, using $sp?
Explain.

Q 2:
Is the exception handler you find in the file trap.handler re-entrant or not? Explain. A possible comment in

the code that says the handler is not re-entrant is not a good argument! There are several possible explana-

tions, but you need provide only one.

Q 3:
Since a syscall creates an exception, do you think it is appropriate to have syscalls inside an exception

Laboratory 7: Prelab Exceptions in MIPS

© 1996, Virgil Bistriceanu

handler? Explain.

Q 4:
Is there any code in the exception handler that actually does print an integer (print_int)? True, there are calls

to print_int, but where are they handled?

Q 5:
Why is there a need to check whether the EPC is word aligned?

Step 2
As you can see the exception handler does not worry about interrupts. We ignore them for now. What the
handler does is that it only prints out a message indicating what happened and then returns. The message
SPIM prints has two parts, the first part comes from the simulator itself and the second is printed within the
exception handler.

Write a program called lab7.1.asm which:

• declares a variable called MAX_INT with the initial value the maximum value of a signed integer

• loads the value of MAX_INT in register $t0 and adds it to itself (use signed addition)

Q 6:
Will your program, when run, generate an exception? If you answer yes, then indicate whether it is a trap or
an interrupt.

Laboratory 7: Prelab Exceptions in MIPS

© 1996, Virgil Bistriceanu

Run lab7.1.asm and write down the error message you get on screen. For each line in the error message clearly
indicate the source in the ‘Source’ column: use a S to indicate the message is generated inside the simulator,
and a T to indicate it is generated inside the trap handler.

If you don’t like having SPIM print a message every time an exception is generated, then you can run the
simulator in quiet mode: use the -quiet flag in the command line to do so. In this case the only error mes-
sages will be the ones printed from within the exception handler.

Step 3
Step through lab7.1.asm until you enter the exception handler. Some instructions load data from the kernel

data segment. Based on what the simulator prints when you step, find out at what address the data segment

starts. Show your work.

Step 4
In the Laboratory #2 inlab exercise, the model of MIPS systems memory has been presented. However, there
are no details about the kernel space. A more detailed image is presented below. Fill out the missing infor-
mation on this figure.

Error message generated by lab7.1.asm

Error message Source

Kernel Text Segment

Kernel Data Segment

0x80000000

0xffffffff

Laboratory 7: Prelab Exceptions in MIPS

© 1996, Virgil Bistriceanu

Step 5
The trap handler prints the appropriate error message for each exception by using the exception code from
the Cause register as an index in a table containing message addresses. At this step you are required to identify
the table and show a few entries in it. In the ‘Label’ column, the first row will be the label where the table
begins. In the ‘Comment’ column indicate what is the content stored at each of the addresses in the column
‘Address’.

Step 6
Printing inside the exception handler is done by using syscall. However, the code that actually prints a
character on the console is not there. SPIM uses the services of the machine it is running on to do the actual
character output or input.

We now want to see how it is like to do it, using the bare devices the machine offers. SPIM simulates a mem-
ory-mapped terminal connected to the processor. Memory mapped means that accessing some memory
locations accesses the I/O devices in reality. Writing to a specific memory location will actually write to an
output device, while reading from some specific memory location actually reads from an I/O device. The ter-
minal device SPIM simulates consists of two independent units: the receiver and the transmitter. The receiver
reads characters from the keyboard as they are typed. The transmitter unit writes characters to the terminal’s
display. Both the receiver and the transmitter can work in interrupt mode. At this step, however, you will do
something simpler: you will modify the exception handler as to print using the transmitter unit. Modify the
exception handler as follows:

• write a procedure called PrintString which receives in $a0 the address of the string to print, and
returns no value. The string to print is null-terminated

• the procedure uses busy-waiting for printing

• call ‘PrintString’ in the exception handler instead of print_str

A few hints are probably in place:

• you will probably need to save more registers when you enter the exception handler than it does now;
save them in kernel data segment

• busy waiting means that you have a loop where you test the ‘Ready’ bit in the Transmitter Control Reg-
ister until it becomes 1, thus signaling that the output device is ready to accept a new character

• start the spim simulator with the -mapped_io flag in the command line

• the null symbol is the byte 0x00

Label Address Contents Comment

Laboratory 7: Prelab Exceptions in MIPS

© 1996, Virgil Bistriceanu

Use the program lab7.1.asm for testing. If you attempt to run the program and it hangs or produces exceptions
other than what lab7.1.asm does when running with the unmodified exception handler, then you may want to
go step by step and watch the content of relevant registers and memory.

