Arithmetic in MIPS

Objectives
After completing this lab you will:

» know how to do integer arithmetic in MIPS
* know how to do floating point arithmetic in MIPS
« know about conversion from integer to floating point and from floating point to integer.

Introduction

The definition of the R2000 architectureincludes all integer arithmetic within the actual CPU. Floating point
arithmetic is done by one of the four possible coprocessors, namely coprocessor number 1.

Integer arithmetic

Addition and subtraction are performed on 32 bit numbers held in the general purpose registers (32 bit each).
Theresult isa 32 bit number itself. Two kinds of instructions are included in the instruction set to do integer
addition and subtraction:

« instructions for signed arithmetic: the 32 bit numbers are considered to be represented in 2's comple-
ment. The execution of the instruction (addition or subtraction) may generate an overflow.

* instructions for unsigned arithmetic: the 32 bit numbers are considered to be in standard binary repre-
sentation. Executing the instruction will never generate an overflow error even if there is an actual
overflow (the result cannot be represented with 32 bits).

Multiplication and division may generate results that are larger than 32 bits. The architecture provides two
special 32 hit registersthat are the destination for multiplication and division instructions. These registers are
caledhi andl o astoindicatethat they hold the higher 32 bits of the result and the lower 32 bitsrespectively.
Special instructions are also provided to move data from these registers into the general purpose ones ($0 to
$31).

Instruction Effect

nf hi Rdest Rdest « hi

nfl o Rdest Rdest ~ 1o

© 1996, Virgil Bistriceanu

Instruction Effect

mhi Rsrc hi < Rsrc

mlo Rsrc lo «Rsrc

Two kinds of instructions are included in the instruction set to do integer multiplication and division:

* instructions for signed arithmetic: the 32 bit numbers are considered to be represented in 2's comple-
ment. An integer multiplication will never generate an overflow. Division may overflow. Note
however that the instruction will not signal the overflow: this must be done in software.

* instructions for unsigned arithmetic: the 32 bit numbers are considered to be in standard binary repre-
sentation. Executing the instruction will never generate an overflow error even if there is an actua
overflow (thisisthe case for division).

Floating point arithmetic

Floating point arithmetic is performed by the MIPS' coprocessor 1. The coprocessor has 32 registers, num-
bered from 0 to 31 (their names are $f 0 to $f 31). Each register is 32 bit wide. To accommodate doubles,
registers are grouped together (O with 1, 2 with 3,..., 30 with 31). To simplify things, floating-point operations
use only even numbered registers. Arithmetic is performed on single-precision floating-point numbers (32 bit
representation), and on double-precision floating-point numbers (64 bit representation). The odd numbered
registers are used to hold the least significant 32 bits of a double precision number.

Floating point arithmetic resembl es the |EEE-754 floating-point standard. A very brief description of number
formatsin this standard is given in Appendix A.

Floating-point addition, subtraction, multiplication and division may overflow. An overflow means that the
exponent istoo large to be represented in the exponent field.

The MIPS instruction set provides instructions that, beside floating-point operations, do floating-point com-
parisons, branching, load and store from/to memory and conversions between floating point formats and
between integer and floating-point numbers. Unlike the integer unit where comparisons explicitly set some
destination register, in the floating point unit, a comparison will implicitly set a condition flag. The condition
flag can then be tested by branch instructions.

A summary of native instructions is presented in the table below. The x suffix for some instructions should
bereplaced by as (e.g. add. s) to indicate the instruction should operate on single precision floating-point
numbers, or by a(e.g. add. d) to indicate double precision operation.

Instruction Comment
nfcl Rdest, FPsrc Move the content of floating-point register FPsr ¢ to Rdest
mcl Rsrc, FPdest Integer register Rsr ¢ is moved to floating-point register FPdest
nmov. x FPdest, FPsrc Move floating-point register FPsr ¢ to FPdest
Iwcl FPdest, address Load word from addr ess in register FPdest &
swcl FPsrc, address Store the content of register FPsr ¢ at addr essP
add. x FPdest, FPsrcl, FPsrc2 | Addsingleprecision

© 1996, Virgil Bistriceanu

Instruction Comment

sub. x FPdest, FPsrcl, FPsrc2 | Subtract FPsrc2 from FPsrc1

mul . x FPdest, FPsrcl, FPsrc2 | Multiply

div.x FPdest, FPsrcl, FPsrc2 | DivideFPsrcl by FPsrc2

abs.s FPdest, FPsrc Store the absolute value of FPsr ¢ in FPdest

neg. x FPdest, FPsrc Negate number in FPsr ¢ and store result in FPdest

c.eq.x FPsrcl, FPscr2 Set the floating-point condition flag to true if the two registers
are equal

c.le.x FPsrcl, FPsrc2 Set the floating-point condition flag to trueif FPsr c1 islessthan
or equal to FPsr c2

c.lt.x FPsrcl, FPsrc2 Set the floating-point condition flag to trueif FPsr c1 islessthan
FPsrc2

bcit | abel Branch if the floating-point condition flag is true

bclf | abel Branch if the floating-point condition flag is false

cvt.x.w FPdest, FPsrc Convert theinteger in FPsr ¢ to floating-point

cvt.w x FPdest, FPsrc Convert the floating-point number in FPsr ¢ to integer

cvt.d.s FPdest, FPsrc Convert the single precision number in FPsr ¢ to double preci-

sion and put the result in FPdest

cvt.s.d FPdest, FPsrc Convert the double precision number in FPsr ¢ to single preci-
sion and put the result in FPdest

a. A single-precision floating-point number has the same size as aword (32 bits). Inside coprocessor 1 aword
will be treated as a single-precision number. A synthetic instruction is available to load a double from memory.
b. Storesin memory asingle precision number. A synthetic instruction is available to store a double.

© 1996, Virgil Bistriceanu

Laboratory 6: Prelab #1 Arithmetic in MIPS

e —

Laboratory 6: Prelab Exercise #1

Date Section

Name

Ex 1:

Q1

Integer Arithmeticin MIPS

During the prelab you will become familiar with integer arithmetic in MIPS. Since you have already used
addition and subtraction in the previous labs, we will focus on issuesrelated to the difference between signed
and unsigned operations, and overflows. An overflow isasituation in which the result of an operation can not
be represented using the assigned number of bits for that result.

Integer addition and subtraction

Unsigned integers are positive integers. With n bits for representation, the smallest unsigned is zero and the
largest is 2" 1. In a C/C++ program, integer variables which can not possibly be negative, should be
declared asunsi gned i nt (though you will see many programs where all integers are declared as plain
i nt,i.e signedintegers)

Signed integers can be both positive and negative. With n bits, in 2's complement representation, the smallest
integer is —2" " and the largest is 2" "' -1

At the C/C++ programming level the difference between unsigned and signed integersis sometimesignored.

Note, however that declaring an integer variable that is aways positive asi nt (when it should in fact be
declared asunsi gned i nt), reduces the range of that variable in half.

/1 Assume that integers are 32 bit w de

{

unsi gned int ex1; /1 values for exl between 0 and 4, 294, 967, 295
int ex2; /1 values for ex2 between -2, 147,483,648 and 2, 147, 483, 647
}

If thevariable ex2 isaways positive, then its possible values will bein therange 0 to 2,147,483,647, half of
the range an unsigned integer has. m

A negative number is represented as a bit pattern whose most significant bit is 1 (in 2's complement repre-
sentation). The same it pattern, when looked at as an unsigned integer, will be alarge number. Fill out the

© 1996, Virgil Bistriceanu

Laboratory 6: Prelab #1

Arithmetic in MIPS

following table (assume 8 bit number representation for simplicity)

Bit pattern

Value if bit pattern represents a
signed integer

Valueif bit pattern represents an
unsigned integer

00000000

01111111

10000000

11111111

At the assembly language level the difference between signed and unsigned is more subtle. Most instructions
that do arithmetic on signed numbers may overflow and the overflow will be signaled. Thusthe trap handler!
can take appropriate action to deal with the situation: ignoring an overflow may result in the computation of

results that are completely wrong.

Instructions that do arithmetic on unsigned integers on the other hand, will not signal an overflow even if the
operation itself yields a result which is not representable with the given number of bits for the resullt.

Q2

In what cases can the operation overflow? In the * Addition’ and * Subtraction’ columns of the following table
usea'Y’ toindicate that the operation can overflow, and ‘N’ to indicate that the operation can not overflow.