Laboratory 7: Inlab Exceptions in MIPS

© 1996, Virgil Bistriceanu

Laboratory 7: Inlab

Date Section

Name

Interrupt Driven Output
Your job is to build the set of procedures needed to do interrupt driven output to the terminal.

Introduction
As described in the Prelab exercise, SPIM simulates a memory-mapped terminal connected to the processor.
Memory mapped means that accessing some memory locations accesses the I/O devices in reality. Writing
to a specific memory location will actually write to an output device, while reading from some specific mem-
ory location actually reads from an I/O device. The terminal device SPIM simulates consists of two
independent units: the receiver and the transmitter. The receiver reads characters from the keyboard as they
are typed. The transmitter unit writes characters to the terminal’s display.

The processor accesses the transmitter using two memory-mapped device registers:

The Transmitter Control Register (TCR) is located at address 0xffff0008. Bit 0 (LSB) called ‘Ready’ is read-
only. If it is one, then the transmitter is ready to accept a new character. Bit 1 called ‘Interrupt Enable’ can be
read or written. If the user sets it to one, then an interrupt will be requested on level one whenever the ready
bit is one (whenever the transmitter is ready to accept a new character).

The Transmitter Data Register (TDR) is located at address 0xffff000c. The least significant byte can be writ-
ten and will be interpreted as an ASCII character to output to the display.

Step 1
Write a program called lab7.2.asm which does:

• loops 100 times: inside the loop it calls the procedure PrintStr to print the message “Hello world”

• the procedure ‘PrintStr’ receives a pointer to the string to print in $a0, and returns nothing. The pro-

31

Unused

Unused

7831 0

012

ReadyInterrupt Enable

Byte to transmit

0xffff0008

0xffff000c

TCR

TDR

Laboratory 7: Inlab Exceptions in MIPS

© 1996, Virgil Bistriceanu

cedure will copy the output characters in a buffer shared with the interrupt routine

The ‘PrintStr’ procedure will not manipulate the TDR: the interrupt routine will do it. The only interaction
PrintStr has with the device registers is to make sure that interrupts are enabled.

The buffer ‘PrintStr’ shares with the interrupt routine is a circular buffer with a capacity of 256 bytes. The
buffer is in the user space. The names for the two pointers in the circular buffer will be t_in (to indicate
where to put a new char in the buffer) and t_out (to indicate where is the next character to send).

Since the program generates characters to print much faster than the transmitter can print, the buffer will be
eventually filled: in a real system the operating system would block the currently executing process (the one
who has filled up the buffer) and would let another process run. Since the SPIM simulator is a single-user
mono-programming environment (as opposed to a multi-programming one), the procedure ‘PrintStr’ should
handle the case when the buffer is full. One approach is to repeatedly check the buffer until it is no longer full.

Turn the interrupts on when ‘PrintStr’ deposits something in the buffer. This works together with the interrupt
routine which will turn the interrupts off when the buffer is empty.

Step 2
Modify the exception handler as to accept interrupts at level 1. If the handler is invoked because of such an
interrupt, then call a procedure named PutChar which will take a character from the circular buffer and store
it into TDR. Of course, if the transmitter is not ready, then just return: an interrupt should not have been pro-
duced in the first place in this case, but it does not hurt to test.

If the buffer is empty then turn the interrupts off. Otherwise interrupts will be generated all the time to indicate
the transmitter is ready.

Make also sure you properly set up the interrupt mask at level 1 (IM1) and the interrupt enable (IEc), every
time you enable or disable interrupts.