Possible cases of overflow for integer addition and subtraction

Operand_1 Operand_2 Addition Subtraction?
positiveP positive
positive negative®
negative positive
negative negative
0 positive
0 negative
positive 0
negative 0

a. Operand_2 is subtracted from Operand_1

b. Strictly

greater than 0

c. Strictly smaller than O

1. More about trap handlersin Lab #7

© 1996, Virgil Bistriceanu

Laboratory 6: Prelab #1 Arithmetic in MIPS

Q3

Step 1
Write a program, called lab6.1.c which:

* declares two integer variables, a and b. Theinitial value for a and b is the maximum possible value
for aninteger (INT_MAX if you include the limits.h file)

e addsa and b and prints the result

Do you think the addition in lab6.1.c overflows? Explain.

Q4.

Step 2

Compile and run the executable created from lab6.1.c.

a b Printed result

Isthe result your program prints correct? Explain.

Most compilers generate code that does not signal integer overflows. An unsuspecting programmer may eas-
ily generate incorrect output without any error message to indicate it.

Step 3

Create the program lab6.1.asm based on the foll owing description:

 in‘main’ prompts the user to enter two integers; storethemin $t 0 and $t 1
+ adds the two numbers using the native signed instruction; store the result in $t 2
e printsthe result

Run the program and fill out the following test plan. Wherever possible use numbers that would make the
addition overflow. In the *Overflows columnusea'Y’ to indicate the operation overflowsand a‘N’ to indi-
cate it does not. In the *Comment’ column mark with a star those cases when an overflow error is actually
reported.

Note: carefully choose the numbersyou enter for test. The system function that reads an integer from the user
(read_int) will truncate a very big number asto fit an integer register (32 bits). What you have in the register

© 1996, Virgil Bistriceanu

Laboratory 6: Prelab #1 Arithmetic in MIPS

may be something you did not expect (try for example to enter anumber like 8,589,934,593 and then look in
the register where you store the number to see what has actually been stored there).

Test plan for lab6.1.asm (Signed addition)

Operand_1 Operand_2 Printed result Overflows | Comment
+2000000000 +2000000000 Y
+ -
- +
Step 4

Create the program lab6.2.asm based on the following description:

 in‘main’ prompts the user to enter two integers; store themin $t 0 and $t 1
» subtracts the second number from the first using the native signed instruction; store the result in $t 2
* printsthe result

Run the program and fill out the following test plan. Wherever possible use numbers that would make the
subtraction overflow. In the ‘Overflows columnusea‘Y’ to indicate the operation overflowsand a‘N’ to
indicate it does not. Inthe‘ Comment’ column mark with a star those cases when an overflow error is actually

reported.
Test plan for lab6.2.asm (signed subtraction)
Operand_1 Operand_2 Printed result Overflows | Comment
+ +
+ -
- +
Step 5

Testing unsigned addition and subtraction requires some attention. The SPIM simulator always prints the
content of ageneral purpose register asasigned integer. The fact that alarge valid unsigned integer is printed
asanegative number may confuse you. Unsigned numbers|arger or equal to 2"~ ! (but smaller than 2") have
the most significant bit 1. Therefore they will be interpreted as negative numbers by the printing function.

Create the program lab6.3.asm based on the following description:

 in‘main’ prompts the user to enter two integers; storethemin $t 0 and $t 1
* adds the two numbers using the native unsigned instruction; store the result in $t 2
* printsthe result

© 1996, Virgil Bistriceanu

Laboratory 6: Prelab #1 Arithmetic in MIPS

Run the program and fill out the following test plan. Wherever possible use numbers that would make the
addition overflow. In the*Overflows columnusea'Y’ to indicate the operation overflowsand a‘N’ to indi-
cate it does not. In the ‘Comment’ column mark with a star those cases when an overflow error is actually

reported.
Test plan for lab6.3.asm (unsigned addition)
Operand_1 Operand_2 Printed result Overflows | Comment
+ +
Step 6

Create the program lab6.4.asm based on the following description:

 in‘main’ prompts the user to enter two integers; store themin $t 0 and $t 1
» subtractsthe second number from thefirst using the native unsigned instruction; storetheresult in $t 2
* printsthe result

Run the program and fill out the following test plan. Wherever possible use numbers that would make the
subtraction overflow. In the ‘Overflows columnusea‘Y’ to indicate the operation overflowsand a‘N’ to
indicate it does not. Inthe‘ Comment’ column mark with a star those cases when an overflow error is actually
reported.

Test plan for lab6.4.asm (unsigned subtraction)

Operand_1 Operand_2 Printed result Overflows | Comment

© 1996, Virgil Bistriceanu

Laboratory 6: Prelab #2 Arithmetic in MIPS

e —

Laboratory 6: Prelab Exercise #2

Date Section

Name

Ex 1:

Integer Arithmeticin MIPS (cont’ d)

During this prelab exercise you will become familiar with integer multiplication and division in MIPS.

Integer multiplication

Integer multiplication can be done using both signed and unsigned numbers. The architecture specifies two
specid registers, hi and | o (32 bit each), which are the destination for integer multiplication and division.

Multiplying two n-bit unsigned integers may yield aresult that requires 2 Ch bits to be represented.

Assume 2 bit unsigned integers. Then the largest integer that can be represented using 2 bitsis 3 (its binary
representation is 11).

Multiplication Comment

Decimal 3B=9

Binary 111 = 1101 Result requires 4 bits for representation

For signed multiplication the two numbers to be multiplied are in 2's complement representation. The result
isalsoin 2's complement representation. Theresult of asigned multiplication may require 2 h—1 bitsfor
representation: thereare 2 0(n—1) hitsfor the magnitude and one bit for the sign.

Nativeinstructionsfor multiplication

Instruction Comment

mult Rsrcl, Rsrc2 Multiply the signed numbersin Rsr c1 and Rsr c2. The higher 32 bits of the

result goin register hi . The lower 32 bits of the result go in register | o

multu Rsrcl, Rsrc2 | Multiply theunsigned numbersinRsr c1 and Rsr c2. The higher 32 bits of the

result goin register hi . The lower 32 bits of theresult go in register | o

Since both signed and unsigned integer multiplication never require more than 64 bits for the result, an over-
flow will never occur during integer multiplication using the native multiply instructions.

© 1996, Virgil Bistriceanu

Laboratory 6: Prelab #2 Arithmetic in MIPS

The virtual machine provides multiply instructions whose result is the size of aword (the destination register
is some general purpose integer register). Since the destination register is only 32 bit wide, these synthetic
instructions may overflow.

Synthetic instructions for multiplication

Instruction Comment

mul Rdest, Rsrcl, Rsrc2 Multiply the signed numbersin Rsr c1 and Rsr c2. Thelower 32 bits
of theresult go in register Rdest .

mul o Rdest, Rsrcl, Rsrc2 Multiply the signed numbersin Rsr c1 and Rsr c2. The lower 32 bits
of theresult go in register Rdest . Signal overflow

mul ou Rdest, Rsrcl, Rsrc2 | Multiply the unsigned numbersinRsrc1 and Rsr c2. Thelower 32
bits of the result go in register Rdest . Signa overflow

Integer division
The result of an integer division is a quotient (stored in register | 0) and aremainder (stored in register hi),
both integer numbers.

» There is one complication related to integer division: the sign of the remainder. There are two
approaches to this problem:

» follow the division theorem from mathematics

* use the computer science view

By dividing an integer DD called dividend, by a positive integer DR called divisor, the following conditions
are true (the division theorem):

DD = DRQ+RM (1)
0<RM<DR (2)

where Q (the quotient) and RM (the remainder) are unigue integers. Note that the remainder is always
positive.

Ex 2:
What is the result of dividing -22 by 3?

DD =-22,DR=3,Q=-8, RM =+2

Note that relation (1) could be satisfied by Q' =-7, RM’ = -1. However this solution is not valid since it does
not satisfy the condition that the remainder must be positive (2).

What is the result of dividing +22 by 3?
DD =+22,DR=3,Q=+7,RM =+1

_ _R2n , 0220))) o
Inthisapproach "0707" O'7 0. If thiswasimplemented on computers, then programming would definitely

be more fun than it isnow. m

The way division is usually implemented (the ‘ computer science way’), the following relations are true:

© 1996, Virgil Bistriceanu

Laboratory 6: Prelab #2 Arithmetic in MIPS

DD = DRI +RM (3)
IRM| < |DR| (4)
sign(RM) = sign(DD) (5)

If the dividend and the divisor have the same sign then the quotient is positive; otherwise it is negative. A
nonzero remainder has aways the same sign as the dividend.

Q1L

What are the results of the following integer divisions?

Dividend Divisor Quotient Remainder
22 7
-22 7
22 -7
-22 -7

In MIPS, if one of the operands in a division is negative, then the remainder is unspecified. The SPIM sim-
ulator will return aresult based on the conventions on the machine it is run on.

To obtain the correct result for division, extra steps need to be performed:

« convert both operand to positive integers
* perform the division

* set theresult to its actual representation based on theinitial signs of the dividend and divisor.

A signed division may overflow since the 2's complement representation of integersis asymmetric: thereis
one negative number more than positive numbers. Note however that the overflowing division does not signal
the overflow. It isthe compiler’s or programmer’ stask to generate proper code that detects the overflow.

Dividing aninteger by zeroisanillegal operation. However, evenif thedivisor is zero, thedivision will report

no error. It is again the compiler’s or programmer’s task to generate proper code that detects the illegal
operation.

Nativeinstructions for division

Instruction Comment

div Rsrcl, Rsrc2 Divide the signed integer in Rsr c1 by the signed integer in Rsr c2. The quo-
tient (32 bits) goesin register | 0. The remainder goesin register hi . Can
overflow.

© 1996, Virgil Bistriceanu

Laboratory 6: Prelab #2

Arithmetic in MIPS

Nativeinstructions for division

Instruction

Comment

di vu Rsrcl, Rsrc?2

Divide the unsigned integer in Rsr c1 by the unsigned integer in Rsr c2. The
quotient (32 bits) goesinregister | 0. The remainder goesin register hi . Does

not overflow.

The virtual machine provides divide instructions whose result is stored in a general purpose register.

Synthetic instructionsfor division

Instruction

Comment

div Rdest, Rsrcl, Rsrc2

Divide the signed integer in Rsr c1 by the signed integer in Rsr c2.
Store the quotient (32 bits) in register Rdest . Can overflow.

di vu Rdest, Rsrcl,

Rsrc2 | Dividethe unsigned integer in Rsr c1 by the unsigned integer in
Rsr c2. Store the quotient in Rdest. Does not overflow.

rem Rdest, Rsrcl, Rsrc2

Divide the signed integer in Rsr c1 by the signed integer in Rsr c2.
Store the remainder? (32 bits) in register Rdest . Can overflow.

remu Rdest, Rsrcl,

Rsrc2 | Dividethe signed integer in Rsr c1 by the signed integer in Rsr c2.
Store the remainder? (32 bits) in register Rdest . Does not overflow.

a. If one of the operands is negative then the remainder is undefined.

Step 1

Write a program, called 1ab6.2.c which:

* declares two integer variables, a and b. Theinitial value for a and b is the maximum possible value
for an integer (INT_MAX if you include the limits.h file)

» multipliesa and b and prints the result

Q2

Do you think the multiplication in lab6.2.c overflows? Explain.

Step 2

Compile and run the executable created from lab6.2.c.

Printed result

© 1996, Virgil Bistriceanu

Laboratory 6: Prelab #2 Arithmetic in MIPS

Q3

Isthe result your program prints correct? Explain.

Most compilers generate code that does not signal integer overflows. An unsuspecting programmer may eas-
ily generate incorrect output without any error message to indicate it.

Step 3

Create the program lab6.5.asm based on the following description:

 in‘main’ prompts the user to enter two integers; storethemin $t 0 and $t 1
» multiplies the two numbers using the native signed instruction
* printsthe result

Run the program and fill out the following test plan. Use the pri nt command in the simulator to see the
content of registershi and | o. In the last two rows of the table enter the numbers that represent the largest
possible signed integer and the smallest possible one respectively.

Test plan for lab6.5.asm (Signed multiplication): register’s content

Operand_1 Operand_2 Register hi (hexadecimal) Register | o (hexadecimal)
2 1
2 -1

262,144 (=218 16,384 (=214

Q 4.

In the second row of thistest plan theregister hi isall 1s. Why isthat?

Step 4

Run the program again and fill out the next test plan. Use the same numbers you have used in the previous

© 1996, Virgil Bistriceanu

Laboratory 6: Prelab #2 Arithmetic in MIPS

step.

Test plan for lab6.5.asm (Signed multiplication): printed results

Operand_1 Operand_2 Expected result Printed result

Q5

Some of the results your program prints are not correct. Why?

Step 5
Create the program lab6.6.asm based on the following description:

 in‘main’ prompts the user to enter two integers; storethemin $t 0 and $t 1
» multiplies the two numbers using the native unsigned instruction

Run the program and fill out the following test plan.

Test plan for lab6.6.asm (unsigned multiplication): register’s content

Operand_1 Operand_2 Register hi (hexadecimal) Register | o (hexadecimal)
2 1
2 -1

262,144 (=218 16,384 (=214

Q6:

What numbers arein reality multiplied when the input numbers are 2 and -1? Remember that a negative inte-
ger will mean alarge positive unsigned integer.

Valueif bit pattern represents an

Number Bit pattern unsigned integer

© 1996, Virgil Bistriceanu

Laboratory 6: Prelab #2 Arithmetic in MIPS

Valueif bit pattern represents an

Number Bit pattern unsigned integer

Step 6

Create the program lab6.7.asm based on the following description:

 in‘main’ prompts the user to enter two integers; store themin $t 0 and $t 1
« dividesthe first number by the second one, using the native signed instruction
* printsthe quotient and the remainder

Run the program and fill out the following test plan. Use small numbers that would generate a nonzero
remainder. For the last row use a pair of numbers that would make the division overflow. Note that division
by zero (whichisanillegal operation) and overflow are different things. In the * Comment’ column mark with
a star those cases where an error is reported.

Test plan for lab6.7.asm (signed division)

Operand_1 Operand_2 Printed Quotient Printed remainder Comment
+ +
+ -
- +
0

Highlight those cells that contain incorrect results.

Step 7
Create the program lab6.8.asm based on the following description:
* in‘main’ prompts the user to enter two integers; store themin $t 0 and $t 1

« dividesthe first number by the second one, using the native unsigned instruction
* prints the quotient and the remainder

Run the program and fill out the following test plan. Use small numbers that would generate a nonzero
remainder. For the last row use a pair of numbers that would make the division overflow. In the ‘ Comment’

© 1996, Virgil Bistriceanu

Laboratory 6: Prelab #2 Arithmetic in MIPS

column mark with a star those cases where an error is reported.

Test plan for lab6.7.asm (unsigned division)

Operand_1 Operand_2 Printed Quotient Printed remainder Comment
+ +
+ -
- +
-1 +2
0

Highlight divisions where incorrect results are printed.

Q7.

What numbers are in reality divided when the input numbers are -1 and +27?

Number Bit pattern Vaueif bit pattern represents an
unsigned integer
-1
+2

© 1996, Virgil Bistriceanu

Laboratory 6: Prelab #3 Arithmetic in MIPS

e —

Laboratory 6: Prelab Exercise #3

Date Section

Name

Floating Point Arithmeticin MIPS

During this exercise you will use floating-point instructions. Since the SPIM simulator does implement only
partially the |EEE-754 standard, this exercise will ignore most issuesrelated to the standard, like waysto han-
dle overflows, underflows, denormalized representation, rounding, etc. The focus will be on floating point
number representation.

Floating point numbers

The IEEE-754 standard reserves severa bit patterns to have special meaning. In other words not all bit pat-
terns represent some number.

Special bit patternsin |[EEE-754

Sign bit Exponent Significand Comment
X 0..0 0..0 Zero
X 0..0 not all zeros | Denormalized number
0 1..1 0..0 Plus infinity (+inf)
1 1..1 0..0 Minus infinity (-inf)
X 1..1 not all zeros | NotaNumber (NaN)

Infinity does not mean mathematically infinite, rather something too big to be represented. An overflow can
return an +inf or a-inf (though the standard also provides amechanism to determine the correct result in case
of overflows). Some operations on infinity return yet another infinity as aresult.

Table 1: Some operations with infinity

Operation Result Comment
x + (inf) i nf x finite
X - (+inf) -inf x finite
(+inf) + (+inf) +i nf
(-inf) + (-inf) -inf
X * (+inf) +inf if x>0, -inf otherw se | x nonzero

© 1996, Virgil Bistriceanu

Laboratory 6:

Prelab #3 Arithmetic in MIPS

There can be apositive zero if the sign bit is 0 and a negative zero (the sign bit is 1). Denormalized numbers
areincluded in IEEE-754 to handle cases of exponent underflow (very small numbers).

A NaN (sometimes denoted by nan) is used to represent an indeterminate result. There are two kinds of NaNs,
signaling and quiet: the actual bit pattern in the significand field is used to differentiate between them, and it
isimplementation-dependent. A signaling NaN can be used for instance for uninitialized variables: attempt-
ing to operate on asignaling NaN can cause atrap. Note that any operation on asignaling NaN will have as
aresult aquiet NaN. Operating on aquiet NaN simply returns another NaN without generating any exception.

Table 2: Some operations which produce a quiet NaN

Operation Comment

X + (NaN) Any operation on aquiet NaN (addition in this example)

(+inf) + (-inf)

0 * (inf)

0/0

i nf/inf

X%0 The remainder of division by 0

Jx, x <0

Step 1

Create a program named lab6.9.asm which:

declares the variables Zero.s, Plusinf.s, Minusinf.s, PlusNaN.s, MinusNaN, of size word, initialized
with the bit patterns corresponding to zero, plus infinity, minus infinity, positive Not a Number, and
negative Not a Number respectively, in single precision representation

declares the variables Zero.d, Plusinf.d, MinusInf.d, NaN.d, initialized with the bit patterns corre-
sponding to zero, plusinfinity, minusinfinity, and Not a Number respectively, in double precision
loads these variables in floating-point registers, starting with $f 0

prints, starting with $f 0, the contents of those registerswhere variables have been loaded; print anew-
line (\n) character after each value.

Run the program. Fill out the following table

Printed output when running lab6.9.asm

Variable name Printed output

© 1996, Virgil Bistriceanu

Laboratory 6: Prelab #3 Arithmetic in MIPS

Printed output when running lab6.9.asm

Variable name Printed output

Step 2
Create the program lab6.10.asm which;
* declares the same single precision variables as |ab6.9.asm

* declares afloat called MyNum, initialized to the first two digits of your Socia Security Number

* performs an operation which uses MyNum and which generatesinfinity; print the result. Choose some
operation from Table 1

« performs an operation that generates NaN and print the result; choose some operation from Table 2

Run the program. Fill out the following table

Printed output when running lab6.10.asm

MyNum Operation implemented Printed result

Q1

What is the bit pattern for the largest possible single precision floating point number? Write it down in hexa-
decimal.

© 1996, Virgil Bistriceanu

Laboratory 6:

Inlab Arithmetic in MIPS

e —

Date

Laboratory 6: Inlab

Section

Name

Floating Point Arithmeticin MIPS (cont’ d)

Thisinlab session will focus on doing floating-point arithmetic and on various conversions.

Step 1

During Lab #4 you created a program named lab4.5.asm which computes the factorial of an integer number.
All operations were performed on integer numbers. Y ou are to create a new program named lab6.11.asm
which computes the factorial of an integer using floating point numbers:

in‘main’ prompt the user to enter an integer
check if the number entered isnegative: if it isnegative, then print amessage saying so and prompt the
user again for a number

call the procedure named * Factorial Single’ whose parameter will be the number read from the user,
converted to single precision floating-point; the procedure returns the factorial (a single precision
floating-point) of that number

use the MIPS convention for procedure call
prints a message and the value returned by ‘FactorialSingle

Run lab4.5.asm and the new program to complete the following test plan. Use scientific notation for the out-
put printed by l1ab6.11.asm (i.e. 3.141592¢€0).

Test plan for lab6.11.asm

Input number lab4.5.asm output lab6.11.asm output

0

5

10

15

20

40

© 1996, Virgil Bistriceanu

Laboratory 6: Inlab Arithmetic in MIPS

Q1L

Why some of the results printed by lab4.5.asm are negative?

Q2

What are the maximum values of the input for which correct output is still printed?

Integer n=

Single precision floating-point | n=

Step 2

Using some other method, calculate the exact value of 20! OnaUNIX platform you can use be (the“ arbitrary-
precision arithmetic language”). If no softwareis available to you to do the job, then you will have to use the
old-good pencil and paper method.

The exact value for 20!

20! =

Run again lab6.11.asm and write down the value printed for 20!

Value printed by lab6.11.asm for 20!

20! =

Q3

Why do the two values differ?’

Q 4.

How many digits are exact in the result printed by lab6.11.asm?

exact_digits=

© 1996, Virgil Bistriceanu

Laboratory 6: Inlab Arithmetic in MIPS

Q5:
Based on the answer to the previous question, can you make a rough estimation of the number of digits that
should be printed for a floating-point single precision number?

digits_to _print =

Step 3

In step 1 you have used the integer to floating point conversion (cvt . s. w). Let’snow try aconversion from
float to integer. Modify lab6.11.asm (save the new program as lab6.12.asm):

* dfter printing the value returned by ‘ Factorial Single’, convert that value to an integer and print it too.

Run the program and complete the next test plan. Write down the value printed for the factorial asis, don't
use scientific notation thistime.

Test plan for lab6.12.asm

Input number Floating-point output Integer Output

0

5

10

11

12

13

14

15

Highlight those cases where the integer output is a number different than the floating-point output.

Q6:

Do you think the conversion operation yields a signed integer or an unsigned one? Explain.

Q7.

As you can see the conversion instruction does not signal any error even if the conversion itself resultsin a

© 1996, Virgil Bistriceanu

Laboratory 6: Inlab Arithmetic in MIPS

wrong value for the result. What is, in your opinion, the reason the architecture does not specify the conver-
sion instructions should report errors?’

Q8:
What would be the sequence of instructions that would emulate a signaling conversion? Do this only for the
float to integer conversion.

© 1996, Virgil Bistriceanu

Laboratory 6: Postlab Arithmetic in MIPS

e —

Laboratory 6: Postlab

Date Section

Name

P.1:

Step 1

During the prelab exercises you have been, at the very least, annoyed by the fact that you could not correctly
print unsigned integers. By using pri nt _i nt , alarge unsigned integer (larger or equal to 231) would print
as a negative number. Y ou now want to correct this by providing future users with a procedure that prints
unsigned integers. Y ou will write a procedure, named ‘ PrintUnsigned’ which:

* receives the unsigned number to print in $a0

* converts the number to anull terminated ASCII string (the null character is 0x00)
* printsthe string

* returnsin $v0 the number of non-null charactersin the printed ASCII string

Hereisthe C code for the integer to ASCII conversion function, it oa() . You will haveto slightly modify
it and use it in your implementation of ‘ PrintUnsigned’.

/* code for itoa() from"“The C Progranm ng Language” by Kerni gan and Ri chi e
*/

voi d reverse(char *s)

{

int ¢, i, j;

for(i=0, j=strlien(s)-1; i<j; i++ j--) {
c=s[i];
s[i]=s[j];

s[j]=c;
}

void itoa(int n, char *s)

{

int i, sign;

if ((sign=n) < 0)
n=-n;
i =0;
do {
s[i++] = n%d0 + '0';
} while((n/=10) > 0);

© 1996, Virgil Bistriceanu

Laboratory 6: Postlab Arithmetic in MIPS

if (sign < 0)
s[i++] ="'-";
s[i] ="\0";
reverse(s);
}
Hints:
* you will need to reserve space in ‘PrintUnsigned’ for the string you generate;
» make sure you use the appropriate (signed/unsigned) arithmetic functions
Step 2

Create a program called lab6.13.asm which you use to test ‘ PrintUnsigned’, as follows:

« the program prints six times (in aloop) the value of a counter initialized to 3 ;

* at each iteration the program prints the counter using pri nt _i nt and then the same counter using
‘PrintUnsigned’

* at each iteration the counter isincremented by one using an unsigned operation

Run the program and complete the following test plan.

Test plan for lab6.13.asm

Counter Printed by print_int Printed by ‘ PrintUnsigned’

Step 3

Return to your lab instructor a copy of lab6.13.asm together with this postlab description. Ask your lab
instructor whether copies of programs must be on paper (hardcopy), e-mail or both.

© 1996, Virgil Bistriceanu

